Modelling of triggering of Orca submarine landslide, Cascadia margin, northeast Pacific
-
摘要: 海底温度和海平面变化可以引起海底天然气水合物分解,导致沉积物孔隙内形成超压,改变沉积物有效应力从而触发海底滑坡。本文建立了与此相关的海底滑坡产生的数值模型,并应用于东北太平洋Cascadia陆缘14~9 kaBP期间发生的Orca滑坡形成过程研究。模拟结果显示在最近18 ka海平面逐渐上升的大背景下,18~14 kaBP期间底水温度升高引起其后的天然气水合物稳定带底界快速上移,并在13.7 kaBP达到1.18 m/ka的高底界上移速率,此时Orca地区稳定带底界粗颗粒层内的高饱和度天然气水合物发生分解,产生114 kPa的流体超压,使地层安全系数显著小于1,触发海底滑坡。因此,海底温度升高引起高饱和度天然气水合物分解可能是东北太平洋Cascadia陆缘Orca海底滑坡的主要触发因素。
-
关键词:
- 海底滑坡 /
- 水合物分解 /
- 流体超压 /
- 滑坡触发机理 /
- Cascadia陆缘Orca滑坡
Abstract: Bottom-water temperature variations and eustatic sea-level fluctuations may cause decomposition of marine gas hydrate and excess pore pressure in sediment, which leads to a subsequent decrease in effective stress of the sediment, and eventually results in submarine landslides. A numerical modeling of the mechanism of such slope failure was developed herein, and was applied to the study of Orca Slide that occurred between 14 and 9 kaBP on the Cascadia margin in the northeast Pacific. The modeling results show that with the rising sea level in the last 18 ka, the base of hydrate stability zone (BHSZ) experienced a fast upward movement whose rising rate peaked to 1.18 m/ka at 13.7 kaBP due to continuous bottom-water warming during 18~14 kaBP. Meanwhile, an excess pore pressure of 114 kPa was formed in the coarse-grained layers in the BHSZ of Orca Slide as a result of gas hydrate decomposition, which then significantly reduced the factor of safety of the strata to less than 1, thereby triggering the submarine landslides. Therefore, highly saturated hydrate decomposition caused by the bottom-water temperature rise may be the main triggering mechanism of Orca submarine landslide. -
海底滑坡是最主要的海洋地质灾害之一,广泛发育于陆架到陆坡的过渡地带[1-2],它的触发因素主要为地震和火山活动等[3-5]。随着研究的不断深入,天然气水合物(简称“水合物”,下同)分解也逐渐被认为是触发海底滑坡的重要因素[6-8],现有统计结果显示由水合物分解导致的滑坡数量占全球海底滑坡总数的11%[9]。海底滑坡可以改变海底地貌、破坏海底工程设施、引发海啸危及沿岸人类生命安全[1, 10-13],并且水合物区的海底滑坡还会释放大量甲烷温室气体进入海水和大气,引起海水酸化、海洋生态灾害及全球气候变暖[14-17]。
海平面下降和底水升温是引起水合物分解进而触发滑坡的最主要诱因[16, 18]。海平面波动100 m会引起海底压力变化1 MPa,因此冰期海平面大幅下降会导致静水压力骤降,而底水升温会增高海底沉积物温度和孔隙水中的甲烷溶解度[19-20],两者均能使原来稳定的水合物偏离热力学平衡条件从而发生分解并引发海底滑坡[1, 21]。加拿大西北岸Beaufort Sea滑坡[22]、Cape Fear滑坡[23]以及Colombia块体搬运沉积体系[24]可能均由更新世海平面下降时期的水合物分解所引起[25],而挪威大陆边缘的Storegga滑坡和Andoya滑坡则可能是由发生于11~8 kaBP的底水快速升温所导致[26]。总体而言浅海沉积物中的水合物主要受控于海底温度的变化,深水区的水合物稳定带主要受控于海水深度的变化[19, 27]。
水合物分解并不直接触发海底滑坡,主要通过使沉积物颗粒失去其胶结和支撑作用,在地层中形成构造薄弱面,更重要的是水合物分解会释放出远超过自身体积的甲烷气体和水,在沉积物孔隙内聚集形成超压,降低地层抗剪强度引起斜坡失稳[28-30]。水合物分解有关的流体超压计算方法有多种,多位学者建立了各种封闭体系的流体超压计算方法[19, 31-33]。Grozic和Kvalstad[31]以及Nixon和Grozic[33]利用水合物分解过程中体积膨胀与沉积物体积变化一致,建立了流体超压和有效应力的计算方法,发现水深、稳定带底界深度、水合物饱和度等均能影响流体超压;Kwon[32]等通过估算封闭低渗透层中水合物分解释放的天然气所能产生的气层高度来计算流体超压;Sultan等[19]计算了封闭孔隙空间水合物分解所能产生的最大超压。但是因为没有考虑流体释放对降低流体超压的影响,这些计算模型将可能高估流体超压。Xu和Germanovich[34]根据水合物分解导致的体积膨胀与达西定律控制的超压流体释放,建立了基于水合物分解速率的流体超压的模型,发现流体超压受到水合物分解速率、水合物稳定带深度和地层渗透率等控制,但是沉积层内的水合物稳定性受到海平面、海底温度等因素控制,水合物分解速率很难确定。
因此,结合海底温度和海平面变化历史,开展水合物稳定带和流体超压动态演化的综合研究,才能更准确评估水合物触发海底滑坡的过程。东北太平洋Cascadia陆缘广泛发育水合物和海底滑坡,研究显示Orca滑坡滑移面的深度与滑坡发生前的似海底反射层(BSR)深度高度吻合,该滑坡的破坏面可能受到水合物底界面的控制[35]。沉积层的超压和Cascadia俯冲带频发的地震可能是触发Orca滑坡的主要因素[36],但是对于该地区水合物动态变化和地层稳定性之间的动态联系并不清楚,制约了对其滑坡触发机理的认识。因此本文针对Orca滑坡结合海底温度、海平面变化和水合物发育特征模拟研究水合物稳定带底界、孔隙流体超压和地层稳定性的演化历史,揭示东北太平洋Cascadia陆缘Orca滑坡区的水合物动态变化以及滑坡的触发机理。
