下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素

鲍衍君, 张鹏辉, 陈建文, 梁杰, 孟祥豪, 付奕霖, 薛路, 张旭, 王拔秀

鲍衍君,张鹏辉,陈建文,等. 下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素[J]. 海洋地质与第四纪地质,2022,42(2): 144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
引用本文: 鲍衍君,张鹏辉,陈建文,等. 下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素[J]. 海洋地质与第四纪地质,2022,42(2): 144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
BAO Yanjun,ZHANG Penghui,CHEN Jianwen,et al. Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area[J]. Marine Geology & Quaternary Geology,2022,42(2):144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
Citation: BAO Yanjun,ZHANG Penghui,CHEN Jianwen,et al. Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area[J]. Marine Geology & Quaternary Geology,2022,42(2):144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201

下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素

基金项目: 江苏省研究生科研与实践创新计划项目“下扬子地区下寒武统海相页岩孔隙结构特征及影响因素”(KYCX_0522);中国科学院海洋地质与环境重点实验室开放基金课题“南黄海盆地崂山隆起下志留统泥页岩成岩演化及其对孔隙发育的影响”(MGE2021KG16);中央高校基本科研业务费项目“下扬子地区下寒武统海相页岩孔隙结构特征及影响因素”(B200203135),“下扬子地块早寒武世古海洋环境演化”(B200202144);中国地质调查局项目“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152);国家自然科学基金项目“下扬子地区下寒武统深水陆棚相富有机质泥页岩差异性成岩演化过程及其对孔隙发育的控制作用”(41702162),“南黄海崂山隆起二叠系储层油气成藏破坏与流体演化过程还原研究”(42076220);山东省自然科学基金项目“南黄海盆地崂山隆起石炭系油气保存条件的主控因素分析”(ZR2020MD071)
详细信息
    作者简介:

    鲍衍君(1996—),男,硕士,主要从事海洋地质研究,E-mail:baoyj025@163.com

    通讯作者:

    张鹏辉(1986—),男,博士,副教授,主要从事油气地质与海洋地质方面的教学与研究,E-mail:zph010@163.com

  • 中图分类号: P536

Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area

  • 摘要: 以下扬子陆域地区官地1井下寒武统幕府山组海相泥页岩岩心样品为研究对象,综合运用场发射扫描电镜、X衍射分析、气体吸附、高压压汞和有机地球化学分析等实验测试手段,系统研究了官地1井幕府山组泥页岩孔隙结构特征和孔隙发育影响因素。研究表明:① 官地1井幕府山组泥页岩矿物组成以石英、方解石胶结物和黏土矿物为主,其总有机碳含量较高,有机质类型以I型干酪根为主且均处于过成熟阶段;② 泥页岩孔隙类型主要为基质孔隙(粒间孔隙和粒内孔隙)、有机质孔隙和微裂隙,其中以有机质孔隙含量居多,而粒间孔隙面孔率占比最高;③ 有机质丰度对有机质孔隙的孔径和比表面积具有一定的影响,压实作用则构成过成熟阶段孔隙演化的主要因素,而刚性矿物具有一定的支撑作用并对有机质孔隙的保存具有积极意义;④ 分形维数与总有机碳含量和比表面积相关性较好,而与孔隙体积相关性弱,反映孔壁粗糙程度及孔隙结构复杂程度受有机质丰度影响。
    Abstract: The marine shale samples of the Lower Cambrian Mufushan Formation collected from the Well GD1 in the Lower Yangtze area are systematically studied in this paper for pore structure characteristics and their influencing factors. Various testing methods, such as field emission scanning electron microscope, X-ray diffraction analysis, gas adsorption, high-pressure mercury injection and organic geochemical analysis are adopted for this research. It is revealed that the Mufushan shale is mainly composed of quartz, calcite and clay minerals in mineralogy. The total organic carbon content is quite high, and the organic matter is dominated by the type I of kerogen overmatured. The pores are dominated by matrix pores including intergranular and intragranular pores, organic matter pores and microfractures. Organic matter pores are well developed, and the proportion of intergranular pores is the highest. Organic matter abundance has certain influence on the pore size and specific surface area of organic matter pores. Compaction is the main factor for pore evolution in the overmatured stage, while rigid minerals, as supporting components, play a positive role in the preservation of organic matter pores. The fractal dimension has a good correlation with the total organic carbon content and specific surface area but weak correlation with pore volume, suggesting that the roughness of the pore wall and the complexity of the pore structure are affected by organic matter abundance.
  • 泥页岩具有非均质性强和物性差的特点,以纳米级孔隙为主的孔隙系统构成了页岩油气的主要储集空间,因而其孔隙空间研究方法对页岩油气勘探评价具有重要意义[1-4]。对于泥页岩纳米级孔隙大小、几何形貌及连通性的观测主要利用高分辨率场发射扫描电镜(FE-SEM)、聚焦离子束扫描电镜(FIB-SEM)、原子力显微镜(AFM)等电子显微成像技术以及纳米CT技术,而泥页岩孔径大小及分布、比表面积等参数的定量表征则主要借助于气体(CO2/N2)吸附、压汞、核磁共振(NMR)、小角度中子散射(SANS)或超小角度中子散射(USANS)等技术[3-10],在页岩油气资源调查中实现了多尺度的精细描述与定量表征。此外,泥页岩孔隙结构的定量表征还涉及孔隙特征参数,如孔隙发育数量、孔隙类型、孔径及面孔率等的图像定量分析,主要基于FE-SEM图像识别,多采用二值化处理并得出相应数据。目前国内外学者运用多种定量分析软件对扫描电镜图像开展分析处理和定量分析,主要基于自动阈值和手动阈值、边缘检测分割法、流域分割法、图像二值化处理等方法[11-15]

