Application of element geochemistry in paleoenvironment reconstruction in new area: A case study of Hanjiang 15 Subsag in Pearl River Mouth Basin
-
摘要: 应用元素地球化学方法对珠江口盆地珠一坳陷东北部韩江凹陷新钻井H4开展了系统分析研究,在其元素地球化学分析结果的基础上,重点对韩江15洼沉积古环境进行了详细分析,初步探讨和阐明了韩江15洼始新世沉积环境及其纵向演化过程,并获得了以下重要成果与认识:①重建了韩江15洼始新统古水深、氧化还原条件、古气候、古盐度的演化历史;②韩江15洼始新统沉积期主要以浅水环境为主,水体富氧,但文昌组三段水体加深,以弱氧化环境为主;③文昌组沉积期气候偏干,进入恩平期气候向湿润转变;④韩江15洼文昌期受东南方向海侵影响,水体盐度增高,但恩平期未受海侵影响,以淡水环境为主;⑤根据元素地球化学判别结果、测井相及岩性特征,综合判识韩江15洼始新统文昌组上段(H4探井附近区域)主要为浅水三角洲沉积。上述研究成果及认识,对于深化韩江凹陷始新世沉积环境的认识及海侵影响分析等均具有一定的指导及参考意义。Abstract: In this paper, the elemental geochemistry method is used to systematically analyze and study the new drilled H4 in Hanjiang Sag, northeastern Pearl River Mouth Basin. Based on the results of elemental geochemistry analysis, the sedimentary paleoenvironment of Hanjiang 15 subsag is analyzed in detail. The Eocene sedimentary environment and its vertical evolution process of Hanjiang 15 Subsag are preliminarily discussed and clarified. The following important achievements and understandings are obtained : ① The evolution history of Eocene water depth, oxidation-reduction conditions, paleoclimate and paleosalinity in Hanjiang 15 Subsag is reconstructed. ② The sedimentary period of Eocene in Hanjiang 15 Subsag is mainly shallow water environment, and the water body is rich in oxygen. However, the water body of the third member of Wenchang Formation is deepened, and the weak oxidation environment is the main environment. ③ The climate of Wenchang Formation was dry during the sedimentary period and changed to humid during Enping period. ④ The Wenchang Formation in Hanjiang 15 subsag was affected by the southeast transgression during the sedimentary period, and the salinity of water increased. However, the sedimentary period of Enping Formation was not affected by the transgression, and the freshwater environment was dominated. ⑤According to the results of element geochemical discrimination, logging facies and lithologic characteristics, the upper member of Wenchang Formation ( near H4 exploration well ) of Eocene in Hanjiang 15 Subsag is mainly shallow water delta deposits. The above research results and understandings have certain guidance and reference significance for deepening the understanding of the Eocene sedimentary environment and the analysis of transgression influence in Hanjiang Subsag.
-
-
-
[1] 钟慧智, 李平鲁. 韩江凹陷重磁资料综合地球物理解释[J]. 中国海上油气(地质), 1996, 10(5):55-62 ZHONG Huizhi, LI Pinglu. Comprehensive geophysical interpretation from gravity - magnetic data in Hanjiang sag [J]. China Offshore Oil and Gas (Geology), 1996, 10(5): 55-62.
[2] 黄虑生, 钟碧珍. 珠江口盆地中始新统文昌组钙质超微化石新知[J]. 中国海上油气(地质), 1998, 12(1):31-35 HUANG Lusheng, ZHONG Bizhen. New materials of the calcareous mannofssil in the middle Eocene Wenchang formation from the Pearl river mouth basin [J]. China Offshore Oil and Gas (Geology), 1998, 12(1): 31-35.
[3] 焦鹏, 郭建华, 王玺凯, 等. 珠江口盆地韩江-陆丰凹陷珠江组下段碎屑锆石来源与储层物源示踪[J]. 石油与天然气地质, 2018, 39(2):239-253 doi: 10.11743/ogg20180204 JIAO Peng, GUO Jianhua, WANG Xikai, et al. Detrital zircon genesis and provenance tracing for reservoirs in the Lower Zhujiang Formation in Hanjiang-Lufeng Sag, Pearl River Mouth Basin [J]. Oil & Gas Geology, 2018, 39(2): 239-253. doi: 10.11743/ogg20180204
[4] 贺勇. 珠江口盆地韩江15洼构造—沉积演化及生烃潜力[J]. 天然气技术与经济, 2020, 14(6):14-20 HE Yong. Tectonic-sedimentary evolution and hydrocarbon-generating potential of Hanjiang 15 sag, Pearl River Mouth Basin [J]. Natural Gas Technology and Economy, 2020, 14(6): 14-20.
