西沙群岛宣德环礁水下沙洲动力地貌特征及其成因机制

何其江, 沈爱斯, 刘刚, 丁咚, 瞿洪宝, 刘根, 苟鹏飞

何其江,沈爱斯,刘刚,等. 西沙群岛宣德环礁水下沙洲动力地貌特征及其成因机制[J]. 海洋地质与第四纪地质,2023,43(1): 1-12. DOI: 10.16562/j.cnki.0256-1492.2022041101
引用本文: 何其江,沈爱斯,刘刚,等. 西沙群岛宣德环礁水下沙洲动力地貌特征及其成因机制[J]. 海洋地质与第四纪地质,2023,43(1): 1-12. DOI: 10.16562/j.cnki.0256-1492.2022041101
HE Qijiang,SHEN Aisi,LIU Gang,et al. Morphodynamic characteristics and genetic mechanism of the submarine sandbanks in Xuande Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology,2023,43(1):1-12. DOI: 10.16562/j.cnki.0256-1492.2022041101
Citation: HE Qijiang,SHEN Aisi,LIU Gang,et al. Morphodynamic characteristics and genetic mechanism of the submarine sandbanks in Xuande Atoll, Xisha Islands[J]. Marine Geology & Quaternary Geology,2023,43(1):1-12. DOI: 10.16562/j.cnki.0256-1492.2022041101

西沙群岛宣德环礁水下沙洲动力地貌特征及其成因机制

基金项目: 海南省自然科学基金项目 “西沙宣德环礁碳酸盐台地动力地貌特征和成因机制及发育演化研究”(421QN0963)、“晚第四纪以来琼州海峡西口沉积演化过程与海砂成矿模式研究”(422QN420)
详细信息
    作者简介:

    何其江(1987—),男,高级工程师,主要从事海洋调查与环境研究,E-mail:heqijiang@foxmail.com

    通讯作者:

    苟鹏飞(1984—),男,高级工程师,研究方向为海洋工程与海洋环境,E-mail:Goupeng-fei@163.com

  • 中图分类号: P736.15

Morphodynamic characteristics and genetic mechanism of the submarine sandbanks in Xuande Atoll, Xisha Islands

  • 摘要: 海底地形地貌研究可以揭示海底表面形态特征,探索海底物质结构及其形成、演化和分布规律。通过单波束测深、单道地震、海底表层沉积物取样和潮汐水文水动力实测等方法,开展了宣德环礁水文要素和水动力条件定量化研究,对宣德环礁水下沙洲动力地貌特征及动力作用下形成机制进行了探讨。研究结果表明:宣德环礁潟湖内水深50~55 m及60 m发育的礁滩体和埋藏珊瑚礁,与全新世50~60 m的低海平面时期发育的系列特征地貌应为同时期形成,水深50~55 m处的地貌边界很可能保留了早全新世时期古潟湖礁盘地貌轮廓形态;宣德环礁潟湖发育5类动力地貌特征形态的水下沙洲,环礁底层涨落潮流是塑造水下沙洲的主要现代动力因素。在常态天气下,涨落潮流输运的砂质沉积物足以在原有地形的基础上沉积和发育形成现今水下沙洲地貌形态。影响水下沙洲发育的主要因素由强至弱依次为气候变化引起的海平面升降,地形基础(珊瑚礁格架、礁盘岸线、口门)和涨落潮流。
    Abstract: Submarine geomorphology can reveal the topographic characteristics of seafloor, which is helpful to understand the composition, formation, evolution, and distribution of the sediment. The hydrologic elements and hydrodynamic conditions in Xuande Atoll, Xisha, Islands, South China Sea were quantitatively investigated by the combination of single beam sounding, single-channel seismology, sampling of surface sediments, and hydrodynamic measurements. Furthermore, the morphodynamic characteristics and genetic mechanism of submarine sandbanks were discussed in detail. Results show that the coral reef frame and buried corals that developed in water depth of 50~55 m and 60 m in the atoll lagoon were formed in the same period of typical landforms that formed in the 50~60 m depth during the lower sea level period of the Holocene in South China Sea. It is likely that the boundary of the submarine geomorphology developed in water depth of 50~55 m retained the paleo-lagoon reef morphology of the Early Holocene. Five types of submarine sandbanks with own morphodynamic characteristics were identified in the atoll lagoon where tidal currents at the bottom are the main modern dynamic factors that shape the submarine sandbanks. Under normal weather condition, tidal currents in the study area are strong to transport sandy sediments and shape the geomorphology of present submarine sandbanks on the previous topography formed during sea level fluctuations. The sea level fluctuations are induced by climate change, followed by topographic foundation (coral frame, reef shoreline, reef gate) and tidal currents, and are the main factors that control the development of submarine sandbanks in the study area.
  • 东亚大陆边缘河流沉积物源汇过程是地球科学领域的重大科学问题[1],中国东部海域浅海陆架沉积地层记录了该大型源汇体系的演化过程,是重建新生代亚洲大陆构造隆升、季风演化以及气候变化等过程的重要信息载体[2-3],同时,浅海陆架沉积记录对全球海平面变化也具有重要指示[4-6]

    黄海是一个典型的半封闭型陆架海,周边河流主要包括中国大陆的长江、淮河、黄河以及朝鲜半岛汉江、锦江等河流,接受上述河流的大量陆源碎屑物质[7]。受黄海暖流、沿岸流等海流以及冷水团的控制,在北黄海西部、南黄海中部、济州岛西南和南黄海东南部形成了多个泥质区[8]。其中,南黄海中部泥质区的研究成果最为丰富。在物源研究方面,利用矿物学和地球化学方面的证据,多数学者认为南黄海中部泥质区沉积物主要由黄河和长江供应[7,9-12]。其他潜在来源是局部小河流,如淮河等,其年入海沉积物通量(约76 Mt/a)相对较低,对中部泥质区的贡献可能很小[13]。发源于朝鲜半岛的主要河流,如汉江、锦江等,向黄海东部输送沉积物通量仅为18 Mt/a[13],对中部泥质区沉积物贡献微不足道[7]。此外,由于黄河和长江巨量泥沙的稀释,风尘对南黄海沉积的影响几乎可忽略不计[14]。利用钻孔沉积物资料,Yao等人研究表明,南黄海0.88 Ma 以来物质来源主要受黄河控制[15]。CSDP-1孔的碎屑锆石U-Pb年龄分析显示0.78 Ma中部泥质区才开始有黄河源的物质,并且自此黄河成为钻孔区主要物质来源[16]

    多数物源研究成果以细粒沉积物为研究对象,主要分析了末次间冰期以来短时间尺度的物源变化。虽然已经形成南黄海中部泥质区为黄河源和长江源物质混合区的认识,但二者占主导的区域分界还不够清晰,地质历史时期不同河流对南黄海海底沉积物影响程度的认识还存在较多分歧。

