南海中沙群岛海域温盐结构时空变化特征及其控制因素

黄诚, 吴能友, 吴晓, 刘时桥, 张经纬, 许丞, 刘亮, 董新柱, 陈靓

黄诚,吴能友,吴晓,等. 南海中沙群岛海域温盐结构时空变化特征及其控制因素[J]. 海洋地质与第四纪地质,2022,42(2): 1-14. DOI: 10.16562/j.cnki.0256-1492.2021111301
引用本文: 黄诚,吴能友,吴晓,等. 南海中沙群岛海域温盐结构时空变化特征及其控制因素[J]. 海洋地质与第四纪地质,2022,42(2): 1-14. DOI: 10.16562/j.cnki.0256-1492.2021111301
HUANG Cheng,WU Nengyou,WU Xiao,et al. Temporal-spatial variation characteristics and the controlling factors of temperature and salinity structure in Zhongsha Islands sea area of the South China Sea[J]. Marine Geology & Quaternary Geology,2022,42(2):1-14. DOI: 10.16562/j.cnki.0256-1492.2021111301
Citation: HUANG Cheng,WU Nengyou,WU Xiao,et al. Temporal-spatial variation characteristics and the controlling factors of temperature and salinity structure in Zhongsha Islands sea area of the South China Sea[J]. Marine Geology & Quaternary Geology,2022,42(2):1-14. DOI: 10.16562/j.cnki.0256-1492.2021111301

南海中沙群岛海域温盐结构时空变化特征及其控制因素

基金项目: 中国地质调查局海南ZS群岛海域1:25万海洋区域地质调查项目(DD20191027)
详细信息
    作者简介:

    黄诚(1987—),男,在读博士,工程师,主要从事海洋地球化学与区域地质调查研究工作, E-mail:hc_learn@126.com

Temporal-spatial variation characteristics and the controlling factors of temperature and salinity structure in Zhongsha Islands sea area of the South China Sea

  • 摘要: 南海中沙群岛海域夏秋季水团实测温盐深数据统计分析结果表明,研究区海水表层温度为30.0~31.2 ℃,最高温度位于中沙海台区域;表层盐度为33.6~34.1 PSU,最高盐度分布在西北部东岛海域附近;底层温度1~25 ℃,盐度34.1~35.2 PSU,最高盐度分布在工区东南角。总体上,研究区水团温盐结构表现为表层高温低盐、底层低温高盐的特征,混合层深度为20~90 m。研究区表、中、底层水体垂向流速各不相同,流速为0.01~0.22 m/s。根据FVCOM模型分析了调查区温度、盐度季节性变化特征,冬季,研究区南侧的海域海表温度明显高于北侧,南北温差显著;夏季,海表温盐分布受到台风作用较为明显,海表温度的空间分布趋于均一。数值模拟表明,研究区流场整体表现为冬夏季强、春秋季较弱的季节性变化特征。模拟结果显示,极端天气在短期内对研究区温盐结构产生显著影响,表现为海表温度降低、混合层深度增加,水体垂向混合作用增强。
    Abstract: The statistical analysis results of CTD measured data of water mass in summer and autumn from the sea area of the Zhongsha Islands show that the sea surface temperature of seawater in the study area is between 30.0 and 31.2 °C, and the highest temperature distributed in the platform of the Zhongsha Islands. The sea surface salinity is from 33.6 to 34.1 PSU, and the highest salinity distributed near the Dong Island. The bottom temperature is from 1 to 25 °C, and salinity from 34.1 to 35.2 PSU, the highest salinity distributed in the southeast corner of the study area. In general, the temperature-salinity structure of the study area is characterized by high temperature, low salt in the surface layer and low temperature, high salt in the bottom layer, and the depth of mixed layer is between 20 and 90 m. The vertical velocity of surface, middle and bottom water in the study area is different, and the velocity is between 0.01 and 0.22 m/s. The seasonal variation characteristics of temperature and salinity in the study area were analyzed according to the FVCOM model. In winter, the sea surface temperature in the south of the study area was significantly higher than that in the north, and the temperature difference between the north and south was obvious. In summer, the distribution of sea surface temperature and salinity is obviously affected by typhoon, and the spatial distribution of sea surface temperature tends to be uniform. The numerical simulation results show that the intensity of flow field in the study area is strength in winter and summer, and weak in spring and autumn. The simulation results also show that extreme weather has a significant effect on the temperature and salinity structure in the study area in a short term, which is manifested as the decrease of sea surface temperature, the increase of mixed layer depth, and the enhancement of vertical mixing effect of water body.
  • 图  1   调查区CTD及定点海流站位示意

    Figure  1.   CTD and currents observation sites within the study area

    图  2   南海数学模型网格及水深示意图

    Figure  2.   Model grid and bathymetry in the South China Sea

    图  3   验潮站水位验证图

    验潮站位见图1a。

    Figure  3.   Comparison of the water level between model and observation

    Tide station is shown in Fig. 1a.

