Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement
-
摘要: 天然气水合物具有资源储量大、分布范围广等特点,是一种潜力巨大的替代能源,经济、高效、安全地开发天然气水合物是目前研究的热点。CO2-CH4置换水合物开采法既可以置换出水合物储层中的甲烷,同时还将CO2封存其中以保持地层稳定,受到了广泛的关注。本文从CO2-CH4置换的可行性、实验模拟与数值模拟的角度综述了近些年CO2-CH4置换水合物开采法的最新研究进展,并针对置换过程效率低、速度慢等缺点,探讨了改变CO2注入相态、CO2协同小分子气体以及CO2置换联合开采法等强化置换技术,指出了不同强化方法的技术壁垒及应用局限,展望了CO2-CH4置换水合物开采技术的研究方向和发展前景。Abstract: Considering the huge reserve and wide distribution in nature, natural gas hydrates have a great potential to become an alternative energy resource in future. How to economically and safely recovery natural gas from hydrate reservoirs is the focus of current researches. The method by using carbon dioxide (CO2) to replace methane (CH4) within natural gas hydrates has drawn enormous interests due to its two-fold bonus: CH4 recovery for energy and CO2 sequestration for safety. The latest experimental and numerical research in technology on CO2-CH4 replacement for hydrate exploitation, and the feasibility as well as its challenges were summarized. For the challenges to the low efficiency and slow rate in the replacement process, various methods and technologies to enhance the replacement processes were analyzed on examples of the usage of different phase CO2, cooperation with small-molecule gas, and combination with other exploitation methods. Finally, technical barriers and application limitations of different enhancement technologies were pointed out, and the research direction and development prospect of CO2-CH4 replacement for hydrate exploitation were prospected.
-
断裂是含油气盆地重要的构造组成要素,不仅对盆地的形成、演化和圈闭发育等有重要影响,而且还可以作为油气运移的通道,与砂体、不整合等共同构成油气垂向和侧向运移的复合输导体系,从而对油气藏的形成与分布产生重要影响[1-6]。珠江口盆地白云凹陷是南海北部陆缘新生代最大的沉积凹陷,也是珠江口盆地重要的有利油气勘探区[7]。勘探实践已经证实白云凹陷主要是一个天然气聚集区,但近些年在凹陷东北部及邻区也发现了多个具有中等规模储量的油田[8]。前人研究表明,白云凹陷的形成主要受几乎断穿地壳抵达莫霍面的壳幔拆离断层系统控制[9],新生界主要发育NWW向、近EW向和NE向伸展断裂体系。断裂是白云凹陷复式油气输导体系的重要组成部分,尤其是晚期(16 Ma以来)的活动断裂控制了油气运移过程,而断裂的输导性能主要受断层性质、活动强度、构造应力场、砂岩质量分数等因素影响[10-14]。相比较而言,目前,针对白云凹陷东北部断裂发育特征开展的研究相对较少[15],对断裂在该地区油气运聚成藏过程中的作用仍需进行深入研究。本文主要通过对最新的三维地震资料进行解释,并结合钻探成果,解剖白云凹陷东北部断裂发育特征,并在此基础上进一步分析断裂对油气运移和聚集的影响,拟为该地区的油气勘探提供理论基础和科学依据。
1. 地质概况
珠江口盆地是南海北部大陆边缘面积最大的含油气盆地,地处太平洋板块、欧亚板块和印度-澳大利亚板块的相互作用区,是在准被动大陆边缘基础上发育起来的新生代断陷盆地,主要经历了裂谷期、裂后沉降期和新构造活动期等形成演化阶段[16-17]。珠江口盆地由北向南包括北部隆起带、北部坳陷带、中央隆起带、南部坳陷带和南部隆起带等次级构造单元,白云凹陷位于南部坳陷带的珠二坳陷内,面积约1.2×104 km2,凹陷南、北分别以斜坡形态与南部隆起带和番禺低隆起相邻,东、西两侧分别被东沙隆起和云开低凸起所围限,凹陷内部发育主洼、东洼、西洼和和南洼等多个生烃洼陷,其中白云东洼可进一步划分为东、西两个次洼(图1)。白云凹陷新生界最大沉积厚度超过10000 m,除古新统神狐组未有钻遇外,自下向上包括文昌组、恩平组、珠海组、珠江组、韩江组、粤海组、万山组和第四系(图2),其中文昌组和恩平组是主力烃源岩层系,珠江组下段滨岸-陆架三角洲/陆架边缘三角洲复合沉积砂体与上覆珠江组上段大套泥岩构成储盖组合,为油气成藏提供了优质的生储盖配置条件(图2)。
白云凹陷是珠江口盆地深水区的一个富生气凹陷[18],目前已发现的气田主要集中在凹陷北坡和东部地区。近些年在白云凹陷东北部及邻区获得了原油勘探突破,先后发现了L1、L2、L3等多个具有中等储量规模的油田,油气分布整体表现出“内气外油”的特点(图1)。这些油气田的发现不仅进一步证实了白云东洼的生烃能力[19],而且也使该地区成为珠江口盆地深水区油气勘探的重点地区之一。
2. 断裂发育特征
白云凹陷东北部正断层在平面上主要呈NWW和近EW向展布,倾向以NNE和SW向为主,除主干断裂延伸长度最大可达40 km外,多数断裂延伸长度约为10 km(图3)。规模较大的断裂主要围绕白云东洼周缘分布,整体表现出向西发散、向东收敛的“喇叭口”型展布特征(图3)。正断层在剖面上的形态主要表现为铲式和板式特征,常组合成多米诺式、“Y”型和“X”型等样式(图4)。从断层切割层位来看,白云东洼的边界断层都是长期发生活动,从基底一直断至浅层,在凹陷北部斜坡部位也发育多条早期发生活动而断至基底并向NE方向倾斜的次级断裂(图4)。此外,由于珠江组上段(T50-T40)泥岩含量较丰富,浅层多数晚期活动形成的次级断裂一般都在该地层附近终止(图4)。
从断层活动性来看,白云凹陷东北部不同地区断裂的活动强度存在较明显差异。计算结果表明,白云东洼边界断层的活动性一般都较强,活动速率最大可超过100 m/Ma,而且部分断裂在晚期(T32-T40,韩江组沉积期)的活动性还有所增强(图5a),而北部斜坡部位控制局部圈闭发育的断裂的活动强度整体都相对较弱,而且不同时期变化都不大,活动速率一般低于20 m/Ma(图5b)。