1. 流体超压和地层稳定性
1.1 水合物稳定带底界
水合物稳定带一般是指从海底表面到水合物能够保持稳定的整个低温高压地层区间[37],稳定带底界(BHSZ)深度一般通过水合物-水-气三相热力学平衡的温压曲线与实际的地温-压力曲线的交点确定。本文模型针对Cascadia陆缘发育广泛的Ⅰ型甲烷水合物建立,不考虑海底沉积埋藏作用对水合物底界变化的影响,同时假定地层孔隙水盐度恒定、水合物分解过程中没有二次生成现象。水合物分解时引起的温压条件变化可以改变水合物-水二相甲烷溶解度,但是溶解度变化很小,因此只有非常少量水合物分解释放出来的甲烷会溶解进入孔隙水。另外单位面积水合物分解时吸收的热量为10−4~10−5 mW[38],远小于地热流量70 mW/m2,故可以忽略水合物分解热的影响。
本文应用Tishchenko模型计算水合物-水-气三相热力学平衡的温压条件[39]:
$$ \begin{split} \ln (P_{{\text{dis}}}^{{\text{sw}}}/{10^6}{\rm{pa}}) =& - 1.6444866 \times {10^3} - 0.1374178 T + 5.4979866 \times {10^4}/T + 2.64118188 \times {10^2} \ln (T) + \\& [1.1178266 \times {10^4} + 7.67420344 T - 4.515213 \times {10^{ - 3}} {T^2} - 2.04872879 \times {10^5}/T - \\&2.17246046 \times {10^3} \ln (T)] S + [1.70484431 \times {10^2} + 0.118594073 T - 7.0581304 \times {10^{ - 5}} {T^2}- \\& 3.09796169 \times {10^3}/T - 33.2031996 \ln (T)] S^2 \end{split} $$ (1) 其中,
$ P_{{\text{dis}}}^{{\text{sw}}} $ (Pa)为海水环境中给定温度条件下的水合物分解压力,$ T $ 为海底之下沉积层的温度(K),$ {{S}} $ 为沉积孔隙水的盐度(PSU),本文取海水盐度。如果流体流速较小,忽略流体的对流作用对温度的影响,海底沉积层温度受热传导控制向深部传递:
$$ \frac{{\partial T}}{{\partial t}} = \alpha \frac{{{\partial ^2}T}}{{\partial {z^2}}} $$ (2) 其中,
$ T $ 为海底之下沉积层的温度,$ t $ 为时间(s),$ \alpha $ 为热扩散系数(1×10−6 m2/s ),$ z $ 为地层深度(mbsf)。通常在海底之下2000 m的深度范围内,沉积物压力为静水压力[40-41]。海底水合物分解释放天然气,可能导致流体压力高于静水压力,高于静水压力的部分即为流体超压,因而海底之下沉积物孔隙内的流体压力(Pz)可以视为静水压力(P)和流体超压(Pex)两部分:
$$ {P_z} = P + {P_{{\text{ex}}}} = {\rho _{\text{w}}}g(h + z) + {P_{{\text{ex}}}} $$ (3) 其中,
$ {\rho _{\text{w}}} $ 为海水密度(平均为1030 kg/m3),$ {\text{g}} $ 为重力加速度(9.8 m/s2),$ h $ 为水深(m),受到海平面变化影响,$ z $ 为地层深度(mbsf)。应用历史时期的底水温度记录,通过控制公式(2)计算的温度,带入公式(1),计算确定三相平衡压力。利用历史时期的海平面,结合公式(3)计算孔隙水压力。不同时期的三相平衡压力与孔隙流体压力相等的位置为水合物稳定带底界,从而可以得到不同时间水合物稳定带底界演化过程。
1.2 孔隙流体超压
当水合物保持稳定所需的温压条件不再满足时水合物将发生分解,释放的流体会导致沉积物体积膨胀和超压形成,Xu 和Germanovich的超压模型显示流体超压受到水合物分解速率的控制[34]:
$$ {P_{{\text{ex}}}} = - \frac{{{\mu _{\text{f}}}{R_{\text{v}}}{Z_{{\text{BHSZ}}}}\phi \Delta {Z_{{\text{BHSZ}}}}}}{k}\frac{{{\rm d}{S_h}}}{{{\rm d}t}} $$ (4) 其中,
$ {\mu _{\text{f}}} $ 为流体黏度 (8.87×10−4 Pa·s),$ {R_v} $ 为体积膨胀系数,$ \phi $ 为沉积物孔隙度,$ {Z_{{\text{BHSZ}}}} $ 为水合物稳定带底界深度(mbsf),$ \Delta {Z_{{\text{BHSZ}}}} $ 为水合物分解层厚度(m),$ k $ 为地层渗透率(m2),$ {S_h} $ 为沉积物孔隙中的水合物饱和度,$ t $ 为时间(s)。沉积物温度具有随着地层深度增加而逐渐增大的特征,稳定带底界是水合物热力学平衡三相区,埋藏进入底界之下的水合物发生分解,稳定带底界随之上移,因此水合物分解速率可以通过稳定带底界移动速率和沉积速率与水合物饱和度确定:
$$ \Delta {Z_{{\text{BHSZ}}}}\frac{{{\rm d}{S_h}}}{{{\rm d}t}} = {S_h}\frac{{{\rm d}{Z_{{\text{BHSZ}}}}}}{{{\rm d}t}} $$ (5) 把公式(5)代入(4),得到流体超压计算公式为:
$$ {P_{{\text{ex}}}} = - \frac{{{\mu _{\text{f}}}{R_v}{Z_{{\text{BHSZ}}}}\phi {S_h}}}{k}\frac{{{\rm d}{Z_{{\text{BHSZ}}}}}}{{{\rm d}t}} $$ (6) 超压与稳定带底界深度、体积膨胀系数、水合物饱和度和稳定带底界上移速率成正比,与地层渗透率成反比。对于特定地区,地层渗透率和孔隙度恒定,体积膨胀系数波动较小,显然水合物饱和度和水合物稳定带底界向上移动速率是控制超压的关键因素。
1.3 地层稳定性
安全系数(FS)是沉积物抗剪强度与剪应力的比值,可以对地层稳定性进行初步评估。当FS>1时地层稳定,当FS<1时地层失稳引发滑坡。为了更好地研究水合物分解对地层稳定性的影响,我们假定:① 水合物层平行于海底地层;② 同一地层连续且均匀;③ 进入稳定带底界之下的水合物瞬间分解。
根据库伦准则,当水合物发生分解时,产生的超压将导致地层有效应力减小(
$ {\sigma' _{{n}}} = {\sigma _{{n}}} - {P_{{\text{ex}}}} $ )和抗剪强度下降($ S = C + \sigma' _{\text{n}}\tan \varphi $ )。距离倾角为$ \theta $ 的海底地层下H(m)处的滑移面正应力为(图1):$$ {\sigma _{{n}}}{\text{ = }}\left( {{\gamma _{\text{s}}} - {\gamma _{\text{w}}}} \right)H{\cos ^{\text{2}}}\theta $$ (7) 平行于海底滑坡的剪应力为:
$$ \tau = \left( {{\gamma _{\text{s}}} - {\gamma _{\text{w}}}} \right)H\cos \theta \sin \theta $$ (8) 因此地层的稳定性会随着超压的增大而降低:
$${\rm{ FS}} = \frac{S}{\tau } = \frac{{C + \sigma' _{{n}}\tan \varphi }}{\tau } = \frac{{C + \left( {\left( {{\gamma _{\text{s}}} - {\gamma _{\text{w}}}} \right)H{{\cos }^2}\theta - {P_{{\text{ex}}}}} \right)\tan \varphi }}{{\left( {{\gamma _{\text{s}}} - {\gamma _{\text{w}}}} \right)H\cos \theta \sin \theta }} $$ (9) 其中,
$ {\gamma _{\text{s}}} $ 为沉积物的容重,通过沉积物密度(2760 kg/m3)和重力加速度之积计算,$ {\gamma _{\text{w}}} $ 为水的容重,$ H $ 为海底表面到滑移面的垂直高度(m),$ C $ 为内聚力(kPa),$ \theta $ 为滑坡倾角,$ \varphi $ 为摩擦角。本文主要聚焦超压对地层稳定性的影响,地层岩性的微小变化以及水合物的形成和分解都会极大地改变内聚力取值,因此准确的内聚力评估是非常困难的。同时摩擦角和水合物饱和度没有显著关系[42]。因此,本文根据东北太平洋Cascadia陆缘Orca地区黏土和粉砂质黏土的主要地层岩性,参照Geotechdata.info网站数据(http://geotechdata.info.html)分别取内聚力C=105 kPa和摩擦角φ=18°,并假定在模拟过程中保持恒定。
2. 地质概况
东北太平洋Cascadia北部陆缘Vancouver岛附近为水合物发育区(图2a),该区域沉积速率为220 m/Ma,海底沉积地层渗透率为1.0×10−17 m2[36, 43]。多道地震分析显示其水合物发育面积为250 km×30 km[44],IODP 311航次在Cascadia北部陆缘进行钻探获取了水合物的岩芯柱样,U1326站位紧邻Orca滑坡(图2b),其地温梯度为0.06 ℃/m,地层主要岩性为黏土和粉砂质黏土,常出现砂层等粗颗粒夹层,砂层厚度多为5 cm,最厚可达23 cm[45](图2c)。现今BSR深度为234 mbsf,计算的稳定带底界深度为275±25 mbsf[46]。根据孔隙水氯度数据估算的天然气水合物平均饱和度(Sh)为0.056±0.007[47],沉积物内频繁出现水合物饱和度异常高的地层,在水合物赋存带底部、中部和顶部达0.4以上,最大可达0.8(图2d)。Orca滑坡距离U1326站位小于2 km,两者均位于陡峭的增生沉积物脊的顶部,Orca脊的平均坡度为20°,该坡度被近似认为是滑坡前的斜坡倾角[36]。Orca滑坡长2.5 km,宽1.5 km,滑壁高度300 m,现今Orca滑坡主体坡度<5°,滑动构造面积约3.5 km2,损失体积约0.409 km³(图2b),根据滑动体上下界面沉积物确定的Orca滑坡年龄为14~9 kaBP [35, 48-49]。
图 2 东北太平洋Cascadia北部陆缘Orca地区的地质背景和U1326站位地质特征a: Orca滑坡地理位置,其中北太平洋深层水(NPDW)的分布据文献[50] ;b: Orca滑坡水深图据文献[36],黄色点为U1326站位,下方为Orca滑坡; c: U1326站位地层岩性[45]显示了很好的层状和透镜状的砂体与粉砂质黏土的互层; d: U1326站位水合物饱和度随深度分布,其中高饱和度水合物发育在底部、中部和顶部,达0.4以上[47]。GHOZ:水合物赋存区; GHSZ:水合物稳定带。Figure 2. Geological setting of the Orca area in the northern continental margin of Cascadia in northeast Pacific and geological characteristics of the site U1326a: Location of the Orca Slide and the distribution of NPDW [50]; b: bathymetry of the Orca Ridge [36]. Yellow dot indicates the location of the site U1326, below which southward is the Orca Slide; c: stratigraphic lithology at the site U1326 showing intercalation between silty clay layers and lenticular sand layers [45]; d: the distribution of hydrate saturation with depth at the site U1326 and high-saturation hydrate formation at the bottom, middle, and top of GHOZ and reaches more than 0.4[47] . GHOZ: gas hydrate occurrence zone, GHSZ: gas hydrate stability zone.通过参考U1326站位的水合物饱和度分布和温压记录,利用本文模型开展了Orca滑坡的水合物稳定带底界和流体超压的计算。其中模型计算的空间范围为0~500 m,远深于稳定带底界深度。相对海平面记录参考赤道太平洋V19-30站位重建结果。海底温度参考根据EW0408-26JC站位底栖有孔虫氧同位素进行评估的底水温度(具体见第4部分)。因为评估的18~16 kaBP的初始底水温度尽管存在少量扰动,但是平均值变化很小,所以本文选取初始阶段的平均底水温度和现今海底地温梯度作为初始状态温度。底界取恒定热流,即恒定的温度梯度为0.06 ℃/m。模型所使用的其他参数列于表1。
表 1 模型使用的地质参数及其取值Table 1. Geological parameters and their values used in the model3. 海平面和海底温度动态变化
海平面变化具有全球一致性,不同学者重建的相对海平面仅有细微差异,其中赤道太平洋水团混合充分,有孔虫氧同位素主要受海平面变化驱动,更能代表平均海水状态,因此本文参考赤道太平洋V19-30站位重建的相对海平面记录[54](图3a)。
