卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化

赵晗, 张国良, 张吉, 王帅

赵晗,张国良,张吉,等. 卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化[J]. 海洋地质与第四纪地质,2022,42(4): 122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202
引用本文: 赵晗,张国良,张吉,等. 卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化[J]. 海洋地质与第四纪地质,2022,42(4): 122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202
ZHAO Han,ZHANG Guoliang,ZHANG Ji,et al. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology,2022,42(4):122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202
Citation: ZHAO Han,ZHANG Guoliang,ZHANG Ji,et al. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology,2022,42(4):122-134. DOI: 10.16562/j.cnki.0256-1492.2022012202

卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化

基金项目: 国家自然科学基金项目“深部碳循环对典型大洋海山链碱性玄武岩的成因制约”(41876040),“西太平洋板块俯冲体系岩浆过程中深部碳循环研究”(91858206)
详细信息
    作者简介:

    赵晗(1997—),男,硕士研究生,海洋地质专业,主要从事大洋岩石学和地球化学研究,E-mail:zhaohan@qdio.ac.cn

    通讯作者:

    张国良(1981—),男,研究员,主要从事大洋岩石学和地幔地球化学研究,E-mail:zhangguoliang@qdio.ac.cn

  • 中图分类号: P736.14

Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity

  • 摘要: 地幔柱活动不同阶段具有不同的岩浆作用产物,由楚克(14.8~4.3 Ma)、波纳佩(8.7~<1 Ma)、科斯雷(2~1 Ma)等洋岛构成的卡洛琳海山链是地幔柱活动不同阶段的典型例子,研究该海山链中不同洋岛地球化学特征的差异有助于加深对地幔柱晚期活动规律的认识。本研究对获取的楚克、科斯雷样品进行全岩主量、微量元素及矿物电子探针分析,并与波纳佩岛进行对比。科斯雷和楚克由霞石岩和碱性玄武岩组成,在微量元素配分模式上体现出典型碱性洋岛玄武岩的特征。这些样品的橄榄石斑晶具有与辉石岩源区夏威夷OIB橄榄石类似的高Ni、低Ca-Mn的特征,反映其地幔源区可能存在辉石岩。科斯雷霞石岩橄榄石斑晶内存在含碳酸盐的熔体包裹体,反映CO2在地幔熔融和岩浆成因过程中起到了重要作用。从楚克、波纳佩到科斯雷,La/Sm比值逐渐增大,地幔熔融程度逐渐降低。Nb/Nb*随着La/Sm、Sm/Yb升高和SiO2降低有逐渐降低的趋势,与地幔熔融程度降低过程中CO2作用的增强有关。研究认为,楚克、波纳佩、科斯雷等洋岛火山岩的地球化学变化由卡洛琳地幔柱热点活动逐渐减弱导致,随着地幔柱活动性减弱,CO2在火山岩成因上起到越来越明显的作用。
    Abstract: The Caroline seamount chain consists of Chuuk (14.8~4.3 Ma), Pohnpei (8.7~<1 Ma), Kosrae (2~1 Ma) islands and a series of seamounts as the result of late-stage mantle plume. Geochemical variations in the seamount chain can deepen the understanding of late activity of the mantle plume. The whole rock major- and trace-elements, electron probe mineral analyses of the samples from Chuuk and Kosrae islands were conducted, and the results were compared with published data of Pohnpei. Kosrae and Chuuk islands are composed of nephelinites and alkaline basalts, reflecting typical ocean-island alkaline basalts in trace element patterns. Olivine phenocrysts in the samples are Ni-enriched but Ca-Mn–depleted, which is similar to olivines from Hawaiian OIB (ocean island basalt), suggesting the existence of pyroxenite in the mantle source. The presence of carbonate melt inclusions in the olivine phenocryst (Fo=85 mol%) of Kosrae nephelinite indicates that CO2 plays an important role in mantle melting and magma generation. The average La/Sm ratio of volcanic rocks gradually increases from Chuuk, Ponape, to Kosrae, which may reflect the decreasing degree of mantle melting during the weakening of the Caroline hot spot activity. In addition, the Nb/Nb* ratio decreases with the increase of La/Sm, Sm/Yb ratios and the decrease of SiO2, indicating the enhancing effect of CO2 due to the decrease in mantle melting degree. Therefore, the continuous geochemical changes of volcanic rocks from Chuuk, Ponape, Kosrae islands are caused by the gradual weakening of Caroline mantle plume activity, during which CO2 plays an increasingly obvious role in genesis of volcanic rocks.
  • 由地幔柱活动形成的洋岛(如夏威夷海山链)火山岩普遍出现拉斑玄武岩和碱性玄武岩[1],其中碱性洋岛玄武岩通常代表了较晚期的地幔柱活动。然而,有些洋岛仅出现碱性玄武岩,如Samoa和Cape Verde。洋岛火山岩碱性程度(Na2O+K2O)可能与源区部分熔融程度有关[2-4]。近年来,越来越多的研究认为,碱性洋岛玄武岩成因与地幔熔融过程中CO2的参与有关[5-13]。实际上,碱性洋岛玄武岩的碱性强弱等化学组成也受到地幔组成不均一性的影响[14-16]。因此,关于碱性玄武岩的成因解释有多种,不同背景下的碱性玄武岩成因还存在很大争议。同一个地幔柱通常表现为较为稳定的地幔源区组成,为了解释地幔熔融条件(温度、压力、CO2等)对碱性洋岛火山岩成因的影响,最有效的方法是研究同一个地幔柱不同阶段形成的碱性火山岩成因。

    卡洛琳海山链由地幔柱热点先后形成[17-20],主要洋岛包括楚克(14.8~4.3 Ma)、波纳佩(8.7~<1 Ma)、科斯雷(2~1 Ma),自西向东呈线性展布(图1),西侧是同一地幔柱在较早活动阶段形成的卡洛琳洋底高原,而在科斯雷以东没有新的洋岛形成。近年来的研究显示,卡洛琳群岛以碱性火山岩与霞石岩为主,且从楚克至科斯雷呈现火山岩碱性程度的明显增加和火山体积显著减小的特点[17,19],证明其地幔柱处于晚期活动阶段。Sr-Nd-Pb-Hf同位素分析表明卡洛琳群岛的地幔端元组成相似,火山岩的TiO2含量、3He/4He值与Pb同位素比值显示再循环洋壳组分参与的特征[20]。从卡洛琳洋底高原到卡洛琳群岛,随着年龄减小,火山岩的碱性程度和Sm/Yb比值逐渐增加[21],波纳佩火山岩的研究显示其地幔源区存在CO2的影响[22]

    图  1  卡洛琳群岛分布图(a)与科斯雷岛采样位置(b)
    采用GeoMapApp 软件制图,水深数据来源于http://www.geomapapp.org/
    Figure  1.  Distribution of Caroline Islands (a) and the sampling points in Kosrae Island (b)
    Bathymetric data are from http://www.geomapapp.org/ and map is produced using the GeoMapApp software.