3. 断裂控油气作用
白云凹陷东北部断裂对油气成藏的影响主要体现在两个方面,一是控制油气运移过程,二是控制局部构造圈闭的发育。据此,可以将白云凹陷东北部的主要断裂划分为油源断裂和控圈断裂两类(图3)。
3.1 油源断裂
油源断裂一般直接沟通烃源岩和储层,其活动时间与生排烃期匹配也较好,能起到有效的油气运移通道作用。白云凹陷东北部油源断裂主要分布在白云东洼周缘地区,从古近纪裂陷早期开始发育,并一直持续活动至新构造期,几乎断开所有层位,并向生烃中心(白云东洼)倾斜,为向源型油源断裂,有利于油气沿油源断裂发生垂向运移(图4)。
断裂的活动性与输导性能存在密切关系,而且断裂活动期次与油气运移期的匹配关系对油气运移成藏也有重要影响[21-22]。研究表明,白云凹陷东北部油源断裂在新生代的活动性一直都较强,尤其在主成藏期(10.5 Ma以来)的活动速率基本都大于40 m/Ma,部分断裂最大可超过80 m/Ma(图5a)。所以,白云凹陷东北部油源断裂有利于油气的晚期输导,这也得到了勘探实践的证实。与此相反,白云凹陷西南部云开低凸起周缘的油源断裂晚期(16 Ma以来)活动性都较弱,一般都小于10 m/Ma,不利于油气的晚期运移[14]。
3.2 控圈断裂
控圈断裂主要控制局部构造圈闭的发育,并能起到良好的侧向封堵作用,有利于油气聚集成藏。白云凹陷东北部除东洼周缘部分油源断裂可以充当控圈断裂外,大部分控圈断裂一般都离白云东洼较远,主要发育在北部斜坡部位,规模相对较小,断裂倾向多与地层倾向相反,其下盘发育的翘倾断块圈闭是主要的勘探目标(如图4中X1钻井)。
与油源断裂相比,白云凹陷东北部控圈断裂在不同时期的活动性整体都较弱(图5b),从而能起到较好的封堵作用,有利于油气聚集成藏。
3.3 断裂封闭性评价
断裂带的泥质含量和断面正压力分别是控制断裂侧向和垂向封闭性的主要因素[2,23]。本文利用SGR(断层泥岩比率)方法分别对白云凹陷东北部油源断裂和控圈断裂在主力储层段(珠江组下段)的侧向封闭性进行了定量评价。结果显示,油源断裂在珠江组下段的SGR多大于50%(表1),表明油源断裂可以通过泥岩涂抹作用进行侧向封闭。但对于控圈断裂而言,由于珠江组下段大套泥岩的涂抹作用,SGR值很大,一般都大于95%,侧向封堵条件优越,从而利于油气在反向控圈断裂下盘聚集成藏。
表 1 白云凹陷东北部主要断裂珠江组下段SGR和断面正压力计算结果Table 1. Shale gouge ratio and positive pressure of major faults in the lower Zhujiang Formation in the northeastern Baiyun sag断裂类型 断裂编号 泥岩厚度/m 断距/m SGR/% 断面正压力/MPa 油源断裂 F1 774 948 82 48.77 F2 627 790 79 66.58 F3 1051 1217 86 48.79 F4 331 483 69 47.93 F5 1967 2152 91 24.58 控圈断裂 F6 233 238 98 23.09 F7 165 175 94 22.68 F8 308 321 96 21.69 F9 116 136 85 19.03 白云凹陷东北部主要油源断裂的断面正压力为25~67 MPa(表1),超过了泥岩的极限抗压强度(22 MPa),断层泥易发生脆性破裂,进而导致断层垂向封闭性较差,有利于油气沿断裂发生垂向输导。与此相反,控圈断裂的断面正压力多处于10~22 MPa(表1),小于泥岩的极限抗压强度,断层泥易发生塑性流变,从而填塞断裂带内部的裂隙空间,导致断裂的垂向封闭性较好,有利于油气聚集。
4. 油气运聚成藏特征
通过上述对断裂发育特征以及断裂在油气运聚成藏过程中所起作用的综合分析,并结合实际勘探成果,建立了白云凹陷东北部油气运聚成藏模式(图6)。白云东洼的文昌组和恩平组烃源岩生、排烃具有“早油晚气”的特点[19],但当早期文昌组开始生成并排出原油时,珠江组内的圈闭大部分都还未形成。当恩平组大量生排油后,原油开始沿着向源型油源断裂向上发生垂向运移,并有少量原油在近源圈闭中发生聚集(图6b)。向上继续运移的原油遇到广覆式分布、连通性较好的珠江组下段砂体,发生侧向分流向北部斜坡部位进行远距离运移,最后被反向控圈断裂阻挡,并受控圈断裂与砂体产状配置关系影响,原油在控圈断裂下盘翘倾断块圈闭内发生聚集(图6c)。此外,原油样品的地化特征还表明,后期生成的天然气还驱替了近源圈闭中早期聚集的原油继续向北部斜坡部位进行远距离运移[15],天然气进而在近源圈闭中发生聚集成藏(图6d),从而形成了白云凹陷东北部及邻区“内气外油”的油气分布特点(图1)。因此,白云凹陷东北部总体具有油气差异聚集成藏的特点,其中断裂起到了重要作用。油源断裂和珠江组下段砂体联合输导油气,远源反向控圈断裂下盘高效封堵聚集原油,而天然气则表现出近源聚集的特征(图6)。
5. 结论
(1)白云凹陷东北部正断层主要呈NWW向和近EW向展布。主干断裂活动性一般都较强,最大可超过100 m/Ma,而控制局部圈闭发育的断裂活动强度整体相对较弱,一般低于20 m/Ma。
(2)白云凹陷东北部发育向源型油源断裂,其活动速率大,而且在珠江组下段的SGR和断面正压力都有利于油气发生垂向运移。控圈断裂活动速率较小,在珠江组下段的SGR都大于95%,而且断面正压力都小于泥岩的极限抗压强度,断裂侧封性能良好。
(3)白云凹陷东北部具有油气差异聚集成藏的特点,远源反向控圈断裂下盘高效封堵聚集原油,而天然气则主要发生近源聚集,进而形成“内气外油”的油气分布特征。
-
表 1 不同相态CO2的强化置换效果
Table 1 Enhanced displacement effect with CO2 in different states
CO2相态 检测手段 介质体系 温度/K 压力/MPa 甲烷回收效率 文献来源 液 GC 冰粒/纯水 263/275 9 14%/40.3% Lee等[56] 液 Raman 纯水 273.2 3.6/5.4/6 37.6%/27%/29% Ota等[62-63] 液 GC 纯水 283.5 4.5/5.0 20.60%/18.11% 张凤琦等[64] 液 GC 石英砂+水 282.15 6~8 13%~45.4% Zhang等[42] 液 GC 石英砂+盐水 275.2 4.19~4.21 26%~33% Yuan等[33] 液 GC 石英砂+盐水 280.2 4.2 35% Yuan等[33] 液 GC 石英砂+ SDS溶液 281.2 5 18.6% Zhou等[65] 液 GC 石英砂+盐水 273.2 4 26.4% Wang等[66] 液 Raman+SEM 纯水 277 6 11.4% Falenty等[67] 液 MRI 砂岩+盐水 273.2 8.3 59% Kvamme等[68] 乳液 GC 石英砂+ SDS溶液 281.2 5 17%/27.1% Zhou等[65,69] 乳液 GC 石英砂+水 281 5 27.1% 周锡堂等[70] 超临界 GC 石英砂+冰颗粒/盐水 275.2 7.5 37.5% Deusner等[71] 超临界 GC 石英砂+冰颗粒/盐水 275.2/281.2/283.2 13 3.4%/40.7%/10.7% Deusner等[71] 注:GC:气相色谱技术,Raman:拉曼光谱技术,SEM:扫描电子显微镜技术,MRI:核磁共振成像技术。 表 2 不同CO2/N2注气比的强化置换效果