图 3 东北太平洋Cascadia北部陆缘Orca地区18 ka以来水合物稳定带底界变化a: 相对海平面[54](以现今海平面高度为0),b: 底水温度和275 mbsf的稳定带底界温度,c: 以水合物饱和度为0.056和0.4模拟计算的稳定带底界深度。灰色区域为主要稳定带底界上移时期。Figure 3. The dynamic changes of BHSZ in the Orca area over the last 18 kaa: Relative sea level curve [54] (the present-day sea level is considered to be zero), b: the time record of the bottom-water temperature and sediment temperature at 275mbsf, c: the modeled depth of BHSZ at Sh=0.056 and Sh=0.4 respectively. The grey area illustrates the time span of upward movement of BHSZ.东北太平洋Cascadia北部陆缘Orca滑坡及其附近缺少已发表的古底水温度记录, EW0408-26JC站位(59°96'N、 136°43'W, 1623 m)发表有比较完整的底栖有孔虫氧同位素(
$ {{\text{δ}^{18}}}{{\text{O}}_{\text{b}}} $ )数据[55],且邻近于本文研究的U1326站位(48°36'N、 127°02'W, 1838 m)(图2a),是距离Orca地区最近的可重建底水温度的站位。同时两者水深相似且底部水体自末次盛冰期(26.5~19 kaBP)以来均处于北太平洋深层水的影响范围内[50],由于水团的温度性质具有在空间上的相对均一性和时间上的同步变化趋势,因此可以根据26JC站位底栖有孔虫氧同位素(U.peregrina)进行古底水温度的重建,并应用于Orca地区的研究。底栖有孔虫氧同位素记录了底水温度信息和海水氧同位素值[54]:$$\begin{split} {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{\text{b}}}=&{\text{ }}{{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{sw}}}}{\text{ + }}{{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{temp}}}}\\=&{\text{ }}{{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{ice}}}}{\text{ + }}{{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{local}}}}{\text{ + }}{{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{temp}}}}\end{split} $$ (10) 式中,
$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{sw}}}} $ 为海水背景氧同位素,$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{temp}}}} $ 为温度信号,$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{ice}}}} $ 为全球冰量信号,$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{local}}}} $ 为当地氧同位素值。由于不同海区的现代深层海水氧同位素和盐度都非常接近,可以看作$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{local}}}} $ =0[56]。底栖有孔虫氧同位素( U. peregrina)与底水温度转换公式[57] 为:
$$ T = 16.9 - 4.0 \times {\text{(}}{{\text{δ}}^{{\text{18}}}}{{\text{O}}_{\text{b}}}{{ - }}{{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{sw}}}}{\text{)}} $$ (11) 式中,
$ T $ 单位℃,$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{\text{b}}} $ 、$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{{\text{sw}}}} $ (‰[PDB])。在平衡分馏的情况下,$ {{\text{δ}}^{{\text{18}}}}{{\text{O}}_{\text{b}}} $ 每降低0.20‰~0.25‰,代表海底温度升高1℃ [58]。根据式(10)和(11)得到的26JC站位的古底水温度见图3b。
4. 结果与讨论
4.1 水合物稳定带底界动态演化
稳定带底界深度受超压影响,故在稳定带底界上移时会因地层不同饱和度水合物分解而产生稳定带底界深度的差异,饱和度为0.056和0.4的水合物分解引起的底界深度差距不超过0.9 m(图3c),说明沉积层中不均一的水合物发育情况对稳定带底界影响不大。最近的0.55 kaBP模拟计算的稳定带底界深度为272.3 mbsf,与U1326站位钻探确定的现今稳定带底界深度吻合较好。
东北太平洋Cascadia北部陆缘Orca地区的海平面和底水温度发生了多阶段变化(图3a-b)。海平面自18 kaBP以来升高了120 m左右,属于海平面快速上升期[54](图3a)。底水温度在18~14 kaBP不断升高,最高达到3.5℃,然后快速下降到2℃左右并保持相对稳定,其后只在9.5 kaBP经历了一次较大的温度下降变化(图3b)。水合物热力学相平衡表明,海平面升高有利于水合物生成与稳定,温度升高则会引起水合物分解,因此底水温度升高是导致18 ka以来Orca地区水合物分解和底界上移的主要原因。但是稳定带底界演化与底水温度变化并不同步,表现出明显的滞后性(图3b-c),说明与静水压力的瞬时传递不同,温度传递延迟效应显著,底水温度传递到深部地层通常需要几百年甚至上千年[51, 59]。
在17.5~14.7 kaBP期间,底水温度小范围波动之后快速升高,由于沉积层温度传递的延迟效应,深部沉积物一直未受到底水升温的影响依然维持稳定低温,而海平面已有小幅度的抬升,因此稳定带在压力升高的作用下形成水合物,稳定带底界略微下移。在14.7~13.1 kaBP期间,海底深层沉积物延迟1.8 ka才开始受到前期底水变暖的影响持续升温,水合物系统从稳定的压力控制转变为温度控制[26],此时温度升高对水合物的负反馈明显大于海平面小幅度上升对水合物稳定性的影响,造成水合物分解和稳定带底界变浅,并在13.7 kaBP时达到271.6 mbsf的最浅深度。其后至8.4 kaBP,海平面快速上升100 m,底界温度仍然受14 kaBP之前快速底水升温的影响而持续升高,但是海平面快速上升导致的压力正反馈远大于小幅度升温的作用,水合物不断生成。8.4~6.3 kaBP海平面和稳定带底界温度都处于不利于水合物稳定的状态,稳定带底界上移。最近的6 ka海平面高度基本保持稳定状态,稳定带底界在6.3 kaBP开始显现9.5 kaBP的底水快速降温的影响,并在3.6 kaBP达到276.2 mbsf的最深底界深度,之后稳定带底界在温度回升过程中持续变浅。