    锆石具有很强的抗风化能力,广泛分布于河流、湖泊和三角洲各种沉积环境的陆源碎屑沉积物中。通过多个样品的年龄图谱相互比较,并分析整个流域的构造运动历史及沉积环境特征,可以很好地追踪沉积物的输运轨迹[17-18]。在过去20年里,单颗粒矿物原位分析技术的发展使得碎屑锆石U-Pb年代学方法成为沉积物物源研究的标准方法之一[19-21]。本文以南黄海中部泥质区南部及泥质区外缘4个表层沉积物样品和5个钻孔沉积物样品的碎屑锆石U-Pb年龄进行分析,为南黄海中部泥质区物源分界、地质历史时期物源及沉积环境演化研究提供新证据。

    南黄海位于中国大陆和朝鲜半岛之间(图1),平均水深46 m,最深处位于济州岛北侧,深达140 m[22]。南黄海海底包括鲁南岸坡及海州湾阶地平原、苏北岸外舌状台地、中部平原、黄海槽洼地、朝鲜半岛岸外台地和济州岛西部砂脊六大地形单元。黄海槽洼地位于南黄海中部,靠近朝鲜半岛一侧,北浅南深,海槽地形东陡西缓[22],最深处在100 m以上。前人研究认为,黄海槽由末次冰期水流运动形成,为全新世海水入侵的主要通道[23]

    图  1  南黄海及研究钻孔位置示意图
    CSDP-1孔见文献[16],CSDP-2孔见文献[9],NHH01孔见文献[15],海流根据文献[24]绘制,泥质区范围根据文献[25]绘制。SYB80、SYB86、SYB198和SYB256为本文研究表层样站位。
    Figure  1.  South Yellow Sea and the borehole location
    Data sources: Borehole CSDP-1 from [16], borehole CSDP-2 from [9], borehole NHH01 from [15], marine circulation from [24], mud area from [25]. SYB80, SYB86, SYB198, and SYB256 are from this study.

    南黄海现代海洋流系主要包括黄海暖流、沿岸流等。南黄海中部的黄海冷水团是一个低能环境,为泥质沉积分布区;在南黄海的东部、西南部海区则发育强潮流,形成了潮流沙脊[9]。通过对南黄海打穿第四系的CSDP-2孔研究,发现南黄海在1.66 Ma左右出现第一次海侵,l.66~0.83 Ma南黄海地区以河流相沉积为主,有3次较弱的海侵,直到0.83 Ma以来海侵强度才与现今接近[9,26]。浙闽隆起的进一步沉降使得南黄海中部隆起区在间冰期高海平面时期的海洋环境基本接近现今环境。南黄海西部陆架在MIS5发育范围比现今更广[9]

    南黄海周边河流主要有中国大陆一侧的黄河、长江和朝鲜半岛一侧的汉江、锦江、蟾津江等河流。长江是我国第一长河,流域纬向跨度大,自西向东流经昌都地块、松潘-甘孜褶皱带、秦岭-大别构造带、扬子地块和华夏地块[27],地层出露复杂,元古界至第四系均有分布,包括大面积的碳酸盐岩、陆源碎屑岩和中酸性侵入岩、片岩和片麻岩等[28]。通过大量碎屑锆石U-Pb年龄分析,发现长江碎屑沉积物主要有6组峰:<65、200~300、400~550、700~1000、1800~2000和2400~2600 Ma,其中200~300和700~1000 Ma为主要的两组峰[29]。黄河是我国第二长河,以年输沙量巨大著称,流经松潘-甘孜造山带、秦岭造山带、祁连造山带和华北陆块等多个构造单元[30],碎屑锆石U-Pb年龄结果显示,黄河碎屑沉积物主要有6组峰:200~350、350~500、700~1000、1000~1800、1800~2000和2000~2600 Ma,其中200~350、350~500、1800~2000和2000~2600 Ma为主要的四组峰[31-32]。朝鲜半岛一侧的河流主要为汉江、锦江、蟾津江等中小河流。锆石U-Pb年龄谱显示半岛东西两侧差异明显,年龄范围从早新生代到晚太古代,西部以古生代至新元古代锆石为主,东部以古元古代锆石为主[33]

    2018年4—5月,青岛海洋地质研究所在南黄海泥质区附近获取表层样300个站位,每个站位用箱式取样器取海底表层20 cm以内样品2袋。SYS90-1A孔由青岛海洋地质研究所在2017年6月利用“明源1001”轮实施,地理坐标为33°48′49″N、123°43′58″E,水深约69.3 m,钻孔深90.1 m,有效样品86管,岩芯总长83.8 m,平均取芯率93.0%。

    对SYS90-1A孔全孔进行了连续低场磁化率测量和古地磁交变场退磁测定,结合钻孔上部AMS14C和光释光测年结果,建立了钻孔的年代框架图2)。SYS90-1A孔底界年龄约为1.0 Ma,布容正极性时和松山负极性时倒转边界(0.78 Ma)大约位于73.78 m。上部年龄数据较多(图2),根据沉积速率推测晚更新世底界埋深为21.50 m。上部15 m沉积物记录了MIS4、MIS3早期和MIS1的沉积,缺失MIS3晚期至MIS2早期的沉积。

    图  2  SYS90-1A孔与CSDP-1孔[30]年代框架及锆石定年分析样品取样位置示意图
    全球海平面变化曲线据文献[34]。
    Figure  2.  The age frame of the SYS90-1A and CSDP-1 boreholes [30] and the sampling location of zircon dating
    Global sea level change curve is from reference [34].