Table 2 Enhanced displacement effect at different CO2/N2 injection ratios
气体成分(CO2/N2) 检测手段 介质体系 温度/K 压力/MPa 甲烷回收效率 文献来源 10%CO2+90%N2 NMR+DSC 多孔硅胶+水 274 11.54/14.59/18.59 77%/80%/79% Lee等[74] 10%CO2+90%N2 GC 纯水+SDS溶液 298.15 9.05 41% Pandey等[88] 14.6%CO2+85.4%N2 GC 硅砂+水 273.3 4.2 53.3% Yang等[89] 19%CO2+81%N2 GC 石英砂+冰粒 274.15 15.8 6.1% 王曦等[90] 20%CO2+80%N2 Raman+NMR 粉末冰颗粒 274.15 12 85% Park等[91] 20%CO2+80%N2 SEM 黏土+水 273.15 15 85% Koh等[92] 20%CO2+80%N2 NMR+GC 多孔硅胶+水 273 10 42% Cha等[93] 20%CO2+80%N2 GC 玻璃珠+水 275.15 9.8 49.2% Koh等[94] 20%CO2+80%N2 GC 玻璃珠+水 274 9.5 39.3% Youn等[95] 22%CO2+78%N2 GC 石英砂+盐水 273.2 5.0 36.9 Liu等[87] 23%CO2+77%N2 Raman+GC 石英砂+水 281 10 90% Schicks等[35] 25%CO2+75%N2 GC 砂土+水 274.2 10 25% Pan等[96] 25%CO2+75%N2 GC 高岭石+水 274.2 10 24.5% 潘栋彬等[97] 25%CO2+75%N2 GC 伊利石+水 274.2 10 25% 潘栋彬等[97] 25%CO2+75%N2 GC 蒙脱石+水 274.2 10 18.2% 潘栋彬等[97] 28%CO2+72%N2 GC+CCD 纯水+ SDS溶液 284.2 9.02 13.2% Niu等[98] 40%CO2+60%N2 NMR+GC 多孔硅胶+水 274 10 51% Seo等[99] 50%CO2+50%N2 Raman+CCD+GC 纯水 273.9 5/6.67 8.3%/17.7% Zhou等[100] 53%CO2+47%N2 GC 石英砂+冰粒 274.15 2.1/3.4 12.6%/19% 王曦等[90] 53%CO2+47%N2 GC 纯水 279.15 8.01 52.42% Ouyang等[101] 53%CO2+47%N2 GC 石英砂+热水 274.15 14 91.6% 操原[102] 59%CO2+41%N2 GC 石英砂+水 277.15 7 40.8% Yasue等[86] 60%CO2+40%N2 GC 石英砂+水 277.15/280.15 7 30% Masuda等[103] 60%CO2+40%N2 Raman+FTIR+GC 纯水 274 4.5 73.42% Xu等[41] 75%CO2+25%N2 GC 石英砂+冰粒 275.15 3 41.4% Li等[82] 75%CO2+25%N2 GC 石英砂+水 275.65 4.8 68.8% Tupsakhare等[104] 75%CO2+25%N2 Raman+CCD+GC 纯水 274 2.6/3.11/3.5 9.5%/12.6%/17.9% Zhou等[100] 87.6%CO2+12.4%N2 GC 石英砂+水 277.15 8.9 46.32% Mu等[75] 注:DSC:差式扫描量热技术,NMR:核磁共振技术,CCD:影像检测技术,FTIR:红外光谱技术。 表 3 不同热激发方式的强化置换效果
Table 3 Enhanced replacement effects in different thermal excitation methods
热激发方式 介质体系 温度/K 压力/MPa 甲烷回收效率(无热激发) 甲烷回收效率(有热激发) 文献来源 热烟气(CO2/N2) 硅砂+水 273.3 4.2 15.9% 53.3% Yang等[89] 短暂升高温度 玻璃珠+水 273.7 3.69 11.55% 59.16% Zhang等[108] 重复注热+分阶段注热 石英砂+冰粒 271.15 3 28% 82% Stanwix等[109] 间歇式原位加热 纯水 280.15 8 35.64% 64.80% 欧阳潜[110] 间歇式原位加热+脉冲注热 纯水 275.15 4 19.83% 35.50% Ouyang等[101] 脉冲注热 纯水 279.15 8 40% 55% 张育诚[111] 热电偶原位加热 石英砂+水 275.65 3.3 24% 99% Tupsakhare等[112] 热电偶原位加热+注入CO2/N2 石英砂+水 275.65 4.8 50% 68.8% Tupsakhare等[104] 表 4 不同强化方法对置换效率的影响对比
Table 4 Comparison of the effects in different strengthening methods on the replacement efficiency
强化方法类型 突出优势 主要影响因素 注液态CO2 特定成核位置的CO2浓度更高,有利于快速成核 水合物储层粒径 注CO2乳化液 具有更高的反应温度以及更好的传导性和扩散能力 乳化液的含量和种类 注CO2/N2混合气 降低CH4分压,置换出512小笼子中的CH4分子 不同气体比 与热激发法联合 缓解CH4水合物分解引起的局部热损 水合物储层饱和度 与降压法联合 CH4水合物的局部分解为CO2的渗透作用提供了更加丰富的孔隙通道 压降梯度 与注化学剂法联合 使相平衡条件向有利于CH4水合物分解和CO2水合物合成的方向移动 化学剂浓度 -
[1] Sloan E D Jr. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135
[2] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. Boca Raton: CRC Press, 2007.
[3] Nair V C, Prasad S K, Kumar R, et al. Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations [J]. Applied Energy, 2018, 225: 755-768. doi: 10.1016/j.apenergy.2018.05.028
[4] Kou X, Wang Y, Li X S, et al. Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator [J]. Applied Energy, 2019, 251: 113405. doi: 10.1016/j.apenergy.2019.113405