4.2 海底滑坡触发机理
将Cascadia北部陆缘Orca地区的海底沉积物视为均匀地层进行斜坡稳定性分析,在水合物饱和度Sh=0.056和滑坡前地层倾角为20°的条件下,模拟得到最近18 ka稳定带底界移动速率、孔隙超压和地层安全系数的动态变化(图4)。由于海平面上升和温度升高作用的相互影响[60],在最近的18 ka有接近一半的时间都存在水合物分解形成超压的现象(图4b中的虚线),但是所产生的超压对地层稳定性的影响很小,安全系数均大于1,地层基本保持稳定(图4c中的虚线)。
图 4 东北太平洋Cascadia北部陆缘Orca地区不同水合物饱和度条件下的底界移动速率(a)、 超压(b)和地层安全系数(c)底界移动速率<0代表水合物分解,稳定带向上移动;底界移动速率>0代表水合物生成,稳定带向下移动灰色区域为定年确定的滑坡发生时间(14~9 kaBP)[48]。Figure 4. a: The movement rate of BHSZ; b: excess pore pressure; c: factor of safety under different hydrate saturation conditions in the Orca area, the northern continental margin of Cascadia in northeast PacificA movement rate of BHSZ less than zero suggests hydrate decomposition and an upward moving trend of the depth of BHSZ. In the contrary, a movement rate of BHSZ greater than 0 means hydrate formation and a downward moving trend of the depth of BHSZ. The grey area represents the Orca Slide age estimated by radiocarbon dating (14~9 kaBP) [48].然而U1326站位显示细粒黏土沉积物中含有丰富的粗粒夹层[45](图2c),海底沉积物岩性和水合物饱和度在垂向上呈显著非均质性特征(图2d)。在甲烷供给充足的情况下,水合物饱和度与沉积物粒径具有很好的正相关性[38,61-62]。研究表明Orca滑坡受到水合物底界面控制[35],U1326站位稳定带底界附近的水合物饱和度可以达到0.4[47],以稳定带底界高水合物饱和度Sh=0.4模拟水合物的动态变化,结果显示稳定带底界上移速率在13.7 kaBP达到1.18 m/ka的高值,此时超压为114 kPa,安全系数为0.98,地层失稳引发滑坡(图4c中的实线),模拟的滑坡年龄与沉积物定年确定的滑坡年龄(14~9 kaBP)相吻合。此外,虽然图4c显示最近3 ka地层安全系数也小于1.0,处于失稳状态,尤其在1.8 kaBP底界上移速率达到1.58 m/ka、超压达到145 kPa的峰值时,安全系数仅为0.97,但该时期并没有滑坡产生。因为在13.7 kaBP发生的海底滑坡会显著降低滑坡前的地层坡度,现今滑坡区的海底坡度仅为5°[36],依海底5°的坡度计算,1.8 kaBP高饱和度水合物快速分解时的安全系数接近4.2,地层处于非常稳定的状态,不可能再次发生海底滑坡。
早全新世冰期-间冰期过渡时期挪威大陆边缘的水合物稳定带底界模拟结果表明,底水升温以及温度向深部传递的滞后性导致水合物 “延迟”分解,并触发了一些大型滑坡的发生[21, 59]。本文的模拟结果也表明海底深部地层的延迟升温会导致水合物“延迟”分解,但是只有在深部地层快速升温并且引起粗颗粒层内的高饱和度水合物分解,其产生的极大超压才有可能触发海底滑坡(图4b-c)。
在Cascadia北部陆缘Orca滑坡周边75 km的距离内,发育了包括Orca滑坡在内的8个小型滑塌和滑坡,其年龄均为14~9 kaBP,属于海底快速升温期[36]。虽然触发因素尚不完全明确,但其中Slipstream滑坡的滑动面与浅层水合物层重合,证明了其可能与天然气水合物存在密切关系[62]。同时Cascadia陆缘峡谷的地层岩性显示浊积黏土层底部普遍发育砂层[63]。因此,我们推测这些滑塌和滑坡的触发机理可能与Orca滑坡相似,与快速升温期粗颗粒层内的高饱和度水合物分解有关。
5. 结论
(1)尽管18~0 kaBP期间经历了海平面快速上升,但是底水温度升高导致Orca地区水合物稳定带底界上移达到约3.9 m,稳定带底界上移速率最高可达到约1.18 m/ka。
(2)流体超压受到水合物稳定带底界移动速率和水合物饱和度等因素控制。Orca地区的流体超压可以达到约114 kPa。
(3)Orca滑坡的可能触发机理为在底水快速升温的作用下,稳定带底界快速上升使高饱和度水合物发生分解,并产生极大流体超压,导致地层稳定性骤降从而引发滑坡。
致谢:本文数据来源于国际大洋发现计划311航次报告,在此表示感谢。同时感谢美国徐文跃博士对本文研究提出的建议。
-
图 2 东北太平洋Cascadia北部陆缘Orca地区的地质背景和U1326站位地质特征
a: Orca滑坡地理位置,其中北太平洋深层水(NPDW)的分布据文献[50] ;b: Orca滑坡水深图据文献[36],黄色点为U1326站位,下方为Orca滑坡; c: U1326站位地层岩性[45]显示了很好的层状和透镜状的砂体与粉砂质黏土的互层; d: U1326站位水合物饱和度随深度分布,其中高饱和度水合物发育在底部、中部和顶部,达0.4以上[47]。GHOZ:水合物赋存区; GHSZ:水合物稳定带。
Figure 2. Geological setting of the Orca area in the northern continental margin of Cascadia in northeast Pacific and geological characteristics of the site U1326
a: Location of the Orca Slide and the distribution of NPDW [50]; b: bathymetry of the Orca Ridge [36]. Yellow dot indicates the location of the site U1326, below which southward is the Orca Slide; c: stratigraphic lithology at the site U1326 showing intercalation between silty clay layers and lenticular sand layers [45]; d: the distribution of hydrate saturation with depth at the site U1326 and high-saturation hydrate formation at the bottom, middle, and top of GHOZ and reaches more than 0.4[47] . GHOZ: gas hydrate occurrence zone, GHSZ: gas hydrate stability zone.