    根据岩芯描述及沉积学分析,结合年代学结果,对SYS90-1A孔进行碎屑锆石U-Pb定年分析,共选取5个样品。钻孔岩芯在69.48~69.74 m层位见风化严重的贝壳碎屑,岩性变化明显(图2),推测彼时沉积环境可能发生改变。在层位上下各取1个样品,根据泥质区分布,共选取4个表层沉积物样品进行碎屑锆石U-Pb定年分析。9个沉积物样品位置见图1,埋深和岩性等信息见表1,锆石挑选、制靶、反射光、透射光和阴极荧光(CL)拍摄和测试均在南京宏创地质勘查技术服务有限公司完成。

    表  1  沉积物样品位置及岩性信息
    Table  1.  Samples location and lithology information
    序号样品编号位置埋深/m岩性备注
    1SYB8033°27′15″N、 123°17′46″E0.20粉砂表层样
    2SYB8633°05′40″N、124°24′17″E0.20粉砂表层样
    3SYB19833°05′40″N、124°44′02″E0.20粉砂表层样
    4SYB25633°05′40″N、124°03′48″E0.20粉砂表层样
    5SYS90-1A-B70933°48′49″N、 123°43′58″E34.88粉砂钻孔样
    6SYS90-1A-C71733°48′49″N、 123°43′58″E56.20细砂钻孔样
    7SYS90-1A-D23533°48′49″N、 123°43′58″E68.88粉砂钻孔样
    8SYS90-1A-D27533°48′49″N、123°43′58″E69.68粉砂钻孔样
    9SYS90-1A-D94533°48′49″N、123°43′58″E85.66粉砂钻孔样
    下载: 导出CSV 
    | 显示表格

    首先利用常规的浮选和电磁法分离出锆石,随机选出250粒进行环氧树脂制靶,并拍摄显微镜照相(透射光与反射光),然后在场发射扫描电镜实验室进行阴极荧光拍摄,发射扫描电镜型号为TESCAN MIRA3,探头由TESCAN公司提供。

    锆石U-Pb定年使用激光剥蚀-电感耦合等离子体质谱仪(LA-ICPMS)完成。激光剥蚀平台采用Resolution SE型193 nm深紫外激光剥蚀进样系统(Applied Spectra,美国),配备S155型双体积样品池。质谱仪采用Agilent7900型电感耦合等离子体质谱仪(Agilent,美国)。详细的调谐参数见Thompson等的文献[35],采用束斑直径50 μm、剥蚀频率10 Hz、能量密度3.5 J/cm2、扫描速度3 μm/s的激光参数剥蚀玻璃标样NIST 612,调节气流以获得高的信号强度。选用100 μm束斑线扫玻璃标样NIST 610对待测元素进行P/A调谐。测量质量数29Si、31P、45Sc、49Ti、56Fe、89Y、91Zr、93Nb、139La、140Ce、141Pr、146Nd、147Sm、151Eu、157Gd、159Tb、163Dy、165Ho、166Er、169Tm、173Yb、175Lu、178Hf、181Ta、202Hg、204Pb、206Pb、207Pb、208Pb、232Th、235U、238U,总的扫描时间约为0.23 s。锆石样品固定在环氧树脂靶上,抛光后在超纯水中超声清洗,分析前用分析级甲醇擦拭样品表面。采用5个激光脉冲对每个剥蚀区域进行预剥蚀(剥蚀深度约0.3 μm),以去除样品表面可能的污染。在束斑直径30 μm、剥蚀频率5 Hz、能量密度2 J/cm2的激光条件下分析样品。数据处理采用Iolite程序[36],锆石91500作为校正标样,GJ-1作为监测标样,每隔10~12个样品点分析2个91500标样及1个GJ-1标样。通常采集20 s的气体空白,35~40 s的信号区间进行数据处理,按指数方程进行深度分馏校正[36]。以玻璃标样NIST 610作为外标,91Zr作为内标计算微量元素含量。本次实验过程中测定的91500(1061.5±3.2 Ma, 2σ)、GJ-1 (604±6 Ma, 2σ)年龄在不确定范围内与推荐值一致。锆石年龄选择按照如下原则:对于<1000 Ma的年龄选取206Pb/238U计算值,对于>1000 Ma的年龄选取207Pb/206Pb计算值[37]

    从研究样品锆石CL图像可以看出,碎屑锆石粒径变化较大,范围为20~200 μm。磨圆度从圆形到棱角均有分布,以次圆形和次棱角居多。研究样品中部分锆石具有清晰的岩浆岩振荡环带,如图3中C717-70、S256-112、S256-62、D275-111和S80-91,其中后两者可能为低温条件下微量元素的扩散速度慢而形成。样品中也有部分变质锆石,如无分带的D235-94和具有变质增生边的C717-52和D945-68两个样品(图3)。

    图  3  研究样品部分锆石CL图像
    Figure  3.  CL images of some zircons in the study samples

    锆石Th、U含量及Th/U值能够大致反映锆石的成因[38]。通常认为,岩浆锆石中Th、U含量较高且Th/U值较大,一般>0.3,而变质锆石的Th、U含量相对较低,一般<0.1。用于本文研究的85%以上的沉积物锆石Th/U>0.3,仅少数的Th/U<0.1(图4),说明大多数锆石为岩浆成因,能够反映其结晶年龄。

    图  4  SYS90-1A孔沉积物和表层沉积物碎屑锆石Th/U值
    Figure  4.  Plot of Th/U ratios versus U-Pb ages of detrital zircons from SYS90-1A borehole and surface sediments of South Yellow Sea

    南黄海中部泥质区南部表层沉积物和SYS90-1A孔沉积物碎屑锆石U-Pb年龄谐和图如图5所示,各样品中年龄谐和锆石数量均超过90%,文中所用沉积物锆石年龄谐和度均>90%。9个沉积物样品锆石U-Pb年龄测试结果显示,根据年龄分布大致可分为两组:第一组表现出<100 Ma、100~300、300~500、600~1100、1800~2000和2300~2700 Ma等6个年龄区间,样品包括表层沉积物SYB86、SYB198、SYB256和钻孔沉积物SYS90-1A-C717、SYS90-1A-D235;第二组表现出<200、200~300、350~500、600~1100、1800~2000和2000~2600 Ma等6个主要年龄区间,样品包括表层沉积物SYB80和钻孔沉积物SYS90-1A-B709、SYS90-1A-D275、SYS90-1A-D945。各样品不同年龄区间锆石比例见表2表3

    图  5  沉积物碎屑锆石U-Pb年龄谐和图
    Figure  5.  Concordia ages of single zircon grains from the samples
    表  2  第一组样品不同年龄区间锆石比例
    Table  2.  The proportion of zircons in different ages of the first group of samples %
    样品编号<100 Ma100~300 Ma300~500 Ma600~1100 Ma1300~1500 Ma1800~2000 Ma2300~2700 Ma
    SYS90-1A-C717127132741612
    SYS90-1A-D23542611352617
    SYB8604411184185
    SYB1983541321252
    SYB256333131831911
    下载: 导出CSV 
    | 显示表格
    表  3  第二组样品不同年龄区间锆石比例
    Table  3.  The proportion of zircons in different ages of the second group of samples %
    样品编号<200 Ma200~300 Ma350~500 Ma600~1100 Ma1300~1500 Ma1800~2000 Ma2000~2600 Ma
    SYS90-1A-B709421112362313
    SYS90-1A-D275313124131613
    SYS90-1A-D945222132622215
    SYB8022193541515
    下载: 导出CSV 
    | 显示表格