[5] 米立军, 张向涛, 庞雄, 等. 珠江口盆地形成机制与油气地质[J]. 石油学报, 2019, 40(S1):1-10 doi: 10.7623/syxb2019S1001 MI Lijun, ZHANG Xiangtao, PANG Xiong, et al. Formation mechanism and petroleum geology of Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 1-10. doi: 10.7623/syxb2019S1001
[6] 汪旭东, 张向涛, 何敏, 等. 珠江口盆地陆丰凹陷南部文昌组储层发育特征及其控制因素[J]. 石油与天然气地质, 2017, 38(6):1147-1155 doi: 10.11743/ogg20170615 WANG Xudong, ZHANG Xiangtao, HE Min, et al. Characteristics and controlling factors of reservoir development in the Wenchang Formation, Southern Lufeng Sag, Pearl River Mouth Basin [J]. Oil & Gas Geology, 2017, 38(6): 1147-1155. doi: 10.11743/ogg20170615
[7] 代一丁, 牛子铖, 汪旭东, 等. 珠江口盆地陆丰凹陷古近系与新近系油气富集规律的差异及其主控因素[J]. 石油学报, 2019, 40(S1):41-52 doi: 10.7623/syxb2019S1004 DAI Yiding, NIU Zicheng, WANG Xudong, et al. Differences of hydrocarbon enrichment regularities and their main controlling factors between Paleogene and Neogene in Lufeng sag, Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 41-52. doi: 10.7623/syxb2019S1004
[8] 吴国瑄, 朱伟林, 黎明碧, 等. 古湖缺氧条件是控制富生油凹陷形成的重要因素: 来自珠江口盆地的证据[J]. 中国海上油气(地质), 1999, 13(1):3-8 WU Guoxuan, ZHU Weilin, LI Mingbi, et al. Important factor controlling the development of rich oil kitchen sags: anoxic conditions: Evidences from the Pearl river Mouth basin [J]. China Offshore Oil and Gas (Geology), 1999, 13(1): 3-8.
[9] 张丽丽. 珠江口盆地揭阳凹陷早渐新世-中新世古生物地层及沉积环境[J]. 微体古生物学报, 2020, 37(3):266-277 ZHANG Lili. Early Oligocene—Miocene biostratigraphy and sedimentary environment of the Jieyang sag in Pearl river mouth basin [J]. Acta Micropalaeontologica Sinica, 2020, 37(3): 266-277.
[10] 张丽丽, 舒誉, 蔡国富, 等. 珠江口盆地东部始新世-渐新世沉积环境演变及对烃源条件的影响[J]. 石油学报, 2019, 40(S1):153-165 doi: 10.7623/syxb2019S1013 ZHANG Lili, SHU Yu, CAI Guofu, et al. Eocene-Oligocene sedimentary environment evolution and its impact on hydrocarbon source conditions in eastern Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 153-165. doi: 10.7623/syxb2019S1013
[11] 陈长民, 施和生, 许仕策, 等. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003. CHEN Changmin, SHI Hesheng, XU Shice, et al. The condition of forming tertiary reservoir in Pearl River Mouth Basin (East)[M]. Beijing: Science Press, 2003.
[12] 周凤娟, 丁琳, 马永坤, 等. 陆丰13东洼文昌组碎屑锆石U-Pb年龄特征及其物源示踪意义[J]. 中国海上油气, 2020, 32(4):46-55 ZHOU Fengjuan, DING Lin, MA Yongkun, et al. Detrital zircon U-Pb age characteristics of Wenchang Formation in Lufeng 13 eastern sag and its significance for provenance tracing [J]. China Offshore Oil and Gas, 2020, 32(4): 46-55.