    分形理论是评价表面粗糙度的重要手段,可作为研究不规则表面孔隙和微观结构的有效方法,目前已应用于煤和泥页岩样品渗透性或表面形态等方面的研究[16-23]。在气体吸附法中,常用Brunauer-Emmett-Teller(BET)比表面积分析和Frenkel-Halsey-Hill(FHH)理论来获得分形维数。部分学者基于FHH模型和BET模型对松辽盆地白垩系和鄂尔多斯盆地三叠系泥页岩,上扬子地区牛蹄塘组页岩、筇竹寺组页岩和五峰-龙马溪组页岩进行分析,粒内孔隙非均质性最强,有机质孔隙非均质性最差,分形维数受到总孔体积、比表面积和孔径大小的影响[23-26]

    中国最具页岩气勘探开采潜力的富有机质海相泥页岩主要位于扬子地块,虽然原始地质条件优越,但与北美泥页岩相比,其有机质热演化程度高且后期改造强[27-29]。截至目前,页岩气突破和研究重心主要集中在中、上扬子地区海相地层,而下扬子地区页岩气研究相对滞后,在下寒武统尚未获得勘探突破。下寒武统海相泥页岩在下扬子地区分布较为广泛,沉积建造厚度大、分布较广泛,具有较高的有机质丰度且天然气吸附能力较好[30-33],具备一定的页岩气资源潜力。因此,对下扬子地区下寒武统富有机质泥页岩孔隙发育特征的分析尤为重要,明确孔隙不同类型以及孔隙结构特征的差异性,有助于揭示下扬子地区下寒武统泥页岩孔隙发育的规律性,以期对古生界海相页岩气的储集和赋存机理提供较为可靠的地质依据。

    下扬子区位于扬子板块东段,包含下扬子陆域以及向海域延伸的南黄海盆地两部分,其陆域部分西部和西北部为秦岭−大别造山带和郯庐大断裂,南部和东南部则以江南隆起与华南褶皱造山带相接,西南部至江西九江与中扬子地区相连,向东与南黄海海域相连(图1A[33-35]。南黄海盆地西侧与苏北盆地相连,向东以朝鲜半岛西缘断裂与中朝板块为界[36-37]