    图  4   流速验证结果

    Figure  4.   Comparison of the current between model and observation

    图  5   温盐验证结果

    Figure  5.   Comparison of the temperature and salinity between observed values and simulated values

    图  6   工区夏季表底层实测温盐分布

    数字代表站位名称。

    Figure  6.   Summer temperature and salinity distribution of the surface/bottom seawater

    The numbers refer to the stations.

    图  7   调查区典型站位温度、盐度变化与水深关系

    Figure  7.   The relationship of temperature, salinity and water depth of the typical stations

    图  8   调查区水体垂向流速大小及方向

    Figure  8.   Current distribution at surface, middle and bottom layer in the water column

    图  9   调查区表层月均温度分布

    Figure  9.   Monthly distribution of surface temperature in the study area

    图  10   调查区表层月均盐度分布图

    Figure  10.   Monthly distribution of surface salinity in the study area

    图  11   DBPH012CTD站位月均垂向温盐分布剖面

    Figure  11.   Monthly vertical profiles of temperature and salinity at DBPH012CTD site

    图  12   DBPH012CTD站位表底层温盐月均变化

    Figure  12.   Monthly variation of surface/bottom temperature and salinity at DBPH012CTD site

    图  13   调查区年内风玫瑰图

    数据引自欧洲中期天气预报中心,2019。

    Figure  13.   Annual wind rose in the study area

    Data from European Centre for Medium-Range Weather Forecasts, ECMWF, 2019.

    图  14   台风“PHANFONE”过境前后工区水体温盐剖面变化

    Figure  14.   Vertical temperature and salinity profiles at the study area pre- and post-Typhoon "PHANFONE"

    图  15   台风“PHANFONE”过境前后工区水体流速垂向变化

    Figure  15.   Vertical current profile at the study area pre- and post-Typhoon "PHANFONE"

  • [1] 魏晓, 高红芳. 南海中部海域夏季水团温盐分布特征[J]. 海洋地质前沿, 2015, 31(8):25-33,40

    WEI Xiao, GAO Hongfang. Temperature and salinity structures of the central-eastern South China Sea [J]. Marine Geology Frontiers, 2015, 31(8): 25-33,40.

    [2]

    Qu T D, Du Y, Meyers G, et al. Connecting the tropical Pacific with Indian Ocean through South China Sea [J]. Geophysical Research Letters, 2005, 32(24): L24609. doi: 10.1029/2005GL024698

    [3] 高荣珍, 王东晓, 王卫强, 等. 南海上层海洋热结构的年循环与半年循环[J]. 大气科学, 2003, 27(3):345-353 doi: 10.3878/j.issn.1006-9895.2003.03.05

    GAO Rongzhen, WANG Dongxiao, WANG Weiqing, et al. Annual and Semi-Annual cycles of the upper thermal structure in the South China Sea [J]. Chinese Journal of Atmospheric Sciences, 2003, 27(3): 345-353. doi: 10.3878/j.issn.1006-9895.2003.03.05

    [4] 王东晓, 陈举, 陈荣裕, 等. 2000年8月南海中部与南部海洋温、盐与环流特征[J]. 海洋与湖沼, 2004, 35(2):97-109 doi: 10.3321/j.issn:0029-814X.2004.02.001

    WANG Dongxiao, CHEN Jiu, CHEN Rongyu, et al. Hydrographic and circulation characteristics in middle and southern South China Sea in summer, 2000 [J]. Oceanologia et Limnologia Sinica, 2004, 35(2): 97-109. doi: 10.3321/j.issn:0029-814X.2004.02.001

    [5] 刘长建, 杜岩, 张庆荣, 等. 南海次表层和中层水团年平均和季节变化特征[J]. 海洋与湖沼, 2008, 39(1):55-64 doi: 10.3321/j.issn:0029-814X.2008.01.009