    已发表的研究表明,尽管卡洛琳群岛由同一个地幔柱形成,具有基本相同的源区地幔组成,但楚克、波纳佩、科斯雷火山岩的全岩主量、微量元素等地球化学组成仍存在明显差异,以碱性程度的增强为典型代表。由于这些洋岛形成时卡洛琳地幔柱正处于晚期活动阶段,因此熔融条件(如温度、压力)的变化可能是导致这些变化的原因,但其具体过程尚不清楚。目前对卡洛琳海山链碱性火山岩的详细研究主要集中于波纳佩岛[22],而对其他两个主要洋岛—科斯雷、楚克的地幔源区组成和熔融程度还缺乏更深一步的认识。本研究计划对楚克、科斯雷火山岩样品进行全岩主量、微量元素测定及橄榄石微区分析,将结果与波纳佩火山岩对比,讨论卡洛琳群岛火山岩的组成差异与晚期地幔柱活动、熔融条件变化之间的联系。

    卡洛琳海山链包括一系列的岛屿、环礁和海山,由东部的科斯雷岛向西一直延展到南马里亚纳海沟,主要岛屿包括楚克岛、波纳佩岛、科斯雷岛。本文的17个样品分别采自卡洛琳海山链中的科斯雷岛、楚克岛。其中11个样品来自科斯雷岛的北部(KSR-2采样自路边巨石,为新鲜玄武岩)、东南部(KSR-4采样自海滨公路路基)和南部(KSR-5采样自海滨公路海滩;KSR-6为略风化的火山岩,采于雨林内部道路断面;KSR-7、8采样自道路垭口断面),6个样品来自楚克岛。科斯雷火山岩为霞石岩和碱性玄武岩,楚克火山岩为碱性玄武岩,碱性程度相对较低(图2)。科斯雷霞石岩的主要矿物斑晶为橄榄石、辉石,无长石斑晶,基质由细粒的橄榄石、辉石、霞石和Fe-Ti氧化物组成,存在磷灰石;科斯雷与楚克碱性玄武岩中出现橄榄石、辉石斑晶,基质中存在细粒橄榄石、辉石,含Fe-Ti的氧化物矿物。科斯雷火山岩中的橄榄石粒径多大于100 μm,矿物内部包含尖晶石相矿物、矿物包裹体。

    图  2  卡洛琳群岛火山岩TAS分类图
    波纳佩火山岩数据来自文献[22]。
    Figure  2.  Total alkalis vs SiO2 (TAS) diagram of volcanic rocks of the Caroline Islands
    Data of volcanic rocks of Pohnpei are from reference [22].

    对楚克的6个火山岩样品、科斯雷的11个火山岩样品经切割选择、剔除脉体后制样,测试全岩主量、微量元素组成。在青岛斯八达分析测试有限公司使用ZSX Primus Ⅱ型X射线荧光光谱仪测试主量元素,实验选用岩石标样AGV-2、W-2A、BCR-2、BHVO-2作为标准物质进行质量监控,分析精度优于5%。在自然资源部第二海洋研究所使用电感耦合等离子体质谱仪(ICP-MS)测试微量元素,实验选用岩石标样AVG-2、GBW07316、BCR-2、BHVO-2作为标准物质进行质量监控,分析精度多优于5%。

    选择科斯雷火山岩中MgO含量11.50%~13.90%的5个样品(KSR2-2、4-2、5-2、7-2、8-2)以及楚克碱性火山岩中MgO含量为8.53%~9.07%的3个样品(CHK-6、CHK-7、CHK-8),使用中国科学院海洋研究所的JEOL JXA-8230电子探针分别对科斯雷样品中的167个、楚克样品中的24个橄榄石进行了波谱分析。测试条件为:加速电压20 kV、电子束流40 nA、束斑直径5 μm。Si Kα、Mg Kα、Fe Kα的计数时间(counting time)为30 s,背景计数时间(background counting time)为20 s;Mn Kα、Ni Kα、Ca Kα的计数时间为60 s,背景计数时间为40 s。Si、Mg选用的标准样品为橄榄石,Fe使用的标准样品为磁铁矿,Mn选用的标准样品为氧化锰,Ni选用的标准样品为氧化镍,Ca选用的标准样品为硅灰石。在测定过程中重复测定橄榄石标样MongOl olivine sh11-2(SiO2=40.74%、MgO=48.79%、FeO=10.17%、MnO=0.14%、NiO=0.35%、CaO=0.09%)[23]监控数据准确性。修正方法采用ZAF法。对熔融包裹体不同相的组分进行了能谱面扫分析,测试条件为:加速电压20 kV,电子束流10 nA。

    对科斯雷岛的11个火山岩样品及楚克岛的6个火山岩样品共17个样品进行了主微量元素分析(表1表2)。科斯雷与楚克火山岩样品相对新鲜,烧失量分别为0.22%~2.93%和0.43%~1.67%。已发表的主量元素数据表明卡洛琳群岛火山岩系列为霞石岩到粗面岩[17-20, 22, 24],本研究中的卡洛琳火山岩为碱性火山岩。科斯雷样品主要包括霞石岩与碧玄岩/苦橄玄武岩,楚克样品主要为碧玄岩/苦橄玄武岩(图2)。