    图  1  下扬子地区官地1井井位[32-33]及岩性地层特征
    Figure  1.  Location of Well Guandi 1 and the generalized stratigraphic column of the well in the Lower Yangtze area

    自晋宁运动致使扬子地台基底结晶以来,大致经历了4个主要演化阶段:震旦纪—中三叠世海相盆地、晚三叠世—中侏罗世陆相盆地、晚侏罗世—早白垩世陆相火山岩盆地和晚白垩世—古近纪陆相盆地[38-40]。在震旦纪至寒武纪初快速海侵导致扬子地台整体接受稳定的海相沉积,直至古生代末。早寒武世梅树村期下扬子地区属于浅海环境,具有潮坪−浅滩相组合特征,浙北、苏南等地区为大陆坡相。早寒武世筇竹寺期至沧浪铺期下扬子地区主要为碳酸盐缓坡,北部为外陆架相,南部为深海盆地相。中寒武世中期下扬子地区海平面下降,发育一套典型的碳酸盐缓斜坡模式缓坡沉积[41]

    本文实验样品均采自位于下扬子陆域北缘江苏省盱眙县官滩镇的官地1井,该井由中国地质调查局青岛海洋地质研究所组织实施钻探,于2017年完钻,完钻井深606.75 m(图1B),自上而下依次揭示寒武系黄柏岭组、幕府山组和震旦系灯影组。该井幕府山组基于岩性组合差异可大致划分为两段,上段(43~259.8 m)主要为灰岩和钙质泥页岩、碳质泥页岩互层;下段(259.8~484.45 m)主要为碳质泥页岩含煤系地层和钙质泥页岩,夹部分灰岩和断层角砾岩。

    对上述官地1井幕府山组取样泥页岩岩心样品开展矿物成分、黏土矿物组分、有机碳含量、有机质成熟度、场发射扫描电镜、能谱分析、低温氮气吸附和高压压汞等测定分析。其中矿物成分、黏土矿物组分等实验分析在中国石油大庆油田勘探开发研究院完成,分别进行了53块样品全岩矿物和36块样品黏土矿物测试,测试仪器为D/max 2200 X射线衍射仪。有机碳含量及有机质成熟度测定在长江大学资源与环境学院完成,包括镜质体反射率分析(25件)、碳同位素分析(25件)和有机碳含量(TOC)分析(258件)。场发射扫描电镜及能谱分析在河海大学海洋科学实验中心完成,利用配置Oxford X MaxN SD能谱仪的Tescan Mira 3 型场发射扫描电子显微镜(FE-SEM),使用二次电子、电子背散射和能谱探头进行观察,工作条件为加速电压10~20 kV,工作距离约15 mm。利用场发射扫描电镜开展孔隙结构观察前,使用Leica EM TIC 3X三离子束切割仪对样品表面进行氩离子抛光。

    进一步利用图像处理软件(JMicroVision)进行电镜图像定量处理分析,得到相应的孔隙面积、孔径和面孔率结果,实现各类孔隙的定量分析。每块样品拍摄2~3张10000×图像,其中包含矿物相关基质孔隙、矿物、有机质以及有机质孔隙等信息。在10 000×图像上随机选取矩形区域各采集8张50000×图像,在此倍率下1个像素点对应5.39 nm,由于部分有机质孔隙较小导致在该倍率下无法完全识别,因而仅对泥页岩中矿物相关基质孔隙以及矿物等进行识别。在10000×图像上进一步随机选取矩形区域各采集10张150000×图像,此倍率下1个像素点对应1.80 nm。

    12块样品的低温氮气吸附和高压压汞分析均在油气藏地质及开发工程国家重点实验室(成都理工大学)完成。分析前,首先将页岩样品在−110℃下真空脱气14 h,以去除吸附的水分及其他挥发性物质。随后,将脱气后的样品称重1~2 g,在氮气(−196℃)或汞氛围下进行不同压力下的气体吸附量的系列测定实验。相对吸附平衡压力(P/P0)一般选取0.050~0.995。