    南黄海周边的黄河、长江和朝鲜半岛的汉江、锦江、蟾津江等河流可能为海底沉积物的主要输送通道,本文以上述河流为端元进行物源判别。

    首先,利用IsoplotR软件[39]绘制了研究样品与周边河流样品的KDE图(图6),结合各样品不同年龄区间的锆石比例,初步认为表层沉积物SYB86、SYB198、SYB256和钻孔沉积物SYS90-1A-C717、SYS90-1A-D235与长江输送沉积物的锆石U-Pb年龄谱比较相似,以200~300和700~1000 Ma为两组主要年龄,且多数样品含有<65 Ma年龄的锆石颗粒。其中年龄<65 Ma(新生代)的锆石样品占比不高,但明显说明这一组样品与其他样品的差异。长江上游流经的昌都地块和松潘-甘孜褶皱带及下游流经的下扬子板块均出露新生代岩体[40]

    图  6  研究样品及周边河流沉积物碎屑锆石U-Pb年龄谱
    黄河样品数据来自文献[41],长江样品数据来自文献[42],锦江、汉江和蟾津江样品数据来自文献[33]。图中绿色圆点为主要对比峰值区。
    Figure  6.  U-Pb age spectra of detrital zircon of the study samples and the surrounding river sediments
    Data sources: Yellow River sample data from [41], Yangze River sample data from [42], Han River, Geum River, and Seomjin River samples data from [33]. The green dots are peak areas for comparison.

    表层沉积物SYB80和钻孔沉积物SYS90-1A-B709、SYS90-1A-D275、SYS90-1A-D945与黄河输送沉积物的锆石U-Pb年龄谱比较相似,以200~300、350~500、600~1100、1800~2000和2000~2600 Ma为主要的年龄峰,年龄峰的增加可能主要是受源区拓展的影响[43]。600~1100 Ma为长江输送沉积物的主要年龄峰。长江流域700~1000 Ma的锆石含量均较高,主要是有大量扬子克拉通和秦岭-大别造山带[44-45]碎屑沉积物输入所致。

    研究样品与朝鲜半岛三条河流输送物质的锆石U-Pb年龄谱区别较大,应该不存在物源关系。朝鲜半岛河流锆石U-Pb年龄谱以100~250和1800~2000 Ma两组年龄峰为特征[33],与长江、黄河输送物质的锆石U-Pb年龄谱区别明显。

    Vermeesch研究认为,基于多维定标法(MDS)的碎屑锆石U-Pb年龄相似性量化分析,能够实现年龄分布的有效捕捉,具有很强的实用性[46]。该基于Kolmogorov-Smirnoff(K-S)检验的D值或Kuiper检验的V值,通过特定的算法,将分析结果以点的形式投射在多维空间(二维或三维)中,表示多个样本之间的相对差异,从而显著提升碎屑锆石样品量化分析结果的可视化效果。样品间的差异性(δ)矩阵被函数f转换为一个由直线距离(d)表示的差异矩阵,对于两个样品ij,其定义如下:

    $$ d_{ij} {\text{≈}} f (\sigma_{ij}) $$ (1)

    式(1)中:f (δij)是单调递增的转换函数,即ij样品的差异性越大,多维空间中代表2个样品的点之间的距离也就越大。MDS利用这些差异矩阵将样品点投射在二维或三维空间中绘制成图。

    利用IsoplotR软件绘制了研究样品与长江、黄河以及朝鲜半岛汉江、锦江、蟾津江等河流的MDS图(图7)。从图7中可以看出表层沉积物SYB80和钻孔沉积物SYS90-1A-B709、SYS90-1A-D275、SYS90-1A-D945与黄河沉积物的锆石U-Pb年龄比较靠近。表层沉积物SYB86、SYB198、SYB256和钻孔沉积物SYS90-1A-C717、SYS90-1A-D235与长江沉积物的锆石U-Pb年龄比较靠近。所有样品与朝鲜半岛河流相距均较远。韩国学者[33]对黄海表层沉积物锆石U-Pb年龄分析结果显示(图7b),南黄海南部大致以济州岛西缘为界,以西区域沉积物主要来自中国大陆,以东区域沉积物主要来自朝鲜半岛,这一界限大致与南黄海东侧粉砂区与砂质区分界重合。

    图  7  物源分析图
    a. 研究样品与周边河流样品MDS图,b. 基于K-S检验南黄海南部表层样品物源分析[33],c. 样品位置图。
    Figure  7.  Provenance analysis
    a:MDS plot of study samples and surrounding river samples; b:Possible provenance discrimination of southeastern Yellow Sea sandy sediments using the Kolmogorov-Smirnoff (K-S) test[33]; c:Sample location.

    南黄海中部泥质区的形成受海平面变化、海洋环流、东亚季风、河流改道及河口三角洲形成等多种因素的影响[47-53]。其中,以黄海暖流和两侧沿岸流为主的南黄海环流体系,控制了周边河流输入物质的搬运和沉积[54]。北上的黄海暖流与南下的沿岸流相互作用形成逆时针旋转的气旋型涡旋,称为冷水团或冷涡,对南黄海中部泥质区的形成具有明显的控制作用[55]。诸多学者对黄海暖流的形成时间进行了研究[8,48,56-57],将其进入时间限定在6.9~4.3 kaBP。南黄海柱状沉积物环境磁学参数研究发现,黄海暖流进入以前南黄海沉积物可能主要由黄河供应,之后长江源物质的影响相对增加[58]。黄河入海物质向南搬运的沉积动力主要为冬季风驱动的沿岸流。黄海沿岸流携带的悬浮物质沉积形成南黄海中部泥质区,冬季风增强则加剧沉积物的再悬浮,使得悬浮体浓度增加、粒度变粗。长江入海物质沉积动力主要为夏季风和黄海暖流,二者共同作用于长江冲淡水[59],将其携带的物质向西北输运,沿岸流和黄海暖流共同影响南黄海沉积环境过程[60-61]。苏北-南黄海盆地和现代长江三角洲地层厚度的显著变化反映了河口的迁移,在低海平面时期长江分支河流直接向南黄海中部泥质区输送物质[62]

    通过南黄海中部泥质区表层沉积物碎屑锆石U-Pb年龄分析,发现中部泥质区为一个混合沉积区,在泥质区内部以黄河输送物质占主导,而在泥质区南侧,以长江输送物质居多。黄河和长江输送物质在南黄海中部泥质区的主控分界大致位于33.4°N附近。