    表  1  楚克、科斯雷样品主量元素测定结果
    Table  1.  Whole-rock major element compositions of Chuuk and Kosrae samples
    样品号Na2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnOFe2O3TLOI总计
    CHK-12.1611.3012.4045.100.310.5710.202.790.1614.5099.49
    CHK-42.449.0413.9045.000.360.7610.303.280.1714.900.38100.52
    CHK-52.2011.6012.5044.700.310.5910.102.960.1615.000.49100.61
    CHK-62.248.9014.0044.500.360.6810.403.220.1614.201.36100.01
    CHK-72.478.5314.1045.300.380.6710.203.240.1614.101.38100.52
    CHK-82.359.0713.7044.500.370.7410.303.190.1714.600.8499.82
    KSR2-22.3712.8010.0041.200.670.7012.603.430.1913.601.4499.00
    KSR4-14.0013.609.7939.201.200.9712.803.250.2113.800.2499.06
    KSR4-23.6813.909.6938.801.170.9113.003.280.2014.000.5099.14
    KSR4-44.0613.209.9839.301.210.9312.803.260.2113.800.3799.12
    KSR5-23.9113.309.7338.801.301.2813.003.330.2114.100.2299.17
    KSR6-10.7115.408.9739.801.040.1013.303.090.1913.602.9399.13
    KSR6-21.1315.408.9340.100.980.2513.303.100.1913.602.0098.98
    KSR6-30.9115.908.8640.200.990.1713.203.080.1913.702.3499.54
    KSR7-11.3314.6010.5041.700.600.5711.603.250.2013.501.6099.45
    KSR7-21.7413.4011.2042.000.660.7511.503.360.1713.501.5299.81
    KSR8-22.3011.5011.5043.300.631.1011.803.370.1813.200.8899.76
      注:元素含量单位:%; CHK、KSR分别表示样品来自楚克、科斯雷;CHK-1因样品量太少而未做烧失量分析。
    下载: 导出CSV 
    | 显示表格
    表  2  楚克、科斯雷样品微量元素测定结果
    Table  2.  Trace element compositions of Chuuk and Kosrae samples
    10−6  
    样品号LiBeScVCrCoNiCuZnGaRbSrYZrNbCdCsBaLaCePrNdSmEuGdTbDyHoErTmYbLuHfTaWPbThU
    CHK-14.020.8927.532753770.038913010520.111.238321.713919.90.2360.14516313.530.44.0718.54.981.685.130.814.450.831.990.2611.480.2113.591.280.1651.021.290.338
    CHK-44.721.0325.837428663.224798.511520.515.957223.316124.00.2420.09120416.035.64.7221.25.541.885.660.884.810.882.130.2761.560.2184.011.520.0971.131.490.416
    CHK-54.330.8626.534540169.636312411619.111.149021.214220.60.2330.09717013.632.34.0718.54.951.685.110.814.360.811.960.2581.460.2073.691.340.1501.031.320.361
    CHK-64.521.0326.736730858.922610411521.114.659522.815722.80.2460.25319215.735.54.6520.95.531.875.640.874.700.872.090.2721.540.2153.961.470.0721.111.480.408
    CHK-752.00.9725.936525868.026510712321.58.4558424.216423.80.2880.06920816.337.34.8421.85.751.955.890.914.920.912.210.2861.650.2294.121.520.0661.431.550.442
    CHK-84.640.9124.133027355.822690.510518.516.648322.514721.50.2300.12518415.333.44.5120.35.301.815.470.854.590.862.060.2641.520.2103.681.330.0561.081.430.377
    KSR2-25.671.8034.837471968.336585.111920.927.272628.729661.90.4870.94653249.110012.952.710.93.1810.21.326.311.102.590.3231.810.2517.123.680.6613.624.931.25
    KSR4-112.22.9229.940468679.844595.415528.431.2161747.240498.00.5860.82783411322426.910420.05.8118.92.3110.51.763.970.4772.580.3548.755.112.336.6312.42.91
    KSR4-210.32.2825.834860369.639278.513423.921.5128638.933775.70.4800.55664790.718222.185.716.54.7815.51.898.721.473.290.3922.130.2927.434.012.016.129.572.33
    KSR4-410.92.4924.734756667.137271.313424.130.3141040.634385.20.4780.77774398.919523.389.117.24.9616.11.979.011.513.440.4132.210.3057.354.452.046.7810.82.50
    KSR5-210.62.5825.635557368.435874.114324.530.7134940.436288.90.5700.43472594.719123.189.717.45.0516.32.009.101.513.380.3992.160.2927.744.681.726.5910.41.66
    KSR6-110.31.8428.826591870.845582.911120.556.2114432.130171.80.4074.2359165.413316.666.513.33.9012.31.557.181.222.760.3321.830.2586.894.190.7080.816.321.69
    KSR6-26.941.8229.431093371.245779.111120.466.9100631.429670.50.4382.9655564.313116.566.313.23.8612.11.527.051.202.730.3291.800.2516.774.150.9341.326.271.70
    KSR6-37.741.8728.927694971.746377.711320.353.2108431.529770.60.3851.7854464.413216.566.413.33.8912.21.537.151.212.770.3351.830.2566.894.190.9190.486.391.76
    KSR7-15.561.6431.034879171.043885.311020.214.843229.126053.40.3560.31154040.382.210.644.19.642.898.961.226.071.082.540.3201.780.2486.303.190.6352.434.161.05
    KSR7-27.281.7730.236374966.941092.612221.617.850430.427859.30.3610.46641844.089.511.547.410.23.079.591.296.461.152.700.3411.900.2666.643.480.7322.934.631.17
    KSR8-25.741.8330.733251158.128584.010920.630.668431.229662.60.4490.69951348.598.112.449.710.23.019.641.316.551.192.880.3712.130.3046.973.740.6783.225.281.36
    下载: 导出CSV 
    | 显示表格

    科斯雷火山岩具较低的SiO2含量,属于碱性火山岩系列,代表卡洛琳地幔柱活动的晚期阶段,其中最具代表性的为科斯雷霞石岩。科斯雷霞石岩具最高的MgO含量(13.20%~15.90%)、CaO含量(12.80%~13.30%)以及CaO/ Al2O3比值(1.28~1.49),贫SiO2(38.80%~40.20%),原始地幔标准化微量元素配分图(图3)显示其富集稀土元素(REEs),亏损高场强元素(HFSEs),与火成碳酸岩特征类似。科斯雷碧玄岩/苦橄玄武岩与霞石岩特征相似,具较高的MgO含量(11.50%~14.60%)、CaO含量(11.50%~12.60%)以及CaO/Al2O3(1.03~1.26),较低的SiO2含量(41.20%~43.30%),稀土元素富集与高场强元素亏损的特征不明显,个别样品存在Sr负异常与Nd正异常。相比科斯雷火山岩,楚克碧玄岩/苦橄玄武岩的MgO含量(8.53%~11.60%)、CaO含量(10.10%~10.40%)和CaO/Al2O3(0.72~0.82)均较低,SiO2含量(44.50%~45.30%)较高,具Sr与Ti的正异常。

    图  3  楚克、科斯雷火山岩原始地幔标准化微量元素配分模式图
    波纳佩数据来自文献[22];原始地幔数据来自文献[25];红色虚线代表Cape Verde火成碳酸岩,数据来自文献[26]。
    Figure  3.  Primitive mantle-normalized trace multi-element patterns for Chuuk and Kosrae samples
    Pohnpei data are from reference [22]. PM data are from reference [25]. Red dotted line represents the typical oceanic carbonatite lava from Cape Verde with data from reference [26].

    科斯雷火山岩中CaO/ Al2O3随MgO含量的减少呈下降的趋势,表明岩浆演化中发生了单斜辉石的分离结晶。尽管科斯雷与楚克碱性火山岩的FeO含量出现了随MgO含量减少而下降的趋势,但TiO2含量并未呈现此类特征且含量较高(科斯雷火山岩3.0%~3.43%,楚克火山岩2.79%~3.28%),因此,并不能确定其演化过程存在钛磁铁矿的分离结晶。科斯雷与楚克的高TiO2含量(>2.79%)可能指示其源区存在再循环洋壳特征。科斯雷霞石岩硅不饱和、富集REEs与亏损Nb、Ta、Zr、Hf的特征与波纳佩岛的部分火山岩相似[22],可能代表着源区存在CO2的影响。

    对楚克和科斯雷的橄榄石斑晶进行了电子探针高精度主量元素和微量元素(Ni、Ca、Mn)的波谱分析。科斯雷橄榄石具较高Fo值(平均值84.5mol%、最大值88.4mol%),Ni含量(平均值1908×10−6、最大值3002×10−6),Ca含量(平均值1748×10−6、最大值4752×10−6),Mn含量(平均值1600×10−6、最大值3624×10−6);楚克橄榄石具有较低的Fo值(平均值80.7 mol%、最大值82.4 mol%),Ni含量(平均值1715×10−6、最大值2102×10−6),Ca含量(平均值1812×10−6、最大值1969×10−6),Mn含量(平均值1625×10−6、最大值1737×10−6)。二者的Ni、Ca、Mn元素含量整体上接近高Ni的夏威夷OIB橄榄石组分范围。在科斯雷的霞石岩样品(KSR-5)中发现了内部存在熔体包裹体的橄榄石,并对熔体包裹体的成分进行了波谱的面扫分析(图4),发现内部含碳酸盐,认为这代表着科斯雷源区存在CO2的作用。

    图  4  科斯雷霞石岩、碱性玄武岩矿物组合(a,b)和霞石岩橄榄石内部包裹体的背散射电子图像(c,d)及该含碳酸盐矿物相熔体包裹体成分面扫图(e)
    Ap-磷灰石,Cpx-单斜辉石,Mag-磁铁矿,Ne-霞石,Ol-橄榄石。
    Figure  4.  Backscattered electron images showing mineral phase of Kosrae nephelinolite (a) and alkali basalt (b); melt inclusion in olivine from nephelinolite (c, d), and composition scan of carbonate-bearing melt inclusion (e)
    Ap(apatite), Cpx(clinopyroxene), Mag(magnetite), Ne(nepheline), Ol(olivine).