    本文采用两种孔隙分类:分别为Loucks等[42]提出的孔隙类型分类方案,将泥页岩孔隙分为粒间孔隙、粒内孔隙、有机质孔隙以及微裂隙;国际纯粹与应用化学联合会(IUPAC)根据孔径大小对孔隙在结构上进行分类[43],分别为微孔(<2 nm)、介孔或中孔(2~50 nm)和宏孔(>50 nm)。

    泥页岩孔隙结构具有明显的非均质性,其中分形维数D可较好地表征复杂孔隙表面粗糙度和结构不规则性,D1代表页岩孔隙表面分形维数,D2表示孔隙体积的分形特征[44-46]。通过FHH(Frenkel-Halsey-Hill)模型可对泥页岩氮气吸附数据进行计算,公式如下[47-48]

    $$ \text{l}\text{n}\left(\frac{{V}}{{{V}}_{\text{0}}}\right)={C}+{A}\left[\text{l}\text{n}\left(\text{ln}\left(\frac{{{P}}_{\text{0}}}{{P}}\right)\right)\right] $$ (1)

    式中,C为常数,根据公式(1),参数A可由lnV−ln(ln(P0/P))的直线斜率确定,分形维数取决于A值。本文分形维数参数D的计算采用A=D−3这一计算公式 [45-46]

    全球早寒武世高等植物未发育,沥青、藻质体和动物化石碎屑(笔石、几丁虫、虫牙及其他介壳碎屑)在下扬子地区构成了早古生代沉积物中的主要有机显微组分[49-50]。碳同位素分析及干酪根显微组分鉴定表明,官地1井下寒武统幕府山组泥页岩样品有机质类型为I型干酪根和II1型干酪根。剔除因局部含煤系岩层导致的过高TOC值,官地1井幕府山组泥页岩样品TOC值为0.509%~19.9%(平均值为8.15%)。基于等效镜质体反射率换算公式($ \text{V}{\text{R}}_{\text{o}}\text{=0.5992}\text{B}{\text{R}}_{\text{o}}\text{+0.3987} $)计算可知[51],官地1井幕府山组泥页岩样品等效镜质体反射率(VRo)为3.41%~4.10%,平均为3.50%,表明其成熟度均处于过成熟阶段。

    官地1井下寒武统幕府山组泥页岩样品X衍射全岩矿物组分表明,页岩主要矿物为石英、碳酸盐和黏土矿物,含有少量长石和黄铁矿。其中石英含量为24.90%~55.70%,平均含量为37.08%;碳酸盐含量变化较大,为22.40%~64.50%,平均含量为42.11%;黏土矿物含量为5.80%~30.80%,平均含量为17.59%;长石含量为0.30%~3.10%,平均含量为1.78%。X衍射黏土矿物分析表明,黏土矿物以伊利石和绿泥石为主,高岭石含量较少。泥页岩样品页岩矿物组分三端元图表明岩性主要为钙质页岩和混合泥页岩,含有少量的硅质页岩(图2)。官地1井幕府山组泥页岩孔隙度为1.33%~17.74%,平均孔隙度为6.29%。

    图  2  官地1井下寒武统幕府山组泥页岩矿物组分三端元图 52
    图版据文献参考[52]。
    Figure  2.  Mineralogical classification of the Lower Cambrian Mufushan shale in Well Guandi 1

    (1)有机质孔隙

    FE-SEM镜下可见小于50 nm的有机质介孔发育,平均孔径为58.91 nm。由于官地1井下寒武统幕府山组泥页岩TOC含量存在一定差异,导致有机质大小、分布以及富集程度不同。幕府山组时代较老且成熟度较高,有机质孔隙形成后经历了较长时间的沉积演化和构造改造,部分有机质孔隙坍塌或被压缩。电镜下多见条带状和散块状有机质发育,可见气状孔、蜂窝状、气泡状孔隙和有机质裂隙;部分有机质未见孔隙发育,主要为无结构型干酪根,表面无明显结构特征(图3A-C)。