[5] Gambelli A M, Rossi F. Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement [J]. Energy, 2019, 172: 423-434. doi: 10.1016/j.energy.2019.01.141
[6] Gupta P, Nair V C, Sangwai J S. Polymer-Assisted chemical inhibitor flooding: a novel approach for energy recovery from hydrate-bearing sediments [J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8043-8055.
[7] Nair V C, Mech D, Gupta P, et al. Polymer flooding in artificial hydrate bearing sediments for methane gas recovery [J]. Energy & Fuels, 2018, 32(6): 6657-6668.
[8] Rossi F, Gambelli A M, Sharma D K, et al. Experiments on methane hydrates formation in seabed deposits and gas recovery adopting carbon dioxide replacement strategies [J]. Applied Thermal Engineering, 2019, 148: 371-381. doi: 10.1016/j.applthermaleng.2018.11.053
[9] Koh D Y, Kang H, Lee J W, et al. Energy-efficient natural gas hydrate production using gas exchange [J]. Applied Energy, 2016, 162: 114-130. doi: 10.1016/j.apenergy.2015.10.082
[10] Fakher S, Elgahawy Y, Abdelaal H. A comprehensive review on gas hydrate reservoirs: Formation and dissociation thermodynamics and rock and fluid properties[C]//International Petroleum Technology Conference. Beijing: International Petroleum Technology Conference, 2019.
[11] 徐行, 罗贤虎, 彭登, 等. 中国首次试采天然气水合物成功[J]. 中国地质, 2017, 44(3):620-621 doi: 10.12029/gc20170323 XU Xing, LUO Xianhu, PENG Deng, et al. First successful trial collection of natural gas hydrate in China [J]. China Geology, 2017, 44(3): 620-621. doi: 10.12029/gc20170323
[12] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568 doi: 10.12029/gc20200301 YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. China Geology, 2020, 47(3): 557-568. doi: 10.12029/gc20200301
[13] Komai T, Kawamura Y K T, Yoon J H. Extraction of Gas Hydrates using CO2 sequestration[C]//The Thirteenth International Offshore and Polar Engineering Conference. Honolulu: The International Society of Offshore and Polar Engineers, 2003.
[14] Birkedal K A, Ersland G, Husebo J, et al. Geomechanical stability during CH4 production from hydrates-depressurization or CO2 sequestration with CO2-CH4 exchange[C]//44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City: American Rock Mechanics Association, 2010.
[15] 张学民, 李银辉, 张山岭, 等. 多孔介质中CO2-CH4水合物置换过程的强化方法研究进展[J]. 过程工程学报, 2022, 22(4):438-447 doi: 10.12034/j.issn.1009-606X.221122 ZHANG Xuemin, LI Yinhui, ZHANG Shanling, et al. Research progress of enhancement methods of CO2-CH4 hydrate displacement in porous media [J]. The Chinese Journal of Process Engineering, 2022, 22(4): 438-447. doi: 10.12034/j.issn.1009-606X.221122
[16] Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor: US, 5261490[P]. 1993-11-16.
[17] 王敏, 徐刚, 蔡晶, 等. “CH4-CO2”置换法开采天然气水合物[J]. 新能源进展, 2021, 9(1):62-68 WANG Min, XU Gang, CAI Jing, et al. Research progress on the micro-mechanism and efficiency of CH4-CO2 replacement and extraction of CH4 hydrate [J]. Advances in New and Renewable Enengy, 2021, 9(1): 62-68.
[18] Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system [J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. doi: 10.1252/jcej.29.478
[19] Schoderbek D, Farrell H, Howard J, et al. ConocoPhillips gas hydrate production test[R]. Houston, TX: ConocoPhillips Co. , 2013.