    CSDP-2孔位于南黄海中部隆起区,上部592.00 m 岩芯为松散沉积物,刘健等[9]对其开展了详细的古地磁、沉积相以及第四纪地质研究,可以作为南黄海第四纪地质研究的标准钻孔。钻孔研究结果显示,南黄海在新近纪的剥蚀止于约5.2 Ma,从约5.2 Ma至约1.7 Ma主要发育陆相地层。约1.7 Ma开始浙闽隆起逐渐沉降,至约0.83 Ma南黄海首次接受海侵,发育潮坪-滨岸相与河流相交互地层。约0.83 Ma开始,浙闽隆起沉降加剧,南黄海在间冰期高海平面时期的海洋环境基本接近现今环境。通过与周边QC2 孔[63]、SYS-0702 孔[64]和CSDP-1孔[65-66]等进行对比,发现南黄海西部陆架冷水团沉积在MIS5时期发育范围比现今更为广泛,之后则依次发育河流相、三角洲相、河流相和滨岸-陆架相沉积[9]

    本文利用碎屑锆石U-Pb定年开展物源分析显示,钻孔沉积物可以分为3段:第一段从钻孔底部至69.68 m,沉积物可能来自黄河输送入海物质;第二段从56.20 m到68.88 m,沉积物碎屑锆石U-Pb年龄特征与长江源物质相似度较高,说明该时段长江源物质对研究区贡献较大;第三段从56.20 m至钻孔顶部,沉积物主要为黄河源物质。据古地磁推测,SYS90-1A孔底界年龄约为1.0 Ma。利用天文年代调谐确定56.20 ~68.88 m沉积物具体时代为 0.59~0.71 Ma。

    CSDP-1孔的研究结果显示,0.83 Ma开始南黄海发生大规模区域性海侵,南黄海海洋环境与现今接近,在此之前南黄海区域沉积物以长江物质为主[62]。南黄海NHH01孔的研究结果表明[15],0.88 Ma以来才开始出现黄河源物质信号,这与本文的研究结果较为一致,说明黄河源物质大致在0.88~1.0 Ma开始影响南黄海。对照全球海平面变化曲线(图2),0.59~0.71 Ma为低海平面时期,SYS90-1A孔沉积物在该时段主要受长江控制,推测与海平面下降及长江入海口向海推进有关。综合CSDP-1孔、NHH01孔和SYS90-1A孔(钻孔位置见图1)沉积环境对比及物源分析结果,在南黄海地区,受浙闽隆起沉降影响,约1.0~0.83 Ma期间,海水从东南方向以“通道”式进入南黄海,不同区域存在“同期异象”现象。至晚更新世,受全球海平面变化影响,3个钻孔沉积环境变化一致。

    南黄海中部泥质区南部锆石U-Pb年龄特征指示沉积物主要由黄河供应,而泥质区以南区域长江源物质占主导。早更新世晚期以来沉积物不同时期物源差异明显,其中,中更新世早期(0.59~0.71 Ma)以长江源物质为主,早更新晚期至中更新世以及中更新世中期以来以黄河源物质为主。上述表层沉积物样品和钻孔沉积物样品碎屑锆石U-Pb年龄分布与朝鲜半岛河流沉积物完全不同。

    早期关于南黄海早更新世以来沉积物物源的认识主要以黄河源物质为主,长江源物质对南黄海泥质区沉积物的影响范围不够清晰。本文通过地质浅钻揭示出长江源物质在早更新世晚期和中更新世早期(0.59~0.71 Ma)对南黄海泥质区贡献较大,但难以从区域上识别出这一阶段长江源物质的影响范围。且受取样密度所限,可能对SYS90-1A孔中长江源物质占主导时期的揭示有所遗漏,后期需要开展进一步研究。

    致谢:感谢自然资源部国际合作司提供支持。

  • 图  1   研究区位置 [25]

    a: 中国南海,据自然资源部标准地图<审图号:GS(2020)4617 号>; b: 宣德环礁。

    Figure  1.   Location map of the study area (modified from He et al [25])

    a: South China Sea (after the Standard Maps of Ministry of Natural Resources of the People’s Republic of China: GS(2020)4617), b: Xuande Atoll.

    图  2   调查期间永兴岛和赵述岛潮位变化

    Figure  2.   Tidal level variations in the Yongxing Island and Zhaoshu Island during the investigation

    图  3   研究区6个调查站位实测流速、流向图

    a: 表层, b: 中层, c: 底层。

    Figure  3.   The flow velocity and direction of flood and ebb tides at six sites in the study area

    a: Surface water, b: middle water, c: bottom water.

    图  4   研究区水深渲染图(a)及水下沙洲类型分布图(b)

    Figure  4.   Bathymetry map of the study area (a) and the distribution of different types of submarine sandbanks in the study area(b)

    图  5   珊瑚礁侧扫影像[25]

    a: 埋藏珊瑚礁侧扫影像,b: 水下沙洲E1侧扫影像,c: 珊瑚礁水深剖面。

    Figure  5.   Side scan images of submarine coral reefs in the study area (modified after He et al., 2021[25])

    a: Buried coral reefs, b: submarine sandbank E1, c: depth profile of coral reef.

    图  6   研究区水下沙洲综合解释图

    a: 测线L13、Z13路线示意图,b: 测线L13侧扫及水深渲染图,c: 单道地震相解译图,d: 测线L13、Z13单道地震剖面解释图。

    Figure  6.   Comprehensive interpretation of submarine sandbanks in the study area

    a: Survey lines L13 and Z13, b: side scan images and bathymetry of line L13, c: interpretation of seismic facies, d: interpretation map of seismic facies in L13 and Z13.

    图  7   宣德环礁早全新世地貌模拟图

    Figure  7.   The simulated geomorphic map of Xuande Atoll in the Early Holocene

    表  1   研究区6个调查站位实测涨落潮流最大流速、流向及平均流速、流向

    Table  1   The measurements of the maximum, average flow velocity, and flow direction of flood and ebb tides at six survey sites in the study area

    站号水深/m流速/(m/s)流向/(°)
    表层中层底层表层中层底层
    CL124涨潮最大0.130.160.1433.2308.880.3
    落潮最大0.120.080.14330.8241.850.5
    涨潮平均0.070.070.05130.6259.3164
    落潮平均0.050.040.06132174.8161.4
    CL250涨潮最大0.350.380.4255.528.8348.7
    落潮最大0.320.360.3998.892.4327.7
    涨潮平均0.190.210.23154.7144.4227.5
    落潮平均0.120.250.25188.7236.8220.2
    CL316涨潮最大0.460.310.4222.7108.1195.4
    落潮最大0.390.310.29239.7262.6155.8
    涨潮平均0.290.250.19164163.6150.6
    落潮平均0.260.160.11216.8212.2209.6
    CL430涨潮最大0.440.460.47229.7218.9216.3
    落潮最大0.480.480.49209.3206.691.8
    涨潮平均0.240.250.21230.5233.20.2
    落潮平均0.150.190.2101.5158.7154.3
    CL522涨潮最大0.490.60.4770.569.360.4
    落潮最大0.560.510.4457.978.353.9
    涨潮平均0.250.280.23145.9122.8133.1
    落潮平均0.290.320.2670.989.797.7
    CL656涨潮最大0.30.270.3127.194.591.7
    落潮最大0.260.290.31295.483.1300.5
    涨潮平均0.190.170.17188.9199.2202.2
    落潮平均0.140.110.12191.7162.7206.5
    下载: 导出CSV