[13] 于福生, 汪旭东, 邱欣卫, 等. 珠江口盆地陆丰凹陷断裂构造特征及“人”字型构造成因[J]. 石油学报, 2019, 40(S1):166-177 doi: 10.7623/syxb2019S1014 YU Fusheng, WANG Xudong, QIU Xinwei, et al. Characteristics of fault structure and the genesis of herringbone structure in Lufeng sag, Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2019, 40(S1): 166-177. doi: 10.7623/syxb2019S1014
[14] 朱伟林, 张功成, 高乐. 南海北部大陆边缘盆地油气地质特征与勘探方向[J]. 石油学报, 2008, 29(1):1-9 doi: 10.3321/j.issn:0253-2697.2008.01.001 ZHU Weilin, ZHANG Gongcheng, GAO Le. Geological characteristics and exploration objectives of hydrocarbons in the northern continental margin basin of South China Sea [J]. Acta Petrolei Sinica, 2008, 29(1): 1-9. doi: 10.3321/j.issn:0253-2697.2008.01.001
[15] 朱定伟, 张向涛, 雷永昌, 等. 陆丰北地区构造特征及恩平组勘探方向[J]. 中国海上油气, 2020, 32(2):44-53 ZHU Dingwei, ZHANG Xiangtao, LEI Yongchang, et al. Tectonic characteristics of Lufeng North area and the exploration direction of the Enping Formation [J]. China Offshore Oil and Gas, 2020, 32(2): 44-53.
[16] 胡阳. 珠江口盆地珠一坳陷新生代盆地结构与成因演化[J]. 高校地质学报, 2019, 25(1):81-92 HU Yang. Basin structure and genetic evolution of the Zhu 1 depression, during the cenozoic, Pearl River Mouth basin, South China [J]. Geological Journal of China Universities, 2019, 25(1): 81-92.
[17] 孙小勇, 牟传龙, 葛祥英, 等. 四川广元-陕西镇巴地区上奥陶统五峰组地球化学特征及沉积环境意义[J]. 沉积与特提斯地质, 2016, 36(1):46-54 doi: 10.3969/j.issn.1009-3850.2016.01.006 SUN Xiaoyong, MOU Chuanlong, GE Xiangying, et al. Geochemistry and sedimentary environments of the Upper Ordovician Wufeng Formation in Guangyuan, northern Sichuan and Zhenba, southern Shaanxi [J]. Sedimentary Geology and Tethyan Geology, 2016, 36(1): 46-54. doi: 10.3969/j.issn.1009-3850.2016.01.006
[18] 朱明, 施辉, 袁波, 等. 准南四棵树凹陷沉积古环境与物源研究: 来自侏罗系—下白垩统元素地球化学的指示[J]. 沉积学报, 2021. DOI: 10.14027/j.issn.1000-0550.2021.024. ZHU Ming, SHI Hui, YUAN Bo, et al. Palaeoenvironment and provenance of the Sikeshu Sag in the Junggar Basin: indications from element geochemical records[J]. Acta Sedimentologica Sinica, 2021. DOI: 10.14027/j.issn.1000-0550.2021.024.
[19] 肖飞, 赵宗举, 姜在兴, 等. 京西地区寒武系凤山组地球化学特征及古环境意义[J]. 沉积学报, 2020, 38(3):661-675 XIAO Fei, ZHAO Zongju, JIANG Zaixing, et al. Geochemical characteristics and their paleoenvironmental significance for the Cambrian Fengshan formation in the western Beijing Area [J]. Acta Sedimentologica Sinica, 2020, 38(3): 661-675.
[20] Bowen H J M. Environmental Chemistry of the Elements[M]. London: Academic Press, 1979.
[21] Gasse F, Fontes J C, Plaziat J C, et al. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1987, 60: 1-46. doi: 10.1016/0031-0182(87)90022-8
[22] Elderfield H, Upstill-Goddard R, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters [J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971-991. doi: 10.1016/0016-7037(90)90432-K
[23] Sholkovitz E R. The aquatic chemistry of rare earth elements in rivers and estuaries [J]. Aquatic Geochemistry, 1995, 1(1): 1-34. doi: 10.1007/BF01025229
[24] 罗顺社, 吕奇奇, 李琳静, 等. 燕山地区宣龙坳陷洪水庄组和铁岭组沉积环境[J]. 海洋地质前沿, 2012, 28(2):10-16 LUO Shunshe, LV Qiqi, LI Linjing, et al. Depositional environment of Hongshuizhuang and Tieling formations in the Xuanlong depression, Yanshan region [J]. Marine Geology Frontiers, 2012, 28(2): 10-16.