    图  3  官地1井下寒武统幕府山组泥页岩场发射扫描电镜镜下孔隙特征
    A. 有机质发育铸模孔隙,与黄铁矿有关,57.8 m;B. 散块状有机质发育微孔,296.75 m;C. 填隙状有机质,可见有机质孔隙和裂隙发育,437.55 m;D. 方解石胶结物与石英颗粒之间的粒间孔隙,311.65 m;E. 石英颗粒之间的粒间孔隙,57.8 m;F. 草莓状黄铁矿粒内孔隙,127.45 m;G. 方解石胶结物粒内溶蚀孔隙,311.65 m;H. 黏土矿物间发育粒内孔隙,311.65 m;I. 石英颗粒内发育微裂隙,57.8 m。
    Figure  3.  Pore characteristic images under FE-SEM of the Lower Cambrian Mufushan shale in Well Guandi 1

    (2)粒间孔隙

    官地1井下寒武统幕府山组泥页岩粒间孔隙多见于石英、方解石、白云石和黏土矿物间孔隙,电镜下可见粒间孔隙孔径最小为10.71 nm,最大为6.74 μm,平均孔径为509.04 nm(图3D、E)。

    (3)粒内孔隙

    官地1井下寒武统幕府山组泥页岩粒内孔隙多存在于方解石、长石溶蚀孔隙,黄铁矿内部晶间孔隙,以及部分矿物颗粒内部孔隙。粒内孔隙平均孔径为113.66 nm(图3F-H)。

    (4)微裂隙

    泥页岩中微裂隙可作为储存场所或运移通道,官地1井下寒武统幕府山组泥页岩可见微裂隙发育,孔径多为200~700 nm,平均477 nm(图3I)。

    官地1井下寒武统幕府山组泥页岩氮气吸附迟滞回线特征均符合IUPAC所提出的H2型、H3和H4型这三种孔隙类型(图4),分别对应墨水瓶状孔隙(窄颈相对较宽)、平行板状孔隙和狭缝状孔隙[43, 53]。氮气吸附曲线特征表明,官地1井幕府山组泥页岩样品在低压区显示较小的吸附量,反映微孔数量较少。P/P0未见饱和趋势表明存在较大孔隙未被填充[43]。官地1井幕府山组泥页岩样品BET表面积为0.623~23.732 m2/g,平均为8.846 m2/g;泥页岩孔隙体积0.002~0.030 cm3/g,平均孔隙体积0.014 cm3/g(表1)。利用Kelvin公式对幕府山组泥页岩孔径进行分析,公式如下:

    图  4  官地1井下寒武统幕府山组泥页岩氮气吸附/脱附等温线
    Figure  4.  Adsorption isotherms of the Lower Cambrian Mufushan shale in Well Guandi 1
    表  1  官地1井下寒武统幕府山组泥页岩孔隙结构参数
    Table  1.  Pore structure parameters of the Lower Cambrian Mufushan shale in Well Guandi 1
    样品编号深度/
    m
    孔隙度/
    %
    BET比表面积/
    (m2/g)
    BJH孔隙体积/
    (cm3/g)
    Z747.5022.32423.7320.03
    Z1055.4019.86510.9160.018
    Z1257.8014.72513.2000.016
    Z1465.3517.74413.8580.024
    Z1772.6511.73613.1470.016
    Z26127.452.2993.0030.029
    Z53292.954.3250.6230.003
    Z56296.751.3330.6460.002
    Z71402.052.7864.2660.004
    Z80432.054.76212.4570.012
    Z82437.556.5408.0100.006
    Z90452.357.5262.2930.006
    下载: 导出CSV 
    | 显示表格
    $$ \text{Ln}\frac{{P}}{{{P}}_{\text{0}}}=-\frac{\text{2}\gamma{{V}}_{\text{L}}}{{RT}{{r}}_{\text{m}}} $$ (2)