    已发表的研究表明,波纳佩火山岩的形成与源区辉石岩的参与有关[22]。通过对楚克、科斯雷橄榄石微量元素的分析,认为在卡洛琳海山链的地幔源区普遍存在辉石岩的熔融(见后文)。一般情况下,地幔柱成因的洋岛玄武岩普遍包括碱性玄武岩和拉斑玄武岩[1]。主量元素测定结果显示,不同于大部分洋岛,卡洛琳群岛仅出现碱性玄武岩(碱玄岩/碧玄岩、苦橄玄武岩)和硅不饱和的霞石岩(科斯雷霞石岩SiO2含量为38.80%~40.20%),缺失拉斑玄武岩。其中形成最早的楚克火山岩的碱性程度最接近拉斑玄武岩(图2),而形成较晚的部分楚克、波纳佩、科斯雷火山岩全碱含量(Na2O+K2O)较高(图2)。卡洛琳海山链拉斑玄武岩缺失的现象代表着地幔柱晚期活动,而不同洋岛之间火山岩碱性程度的差异,其成因可能与岩浆源区地幔柱活动的变化导致的熔融条件(熔融程度、压力)的变化、地幔源区组成的差异有关,为此需要分析全岩地球化学特征来做进一步的讨论。

    Sobolev将部分夏威夷OIB橄榄石的高Ni特征解释为源区存在混合辉石岩[27]。地幔柱上升时携带的榴辉岩发生熔融,熔体与周围地幔橄榄岩反应,消耗了橄榄石生成二阶段辉石岩。在辉石岩部分熔融时,作为地幔橄榄岩中主要的含Ni硅酸盐矿物[28],橄榄石不再控制Ni的分配行为,导致熔体中Ni含量很高,由这类熔体结晶出的橄榄石因此具有高Ni的特征。同时相对于橄榄岩源区,辉石岩源区的橄榄石Ca、Mn含量低[28]

    由于楚克火山岩中未观察到更高Fo值的橄榄石,本文在Fo79—Fo82值范围对卡洛琳群岛橄榄石进行比较。在Fo79—Fo82值范围内,卡洛琳群岛橄榄石的Ni含量高于MORB橄榄石,楚克、波纳佩的Mn含量低于MORB橄榄石而更接近于夏威夷OIB橄榄石[28]图5)。尽管低Fo值的波纳佩、楚克橄榄石Ca含量高于MORB橄榄石,但仍位于夏威夷OIB橄榄石的范围内,而高Fo值橄榄石表现出低Ca的特征(图5c)。因此,卡洛琳群岛橄榄石与辉石岩源区夏威夷OIB橄榄石类似的高Ni,低Ca、Mn特点(图5a-c),证明卡洛琳群岛火山岩的地幔源区含辉石岩组分。

    图  5  橄榄石Fo值与Ni、Mn、Ca、Fe/Mn的关系
    红色圆形、蓝色正方形、灰色三角形填充标记分别代表科斯雷、楚克以及波纳佩火山岩橄榄石(波纳佩数据来自文献[22]);灰色正方形代表夏威夷OIB,白色菱形代表大西洋、印度洋、太平洋MORB橄榄石,数据来自文献[28];黑色区域代表KR-4003饱满橄榄岩原始岩浆(全岩MgO含量为8%~38%)橄榄石组分,带数字标记的黑色曲线代表计算的派生岩浆橄榄石组分,数据来自文献[29]。
    Figure  5.  Olivine Fo content versus Ni, Mn, Ca contents and Fe/Mn ratio
    Red circle, blue square, and grey triangle fill marks represent Kosrae, Chuuk, and Pohnpei olivines respectively (Pohnpei data are from reference [22]). Gray squares represent Hawaiian olivines, white rhomboids represent MORB olivines from the Atlantic, Indian and Pacific, with data from reference [28]. The black area represents the compositions of olivine from primary magmas (whole rock MgO = 8%~38%) of fertile peridotite KR-4003, and the dark lines with number represent the compositions of olivine from derivative magmas (data are from reference [29]).

    然而,相对于夏威夷造盾期火山岩以拉斑玄武岩为主,代表着强烈地幔柱活动的阶段,卡洛琳群岛则以碱性玄武岩为主,代表着地幔柱晚期活动阶段,成分上与夏威夷复苏期火山岩相似。尽管二者在成分上存在差异,橄榄石却仍然显示出相似的微量元素特征。此外,在高硅辉石岩参与的地幔源区产生了硅不饱和的科斯雷霞石岩,结合橄榄石探针分析和微量元素分析的结果,认为这是由卡洛琳海山链晚期活动中CO2挥发分的加入导致的。在卡洛琳群岛源区混合辉石岩的部分熔融过程中,CO2的存在提高了熔体的碱性程度,并使部分熔体呈现硅不饱和,但在全碱含量低于8%的情况下不会影响Ni在橄榄石和熔体中的分配系数,因此卡洛琳群岛橄榄石依然显示高Ni特征。而由于CO2的存在,熔体的Ca更倾向于进入熔体,Ca(Ol/melt)分配系数降低,因此辉石岩熔体结晶出的橄榄石Ca含量异常低;相应地,卡洛琳群岛火山岩全岩具有高的CaO含量(图6)。

    图  6  楚克、科斯雷、波纳佩火山岩MgO与 SiO2、CaO、Al2O3、TiO2、CaO/Al2O3相关图
    波纳佩火山岩数据来自文献[22]。
    Figure  6.  MgO content versus SiO2, CaO, Al2O3, TiO2, CaO/Al2O3 for Chuuk, Pohnpei, Kosrae volcanic rocks
    Pohnpei data are from reference [22].

    除Ni、Mn、Ca含量外,橄榄石的Fe/Mn比值也是反映原始岩浆成分的重要参数,通常认为与橄榄石的分离结晶相关。一般认为,橄榄岩源区的原始岩浆及其派生岩浆中橄榄石的Fe/Mn比值不会受到单斜辉石分离结晶的影响[29],稳定在60~70之间,以印度洋、大西洋、太平洋型MORB为代表(图5d);夏威夷OIB橄榄石的Fe/Mn比值较高,代表了富辉石岩源区而非富橄榄岩源区。卡洛琳群岛橄榄石的Mn含量的范围和趋势与夏威夷造盾期橄榄石接近,并且楚克橄榄石的Mn含量相比之下更低(图5d),这一特点导致其极高的Fe/Mn比值(>81)。依据以上对橄榄石微量元素的分析结果,本文认为卡洛琳群岛均来源于含辉石岩的地幔源区。