[20] Schoderbek D, Boswell R. Iġnik Sikumi #1, gas hydrate test well, successfully installed on the Alaska North Slope [J]. Fire in the Ice-Methane Hydrate Newsletter, 2011, 11: 1-5.
[21] Ohgaki K, Takano K, Moritoki M. Exploitation of CH4 hydrates under the Nankai Trough in combination with CO2 storage [J]. Kagaku kōgaku ronbunshū, 1994, 20(1): 121-123. doi: 10.1252/kakoronbunshu.20.121
[22] Mu L, Von Solms N. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process [J]. The Journal of Chemical Thermodynamics, 2018, 117: 33-42. doi: 10.1016/j.jct.2017.08.018
[23] Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228-229: 553-559. doi: 10.1016/j.fluid.2004.10.002
[24] Yezdimer E M, Cummings P T, Chialvo A A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation [J]. The Journal of Physical Chemistry A, 2002, 106(34): 7982-7987. doi: 10.1021/jp020795r
[25] Huo Z X, Hester K, Sloan E D Jr, et al. Methane hydrate nonstoichiometry and phase diagram [J]. AIChE Journal, 2003, 49(5): 1300-1306. doi: 10.1002/aic.690490521
[26] Circone S, Stern L A, Kirby S H, et al. CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate [J]. The Journal of Physical Chemistry B, 2003, 107(23): 5529-5539. doi: 10.1021/jp027391j
[27] Geng C Y, Wen H, Zhou H. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2 [J]. The Journal of Physical Chemistry A, 2009, 113(18): 5463-5469. doi: 10.1021/jp811474m
[28] Yonkofski C M R, Horner J A, White M D. Experimental and numerical investigation of hydrate-guest molecule exchange kinetics [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1480-1489. doi: 10.1016/j.jngse.2016.03.080
[29] 张杰, 关富佳. CO2置换联合热采技术开采天然气水合物可行性分析[J]. 能源化工, 2018, 39(2):71-75 doi: 10.3969/j.issn.1006-7906.2018.02.015 ZHANG Jie, GUAN Fujia. Feasibility analysis on CO2 replacement combined with heating technology for production of natural gas hydrate [J]. Energy Chemical Industry, 2018, 39(2): 71-75. doi: 10.3969/j.issn.1006-7906.2018.02.015
[30] 颜雨. CO2乳液稳定性评价和CO2乳液盖层改造降压开采水合物研究[D]. 中国石油大学(北京)硕士学位论文, 2019 YAN Yu. Experimental study on stability of CO2 emulsion and hydrate depressurization exploitation after cap reformation via CO2 emulsion[D]. Master Dissertation of China University of Petroleum (Beijing), 2019.
[31] Lee S, Lee Y, Lee J, et al. Experimental verification of methane–carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter [J]. Environmental Science & Technology, 2013, 47(22): 13184-13190.
[32] Jung J W, Espinoza D N, Santamarina J C. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sedim-ents [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B10): B10102. doi: 10.1029/2009JB000812
[33] Yuan Q, Sun C Y, Liu B, et al. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2 [J]. Energy Conversion and Management, 2013, 67: 257-264. doi: 10.1016/j.enconman.2012.11.018
[34] Yuan Q, Sun C Y, Yang X, et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor [J]. Energy, 2012, 40(1): 47-58. doi: 10.1016/j.energy.2012.02.043
[35] Schicks J M, Strauch B, Heeschen K U, et al. From microscale (400 μl) to macroscale (425 L): Experimental investigations of the CO2/N2-CH4 exchange in gas hydrates simulating the Iġnik Sikumi Field Trial [J]. Journal of Geophysical Research:Solid Earth, 2018, 123(5): 3608-3620. doi: 10.1029/2017JB015315
[36] Gambelli A M, Filipponi M, Rossi F. How methane release may affect carbon dioxide storage during replacement processes in natural gas hydrate reservoirs [J]. Journal of Petroleum Science and Engineering, 2021, 205: 108895. doi: 10.1016/j.petrol.2021.108895
[37] Xu C G, Zhang W, Yan K F, et al. Research on micro mechanism and influence of hydrate-based methane-carbon dioxide replacement for realizing simultaneous clean energy exploitation and carbon emission reduction [J]. Chemical Engineering Science, 2022, 248: 117266. doi: 10.1016/j.ces.2021.117266
[38] Uchida T, Takeya S, Ebinuma T, et al. Replacing methane with CO2 in clathrate hydrate: observations using Raman spectroscopy[J]. 2001.
[39] Ors O, Sinayuc C. An experimental study on the CO2-CH4 swap process between gaseous CO2 and CH4 hydrate in porous media [J]. Journal of Petroleum Science and Engineering, 2014, 119: 156-162. doi: 10.1016/j.petrol.2014.05.003
[40] Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2020, 389: 124434. doi: 10.1016/j.cej.2020.124434
[41] Xu C G, Cai J, Yu Y S, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates [J]. Fuel, 2018, 216: 255-265. doi: 10.1016/j.fuel.2017.12.022
[42] Zhang Y, Xiong L J, Li X S, et al. Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection [J]. Chemical Engineering & Technology, 2014, 37(12): 2022-2029.
[43] 宋光春, 李玉星, 王武昌. 温度和压力对CO2置换甲烷水合物的影响[J]. 油气储运, 2016, 35(3):295-301 SONG Guangchun, LI Yuxing, WANG Wuchang. Impacts of temperature and pressure on displacement of CH4 in hydrate by CO2 [J]. Oil and Gas Storage and Transportation, 2016, 35(3): 295-301.
[44] Uchida T, Ikeda I Y, Takeya S, et al. Kinetics and stability of CH4-CO2 mixed gas hydrates during formation and long-term storage [J]. ChemPhysChem, 2005, 6(4): 646-654. doi: 10.1002/cphc.200400364
[45] Huang X, Cai W J, Zhan L S, et al. Study on the reaction of methane hydrate with gaseous CO2 by Raman imaging microscopy [J]. Chemical Engineering Science, 2020, 222: 115720. doi: 10.1016/j.ces.2020.115720
[46] Yoon J H, Kawamura T, Yamamoto Y, et al. Transformation of methane hydrate to carbon dioxide hydrate: In situ Raman spectroscopic observations[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: The International Society of Offshore and Polar Engineers, 2005.