    LIU Changjian, DU Yan, ZHANG Qingrong, et al. Seasonal variation of subsurface and intermediate water masses in the South China Sea [J]. Oceanologia et Limnologia Sinica, 2008, 39(1): 55-64. doi: 10.3321/j.issn:0029-814X.2008.01.009

    [6] 邢彩盈, 朱晶晶, 吴胜安. 南海区域热状况的气候变化特征分析[J]. 海洋预报, 2018, 35(6):13-23 doi: 10.11737/j.issn.1003-0239.2018.06.002

    XING Caiying, ZHU Jingjing, WU Sheng’an. Climatic change characteristics of thermal condition in the South China Sea [J]. Marine Forecasts, 2018, 35(6): 13-23. doi: 10.11737/j.issn.1003-0239.2018.06.002

    [7] 汪斯毓, 王仕胜, 刘艳锐, 等. 中沙海槽盆地构造与沉积作用及其对远端裂陷盆地演化的启示[J/OL]. 地球科学, 2021: 1-15. (2021-06-28). http://kns.cnki.net/kcms/detail/42.1874.P.20210628.1156.010.html

    WANG Siyu, WANG Shisheng, LIU Yanrui, et al. Tectonics and sedimentation of the Zhongsha trough basin: implication to the basin evolution in distal rifting margin[J/OL]. Earth Science, 2021: 1-15. (2021-06-28). http://kns.cnki.net/kcms/detail/42.1874.P.20210628.1156.010.html.

    [8] 陈俊锦, 刘时桥, 汪斯毓, 等. 中沙海槽重力流沉积发育特征及成因机制[J]. 中山大学学报(自然科学版), 2022, 61(1):39-54

    CHEN Junjin, LIU Shiqiao, WANG Siyu, et al. Characteristics and mechanism of the development of gravity flow deposits in Zhongsha Trough [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(1): 39-54.

    [9] 黎雨晗, 黄海波, 丘学林, 等. 中沙海域的广角与多道地震探测[J]. 地球物理学报, 2020, 63(4):1523-1537 doi: 10.6038/cjg2020N0259

    LI Yuhan, HUANG Haibo, QIU Xuelin, et al. Wide-angle and multi-channel seismic surveys in Zhongsha waters [J]. Chinese Journal of Geophysics, 2020, 63(4): 1523-1537. doi: 10.6038/cjg2020N0259

    [10] 赵斌, 高红芳, 张衡, 等. 基于深度域地震成像的中沙海槽盆地东北部结构构造研究[J]. 热带海洋学报, 2019, 38(2):95-102

    ZHAO Bin, GAO Hongfang, ZHANG Heng, et al. Structure study of the northeastern Zhongsha Trough Basin in the South China Sea based on prestack depth migration seismic imaging [J]. Journal of Tropical Oceanography, 2019, 38(2): 95-102.

    [11] 鄢全树, 石学法, 王昆山. 中沙群岛附近海域沉积物中的轻矿物分区及物质来源[J]. 海洋学报, 2007, 29(4):97-104

    YAN Quanshu, SHI Xuefa, WANG Kunshan. Mineral provinces and matter source in surface sediments near the Zhongsha Islands in the South China Sea [J]. Acta Oceanologica Sinica, 2007, 29(4): 97-104.

    [12] 鄢全树, 王昆山, 石学法. 中沙群岛近海表层沉积物重矿物组合分区及物质来源[J]. 海洋地质与第四纪地质, 2008, 28(1):17-24

    YAN Quanshu, WANG Kunshan, SHI Xuefa. Provinces and provenance of heavy minerals in surface sediments of the sea area near Zhongsha Islands in South China Sea [J]. Marine Geology & Quaternary Geology, 2008, 28(1): 17-24.

    [13] 张江勇, 彭学超, 张玉兰, 等. 南海中沙群岛以北至陆坡表层沉积物碳酸钙含量的分布[J]. 热带地理, 2011, 31(2):125-132 doi: 10.3969/j.issn.1001-5221.2011.02.002

    ZHANG Jiangyong, PENG Xuechao, ZHANG Yulan, et al. Distribution of carbonate content in surface sediment from north of Zhongsha Islands to Northern slope in the South China Sea [J]. Tropical Geography, 2011, 31(2): 125-132. doi: 10.3969/j.issn.1001-5221.2011.02.002

    [14] 王璐, 余克服, 王英辉, 等. 南海中沙群岛、西沙群岛珊瑚岛礁区海水重金属的分布特征[J]. 热带地理, 2017, 37(5):718-727

    WANG Lu, YU Kefu, WANG Yinghui, et al. Distribution characteristic of heavy metals in coral reefs located in the Zhongsha Islands and Xisha Islands of South China Sea [J]. Tropical Geography, 2017, 37(5): 718-727.