    表  2   研究区6个调查站位实测底层流参数

    Table  2   Parameters of bottom flows measured at six survey sites in the study area

    站号最大流速/(m/s)流向平均流速/(m/s)流向
    CL10.14E0.06SE
    CL20.42NW0.24SW
    CL30.4S0.15SE/S
    CL40.49SW/E0.21N/SE
    CL50.47NE0.25SE
    CL60.3E/W0.15SW
    下载: 导出CSV

    表  3   研究区水下沙洲参数

    Table  3   Parameters of submarine sandbanks in the study area

    水下沙洲长/km宽/km水深/m走向
    A117145~50NW-SE
    A212.10.845~50NW-SE
    B15.4245~50NE-SW
    B21.90.945~50W-E
    C10.34.843~53NE-SW
    D14.73.145~55W-E
    D21.61.145~55W-E
    E111.51.350~55NW-SE
    E25.40.950~55NW-SE
    下载: 导出CSV

    表  4   表层沉积物粒度参数

    Table  4   Parameters of submarine surface sediments in the study area

    站号水深/m平均粒径/ϕ分选系数偏态峰态
    a1522.962.380.121.5
    a2503.141.370.331.39
    b1493.132.250.421.43
    b2500.422.280.640.92
    c1440.151.540.550.64
    c2481.131.61-0.371.2
    c3460.962.1600.88
    e1551.11.54-0.310.69
    e2511.433.50.910.85
    下载: 导出CSV
  • [1] 郑勇玲, 吴承强, 蔡锋, 等. 我国海底地貌研究进展及其在东海近海的新发现、新认识[J]. 地球科学进展, 2012, 27(9):1026-1034

    ZHENG Yongling, WU Chengqiang, CAI Feng, et al. The present research trend of China’s submarine geomorphology and new discovery of the East China Sea offshore [J]. Advances in Earth Science, 2012, 27(9): 1026-1034.

    [2] 周成虎. 地貌学辞典[M]. 北京: 中国水利水电出版社, 2006.

    ZHOU Chenghu. A Dictionary of Geomorphology[M]. Beijing: China Water & Power Press, 2006.

    [3] 刘希林, 谭永贵. 现代地貌学基本思想的认识和发展[J]. 中山大学学报:自然科学版, 2012, 51(4):112-118

    LIU Xilin, TAN Yonggui. Recognition and development of basic ideas of modern geomorphology [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(4): 112-118.

    [4] 程维明, 周成虎, 申元村, 等. 中国近40年来地貌学研究的回顾与展望[J]. 地理学报, 2017, 72(5):755-775 doi: 10.11821/dlxb201705001

    CHENG Weiming, ZHOU Chenghu, SHEN Yuancun, et al. Retrospect and perspective of geomorphology researches in China over the past 40 years [J]. Acta Geographica Sinica, 2017, 72(5): 755-775. doi: 10.11821/dlxb201705001

    [5] 余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018.

    YU Kefu. Introduction to the Science of Coral Reefs[M]. Beijing: Science Press, 2018.

    [6]

    Davis R A. Coastal Sedimentary Environments[M]. New York: Springer, 1978.

    [7]

    Kennett J P. Marine Geology[M]. New York: Prentice-Hall, 1981: 76-371.

    [8]

    Ren P, Bornhold B D, Prior D B. Seafloor morphology and sedimentary processes, Knight Inlet, British Columbia [J]. Sedimentary Geology, 1996, 103(3-4): 201-228. doi: 10.1016/0037-0738(95)00090-9

    [9]

    Shaw J, Courtney R C. Multibeam bathymetry of glaciated terrain off southwest Newfoundland [J]. Marine Geology, 1997, 143(1-4): 125-135. doi: 10.1016/S0025-3227(97)00093-5

    [10]

    Gardner J V, Dartnell P, Mayer L A, et al. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping [J]. Marine Environmental Research, 2003, 56(1-2): 15-46. doi: 10.1016/S0141-1136(02)00323-9

    [11] 陈俊仁. 我国南部西沙群岛地区第四纪地质初步探讨[J]. 地质科学, 1978(1):45-56

    CHEN Junren. A preliminary discussion on quaternary geology of Xisha Qundao Islands of South China [J]. Chinese Journal of Geology, 1978(1): 45-56.

    [12] 曾昭璇. 试论中国珊瑚礁地貌类型[J]. 热带地貌资料, 1980:1-16

    ZENG Zhaoxuan. The geomorphological types of coral reef of China [J]. Tropical Landforms, 1980: 1-16.

    [13] 曾昭璇, 黄少敏, 曾迪鸣. 西沙群岛石岛地貌学上诸问题[J]. 石油与天然气地质, 1984, 5(4):335-341 doi: 10.11743/ogg19840404

    ZENG Zhaoxuan, HUANG Shaomin, ZENG Diming. Some problems concerning geomorphology of Shidao, Xisha Islands [J]. Oil & Gas Geology, 1984, 5(4): 335-341. doi: 10.11743/ogg19840404

    [14] 余克服, 宋朝景, 赵焕庭. 西沙群岛永兴岛地貌与现代沉积特征[J]. 热带海洋, 1995, 14(2):24-31

    YU Kefu, SONG Chaojing, ZHAO Huanting. The characters of geomorphology and modern sediments of Yongxing Island, Xisha Islands [J]. Tropic Oceanology, 1995, 14(2): 24-31.

    [15] 孙宗勋, 赵焕庭. 南沙群岛珊瑚礁动力地貌特征[J]. 热带海洋, 1996, 15(2):53-60

    SUN Zongxun, ZHAO Huanting. Features of dynamic geomorphology of coral reefs in Nansha Islands [J]. Tropic Oceanology, 1996, 15(2): 53-60.