    公式(2)中,$\dfrac{{P}}{{{P}}_{\text{0}}}$为相对压力,$ \gamma{\text{和}}{{V}}_{\text{L}} $分别为液体表面张力和摩尔体积,R是通用气体常数,r是液体半径,T是温度。通过Kelvin公式对氮气吸附数据进行分析,结果表明未见微孔显著发育,孔隙发育主要集中于36~44 nm,以介孔和宏孔为主。

    官地1井下寒武统幕府山组泥页岩样品压汞数据结果分析表明,296.75、402.05和437.55 m样品的压汞曲线特征较为相似(图5A-C),在低压区汞饱和度上升较快,高压区汞饱和度上升相对缓慢。孔隙以宏孔为主,并见较多介孔发育。452.35 m样品压汞曲线较为特殊,在低压下样品汞饱和度上升较快,对高压反应不明显(图5D),显示其孔径分布以宏孔为主,介孔和微孔均较不发育。各样品汞饱和度均为30%~40%,比表面积为0.1689~1.3308 m2/g(平均为0.8269 m2/g)。

    图  5  官地1井下寒武统幕府山组泥页岩样品压汞曲线特征
    Figure  5.  Mercury intrusion characteristics of the Lower Cambrian Mufushan shale in Well Guandi 1

    FE-SEM图像定量分析结果表明(图6),官地1井下寒武统幕府山组泥页岩孔径分布区间为4.04~2982.83 nm,有机质孔隙占总孔隙数的74.07%,其次为粒间孔隙、粒内孔隙和微裂隙。泥页岩样品总面孔率为2.02%,其中以粒间孔隙面孔率最大(1.17%),有机质孔隙面孔率次之(0.61%),粒内孔隙和微裂隙面孔率较小(分别为0.19%和0.05%)。

    图  6  基于JMicroVision软件分析官地1井幕府山组泥页岩电镜图像
    A. 有机质孔隙和基质孔隙选区,302.65 m,10000×,蓝线方框为基质孔隙选区,红线方框为有机质区域选区;B. A图对应能谱图像,可见方解石胶结物、白云石胶结物、黏土矿物和石英发育;C、D.分别为有机质孔隙选区150000×和基质孔隙选区50000×图像;E、F. JMicroVision软件定量处理分析孔隙图像,其中紫色圈定为有机质,蓝色圈定为有机质孔隙,橙色圈定为粒间孔隙,绿色圈定为粒内孔隙。
    Figure  6.  Analysis of FE-SEM images of the Lower Cambrian Mufushan shale in Well Guandi 1 based on JMicroVision software

    氮气吸附曲线相对压力P/P0可分为两部分,其中D1对应相对压力P/P0<0.5,D2对应相对压力P/P0>0.5[45-46]。经计算,官地1井下寒武统幕府山组页岩的分形维数D为2.471~2.775,均值为2.671(表2),幕府山组泥页岩D1为2.306~2.606,平均为2.495;D2为2.425~2.851,平均为2.729,D、D1D2均偏向3,表明孔隙表面和孔隙结构具有较强的非均质性。

    表  2  官地1井下寒武统幕府山组泥页岩FHH氮气吸附分形维数
    Table  2.  Fractal dimension obtained from the nitrogen adsorption isotherm using the Frenkel-Halsey-Hill (FHH) equation of the Lower Cambrian Mufushan shale in Well Guandi 1
    样品深度/mA1R2D1A2R2D2AR2D
    Z747.50−0.39360.9972.6064−0.22770.99452.7723−0.2630.97832.737
    Z1055.40−0.4970.99882.503−0.24840.97292.7516−0.31490.95322.6851
    Z1257.80−0.42130.99872.5787−0.19670.9672.8033−0.25030.94312.7497
    Z1465.35−0.44510.99842.5549−0.26250.99842.7375−0.31740.9772.6826
    Z1772.65−0.42210.99682.5779−0.17080.95422.8292−0.22470.91932.7753
    Z26127.45−0.570.99662.43−0.57470.91762.4253−0.52470.94822.4753
    Z53292.95−0.69350.98992.3065−0.4570.99342.543−0.5290.98192.471
    Z56296.75−0.63550.99492.3645−0.37320.98512.6268−0.46180.96732.5382
    Z71402.05−0.51730.98542.4827−0.23940.98712.7606−0.32410.94992.6759
    Z80432.05−0.46620.96762.5338−0.17240.98872.8276−0.2280.92252.772
    Z82437.55−0.51070.98322.4893−0.14920.942.8508−0.23330.87012.7667
    Z90452.35−0.48310.97432.5169−0.18580.97232.8142−0.27230.91992.7277
    下载: 导出CSV 
    | 显示表格