    [15] 黄磊, 高红芳. 夏季季风转换期间中沙群岛附近海域的温盐分布特征[J]. 南海地质研究, 2012(1):49-56

    HUANG Lei, GAO Hongfang. Analyses on temperature and salinity distributions in Zhongsha Islands waters during spring to summer monsoon transition [J]. Gresearch of Eological South China Sea, 2012(1): 49-56.

    [16] 田永青, 黄洪辉, 巩秀玉, 等. 2014年春季南海中沙群岛北部海域的低温高盐水及其形成机制[J]. 热带海洋学报, 2016, 35(2):1-9 doi: 10.11978/2014113

    TIAN Yongqing, HUANG Honghui, GONG Xiuyu, et al. The formation mechanism of the low temperature and high salinity water mass near the Zhongsha Islands in the South China Sea in March 2014 [J]. Journal of Tropical Oceanography, 2016, 35(2): 1-9. doi: 10.11978/2014113

    [17] 李风岐, 苏育嵩. 海洋水团分析[M]. 青岛: 青岛海洋大学出版社, 1999

    LI Fengqi, SU Yusong. Water Mass Analysis[M]. Qingdao: Qingdao Ocean University Press, 1999.

    [18] 李娟, 左军成, 李艳芳, 等. 南海海表温度的低频变化及影响因素[J]. 河海大学学报:自然科学版, 2011, 39(5):575-582

    LI Juan, ZUO Juncheng, LI Yanfang, et al. Low-frequency variation and influence factors of sea surface temperature in South China Sea [J]. Journal of Hohai University:Natural Sciences, 2011, 39(5): 575-582.

    [19] 邱婷, 左军成, 王鼎琦, 等. 南海海表温度气候变异及对局地台风的影响[J]. 海洋科学进展, 2017, 35(1):32-39 doi: 10.3969/j.issn.1671-6647.2017.01.004

    QIU Ting, ZUO Juncheng, WANG Dingqi, et al. Variation of Climatological Sea Surface Temperature and its effect on local typhoon activities in the South China Sea [J]. Advances in Marine Science, 2017, 35(1): 32-39. doi: 10.3969/j.issn.1671-6647.2017.01.004

    [20] 黄金森. 中沙环礁特征[J]. 海洋地质与第四纪地质, 1987, 7(2):21-24

    HUANG Jinsen. Features of the ZhongSha atoll in the South China Sea [J]. Marine Geology & Quaternary Geology, 1987, 7(2): 21-24.

    [21] 徐子英, 汪俊, 高红芳, 等. 中沙地块南部断裂发育特征及其成因机制[J]. 中国地质, 2020, 47(5):1438-1446

    XU Ziying, WANG Jun, GAO Hongfang, et al. The characteristics and formation mechanism of the faults in the southern part of the Zhongsha Bank [J]. Geology in China, 2020, 47(5): 1438-1446.

    [22]

    Peel M C, Finlayson B L, Mcmahon T A. Updated world map of the Köppen-Geiger climate classification [J]. Hydrology and Earth System Sciences, 2007, 11(5): 1633-1644. doi: 10.5194/hess-11-1633-2007

    [23] 陈史坚. 南海气温、表层海温分布特点的初步研究[J]. 海洋通报, 1983, 2(4):9-17

    CHEN Shijian. A preliminary study of the characteristics of the distribution of air and sea surface temperatures in the South China Sea [J]. Marine Science Bulletin, 1983, 2(4): 9-17.

    [24]

    Chen C S, Beardsley R C, Cowles G. An unstructured grid, finite-volume coastal ocean Model (FVCOM) system [J]. Oceanography, 2006, 19(1): 78-89. doi: 10.5670/oceanog.2006.92

    [25]

    GAO S, LV X Q, WANG H T. Sea surface temperature simulation of tropical and north pacific basins using a hybrid coordinate ocean model (HYCOM) [J]. Marine Science Bulletin, 2008, 10(1): 1-13.