[25] 王敏芳, 黄传炎, 徐志诚, 等. 综述沉积环境中古盐度的恢复[J]. 新疆石油天然气, 2006, 2(1):9-12 doi: 10.3969/j.issn.1673-2677.2006.01.003 WANG Minfang, HUANG Chuanyan, XU Zhicheng, et al. Review on paleosalinity recovery in sedimentary environment [J]. Xinjiang Oil & Gas, 2006, 2(1): 9-12. doi: 10.3969/j.issn.1673-2677.2006.01.003
[26] 蓝先洪, 马道修, 徐明广, 等. 珠江三角洲若干地球化学标志及指相意义[J]. 海洋地质与第四纪地质, 1987, 7(1):39-49 LAN Xianhong, MA Daoxiu, XU Mingguang, et al. Some geochemical indicators of the Pearl river delta and their facies significance [J]. Marine Geology & Quaternary Geology, 1987, 7(1): 39-49.
[27] Nelson B W. Sedimentary phosphate method for estimating paleosalinities [J]. Science, 1967, 158(3803): 917-920. doi: 10.1126/science.158.3803.917
[28] 刘宝珺, 曾允孚. 岩相古地理基础和工作方法[M]. 北京: 地质出版社, 1985: 220-221. LIU Baojun, ZENG Yunfu. Foundation and Working Methods of Lithofacies and Palaeogeography[M]. Beijing: Geological Publishing House, 1985: 220-221.
[29] 赵其渊. 海洋地球化学[M]. 北京: 地质出版社, 1989. [ZHAO Qiyuan. Marine Geochemistry[M]. Beijing: Geological Publishing House, 1989.
[30] 陈建强, 周洪瑞, 王训练. 沉积学及古地理学教程[M]. 北京: 地质出版社, 2004. CHEN Jianqiang, ZHOU Hongrui, WANG Xunlian. Sedimentology and Sedimentary Palaeogeography[M]. Beijing: Geological Publishing House, 2004.
[31] 宫少军, 秦志亮, 叶思源, 等. 黄河三角洲ZK5钻孔沉积物地球化学特征及其沉积环境[J]. 沉积学报, 2014, 32(5):855-862 GONG Shaojun, QIN Zhiliang, YE Siyuan, et al. Geochemical characteristics and sedimentary environment of ZK5 core sediments in Yellow River delta [J]. Acta Sedimentologica Sinica, 2014, 32(5): 855-862.
[32] 李圯, 刘可禹, 蒲秀刚, 等. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境[J]. 地球科学, 2020, 45(10):3779-3796 LI Yi, LIU Keyu, PU Xiugang, et al. Lithofacies Characteristics and formation environments of mixed fine-grained sedimentary rocks in second member of the Kongdian Formation in the Cangdong Depression, Bohai Bay Basin [J]. Earth Science, 2020, 45(10): 3779-3796.
[33] 付勇, 周文喜, 王华建, 等. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报, 2021, 95(2):536-548 FU Yong, ZHOU Wenxi, WANG Huajian, et al. The relationship between environment and geochemical characteristics of black rock series of Lower Cambrian in northern Guizhou [J]. Acta Geologica Sinica, 2021, 95(2): 536-548.
[34] 王成善, 胡修棉, 李祥辉. 古海洋溶解氧与缺氧和富氧问题研究[J]. 海洋地质与第四纪地质, 1999, 19(3):39-48 WANG Chengshan, HU Xiumian, LI Xianghui. Dissolved oxygen in palaeo-ocean: anoxic events and high-oxic problems [J]. Marine Geology & Quaternary Geology, 1999, 19(3): 39-48.
[35] Emerson S R, Huested S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater [J]. Marine Chemistry, 1991, 34(3-4): 177-196. doi: 10.1016/0304-4203(91)90002-E
[36] Jones B, Manning D A C. Manning. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X
[37] 倪善芹, 侯泉林, 王安建, 等. 碳酸盐岩中锶元素地球化学特征及其指示意义: 以北京下古生界碳酸盐岩为例[J]. 地质学报, 2010, 84(10):1510-1516 NI Shanqin, HOU Quanlin, WANG Anjian, et al. Geochemical Characteristics of Carbonate Rocks and Its Geological Implications: Taking the Lower Palaeozoic Carbonate Rock of Beijing Area as an Example [J]. Acta Geologica Sinica, 2010, 84(10): 1510-1516.