    [16] 王雪木, 陈万利, 薛玉龙, 等. 西沙群岛宣德环礁晚第四纪灰砂岛沉积地层[J]. 海洋地质与第四纪地质, 2018, 38(6):37-45 doi: 10.16562/j.cnki.0256-1492.2018.06.004

    WANG Xuemu, CHEN Wanli, XUE Yulong, et al. The late quaternary carbonate sand deposits at the Xuande atoll [J]. Marine Geology & Quaternary Geology, 2018, 38(6): 37-45. doi: 10.16562/j.cnki.0256-1492.2018.06.004

    [17] 王宇喆, 邱隆伟, 许红, 等. 七连屿海滩沙-沿岸沙丘-现代植物-砂岛成因模式[J]. 海洋地质前沿, 2021, 37(6):92-100 doi: 10.16028/j.1009-2722.2020.208

    WANG Yuzhe, QIU Longwei, XU Hong, et al. Beach sand-coastal dunes-modern vegetation-sand island genetic model of the Qilianyu Island [J]. Marine Geology Frontiers, 2021, 37(6): 92-100. doi: 10.16028/j.1009-2722.2020.208

    [18] 周胜男, 施祺, 周桂盈, 等. 南沙群岛珊瑚礁砾洲地貌特征[J]. 海洋科学, 2019, 43(6):48-59 doi: 10.11759/hykx20180822001

    ZHOU Shengnan, SHI Qi, ZHOU Guiying, et al. Geomorphic features of coral shingle cays in the Nansha Islands [J]. Marine Sciences, 2019, 43(6): 48-59. doi: 10.11759/hykx20180822001

    [19] 许眸莹, 高抒, 葛晨东, 等. 南海九章环礁中牛轭礁和西门礁新生沙洲沉积特征与动态[J]. 热带海洋学报, 2020, 39(2):44-53

    XU Mouying, GAO Shu, GE Chendong, et al. Characteristics and morphodynamics of newly-formed coral debris deposits on the Niu’e and Ximen Reefs, Jiuzhang Atoll, South China Sea [J]. Journal of Tropical Oceanography, 2020, 39(2): 44-53.

    [20] 郑金海, 时健, 陈松贵. 珊瑚岛礁海岸多尺度波流运动特性研究新进展[J]. 热带海洋学报, 2021, 40(3):44-56 doi: 10.11978/YG2020013

    ZHENG Jinhai, SHI Jian, CHEN Songgui. Recent research advances on multi-scale coastal wave and current characteristics of coral reefs and islands [J]. Journal of Tropical Oceanography, 2021, 40(3): 44-56. doi: 10.11978/YG2020013

    [21] 邵超, 戚洪帅, 蔡锋, 等. 海滩–珊瑚礁系统风暴响应特征研究: 以1409号台风“威马逊”对清澜港海岸影响为例[J]. 海洋学报, 2016, 38(2):121-130

    SHAO Chao, QI Hongshuai, CAI Feng, et al. Study on storm-effects on beach-coral reef system: Taking the response of Qinglangang Coast on No. 1409 Typhoon Rammasun as an exam-ple [J]. Acta Oceanologica Sinica, 2016, 38(2): 121-130.

    [22] 姚宇. 珊瑚礁海岸水动力学问题研究综述[J]. 水科学进展, 2019, 30(1):139-152

    YAO Yu. A review of the coral reef hydrodynamics [J]. Advances in Water Science, 2019, 30(1): 139-152.

    [23] 王道儒, 侍茂崇, 南峰. 西沙群岛潮、余流特征研究[J]. 中国海洋大学学报, 2012, 42(10):1-9

    WANG Daoru, SHI Maochong, NAN Feng. Study on features of tide and residual currents in the region of Paracel Islands [J]. Periodical of Ocean University of China, 2012, 42(10): 1-9.

    [24] 蔡志文, 周扬, 惠力, 等. 西沙岛礁泻湖潮流特征分析[J]. 中国造船, 2021, 62(1):192-201 doi: 10.3969/j.issn.1000-4882.2021.01.019

    CAI Zhiwen, ZHOU Yang, HUI Li, et al. Characters of tide and current in a lagoon of the Xisha [J]. Shipbuilding of China, 2021, 62(1): 192-201. doi: 10.3969/j.issn.1000-4882.2021.01.019

    [25] 何其江, 刘刚, 王雪木, 等. 西沙群岛宣德环礁的精细水下地貌组合特征及其成因机制[J]. 海洋学报, 2021, 43(8):81-92

    HE Qijiang, LIU Gang, WANG Xuemu, et al. Submarine geomorphologic features and genetic mechanism in the Xuande atoll, Xisha Islands [J]. Acta Oceanologica Sinica, 2021, 43(8): 81-92.

    [26] 李学林, 张汉羽, 刘刚, 等. 西沙孤立碳酸盐台地的地震层序及演化模式: 以永乐环礁为例[J]. 海洋地质与第四纪地质, 2020, 40(5):87-96

    LI Xuelin, ZHANG Hanyu, LIU Gang, et al. Seismic sequence and evolution model of isolated carbonate platform: A case from Yongle Atoll, Xisha Islands [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 87-96.

    [27] 李亮, 何其江, 龙根元, 等. 南海宣德海域表层沉积物粒度特征及其输运趋势[J]. 海洋地质与第四纪地质, 2017, 37(6):140-148

    LI Liang, HE Qijiang, LONG Genyuan, et al. Sediment grain size distribution pattern and transportation trend in the Xuande Water, South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 140-148.

    [28] 赵焕庭, 宋朝景, 余克服, 等. 西沙群岛永兴岛和石岛的自然与开发[J]. 海洋通报, 1994, 13(5):44-56

    ZHAO Huanting, SONG Chaojing, YU Kefu, et al. Nature and development of Yongxing Island and Shi Island of Xisha Islands [J]. Marine Science Bulletin, 1994, 13(5): 44-56.

    [29]

    Folk R L. A review of grain-size parameters [J]. Sedimentology, 1966, 6(2): 73-93. doi: 10.1111/j.1365-3091.1966.tb01572.x

    [30] 庄振业, 曹立华, 刘升发, 等. 陆架沙丘(波)活动量级和稳定性标志研究[J]. 中国海洋大学学报, 2008, 38(6):1001-1007

    ZHUANG Zhenye, CAO Lihua, LIU Shengfa, et al. Activity level and balance signs of subaqueous dunes(waves) in the Continental Shelf [J]. Periodical of Ocean University of China, 2008, 38(6): 1001-1007.

    [31] 王颖, 朱大奎. 海岸地貌学[M]. 北京: 高等教育出版社, 1994.

    WANG Yin, ZHU Dakui. Coastal Geomorphology[M]. Beijing: Higher Education Press, 1994.

    [32] 王永红. 海岸动力地貌学[M]. 北京: 科学出版社, 2012.

    WANG Yonghong. Coastal Dynamics and Geomorphology[M]. Beijing: Science Press, 2012.

    [33] 高抒, 方国洪, 于克俊, 等. 沉积物输运对砂质海底稳定性影响的评估方法及应用实例[J]. 海洋科学集刊, 2001(43):25-37

    GAO Shu, FANG Guohong, YU Kejun, et al. Methodology for evaluating the Stability of sandy seabed controlled by sediment movement, with an example of application [J]. Studia Marina Sinica, 2001(43): 25-37.