[47] 王菲菲. 二氧化碳置换甲烷水合物微观实验研究[D]. 中国地质大学博士学位论文, 2015. WANG Feifei. Micro-experimental study onreplacement of CH4 hydrate by use of Co[D]. Doctor Dissertation of China University of Geosciences, 2015.
[48] Wang T, Zhang L X, Sun L J, et al. Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement [J]. Chemical Engineering Journal, 2021, 425: 131562. doi: 10.1016/j.cej.2021.131562
[49] Pan D B, Zhong X P, Zhu Y, et al. CH4 recovery and CO2 sequestration from hydrate-bearing clayey sediments via CO2/N2 injection [J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103503. doi: 10.1016/j.jngse.2020.103503
[50] Ren J J, Liu X H, Niu M Y, et al. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery [J]. Chemical Engineering Journal, 2022, 437: 135368. doi: 10.1016/j.cej.2022.135368
[51] Gambelli A M. An experimental description of the double positive effect of CO2 injection in methane hydrate deposits in terms of climate change mitigation [J]. Chemical Engineering Science, 2021, 233: 116430. doi: 10.1016/j.ces.2020.116430
[52] Zhang X M, Wang Y M, Li J P, et al. Recovering CH4 from natural gas hydrate with CO2 in porous media below the freezing point [J]. Petroleum Science and Technology, 2019, 37(7): 770-779. doi: 10.1080/10916466.2019.1566248
[53] Khasanov M K, Stolpovsky M V, Gimaltdinov I K. Mathematical model of injection of liquid carbon dioxide in a reservoir saturated with methane and its hydrate [J]. International Journal of Heat and Mass Transfer, 2019, 132: 529-538. doi: 10.1016/j.ijheatmasstransfer.2018.12.033
[54] Khasanov M K, Musakaev N G, Stolpovsky M V, et al. Mathematical Model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate [J]. Mathematics, 2020, 8(9): 1482. doi: 10.3390/math8091482
[55] Shagapov V S, Khasanov M K, Musakaev N G, et al. Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide [J]. International Journal of Heat and Mass Transfer, 2017, 107: 347-357. doi: 10.1016/j.ijheatmasstransfer.2016.11.034
[56] Lee B R, Koh C A, Sum A K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2 [J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14922-14927. doi: 10.1039/C4CP01780C
[57] Qi Y X, Ota M, Zhang H. Molecular dynamics simulation of replacement of CH4 in hydrate with CO2 [J]. Energy Conversion and Management, 2011, 52(7): 2682-2687. doi: 10.1016/j.enconman.2011.01.020
[58] Tung Y T, Chen L J, Chen Y P, et al. In situ methane recovery and carbon dioxide sequestration in methane hydrates: A molecular dynamics simulation study [J]. The Journal of Physical Chemistry B, 2011, 115(51): 15295-15302. doi: 10.1021/jp2088675
[59] Hsieh P Y, Sean W Y, Sato T, et al. Mesoscale modeling of exploiting methane hydrate by CO2 replacement in homogeneous porous media [J]. International Journal of Heat and Mass Transfer, 2020, 158: 119741. doi: 10.1016/j.ijheatmasstransfer.2020.119741
[60] Bai D S, Zhang X R, Chen G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J]. Energy & Environmental Science, 2012, 5(5): 7033-7041.
[61] 刘一楠. 基于分子动力学模拟的天然气水合物分解和置换过程机理研究[D]. 天津大学硕士学位论文, 2017. LIU Yinan. Mechanism study on the decomposition andreplacement of natural gas hydrate basedon molecular dynamics simulation[D]. Master Dissertation of Tianjin University, 2017.
[62] Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11-12): 1680-1691. doi: 10.1016/j.enconman.2004.10.002
[63] Ota M, Saito T, Aida T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. doi: 10.1002/aic.11294
[64] 张凤琦, 陈国兴, 郭开华, 等. 液态二氧化碳置换整形甲烷水合物过程特性[J]. 过程工程学报, 2018, 18(3):639-645 doi: 10.12034/j.issn.1009-606X.217304 ZHANG Fengqi, CHEN Guoxing, GUO Kaihua, et al. Process characteristics on replacement of bulk-methane hydrates with liquid cardon dioxide [J]. The Chinese Journal of Process Engineering, 2018, 18(3): 639-645. doi: 10.12034/j.issn.1009-606X.217304
[65] Zhou X T, Fan S S, Liang D Q, et al. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide [J]. Energy Conversion and Management, 2008, 49(8): 2124-2129. doi: 10.1016/j.enconman.2008.02.006
[66] Wang X H, Li F G, Xu Y X, et al. Elastic properties of hydrate-bearing sandy sediment during CH4-CO2 replacement [J]. Energy Conversion and Management, 2015, 99: 274-281. doi: 10.1016/j.enconman.2015.04.032
[67] Falenty A, Qin J, Salamatin A N, et al. Fluid composition and kinetics of the in-situ replacement in CH4-CO2 hydrate system [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27159-27172. doi: 10.1021/acs.jpcc.6b09460
[68] Kvamme B, Graue A, Buanes T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers [J]. International Journal of Greenhouse Gas Control, 2007, 1(2): 236-246. doi: 10.1016/S1750-5836(06)00002-8
[69] Zhou X T, Fan S S, Liang D Q, et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion [J]. Energy & Fuels, 2008, 22(3): 1759-1764.
[70] 周锡堂, 樊栓狮, 梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2):259-264 ZHOU Xitang, FAN Shuanshi, LIANG Deqing. Kinetic research on replacement of methane in gas hydrate with carbon dioxide emulsion [J]. Natural Gas Geoscience, 2013, 24(2): 259-264.