[38] 赵立群, 周尚国, 伊海生, 等. 桂西南下雷锰矿床地球化学特征及沉积环境分析[J]. 地质与勘探, 2016, 52(1):25-39 ZHAO Liqun, ZHOU Shangguo, YI Haisheng, et al. Geochemical characteristics and sedimentary environment of the Xialei manganese deposit in southwest Guangxi [J]. Geology and Exploration, 2016, 52(1): 25-39.
[39] 李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 42(10):1774-1786 LI Hao, LU Jianlin, LI Ruilei, et al. Generation paleoenvironment and its controlling factors of lower cretaceous lacustrine hydrocarbon source rocks in Changling depression, South Songliao basin [J]. Earth Science, 2017, 42(10): 1774-1786.
[40] 周江羽, 陈建文, 张玉玺, 等. 下扬子地区幕府山组古环境和构造背景: 来自细粒混积沉积岩系元素地球化学的证据[J]. 地质学报, 2021, 95(6):1693-1711 doi: 10.3969/j.issn.0001-5717.2021.06.003 ZHOU Jiangyu, CHEN Jianwen, ZHANG Yuxi, et al. Paleoenvironment and tectonic background of Mufushan Formation in Lower Yangtze area: evidence from geochemistry of fine-grained mixed-siliciclastic-calcareous deposits [J]. Acta Geologica Sinica, 2021, 95(6): 1693-1711. doi: 10.3969/j.issn.0001-5717.2021.06.003
[41] 梁兴, 陈科洛, 张廷山, 等. 沉积环境对页岩孔隙的控制作用: 以滇黔北地区五峰组—龙马溪组下段为例[J]. 天然气地球科学, 2019, 30(10):1393-1405 doi: 10.11764/j.issn.1672-1926.2019.10.003 LIANG Xing, CHEN Keluo, ZHANG Tingshan, et al. The controlling factors of depositional environment to pores of the shales: case study of Wufeng Formation-Lower Longmaxi formation in Dianqianbei area [J]. Natural Gas Geoscience, 2019, 30(10): 1393-1405. doi: 10.11764/j.issn.1672-1926.2019.10.003
[42] Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin [J]. Chemical Geology, 2009, 260(1-2): 1-19. doi: 10.1016/j.chemgeo.2008.10.027
[43] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
[44] 沈瑞峰, 张辉, 唐勇, 等. 阿尔泰造山带古生代地层的地球化学特征及其对沉积环境的制约[J]. 地球化学, 2015, 44(1):43-60 SHEN Ruifeng, ZHANG Hui, TANG Yong, et al. Geochemical characteristics of Paleozoic strata and its restriction on depositional environment in Altay orogen, north Xinjiang, China [J]. Geochimica, 2015, 44(1): 43-60.
[45] 刘刚, 周东升. 微量元素分析在判别沉积环境中的应用: 以江汉盆地潜江组为例[J]. 石油实验地质, 2007, 29(3):307-310,314 doi: 10.3969/j.issn.1001-6112.2007.03.016 LIU Gang, ZHOU Dongsheng. Application of microelements analysis in identifying sedimentary environment: Taking Qianjiang formation in the Jianghan basin as an example [J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310,314. doi: 10.3969/j.issn.1001-6112.2007.03.016
[46] 李前裕, 吴国瑄, 张丽丽, 等. 古近纪南海断陷作用和破裂不整合的海相沉积记录[J]. 中国科学:地球科学, 2017, 60(12):2128-2140 doi: 10.1007/s11430-016-0163-x LI Qianyu, WU Guoxuan, ZHANG Lili, et al. Paleogene marine deposition records of rifting and breakup of the South China Sea: An overview [J]. Science China Earth Sciences, 2017, 60(12): 2128-2140. doi: 10.1007/s11430-016-0163-x
[47] 雷振宇, 张莉, 骆帅兵, 等. 九龙江凹陷古近系沉积特征及油气资源潜力[C]//2016年全国天然气学术年会论文集. 银川: 中国石油学会天然气专业委员会, 2016. LEI Zhenyu, ZHANG Li, LUO Shuaibing, et al. Sedimentary characteristics and hydrocarbon resource potential of Paleocene in Jiulongjiang Sag, Taiwan Strait Basin[C]//Yinchuan: Natural Gas Professional Committee of China Petroleum Society, 2016.