图 3 东北太平洋Cascadia北部陆缘Orca地区18 ka以来水合物稳定带底界变化
a: 相对海平面[54](以现今海平面高度为0),b: 底水温度和275 mbsf的稳定带底界温度,c: 以水合物饱和度为0.056和0.4模拟计算的稳定带底界深度。灰色区域为主要稳定带底界上移时期。
Figure 3. The dynamic changes of BHSZ in the Orca area over the last 18 ka
a: Relative sea level curve [54] (the present-day sea level is considered to be zero), b: the time record of the bottom-water temperature and sediment temperature at 275mbsf, c: the modeled depth of BHSZ at Sh=0.056 and Sh=0.4 respectively. The grey area illustrates the time span of upward movement of BHSZ.
图 4 东北太平洋Cascadia北部陆缘Orca地区不同水合物饱和度条件下的底界移动速率(a)、 超压(b)和地层安全系数(c)
底界移动速率<0代表水合物分解,稳定带向上移动;底界移动速率>0代表水合物生成,稳定带向下移动灰色区域为定年确定的滑坡发生时间(14~9 kaBP)[48]。
Figure 4. a: The movement rate of BHSZ; b: excess pore pressure; c: factor of safety under different hydrate saturation conditions in the Orca area, the northern continental margin of Cascadia in northeast Pacific
A movement rate of BHSZ less than zero suggests hydrate decomposition and an upward moving trend of the depth of BHSZ. In the contrary, a movement rate of BHSZ greater than 0 means hydrate formation and a downward moving trend of the depth of BHSZ. The grey area represents the Orca Slide age estimated by radiocarbon dating (14~9 kaBP) [48].
表 1 模型使用的地质参数及其取值
Table 1 Geological parameters and their values used in the model
-
[1] Nisbet E G, Piper D J W. Giant submarine landslides [J]. Nature, 1998, 392(6674): 329-330. doi: 10.1038/32765
[2] Luo M, Torres M E, Kasten S, et al. Constraining the age and evolution of the Tuaheni landslide complex, Hikurangi Margin, New Zealand, using pore-water geochemistry and numerical modeling [J]. Geophysical Research Letters, 2020, 47(11): e2020GL087243.
[3] Wharton W J L, Geikie A, Perry P, et al. Sub-oceanic changes: discussion [J]. The Geographical Journal, 1897, 10(3): 285-289. doi: 10.2307/1774772
[4] Herzer R H. Uneven submarine topography south of Mernoo Gap—the result of volcanism and submarine sliding [J]. New Zealand Journal of Geology and Geophysics, 1975, 18(1): 183-188. doi: 10.1080/00288306.1975.10426354
[5] Barrier A, Bischoff A, Nicol A, et al. Relationships between volcanism and plate tectonics: a case-study from the Canterbury Basin, New Zealand [J]. Marine Geology, 2021, 433: 106397. doi: 10.1016/j.margeo.2020.106397
[6] McIver R D. Role of naturally occurring gas hydrates in sediment transport [J]. AAPG Bulletin, 1982, 66(6): 789-792.
[7] Elger J, Berndt C, Rüpke L, et al. Submarine slope failures due to pipe structure formation [J]. Nature Communications, 2018, 9(1): 715. doi: 10.1038/s41467-018-03176-1
[8] 唐常锐, 徐秀刚, 孙秉才, 等. 天然气水合物分解诱发海底滑坡影响因素分析及致灾风险评价[J]. 海洋地质前沿, 2021, 37(5):14-21 doi: 10.16028/j.1009-2722.2021.021 TANG Changrui, XU Xiugang, SUN Bingcai, et al. Influence factors and risk assessment for seabed landslides induced by natural gas hydrate decomposition [J]. Marine Geology Frontiers, 2021, 37(5): 14-21. doi: 10.16028/j.1009-2722.2021.021
[9] Hance J J. Development of a database and assessment of seafloor slope stability based on published literature[D]. Doctor Dissertation of University of Texas, 2003.
[10] Mulder T, Cochonat P. Classification of offshore mass movements [J]. Journal of Sedimentary Research, 1996, 66(1): 43-57.
[11] Locat J, Lee H, Kayen R, et al. Shear strength development with burial in eel river margin slope sediments [J]. Marine Georesources & Geotechnology, 2002, 20(2): 111-135.