    通过全岩主量元素的测定得知,楚克、科斯雷火山岩的MgO含量很高(分别为8.53%~11.30%和12.80%~15.90%),波纳佩火山岩的MgO含量整体上处于二者的范围内[22];楚克、科斯雷碱性火山岩TiO2含量也很高(分别为2.79%~3.28%、3.08%~3.43%)。TiO2在大部分洋岛碱性玄武岩原始岩浆中富集[30],含量超过2%甚至3%,一般认为地幔柱成因的洋岛玄武岩的高TiO2含量不能由原始地幔橄榄岩熔融产生[7, 30-31]。原始地幔的TiO2含量为0.22% [25],代表着无俯冲地壳岩石加入时地幔Ti含量上限,只有在部分熔融程度<4%时才可产生TiO2含量>2%的熔体,且在任何熔融程度时都不能产生TiO2含量>3%的OIB原始岩浆。TiO2含量为0.3%的源区也只能在很小的部分熔融程度下产生TiO2含量>3%的原始岩浆[30]。因此,TiO2含量>3%的OIB原始岩浆需要一个更加富集Ti的源区。含榴辉岩的源区可以在较高程度的部分熔融条件下产生富集TiO2的岩浆,能够解释高Ti洋岛玄武岩的来源[32]。3~5 GPa的实验表明榴辉岩部分熔融产生的熔体MgO含量为1%~7%[33],仅由榴辉岩熔融无法解释卡洛琳群岛火山岩的高MgO含量。而由榴辉岩与橄榄岩反应生成的二阶段辉石岩可形成高MgO的原始熔体[34],可以解释卡洛琳群岛火山岩的高Mg特征。卡洛琳群岛火山岩全岩的高MgO、高Ti特征符合本文对源区富辉石岩的讨论。

    火山岩La/Sm比值通常可以作为衡量熔融程度的指标,但La/Sm比值的差异也可能由源区组成差异引起。已发表的研究表明卡洛琳不同洋岛火山岩的Sr-Nd-Pb-Hf同位素组成变化相对有限[20],证明不同洋岛的源区地幔端元组成是基本一致的。此外,卡洛琳群岛火山岩La/Sm均值与La平均含量呈明显正相关(图7c),说明海山链熔融程度的减小导致La含量与La/Sm值升高。因此卡洛琳群岛先后形成的过程中,La/Sm值的变化指示了各洋岛火山岩源区的熔融程度的改变。卡洛琳群岛中,形成时代最早的楚克碱性玄武岩(La/Sm)N均值最低,为1.82,波纳佩火山岩的(La/Sm)N均值为2.89,而最晚形成的科斯雷洋岛火山岩(La/Sm)N均值为3.22(图7)。从楚克、波纳佩到科斯雷,洋岛火山岩平均La/Sm值升高,反映了海山链各洋岛部分熔融程度随时间演化减小,与宏观上从楚克到科斯雷洋岛火山喷发量减少的现象相符。

    图  7  楚克、波纳佩、科斯雷火山岩 (La/Sm)N (a)、 (Sm/Yb)N (b)平均值,La-(La/Sm)N (c)、(Sm/Yb)N-Al2O3 (d)关系图解
    波纳佩火山岩数据来自文献[22],N表示原始地幔标准化值,误差条代表各洋岛火山岩数据的±1σ标准差。
    Figure  7.  Average values of (La/Sm)N, (La/Sm)N for Chuuk, Pohnpei, Kosrae island volcanic rocks respectively; the relationship of La content versus (La/Sm)N (c), (Sm/Yb)N versus Al2O3 content(d)
    Pohnpei data are from reference[22]; N represents the primitive mantle-normalized value. The error bars represent ±1σ standard deviation of volcanic rock data from each island.

    相对于轻稀土元素,重稀土元素更倾向于进入石榴石,因此,处于石榴石稳定域的地幔熔融产生的熔体常呈现重稀土元素的亏损,高轻稀土/重稀土比值显示较强的源区石榴石效应,表现为高Sm/Yb值。楚克、波纳佩、科斯雷的(Sm/Yb)N均值依次增大,分别为3.86、6.15和7.55[22]图7),均高于全球MORB和大部分夏威夷OIB,与已发表的数据一致[20, 22],表明它们都起源于石榴石稳定域。考虑到卡洛琳群岛是在同一个地幔柱作用下形成的,岩石圈厚度并未发生明显的变化,认为这种Sm/Yb值的差别主要受到不同洋岛形成时源区熔融程度的控制。在楚克火山岩的地幔源区,由于较大程度的部分熔融,石榴石效应较弱,显示最低的(Sm/Yb)N均值;随着部分熔融程度的减小,源区石榴石效应逐渐明显,表现为波纳佩到科斯雷的(Sm/Yb)N均值依次增大。由于原始岩浆的Al2O3含量受到源区地幔残留石榴石的控制,源区地幔石榴石的部分熔融会导致产生的岩浆具有异常高的Al2O3;相对地,石榴石处于稳定域时的地幔部分熔融则会产生较低Al2O3的岩浆[35-36]。整体上看,楚克(12.40%~14.10%)、波纳佩(8.44%~16.53%)、科斯雷(8.86%~11.50%)全岩Al2O3的含量存在明显差异。楚克火山岩源区熔融程度大,石榴石效应较弱,因此全岩Al2O3含量较高;相对地,石榴石效应明显的科斯雷火山岩Al2O3含量在卡洛琳群岛火山岩中处于最低的范围(图7d)。卡洛琳群岛火山岩地幔源区的部分熔融中石榴石的参与进一步证明了源区辉石岩组分的存在。

    卡洛琳海山链橄榄石的微量元素特征显示出其源区与高硅辉石岩的联系,但最后形成的洋岛—波纳佩与科斯雷部分火山岩表现出高碱性程度和硅不饱和的特征,卡洛琳海山链地幔源区存在CO2的作用为此提供了解释。被矿物晶体捕获的熔体包裹体可能记录着熔体喷发前的化学演化,已有研究将早期结晶矿物(如橄榄石)中含碳酸盐的熔体包裹体与源区富集CO2组分联系起来[13,22,37-40]。在科斯雷霞石岩(KSR-5)一个Fo值为85mol%的橄榄石中,发现了内部包含碳酸盐的熔体包裹体。图4b中无挥发分100%标准化后类型1的成分组成(CaO=98.16%、MgO =1.84%)与钙质碳酸盐矿物类似;类型2的成分组成(SiO2=53.58%、MgO=33.13%、FeO=9.14%、Al2O3=2.81%、CaO=1.34%)类似于硅酸盐玻璃的组分。该熔体包裹体可能代表了原始岩浆中的残余含碳熔体组成,在岩浆上升时被结晶的橄榄石所捕获,此后该包裹体经过演化并分异出含钙的碳酸盐矿物相,其他部分则代表着碳酸盐矿物分离后的熔体组成。