[71] Deusner C, Bigalke N, Kossel E, et al. Methane production from gas hydrate deposits through injection of supercritical CO2 [J]. Energies, 2012, 5(7): 2112-2140. doi: 10.3390/en5072112
[72] Bi Y, Yang T, Guo K H. Determination of the upper-quadruple-phase equilibrium region for carbon dioxide and methane mixed gas hydrates [J]. Journal of Petroleum Science and Engineering, 2013, 101: 62-67. doi: 10.1016/j.petrol.2012.11.019
[73] McGrail B P, Zhu T, Hunter R B, et al. A new method for enhanced production of gas hydrates with CO2 [J]. Gas Hydrates:Energy Resource Potential and Associated Geologic Hazards, 2004, 2004: 12-16.
[74] Lee Y, Kim Y, Lee J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter [J]. Applied Energy, 2015, 150: 120-127. doi: 10.1016/j.apenergy.2015.04.012
[75] Mu L, von Solms N. Methane production and carbon capture by hydrate swapping [J]. Energy & Fuels, 2017, 31(4): 3338-3347.
[76] Prasad P S R, Kiran B S. Stability and exchange of guest molecules in gas hydrates under the influence of CH4, CO2, N2 and CO2+N2 gases at low-pressures [J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103311. doi: 10.1016/j.jngse.2020.103311
[77] Lim D, Ro H, Seo Y, et al. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection [J]. The Journal of Chemical Thermodynamics, 2017, 106: 16-21. doi: 10.1016/j.jct.2016.11.012
[78] Bhawangirkar D R, Sangwai J S. Insights into cage occupancies during gas exchange in CH4+CO2 and CH4+N2+CO2 mixed hydrate systems relevant for methane gas recovery and carbon dioxide sequestration in hydrate reservoirs: a thermodynamic approach [J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14462-14475.
[79] Matsui H, Jia J H, Tsuji T, et al. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide-nitrogen mixtures [J]. Fuel, 2020, 263: 116640. doi: 10.1016/j.fuel.2019.116640
[80] Song W L, Sun X L, Zhou G G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate [J]. ChemistrySelect, 2020, 5(44): 13936-13950. doi: 10.1002/slct.202003845
[81] Sun Y H, Li S L, Zhang G B, et al. Hydrate phase equilibrium of CH4+N2+CO2 gas mixtures and cage occupancy behaviors [J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8133-8142.
[82] Li B, Xu T F, Zhang G B, et al. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement [J]. Energy Conversion and Management, 2018, 165: 738-747. doi: 10.1016/j.enconman.2018.03.095
[83] 王晓辉. 注气开采天然气水合物实验模拟与能效分析[D]. 中国石油大学(北京)博士学位论文, 2017 WANG Xiaohui. Experimental simulation and energy efficiency analysis of gas hydrates production by gas injection method[D]. Doctor Dissertation of China University of Petroleum (Beijing), 2017.
[84] Chaturvedi K R, Sinha A S K, Nair V C, et al. Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production [J]. Energy, 2021, 227: 120521. doi: 10.1016/j.energy.2021.120521
[85] Sun Y H, Zhang G B, Li S L, et al. CO2/N2 injection into CH4+C3H8 hydrates for gas recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2019, 375: 121973. doi: 10.1016/j.cej.2019.121973
[86] Yasue M, Masuda Y, Liang Y F. Estimation of methane recovery efficiency from methane hydrate by the N2-CO2 gas mixture injection method [J]. Energy & Fuels, 2020, 34(5): 5236-5250.
[87] Liu B, Pan H, Wang X H, et al. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity [J]. Energies, 2013, 6(12): 6242-6254. doi: 10.3390/en6126242
[88] Pandey J S, Solms N V. Hydrate stability and methane recovery from gas hydrate through CH4-CO2 replacement in different mass transfer scenarios [J]. Energies, 2019, 12(12): 2309. doi: 10.3390/en12122309
[89] Yang J H, Okwananke A, Tohidi B, et al. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration [J]. Energy Conversion and Management, 2017, 136: 431-438. doi: 10.1016/j.enconman.2017.01.043
[90] 王曦. CO2+N2混合气置换开采天然气水合物实验研究及过程模拟[D]. 华南理工大学硕士学位论文, 2017. WANG Xi. Experimental research and process simulation of natural gas hydrate replacement production by injecting CO2+N2 mixture gas[D]. Master Dissertation of South China University of Technology, 2017.
[91] Park Y, Kim D Y, Lee J W, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates [J]. Proceedings of the National Academy of Sciences, 2006, 103(34): 12690-12694. doi: 10.1073/pnas.0602251103
[92] Koh D Y, Kang H, Kim D O, et al. Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture [J]. ChemSusChem, 2012, 5(8): 1443-1448. doi: 10.1002/cssc.201100644
[93] Cha M J, Shin K, Lee H, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy [J]. Environmental Science & Technology, 2015, 49(3): 1964-1971.
[94] Koh D Y, Ahn Y H, Kang H, et al. One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas [J]. AIChE Journal, 2015, 61(3): 1004-1014. doi: 10.1002/aic.14687
[95] Youn Y, Cha M J, Kwon M, et al. One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor [J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1712-1719. doi: 10.1007/s11814-015-0294-5
[96] Pan D B, Zhong X P, Li B, et al. Experimental investigation into methane production from hydrate-bearing clayey sediment by CO2/N2 replacement [J]. Energy Exploration & Exploitation, 2020, 38(6): 2601-2617.
[97] 潘栋彬. 海洋天然气水合物射流破碎与注CO2/N2置换联合开采研究[D]. 吉林大学, 2021. PAN Dongbin. Research on joint exploitation of marine gas hydrate jet fragmentation and CO2/N2 replacement [D]. Jilin University, 2021.
[98] Niu M Y, Wu G Z, Yin Z Y, et al. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition [J]. Chemical Engineering Journal, 2021, 420: 129615. doi: 10.1016/j.cej.2021.129615
[99] Seo Y, Kang S P, Jang W. Study on mechanism of methane hydrate replacement by carbon dioxide injection[C]//The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan: The International Society of Offshore and Polar Engineers, 2009.