[48] 李键, 漆滨汶, 许怀智, 等. 台西盆地乌丘屿凹陷新生代构造演化特征[J]. 海洋地质前沿, 2014, 30(9):36-42 LI Jian, QI Binwen, XU Huaizhi, et al. Cenozoic tectonic evolution of Wuqiuyu depression, Taixi basin [J]. Marine Geology Frontiers, 2014, 30(9): 36-42.
[49] 赵伟, 邱隆伟, 姜在兴, 等. 断陷湖盆萎缩期浅水三角洲沉积演化与沉积模式: 以东营凹陷牛庄洼陷古近系沙三段上亚段和沙二段为例[J]. 地质学报, 2011, 85(6):1019-1027 ZHAO Wei, QIU Longwei, JIANG Zaixing, et al. Depositional evolution and model of shallow-water delta in the rifting lacustrine basins during the Shrinking Stage: a case study of the third member and second member of Paleogene Shahejie formation in the Niuzhuang Subsag, Dongying Sag [J]. Acta Geologica Sinica, 2011, 85(6): 1019-1027.
[50] 陈诚, 朱怡翔, 石军辉, 等. 断陷湖盆浅水三角洲的形成过程与发育模式: 以苏丹Muglad盆地Fula凹陷Jake地区AG组为例[J]. 石油学报, 2016, 37(12):1508-1517 doi: 10.7623/syxb201612006 CHEN Cheng, ZHU Yixiang, SHI Junhui, et al. The forming process and development pattern of shallow water delta in fault depression lacustrian basin: a case study of AG Formation in the Jake area in Fula sag, Muglad Basin, Sudan [J]. Acta Petrolei Sinica, 2016, 37(12): 1508-1517. doi: 10.7623/syxb201612006
[51] 李维, 朱筱敏, 马英俊, 等. 陆相断陷湖盆浅水三角洲沉积特征: 以高邮凹陷刘五舍次凹戴南组一段为例[J]. 石油实验地质, 2018, 40(5):676-683,690 doi: 10.11781/sysydz201805676 LI Wei, ZHU Xiaomin, MA Yingjun, et al. Depositional characteristics of a shallow-water delta in a continental faulted basin: a case study of the first member of Dainan Formation, Liuwushe Subsag, Gaoyou Sag, North Jiangsu Basin [J]. Petroleum Geology and Experiment, 2018, 40(5): 676-683,690. doi: 10.11781/sysydz201805676
[52] 范乐元, 吴嘉鹏, 刁宛, 等. 断陷湖盆浅水三角洲沉积特征: 以Muglad盆地Unity凹陷Aradeiba组为例[J]. 地学前缘, 2021, 28(1):155-166 FAN Leyuan, WU Jiapeng, DIAO Wan, et al. Sedimentary characteristics of the shallow water delta in rifted lacustrine basin: A case study in the Aradeiba Formation, Unity Sag, Muglad basin [J]. Earth Science Frontiers, 2021, 28(1): 155-166.
[53] 朱筱敏, 刘媛, 方庆, 等. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例[J]. 地学前缘, 2012, 19(1):89-99 ZHU Xiaomin, LIU Yuan, FANG Qing, et al. Formation and sedimentary model of shallow delta in large-scale lake: example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin [J]. Earth Science Frontiers, 2012, 19(1): 89-99.
[54] 朱伟林, 李建平, 周心怀, 等. 渤海新近系浅水三角洲沉积体系与大型油气田勘探[J]. 沉积学报, 2008, 26(4):575-582 ZHU Weilin, LI Jianping, ZHOU Xinhuai, et al. Neogene shallow water deltaic system and large hydrocarbon accumulations in Bohai Bay, China [J]. Acta Sedimentologica Sinica, 2008, 26(4): 575-582.
[55] 杨跃明, 王小娟, 陈双玲, 等. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征[J]. 天然气工业, 2022, 42(1):12-24 YANG Yueming, WANG Xiaojuan, CHEN Shuangling, et al. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan Basin [J]. Natural Gas Industry, 2022, 42(1): 12-24.
-
期刊类型引用(1)
1. 何雁兵 ,雷永昌 ,邱欣卫 ,肖张波 ,郑仰帝 ,刘冬青 . 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究. 地学前缘. 2024(02): 359-376 . 百度学术
其他类型引用(1)