    Dasgupta认为由碳酸榴辉岩产生的碳酸硅酸盐部分熔体,其成分特征与高度碱性OIB类似[32],具有低的SiO2与Al2O3,高的CaO、FeO和TiO2。在榴辉岩与二辉橄榄岩熔体反应实验中,相对于无挥发分条件,CO2的参与明显降低了熔体的SiO2含量、升高了CaO/ Al2O3比值,与天然霞石岩、过渡性霞石玄武岩特征相符[10]。Hoernle对佛得角和加纳利洋岛火成碳酸岩的研究表明,相对于大多数硅酸盐火山岩,火成碳酸岩富集Ba、Th、Sr、稀土元素,并相对亏损Ti、Zr、Hf、K和Rb[26]。此外,Nb、Ta元素也呈现一定程度的负异常。图8a显示,相较于楚克,科斯雷与部分波纳佩火山岩的SiO2含量明显较低,整体上硅越来越不饱和;科斯雷部分霞石岩样品表现出高CaO/Al2O3值(仅低于波纳佩样品P-7-1、2的1.56、1.61)[22],高于科斯雷、楚克与大部分波纳佩的碱性火山岩(图8a)。科斯雷火山岩与波纳佩火山岩类似,存在Zr、Hf、Ti负异常和REE的高度富集,显示出与洋岛火成碳酸岩相似的微量元素配分特征,而类似特征未出现在楚克火山岩中(图3)。科斯雷霞石岩明显亏损高场强元素,富集稀土元素(Nb/Nb*为0.87~0.96,Hf/Hf*为0.70~0.74,Zr/Zr*为0.90~0.94,Ti/Ti*为0.45~0.56;$\rm {Nb}/{Nb^{*}}= {Nb_N}/ {\rm (Th_N\times La_N)^{0.5}} $$\rm {Hf}/{Hf^{*}} $=$\rm {Hf_N}/{(Sm_N\times Eu_N)^{0.5}} $$\rm {Zr}/{Zr^*} $=$\rm {Zr_N}/{(Sm_N\times Eu_N)^{0.5}} $$\rm {Ti}/{Ti^*} $=$\rm {Ti_N}/{(Eu_N\times Gd_N)^{0.5}} $;N代表原始地幔标准化值),其Nb/Nb*值为0.87~0.96,低于其他科斯雷碱性火山岩、楚克与大部分的波纳佩火山岩。这种Nb负异常(Nb/Nb*<1)可能与源区金红石的控制有关。高Fo值橄榄石内部含碳酸盐矿物的包裹体,与科斯雷火山岩全岩的高CaO、低SiO2含量,以及高场强元素亏损、稀土元素富集的微量元素特征,均表明晚期卡洛琳地幔柱活动的地幔源区存在CO2作用的影响。

    图  8  卡洛琳群岛火山岩SiO2与CaO/Al2O3 (a)、Nb/Nb* (b),Nb/Nb*与(La/Sm)N (c)、(Sm/Yb)N (d)相关图
    N代表原始地幔标准化值,波纳佩火山岩数据来自文献[22]。
    Figure  8.  SiO2 versus CaO/Al2O3 (a), Nb/Nb*(b); Nb/Nb*vs (La/Sm)N (c), (Sm/Yb)N (d) of volcanic rock in the Caroline islands
    N represents the primitive mantle-normalized value; Pohnpei data are from reference[22].

    卡洛琳群岛火山岩的CaO/Al2O3、Nb/Nb*与SiO2含量呈现了良好的线性相关关系(图8a,b):随着形成年龄的减小,楚克、波纳佩、科斯雷洋岛火山岩的SiO2含量减少,CaO/Al2O3值逐渐升高,Nb/Nb*逐渐降低,较晚形成的波纳佩、科斯雷洋岛部分火山岩呈现了与火成碳酸岩类似的特征。卡洛琳群岛火山岩的Nb/Nb*与(La/Sm)N、(Sm/Yb)N整体上呈现负相关(图8c,d),熔融程度减小的趋势与源区CO2作用逐渐明显的趋势一致。

    本文的测定结果显示,即使各洋岛源区地幔端元组成基本一致,但随着形成时代的变化,洋岛火山岩整体碱性程度增强,并出现不同的地球化学特征。楚克、波纳佩、科斯雷洋岛由同一个地幔柱活动先后形成,其火山岩橄榄石的微量元素组成与来自辉石岩源区的夏威夷橄榄石类似,全岩组成符合卡洛琳群岛源区组分与榴辉岩和橄榄岩反应形成的二阶段辉石岩有关的推论。通过高精度的橄榄石微区分析和全岩主量、微量元素测定,认为卡洛琳群岛碱性火山岩的岩性差异与以下因素有关:① 熔融程度的改变。从楚克到科斯雷,源区熔融程度的减小,符合地幔柱活动正在减弱的规律;② 随着地幔柱晚期活动的减弱,含碳组分更明显地影响了源区的熔融过程,地球化学与矿物学的证据表明了卡洛琳地幔柱晚期活动中CO2对源区熔融过程的影响。此外,源区CO2的作用解释了高硅辉石岩源区为何能产生科斯雷洋岛的硅不饱和的霞石岩。

    致谢:对姚俊华博士后在文章撰写和实验测试中提供的帮助表示衷心的感谢。

  • 图  1   卡洛琳群岛分布图(a)与科斯雷岛采样位置(b)

    采用GeoMapApp 软件制图,水深数据来源于http://www.geomapapp.org/

    Figure  1.   Distribution of Caroline Islands (a) and the sampling points in Kosrae Island (b)

    Bathymetric data are from http://www.geomapapp.org/ and map is produced using the GeoMapApp software.

    图  2   卡洛琳群岛火山岩TAS分类图

    波纳佩火山岩数据来自文献[22]。

    Figure  2.   Total alkalis vs SiO2 (TAS) diagram of volcanic rocks of the Caroline Islands

    Data of volcanic rocks of Pohnpei are from reference [22].

    图  3   楚克、科斯雷火山岩原始地幔标准化微量元素配分模式图

    波纳佩数据来自文献[22];原始地幔数据来自文献[25];红色虚线代表Cape Verde火成碳酸岩,数据来自文献[26]。

    Figure  3.   Primitive mantle-normalized trace multi-element patterns for Chuuk and Kosrae samples

    Pohnpei data are from reference [22]. PM data are from reference [25]. Red dotted line represents the typical oceanic carbonatite lava from Cape Verde with data from reference [26].

    图  4   科斯雷霞石岩、碱性玄武岩矿物组合(a,b)和霞石岩橄榄石内部包裹体的背散射电子图像(c,d)及该含碳酸盐矿物相熔体包裹体成分面扫图(e)

    Ap-磷灰石,Cpx-单斜辉石,Mag-磁铁矿,Ne-霞石,Ol-橄榄石。

    Figure  4.   Backscattered electron images showing mineral phase of Kosrae nephelinolite (a) and alkali basalt (b); melt inclusion in olivine from nephelinolite (c, d), and composition scan of carbonate-bearing melt inclusion (e)

    Ap(apatite), Cpx(clinopyroxene), Mag(magnetite), Ne(nepheline), Ol(olivine).

    图  5   橄榄石Fo值与Ni、Mn、Ca、Fe/Mn的关系

    红色圆形、蓝色正方形、灰色三角形填充标记分别代表科斯雷、楚克以及波纳佩火山岩橄榄石(波纳佩数据来自文献[22]);灰色正方形代表夏威夷OIB,白色菱形代表大西洋、印度洋、太平洋MORB橄榄石,数据来自文献[28];黑色区域代表KR-4003饱满橄榄岩原始岩浆(全岩MgO含量为8%~38%)橄榄石组分,带数字标记的黑色曲线代表计算的派生岩浆橄榄石组分,数据来自文献[29]。

    Figure  5.   Olivine Fo content versus Ni, Mn, Ca contents and Fe/Mn ratio

    Red circle, blue square, and grey triangle fill marks represent Kosrae, Chuuk, and Pohnpei olivines respectively (Pohnpei data are from reference [22]). Gray squares represent Hawaiian olivines, white rhomboids represent MORB olivines from the Atlantic, Indian and Pacific, with data from reference [28]. The black area represents the compositions of olivine from primary magmas (whole rock MgO = 8%~38%) of fertile peridotite KR-4003, and the dark lines with number represent the compositions of olivine from derivative magmas (data are from reference [29]).

    图  6   楚克、科斯雷、波纳佩火山岩MgO与 SiO2、CaO、Al2O3、TiO2、CaO/Al2O3相关图

    波纳佩火山岩数据来自文献[22]。

    Figure  6.   MgO content versus SiO2, CaO, Al2O3, TiO2, CaO/Al2O3 for Chuuk, Pohnpei, Kosrae volcanic rocks

    Pohnpei data are from reference [22].