[100] Zhou X B, Liang D Q, Liang S, et al. Recovering CH4 from natural gas hydrates with the injection of CO2-N2 gas mixtures [J]. Energy & Fuels, 2015, 29(2): 1099-1106.
[101] Ouyang Q, Fan S S, Wang Y H, et al. Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates [J]. Energy & Fuels, 2020, 34(10): 12476-12485.
[102] 操原. 二氧化碳与氮气混合气辅热联合置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2018. CAO Yuan. Experimental study on gas hydrate exploitation by combining N2 and CO2 mixture replacement and heat injection[D]. Master Dissertation of South China University of Technology, 2018.
[103] Masuda Y. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: experimental investigation on CO2-CH4 exchange ratio[C]//International Conference on Gas Hydrate. 2011.
[104] Tupsakhare S S, Castaldi M J. Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion [J]. Applied Energy, 2019, 236: 825-836. doi: 10.1016/j.apenergy.2018.12.023
[105] 余静薇, 祁影霞, 魏欣宇. Ar提高CO2置换CH4水合物置换率研究[J]. 热能动力工程, 2020, 35(6):251-256 YU Jingwei, QI Yingxia, WEI Xinyu. Promotion of replacement rate of CH4 hydrates with CO2 by adding small Ar gas [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 251-256.
[106] Okwananke A, Yang J H, Tohidi B, et al. Enhanced depressurisation for methane recovery from gas hydrate reservoirs by injection of compressed air and nitrogen [J]. The Journal of Chemical Thermodynamics, 2018, 117: 138-146. doi: 10.1016/j.jct.2017.09.028
[107] 穆德富, 祁影霞. 热激励的CO2置换CH4水合物的实验研究[J]. 能源研究与信息, 2017, 33(1):13-18 MU Defu, QI Yingxia. Experimental study on the replacement of methane hydrate by CO2 with thermal excitation [J]. Energy Research and Information, 2017, 33(1): 13-18.
[108] Zhang L X, Yang L, Wang J Q, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate [J]. Chemical Engineering Journal, 2017, 308: 40-49. doi: 10.1016/j.cej.2016.09.047
[109] Stanwix P L, Rathnayake N M, De Obanos F P P, et al. Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments [J]. Energy & Environmental Science, 2018, 11(7): 1828-1840.
[110] 欧阳潜. 置换联合原位加热强化开采天然气水合物及逆置换研究[D]. 华南理工大学硕士学位论文, 2020. OUYANG Qian. Investigation of replacement combined with in-situ heating enhanced exploitation of natural gas hydrates and the inverse[D]. Master Dissertation of South China University of Technology, 2020.
[111] 张育诚. 注热及CO2/N2置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2019 ZHANG Yucheng. Recovery CHA via thermal stimulation and CO2/N2 nreplacement of methane hydrate[D]. Master Dissertation of South China University of Technology, 2019.
[112] Tupsakhare S S, Fitzgerald G C, Castaldi M J. Thermally assisted dissociation of methane hydrates and the impact of CO2 injection [J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10465-10476.
[113] Zhao J F, Chen X Q, Song Y C, et al. Experimental study on a novel way of methane hydrates recovery: combining CO2 replacement and depressurization [J]. Energy Procedia, 2014, 61: 75-79. doi: 10.1016/j.egypro.2014.11.910
[114] Zhao J F, Zhang L X, Chen X Q, et al. Combined replacement and depressurization methane hydrate recovery method [J]. Energy Exploration & Exploitation, 2016, 34(1): 129-139.
[115] Ouyang Q, Pandey J S, Von Solms N. Critical parameters influencing mixed CH4/CO2 hydrates dissociation during multistep depressurization[J]. Fuel, 2022, 320: 123985.
[116] Lee Y, Deusner C, Kossel E, et al. Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment [J]. Applied Energy, 2020, 277: 115569. doi: 10.1016/j.apenergy.2020.115569
[117] Mohammadi A H, Eslamimanesh A, Richon D. Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system [J]. Chemical Engineering Science, 2013, 94: 284-290. doi: 10.1016/j.ces.2013.01.063
[118] 龙小军. TBAB和TEAB存在下水合物法生物气脱碳技术研究[D]. 华南理工大学硕士学位论文, 2017. LONG Xiaojun. Study on hydrate based biogas decarburization technology in the presence of TBAB and TEAB[D]. Master Dissertation of South China University of Technology, 2017.
[119] Babu P, Chin W I, Kumar R, et al. Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process [J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4878-4887.
[120] 王乐, 祁影霞, 邢艳青, 等. 置换法开采天然气水合物的实验研究[J]. 现代化工, 2014, 34(4):89-92 doi: 10.16606/j.cnki.issn0253-4320.2014.04.043 WANG Le, QI Yingxia, XING Yanqing, et al. Experimental study on exploitation of natural gas hydrate by replacement with CO2 [J]. Modern Chemical Industry, 2014, 34(4): 89-92. doi: 10.16606/j.cnki.issn0253-4320.2014.04.043
[121] Ricaurte M, Dicharry C, Renaud X, et al. Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation [J]. Fuel, 2014, 122: 206-217. doi: 10.1016/j.fuel.2014.01.025
[122] Gambelli A M, Castellani B, Nicolini A, et al. Water salinity as potential aid for improving the carbon dioxide replacement process’ effectiveness in natural gas hydrate reservoirs [J]. Processes, 2020, 8(10): 1298. doi: 10.3390/pr8101298
[123] Gambelli A M, Castellani B, Filipponi M, et al. Chemical inhibitors as potential allied for CO2 replacement in gas hydrates reservoirs: Sodium chloride case study[C]//Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering (MCM'20). Prague, Czech Republic: ICCPE, 2020, 18.
[124] Liu X J, Ren J J, Chen D Y, et al. Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage [J]. Chemical Engineering Journal, 2022, 438: 135504. doi: 10.1016/j.cej.2022.135504