    [26]

    WU X, WU H, WANG H J, et al. Novel, repeated surveys reveal new insights on sediment flux through a narrow strait, Bohai, China [J]. Journal of Geophysical Research:Oceans, 2019, 124(10): 6927-6941. doi: 10.1029/2019JC015293

    [27] 王东晓, 杜岩, 施平. 南海上层物理海洋学气候图集[M]. 北京: 气象出版社, 2002

    WANG Dongxiao, DU Yan, SHI Ping. Climatological Atlas of Physical Oceanography in the Upper Layer of the South China Sea[M]. Beijing: Meteorological Press, 2002.

    [28] 肖潺, 原韦华, 李建, 等. 南海秋雨气候特征分析[J]. 气候与环境研究, 2013, 18(6):693-700 doi: 10.3878/j.issn.1006-9585.2013.12163

    XIAO Chan, YUAN Weihua, LI Jian, et al. Preliminary study of autumn rain in the South China Sea [J]. Climatic and Environmental Research, 2013, 18(6): 693-700. doi: 10.3878/j.issn.1006-9585.2013.12163

    [29] 徐宾, 宇婧婧, 张雷, 等. 全球海表温度融合研究进展[J]. 气象科技进展, 2018, 8(1):164-170 doi: 10.3969/j.issn.2095-1973.2018.01.022

    XU Bin, YU Jingjing, ZHANG Lei, et al. Research progress of global sea surface temperature fusion [J]. Advances in Meteorological Science and Technology, 2018, 8(1): 164-170. doi: 10.3969/j.issn.2095-1973.2018.01.022

    [30] 李根. 海气界面热通量变化趋势及其与SST的关系[D]. 中国科学技术大学博士学位论文, 2012: 1-121

    LI Gen. Trend variability in Air-Sea fluxes and their relationship with SST[D]. Doctor Dissertation of University of Science and Technology of China, 2012: 1-121.

    [31] 秦曾灏. 海洋在气候与气候变化中的地位和作用[J]. 海洋通报, 1991, 10(4):85-90

    QIN Zenghao. Significance of ocean to global meteorological process and local climatological process [J]. Marine Science Bulletin, 1991, 10(4): 85-90.

    [32] 聂宇华, 詹杰民, 陈植武. 南海表层环流和热结构特征的数值模拟与影响因素分析[J]. 中山大学学报:自然科学版, 2011, 50(2):134-138

    NIE Yuhua, ZHAN Jiemin, CHEN Zhiwu. Simulation and influence factor analysis of Circulation and thermal structure of the surface layer of the South China Sea [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(2): 134-138.

    [33]

    Kwon Y O, Riser S C. The ocean response to the hurricane and tropical storm in North Atlantic during 1997-1999[R]. Washington DC: University of Washington, 2003.

    [34] 付东洋, 潘德炉, 丁又专, 等. 台风对海洋叶绿素a浓度影响的定量遥感初探[J]. 海洋学报, 2009, 31(3):46-56

    FU Dongyang, PAN Delu, DING Youzhuan, et al. Quantitative study of effects of the sea chlorophyll-a concentration by typhoon based on remote-sensing [J]. Acta Oceanologica Sinica, 2009, 31(3): 46-56.

    [35]

    Lin I I, Liu W T, Wu C C, et al. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling [J]. Geophysical Research Letters, 2003, 30(3): 1131. doi: 10.1029/2002GL015674

    [36] 王凡, 赵永平, 冯志纲, 等. 1998年春夏南海温盐结构及其变化特征[J]. 海洋学报, 2001, 23(5):1-13

    WANG Fan, ZHAO Yongping, FENG Zhigang, et al. Thermohaline structure and variation of the South China Sea in the spring and summer of 1998 [J]. Acta Oceanologica Sinica, 2001, 23(5): 1-13.

    [37]

    Lin Y C, Oey L Y. Rainfall-enhanced blooming in typhoon wakes [J]. Scientific Reports, 2016, 6(1): 31310. doi: 10.1038/srep31310

    [38]

    Glenn S M, Miles G N, Seroka G N, et al. Stratified coastal ocean interactions with tropical cyclones [J]. Natrue Communications, 2016, 7(1): 10887. doi: 10.1038/ncomms10887

    [39]

    Cong S, Wu X, Ge J Z, et al. Impact of Typhoon Chan-hom on sediment dynamics and morphological changes on the East China Sea inner shelf [J]. Marine Geology, 2021, 440: 106578. doi: 10.1016/j.margeo.2021.106578

图(15)
计量
  • 文章访问数:  16565
  • HTML全文浏览量:  948
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2021-12-28
  • 网络出版日期:  2022-03-06
  • 刊出日期:  2022-04-27

目录

    /

    返回文章
    返回