    图  7   楚克、波纳佩、科斯雷火山岩 (La/Sm)N (a)、 (Sm/Yb)N (b)平均值,La-(La/Sm)N (c)、(Sm/Yb)N-Al2O3 (d)关系图解

    波纳佩火山岩数据来自文献[22],N表示原始地幔标准化值,误差条代表各洋岛火山岩数据的±1σ标准差。

    Figure  7.   Average values of (La/Sm)N, (La/Sm)N for Chuuk, Pohnpei, Kosrae island volcanic rocks respectively; the relationship of La content versus (La/Sm)N (c), (Sm/Yb)N versus Al2O3 content(d)

    Pohnpei data are from reference[22]; N represents the primitive mantle-normalized value. The error bars represent ±1σ standard deviation of volcanic rock data from each island.

    图  8   卡洛琳群岛火山岩SiO2与CaO/Al2O3 (a)、Nb/Nb* (b),Nb/Nb*与(La/Sm)N (c)、(Sm/Yb)N (d)相关图

    N代表原始地幔标准化值,波纳佩火山岩数据来自文献[22]。

    Figure  8.   SiO2 versus CaO/Al2O3 (a), Nb/Nb*(b); Nb/Nb*vs (La/Sm)N (c), (Sm/Yb)N (d) of volcanic rock in the Caroline islands

    N represents the primitive mantle-normalized value; Pohnpei data are from reference[22].

    表  1   楚克、科斯雷样品主量元素测定结果

    Table  1   Whole-rock major element compositions of Chuuk and Kosrae samples

    样品号Na2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnOFe2O3TLOI总计
    CHK-12.1611.3012.4045.100.310.5710.202.790.1614.5099.49
    CHK-42.449.0413.9045.000.360.7610.303.280.1714.900.38100.52
    CHK-52.2011.6012.5044.700.310.5910.102.960.1615.000.49100.61
    CHK-62.248.9014.0044.500.360.6810.403.220.1614.201.36100.01
    CHK-72.478.5314.1045.300.380.6710.203.240.1614.101.38100.52
    CHK-82.359.0713.7044.500.370.7410.303.190.1714.600.8499.82
    KSR2-22.3712.8010.0041.200.670.7012.603.430.1913.601.4499.00
    KSR4-14.0013.609.7939.201.200.9712.803.250.2113.800.2499.06
    KSR4-23.6813.909.6938.801.170.9113.003.280.2014.000.5099.14
    KSR4-44.0613.209.9839.301.210.9312.803.260.2113.800.3799.12
    KSR5-23.9113.309.7338.801.301.2813.003.330.2114.100.2299.17
    KSR6-10.7115.408.9739.801.040.1013.303.090.1913.602.9399.13
    KSR6-21.1315.408.9340.100.980.2513.303.100.1913.602.0098.98
    KSR6-30.9115.908.8640.200.990.1713.203.080.1913.702.3499.54
    KSR7-11.3314.6010.5041.700.600.5711.603.250.2013.501.6099.45
    KSR7-21.7413.4011.2042.000.660.7511.503.360.1713.501.5299.81
    KSR8-22.3011.5011.5043.300.631.1011.803.370.1813.200.8899.76
      注:元素含量单位:%; CHK、KSR分别表示样品来自楚克、科斯雷;CHK-1因样品量太少而未做烧失量分析。
    下载: 导出CSV

    表  2   楚克、科斯雷样品微量元素测定结果

    Table  2   Trace element compositions of Chuuk and Kosrae samples

    10−6  
    样品号LiBeScVCrCoNiCuZnGaRbSrYZrNbCdCsBaLaCePrNdSmEuGdTbDyHoErTmYbLuHfTaWPbThU
    CHK-14.020.8927.532753770.038913010520.111.238321.713919.90.2360.14516313.530.44.0718.54.981.685.130.814.450.831.990.2611.480.2113.591.280.1651.021.290.338
    CHK-44.721.0325.837428663.224798.511520.515.957223.316124.00.2420.09120416.035.64.7221.25.541.885.660.884.810.882.130.2761.560.2184.011.520.0971.131.490.416
    CHK-54.330.8626.534540169.636312411619.111.149021.214220.60.2330.09717013.632.34.0718.54.951.685.110.814.360.811.960.2581.460.2073.691.340.1501.031.320.361
    CHK-64.521.0326.736730858.922610411521.114.659522.815722.80.2460.25319215.735.54.6520.95.531.875.640.874.700.872.090.2721.540.2153.961.470.0721.111.480.408
    CHK-752.00.9725.936525868.026510712321.58.4558424.216423.80.2880.06920816.337.34.8421.85.751.955.890.914.920.912.210.2861.650.2294.121.520.0661.431.550.442
    CHK-84.640.9124.133027355.822690.510518.516.648322.514721.50.2300.12518415.333.44.5120.35.301.815.470.854.590.862.060.2641.520.2103.681.330.0561.081.430.377
    KSR2-25.671.8034.837471968.336585.111920.927.272628.729661.90.4870.94653249.110012.952.710.93.1810.21.326.311.102.590.3231.810.2517.123.680.6613.624.931.25
    KSR4-112.22.9229.940468679.844595.415528.431.2161747.240498.00.5860.82783411322426.910420.05.8118.92.3110.51.763.970.4772.580.3548.755.112.336.6312.42.91
    KSR4-210.32.2825.834860369.639278.513423.921.5128638.933775.70.4800.55664790.718222.185.716.54.7815.51.898.721.473.290.3922.130.2927.434.012.016.129.572.33
    KSR4-410.92.4924.734756667.137271.313424.130.3141040.634385.20.4780.77774398.919523.389.117.24.9616.11.979.011.513.440.4132.210.3057.354.452.046.7810.82.50
    KSR5-210.62.5825.635557368.435874.114324.530.7134940.436288.90.5700.43472594.719123.189.717.45.0516.32.009.101.513.380.3992.160.2927.744.681.726.5910.41.66
    KSR6-110.31.8428.826591870.845582.911120.556.2114432.130171.80.4074.2359165.413316.666.513.33.9012.31.557.181.222.760.3321.830.2586.894.190.7080.816.321.69
    KSR6-26.941.8229.431093371.245779.111120.466.9100631.429670.50.4382.9655564.313116.566.313.23.8612.11.527.051.202.730.3291.800.2516.774.150.9341.326.271.70
    KSR6-37.741.8728.927694971.746377.711320.353.2108431.529770.60.3851.7854464.413216.566.413.33.8912.21.537.151.212.770.3351.830.2566.894.190.9190.486.391.76
    KSR7-15.561.6431.034879171.043885.311020.214.843229.126053.40.3560.31154040.382.210.644.19.642.898.961.226.071.082.540.3201.780.2486.303.190.6352.434.161.05
    KSR7-27.281.7730.236374966.941092.612221.617.850430.427859.30.3610.46641844.089.511.547.410.23.079.591.296.461.152.700.3411.900.2666.643.480.7322.934.631.17
    KSR8-25.741.8330.733251158.128584.010920.630.668431.229662.60.4490.69951348.598.112.449.710.23.019.641.316.551.192.880.3712.130.3046.973.740.6783.225.281.36
    下载: 导出CSV
  • [1]

    Ruttor S, Nebel O, Nebel-Yacobsen Y, et al. Alkalinity of ocean island lavas decoupled from enriched source components: a case study from the EM1-PREMA Tasmantid mantle plume [J]. Geochimica et Cosmochimica Acta, 2021, 314: 140-158. doi: 10.1016/j.gca.2021.09.023

    [2]

    Garcia M O, Jorgenson B A, Mahoney J J, et al. An evaluation of temporal geochemical evolution of Loihi Summit Lavas: results from Alvin submersible dives [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B1): 537-550. doi: 10.1029/92JB01707

    [3]

    Garcia M O, Foss D J P, West H B, et al. Geochemical and isotopic evolution of Loihi Volcano, Hawaii [J]. Journal of Petrology, 1995, 36(6): 1647-1674.