[12] 秦志亮, 孙思军, 谭骏, 等. 西沙群岛海域海洋地质灾害现状与对策[J]. 海洋开发与管理, 2014, 31(9):12-16 doi: 10.3969/j.issn.1005-9857.2014.09.03t QIN Zhiliang, SUN Sijun, TAN Jun, et al. Current situation and countermeasures of marine geological disasters in the Xisha Paracel Islands [J]. Ocean Development and Management, 2014, 31(9): 12-16. doi: 10.3969/j.issn.1005-9857.2014.09.03t
[13] Chen Y M, Zhang L L, Liao C C, et al. A two-stage probabilistic approach for the risk assessment of submarine landslides induced by gas hydrate exploitation [J]. Applied Ocean Research, 2020, 99: 102158. doi: 10.1016/j.apor.2020.102158
[14] 陈泓君, 黄磊, 彭学超, 等. 南海西北陆坡天然气水合物调查区滑坡带特征及成因探讨[J]. 热带海洋学报, 2012, 31(5):18-25 doi: 10.3969/j.issn.1009-5470.2012.05.004 CHEN Hongjun, HUANG Lei, PENG Xuechao, et al. Discussion of characteristics and formation of landslide zones in the gas hydrate survey area of northwest continental slope, the South China Sea [J]. Journal of Tropical Oceanography, 2012, 31(5): 18-25. doi: 10.3969/j.issn.1009-5470.2012.05.004
[15] Yang L L, Wang J, Jiang Y H. Experimental study and numerical simulation of overlying layer soil failure caused by hydrate decomposition [J]. ACS Omega, 2020, 5(48): 31244-31253. doi: 10.1021/acsomega.0c04619
[16] Dickens G R. The potential volume of oceanic methane hydrates with variable external conditions [J]. Organic Geochemistry, 2001, 32(10): 1179-1193. doi: 10.1016/S0146-6380(01)00086-9
[17] 陈多福, 姚伯初, 赵振华, 等. 珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J]. 海洋地质与第四纪地质, 2001, 21(4):73-78 doi: 10.16562/j.cnki.0256-1492.2001.04.014 CHEN Duofu, YAO Bochu, ZHAO Zhenhua, et al. Geochemical constraints and potential distributions of gas hydrates in Pearl River Mouth Basin and Qiongdongnan Basin in the northern margin of the South China Sea [J]. Marine Geology & Quaternary Geology, 2001, 21(4): 73-78. doi: 10.16562/j.cnki.0256-1492.2001.04.014
[18] 刘杰, 刘丽华, 吴能友, 等. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 2021, 41(2):146-155 doi: 10.16562/j.cnki.0256-1492.2020061801 LIU Jie, LIU Lihua, WU Nengyou, et al. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum [J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. doi: 10.16562/j.cnki.0256-1492.2020061801
[19] Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability [J]. Marine Geology, 2004, 213(1-4): 379-401. doi: 10.1016/j.margeo.2004.10.015
[20] Sultan N, Marsset B, Ker S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B8): B08101.
[21] 宋海斌. 天然气水合物体系动态演化研究(Ⅱ): 海底滑坡[J]. 地球物理学进展, 2003, 18(3):503-511 doi: 10.3969/j.issn.1004-2903.2003.03.028 SONG Haibin. Researches on dynamic evolution of gas hydrate system (Ⅱ): submarine slides [J]. Progress in Geophysics, 2003, 18(3): 503-511. doi: 10.3969/j.issn.1004-2903.2003.03.028
[22] Kayen R E, Lee H J. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin [J]. Marine Geotechnology, 1991, 10(1-2): 125-141. doi: 10.1080/10641199109379886
[23] Hornbach M J, Lavier L L, Ruppel C D. Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U. S. Atlantic margin [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12): Q12008.
[24] Leslie S C, Mann P. Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea [J]. Earth and Planetary Science Letters, 2016, 449: 382-394. doi: 10.1016/j.jpgl.2016.05.040
[25] 倪玉根, 夏真, 马胜中. 与天然气水合物分解有关的海底滑坡和气候突变事件[J]. 南海地质研究, 2013(1):73-81 NI Yugen, XIA Zhen, MA Shengzhong. The submarine landslides and climate change events related to gas hydrate dissociation [J]. Gresearch of Eological South China Sea, 2013(1): 73-81.
[26] Mienert J, Vanneste M, Bünz S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide [J]. Marine and Petroleum Geology, 2005, 22(1-2): 233-244. doi: 10.1016/j.marpetgeo.2004.10.018
[27] Guan H X, Liu L, Hu Y, et al. Rising bottom-water temperatures induced methane release during the middle Holocene in the Okinawa Trough, East China Sea [J]. Chemical Geology, 2022, 590: 120707. doi: 10.1016/j.chemgeo.2022.120707
[28] 李天赐, 孔亮, 赵新波, 等. 考虑超孔压影响的海底能源土斜坡稳定性数值模拟和评价[J]. 科学技术与工程, 2019, 19(5):253-260 doi: 10.3969/j.issn.1671-1815.2019.05.039 LI Tianci, KONG Liang, ZHAO Xinbo, et al. Numerical simulation and evaluation of the stability of submarine energy soil slope considering the effect of the excess pore pressure [J]. Science Technology and Engineering, 2019, 19(5): 253-260. doi: 10.3969/j.issn.1671-1815.2019.05.039
[29] Grozic J L H. Interplay between gas hydrates and submarine slope failure[M]//Mosher D C, Shipp R C, Moscardelli L, et al. Submarine Mass Movements and Their Consequences. Dordrecht: Springer, 2010: 11-30.
[30] 宋晓帅, 孙志文, 朱超祁, 等. 深海滑坡研究进展[J]. 海洋地质与第四纪地质, 2022, 42(1):222-235 doi: 10.16562/j.cnki.0256-1492.2021062701 SONG Xiaoshuai, SUN Zhiwen, ZHU Chaoqi, et al. A review on deepwater landslide [J]. Marine Geology & Quaternary Geology, 2022, 42(1): 222-235. doi: 10.16562/j.cnki.0256-1492.2021062701
[31] Grozic J L H, Kvalstad T J. Effect of gas on deepwater marine sediments[C]//Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering. 2001: 2289-2294.
[32] Kwon T H, Cho G C, Santamarina J C. Gas hydrate dissociation in sediments: pressure-temperature evolution [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03019.
[33] Nixon M F, Grozic J L H. Submarine slope failure due to gas hydrate dissociation: a preliminary quantification [J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325. doi: 10.1139/t06-121
[34] Xu W Y, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B1): B01104.