    [34] 胡心迪, 张永战. 南沙道明群礁珊瑚礁地貌[J]. 高校地质学报, 2021, 27(4):469-479

    HU Xindi, ZHANG Yongzhan. Coral reef geomorphology of Daoming Reefs in Nansha islands [J]. Geological Journal of China Universities, 2021, 27(4): 469-479.

    [35] 赵焕庭. 南海诸岛珊瑚礁新构造运动的特征[J]. 海洋地质与第四纪地质, 1998, 18(1):37-45 doi: 10.16562/j.cnki.0256-1492.1998.01.006

    ZHAO Huanting. Characteristics of neotectonic movement of coral reef area of the South China Sea islands [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 37-45. doi: 10.16562/j.cnki.0256-1492.1998.01.006

    [36] 詹文欢, 朱照宇, 姚衍桃, 等. 南海西北部珊瑚礁记录所反映的新构造运动[J]. 第四纪研究, 2006, 26(1):77-84 doi: 10.3321/j.issn:1001-7410.2006.01.010

    ZHAN Wenhuan, ZHU Zhaoyu, YAO Yantao, et al. Neotectonic movement recorded in coral reefs in the Northwestern South China Sea [J]. Quaternary Sciences, 2006, 26(1): 77-84. doi: 10.3321/j.issn:1001-7410.2006.01.010

    [37] 冯英辞, 詹文欢, 姚衍桃, 等. 西沙群岛礁区的地质构造及其活动性分析[J]. 热带海洋学报, 2015, 34(3):48-53 doi: 10.3969/j.issn.1009-5470.2015.03.006

    FENG Yingci, ZHAN Wenhuan, YAO Yantao, et al. Analysis of tectonic movement and activity in the organic reef region around the Xisha islands [J]. Journal of Tropical Oceanography, 2015, 34(3): 48-53. doi: 10.3969/j.issn.1009-5470.2015.03.006

    [38] 刘以宣, 詹文欢, 陈欣树, 等. 南海輓近海平面变化与构造升降初步研究[J]. 热带海洋, 1993, 12(3):24-31

    LIU Yixuan, ZHAN Wenhuan, CHEN Xinshu, et al. The Preliminary study on Neoid sea level change and crustal elevation and subsidence movement in South China Sea [J]. Tropic Oceanology, 1993, 12(3): 24-31.

    [39] 时小军, 余克服, 陈特固. 南海周边中全新世以来的海平面变化研究进展[J]. 海洋地质与第四纪地质, 2007, 27(5):121-132

    SHI Xiaojun, YU Kefu, CHEN Tegu. Progress in researches on sea-level changes in South China Sea since mid-Holocene [J]. Marine Geology & Quaternary Geology, 2007, 27(5): 121-132.

    [40] 赵焕庭, 王丽荣, 宋朝景. 南海珊瑚礁地貌模型研究[J]. 海洋学报, 2014, 36(9):112-120

    ZHAO Huanting, WANG Lirong, SONG Chaojing. Geomorphological model of coral reefs in the South China Sea [J]. Acta Oceanologica Sinica, 2014, 36(9): 112-120.

    [41] 覃业曼, 余克服, 王瑞, 等. 西沙群岛琛航岛全新世珊瑚礁的起始发育时间及其海平面指示意义[J]. 热带地理, 2019, 39(3):319-328

    QIN Yeman, YU Kefu, WANG Rui, et al. The initiation time of the holocene coral reef at the Chenhang island (Xisha islands) and its significance as a sea level indicator [J]. Tropical Geography, 2019, 39(3): 319-328.

    [42] 罗云, 黎刚, 徐维海, 等. 南科1井第四系暴露面特征及其与海平面变化的关系[J]. 热带海洋学报, 2022, 41(1):143-157 doi: 10.11978/2021013

    LUO Yun, LI Gang, XU Weihai, et al. Characteristics of Quaternary exposure surfaces in Well Nanke-1 and their relationship with sea-level changes [J]. Journal of Tropical Oceanography, 2022, 41(1): 143-157. doi: 10.11978/2021013

    [43]

    Yao Y T, Harff J, Meyer M, et al. Reconstruction of paleocoastlines for the northwestern South China Sea since the Last Glacial Maximum [J]. Science in China Series D:Earth Sciences, 2009, 52(8): 1127-1136. doi: 10.1007/s11430-009-0098-8

    [44] 张宝民, 刘静江, 边立曾, 等. 礁滩体与建设性成岩作用[J]. 地学前缘, 2009, 16(1):270-289 doi: 10.3321/j.issn:1005-2321.2009.01.029

    ZHANG Baomin, LIU Jingjiang, BIAN Lizeng, et al. Reef banks and reservoir constructive diagenesis [J]. Earth Science Frontiers, 2009, 16(1): 270-289. doi: 10.3321/j.issn:1005-2321.2009.01.029

    [45] 吴自银, 金翔龙, 曹振轶, 等. 东海陆架沙脊分布及其形成演化[J]. 中国科学:地球科学, 2010, 53(1):101-112

    WU Ziyin, JIN Xianglong, CAO Zhenyi, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf [J]. Science in China Series D:Earth Sciences, 2010, 53(1): 101-112.

    [46]

    Simons D B, Richardson E V, Nordin C F Jr. Sedimentary structures generated by flow in alluvial channels[M]//Middleton G V. Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa: SEPM Society for Sedimentary Geology, 1965.

    [47] 庄振业, 林振宏, 周江, 等. 陆架沙丘(波)形成发育的环境条件[J]. 海洋地质动态, 2004, 20(4):5-10 doi: 10.3969/j.issn.1009-2722.2004.04.002

    ZHUANG Zhenye, LIN Zhenhong, ZHOU Jiang, et al. Environmental conditions for the formation and development of sand dunes (waves) in the continental shelf [J]. Marine Geology Letters, 2004, 20(4): 5-10. doi: 10.3969/j.issn.1009-2722.2004.04.002

  • 期刊类型引用(2)

    1. 吴承强,董超,王建强,陈选博,周宇渤,张朋,仇建东. 瓯江口动力地貌演化的水沙环境研究. 海洋地质前沿. 2025(04): 60-70 . 百度学术
    2. 王明壮,张喜洋,谭飞,王冠,施祺,杨红强. 南沙珊瑚礁潟湖坡微地貌对沉积物粒度特征的影响. 热带地理. 2024(10): 1826-1837 . 百度学术

    其他类型引用(0)

图(7)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-06-20
  • 录用日期:  2022-06-20
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回