    [4]

    Naumann T R, Geist D J. Generation of alkalic basalt by crystal fractionation of tholeiitic magma [J]. Geology, 1999, 27(5): 423-426. doi: 10.1130/0091-7613(1999)027<0423:GOABBC>2.3.CO;2

    [5]

    Hirose K. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation [J]. Geophysical Research Letters, 1997, 24(22): 2837-2840. doi: 10.1029/97GL02956

    [6]

    Dasgupta R, Hirschmann M M, Smith N D. Partial Melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts [J]. Journal of Petrology, 2007, 48(11): 2093-2124. doi: 10.1093/petrology/egm053

    [7]

    Gerbode C, Dasgupta R. Carbonate-fluxed melting of MORB-like pyroxenite at 2·9 GPa and genesis of HIMU ocean island basalts [J]. Journal of Petrology, 2010, 51(10): 2067-2088. doi: 10.1093/petrology/egq049

    [8]

    Kiseeva E S, Yaxley G M, Hermann J, et al. An experimental study of carbonated eclogite at 3·5–5·5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle [J]. Journal of Petrology, 2012, 53(4): 727-759. doi: 10.1093/petrology/egr078

    [9]

    Kiseeva E S, Litasov K D, Yaxley G M, et al. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle [J]. Journal of Petrology, 2013, 54(8): 1555-1583. doi: 10.1093/petrology/egt023

    [10]

    Mallik A, Dasgupta R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas [J]. Journal of Petrology, 2013, 54(11): 2267-2300. doi: 10.1093/petrology/egt047

    [11]

    Mallik A, Dasgupta R. Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa-Implications for mantle source characteristics of alkalic ocean island basalts [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1533-1557. doi: 10.1002/2014GC005251

    [12]

    Zhang G L, Chen L H, Jackson M G, et al. Evolution of carbonated melt to alkali basalt in the South China Sea [J]. Nature Geoscience, 2017, 10(3): 229-235. doi: 10.1038/ngeo2877

    [13]

    Yao J H, Zhang G L, Wang S, et al. Recycling of carbon from the stagnant paleo-Pacific slab beneath Eastern China revealed by olivine geochemistry [J]. Lithos, 2021, 398-399: 106249. doi: 10.1016/j.lithos.2021.106249

    [14]

    Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts [J]. Earth and Planetary Science Letters, 2008, 276(1-2): 175-186. doi: 10.1016/j.jpgl.2008.09.023

    [15]

    Jackson M G, Weis D, Huang S C. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q09009.

    [16]

    Dasgupta R, Jackson M G, Lee C Y A. Major element chemistry of ocean island basalts — Conditions of mantle melting and heterogeneity of mantle source [J]. Earth and Planetary Science Letters, 2010, 289(3-4): 377-392. doi: 10.1016/j.jpgl.2009.11.027

    [17]

    Mattey D P. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands; the evolution of a young hot spot trace across old Pacific Ocean Crust [J]. Contributions to Mineralogy and Petrology, 1982, 80(1): 1-13. doi: 10.1007/BF00376730

    [18]

    Keating B H, Mattey D P, Naughton J, et al. Age and origin of Truk Atoll, eastern Caroline Islands: geochemical, radiometric-age, and paleomagnetic evidence [J]. GSA Bulletin, 1984, 95(3): 350-356. doi: 10.1130/0016-7606(1984)95<350:AAOOTA>2.0.CO;2

    [19]

    Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937

    [20]

    Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038

    [21]

    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566

    [22]

    Zhang G L, Wang S, Zhang J, et al. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume [J]. Geochimica et Cosmochimica Acta, 2020, 290: 391-407. doi: 10.1016/j.gca.2020.09.018

    [23]

    Batanova V G, Thompson J M, Danyushevsky L V, et al. New olivine reference material for in situ microanalysis [J]. Geostandards and Geoanalytical Research, 2019, 43(3): 453-473. doi: 10.1111/ggr.12266

    [24]

    Dixon T H, Batiza R, Futa K, et al. Petrochemistry, age and isotopic composition of alkali basalts from Ponape Island, Western Pacific [J]. Chemical Geology, 1984, 43(1-2): 1-28. doi: 10.1016/0009-2541(84)90138-4

    [25]

    McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    [26]

    Hoernle K, Tilton G, Bas M J L, et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate [J]. Contributions to Mineralogy and Petrology, 2002, 142(5): 520-542. doi: 10.1007/s004100100308

    [27]

    Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts [J]. Nature, 2005, 434(7033): 590-597. doi: 10.1038/nature03411

    [28]

    Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts [J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science.1138113

    [29]

    Herzberg C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins [J]. Journal of Petrology, 2011, 52(1): 113-146. doi: 10.1093/petrology/egq075

    [30]

    Prytulak J, Elliott T. TiO2 enrichment in ocean island basalts [J]. Earth and Planetary Science Letters, 2007, 263(3-4): 388-403. doi: 10.1016/j.jpgl.2007.09.015

    [31]

    Garapić G, Mallik A, Dasgupta R, et al. Oceanic lavas sampling the high-3He/4He mantle reservoir: primitive, depleted, or re-enriched? [J]. American Mineralogist, 2015, 100(10): 2066-2081. doi: 10.2138/am-2015-5154

    [32]

    Dasgupta R, Hirschmann M M, Stalker K. Immiscible Transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas [J]. Journal of Petrology, 2006, 47(4): 647-671. doi: 10.1093/petrology/egi088

    [33]

    Spandler C, Yaxley G, Green D H, et al. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa [J]. Journal of Petrology, 2008, 49(4): 771-795.

    [34]

    Herzberg C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano [J]. Nature, 2006, 444(7119): 605-609. doi: 10.1038/nature05254

    [35]

    Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7

    [36]

    Kogiso T, Hirschmann M M. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 188-199. doi: 10.1016/j.jpgl.2006.07.016

    [37]

    Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9

    [38]

    Golovin A V, Sharygin V V, Pokhilenko N P. Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages [J]. Petrology, 2007, 15(2): 168-183. doi: 10.1134/S086959110702004X

    [39]

    Frezzotti M L, Touret J L R. CO2, carbonate-rich melts, and brines in the mantle [J]. Geoscience Frontiers, 2014, 5(5): 697-710. doi: 10.1016/j.gsf.2014.03.014

    [40]

    Hudgins T R, Mukasa S B, Simon A C, et al. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle [J]. Contributions to Mineralogy and Petrology, 2015, 169(5): 46. doi: 10.1007/s00410-015-1140-9

图(8)  /  表(2)
计量
  • 文章访问数:  2296
  • HTML全文浏览量:  435
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-04-11
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-08-27

目录

/

返回文章
返回