[35] López C, Spence G, Hyndman R, et al. Frontal ridge slope failure at the northern Cascadia margin: margin-normal fault and gas hydrate control [J]. Geology, 2010, 38(11): 967-970. doi: 10.1130/G31136.1
[36] Scholz N A. Submarine landslides offshore Vancouver Island, British Columbia and the possible role of gas hydrates in slope stability[D]. Doctor Dissertation of University of Victoria, 2014.
[37] 苏正. 海洋天然气水合物分布及渗漏动力学数值模拟[D]. 中国科学院大学博士学位论文, 2008. SU Zheng. Numerical computation on gas hydrate distribution and gas venting dynamics in marine environment[D]. Doctor Dissertation of Chinese Academy of Sciences, 2008.
[38] Sun S C, Zhao J, Yu D J. Dissociation enthalpy of methane hydrate in salt solution [J]. Fluid Phase Equilibria, 2018, 456: 92-97. doi: 10.1016/j.fluid.2017.10.013
[39] Tishchenko P, Hensen C, Wallmann K, et al. Calculation of the stability and solubility of methane hydrate in seawater [J]. Chemical Geology, 2005, 219(1-4): 37-52. doi: 10.1016/j.chemgeo.2005.02.008
[40] 王淑红, 宋海斌, 颜文. 天然气水合物稳定带的计算方法与参数选择探讨[J]. 现代地质, 2005, 19(1):101-107 doi: 10.3969/j.issn.1000-8527.2005.01.015 WANG Shuhong, SONG Haibin, YAN Wen. Discussion of the calculation methods and selection of parameters of the gas hydrate stability zone [J]. Geoscience, 2005, 19(1): 101-107. doi: 10.3969/j.issn.1000-8527.2005.01.015
[41] Kaul N, Rosenberger A, Villinger H. Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan [J]. Marine Geology, 2000, 164(1-2): 37-51. doi: 10.1016/S0025-3227(99)00125-5
[42] Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments [J]. Reviews of Geophysics, 2009, 47(4): RG4003.
[43] Hyndman R D, Wang K. The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B11): 22133-22154. doi: 10.1029/95JB01970
[44] Currie C A, Cassidy J F, Hyndman R D. A regional study of shear wave splitting above the Cascadia Subduction Zone: margin-parallel crustal stress [J]. Geophysical Research Letters, 2001, 28(4): 659-662. doi: 10.1029/2000GL011978
[45] Riedel M, Collett T S, Malone M J, et al. Site U1326[R]. Proceedings of the Integrated Ocean Drilling Program, 2005: 311.
[46] Expedition 311 Scientists. Expedition 311 summary[C]//Proceedings of the Integrated Ocean Drilling Program. Washington: Integrated Ocean Drilling Program Management International, Inc. , 2006: 1-68.
[47] Malinverno A, Kastner M, Torres M E, et al. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311) [J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B8): B08103.
[48] Hamilton T S, Enkin R J, Riedel M, et al. Slipstream: an early Holocene slump and turbidite record from the frontal ridge of the Cascadia accretionary wedge off western Canada and paleoseismic implications [J]. Canadian Journal of Earth Sciences, 2015, 52(6): 405-430. doi: 10.1139/cjes-2014-0131
[49] Scholz N A, Riedel M, Urlaub M, et al. Submarine landslides offshore Vancouver Island along the northern Cascadia margin, British Columbia: why preconditioning is likely required to trigger slope failure [J]. Geo-Marine Letters, 2016, 36(5): 323-337. doi: 10.1007/s00367-016-0452-8
[50] Wan S, Jian Z M, Dang H W. Deep hydrography of the South China Sea and deep water circulation in the pacific since the last glacial maximum [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5): 1447-1463. doi: 10.1029/2017GC007377
[51] Fowler C M R. The Solid Earth[M]. Cambridge: Cambridge University Press, 2005.
[52] Riedel M, Novosel I, Spence G D, et al. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin [J]. GSA Bulletin, 2006, 118(1-2): 23-38. doi: 10.1130/B25720.1
[53] Geotechdata. Info[EB/OL]. http://geotechdata.info/parameter.html.
[54] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records [J]. Quaternary Science Reviews, 2002, 21(1-3): 295-305. doi: 10.1016/S0277-3791(01)00101-9
[55] Praetorius S K, Mix A C, Walczak M H, et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming [J]. Nature, 2015, 527(7578): 362-366. doi: 10.1038/nature15753
[56] Craig H, Gordon L I. Deuterium and oxygen 18 variations in the ocean and marine atmosphere[C]//Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeo Temperatures. Spoleto Italy, 1965: 9-130.
[57] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial [J]. Colloques Internationaux du C. N. R. S., 1974, 219: 203-209.
[58] Elderfield H, Greaves M, Barker S, et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp [J]. Quaternary Science Reviews, 2010, 29(1-2): 160-169. doi: 10.1016/j.quascirev.2009.07.013
[59] Vogt P R, Jung W Y. Holocene mass wasting on upper non-Polar continental slopes-due to post-Glacial ocean warming and hydrate dissociation? [J]. Geophysical Research Letters, 2002, 29(9): 1341.
[60] Torres M E, Tréhu A M, Cespedes N, et al. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311 [J]. Earth and Planetary Science Letters, 2008, 271(1-4): 170-180. doi: 10.1016/j.jpgl.2008.03.061
[61] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. doi: 10.1002/2016GC006706
[62] Yelisetti S, Spence G D, Riedel M. Role of gas hydrates in slope failure on frontal ridge of northern Cascadia margin [J]. Geophysical Journal International, 2014, 199(1): 441-458. doi: 10.1093/gji/ggu254
[63] Goldfinger C, Nelson C H, Johnson J E. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems [J]. Annals of Geophysics, 2003, 46(5): 1169-1194.
-
期刊类型引用(1)
1. 马瑞琦,曹运诚,何雯,郑子涵,朱志伟,陈多福. 南海北部东沙海域GMGS2-16站位25 ka以来水合物稳定带和流体超压变化. 海洋地质前沿. 2025(01): 21-30 . 百度学术
其他类型引用(0)