    官地1井下寒武统幕府山组泥页岩样品TOC与总孔隙率呈弱的正相关关系(R2=0.3985,图7A),与上扬子地区下寒武统筇竹寺组页岩特征较为相似[53]。而北美阿巴拉契亚盆地泥盆系Marcellus页岩、四川盆地牛蹄塘组页岩孔隙度与TOC并非呈单调递增关系,当Marcellus页岩TOC大于5.5%后,孔隙度随TOC增加而减小,这可能与样品矿物组分差异和机械压实作用强弱有一定的关系[54-55]。而Marcellus页岩TOC含量和孔隙体积相关性较弱,粒间孔隙和粒内孔隙贡献了主要的总孔隙空间[53-54]。氮气吸附特征和孔隙定量分析进一步表明,有机质孔隙并非官地1井下寒武统幕府山组泥页岩孔隙空间的主体。

    图  7  官地1井下寒武统幕府山组泥页岩TOC与孔隙度、BET比表面积和孔隙体积相关关系
    Figure  7.  Correlation of TOC with porosity, BET specific surface area and pore volume of the Lower Cambrian Mufushan shale in Well Guandi 1

    官地1井下寒武统幕府山组泥页岩样品TOC和BET比表面积呈较好的正相关性(R2=0.5694,图7B),泥页岩孔隙比表面积随TOC增加而增大,表明TOC是幕府山组泥页岩的有机质孔隙控制因素之一,但与孔隙体积相关性较弱(图7C)。官地1井幕府山组泥页岩有机质孔隙较为发育,尽管对孔隙体积的贡献不大,但其提供大量比表面积,对页岩气吸附具有较为积极的影响。

    压实作用和胶结作用在埋藏成岩过程中往往导致泥页岩孔隙体积减小,但刚性矿物可提供一定的骨架支撑作用,有利于有机质孔隙和黏土矿物间孔隙的保存[56]。官地1井下寒武统幕府山组泥页岩样品刚性矿物含量较高,对孔隙空间支撑性较好,使得部分孔隙得以保存,其与孔隙度和比表面积均呈较好的正相关关系(R2=0.7378和R2=0.6369,图8 A、B)。利用JMicroVision软件对FE-SEM图像定量分析表明,官地1井幕府山组泥页岩基质孔隙面孔率占比最高,这与样品氮气吸附实验结果相符。刚性矿物和孔隙体积呈一定的正相关关系(图8CR2=0.4317),反映基质孔隙提供了大量的孔隙空间,可能与刚性矿物的支撑作用有关。

    图  8  官地1井下寒武统幕府山组泥页岩矿物含量与孔隙度、BET比表面积和孔隙体积相关关系
    Figure  8.  Relationships between mineral composition and porosity, BET specific surface area and pore volume of the Lower Cambrian Mufushan shale in Well Guandi 1

    碳酸盐胶结物在官地1井幕府山组泥页岩中含量较高,FE-SEM镜下可见少量溶蚀孔隙发育。其碳酸盐胶结物含量比上扬子地区下寒武统牛蹄塘组、筇竹寺组页岩相对较高,碳酸盐胶结物和孔隙度、比表面积以及孔隙体积均呈较弱的正相关关系(图8D-F)。尽管碳酸盐胶结物的弱溶蚀作用有利于粒内孔隙形成,对孔隙体积和孔隙度具有一定贡献,但碳酸盐胶结物可能堵塞孔隙,并未构成研究区泥页岩孔隙度的主控因素。

    官地1井幕府山组泥页岩黏土矿物含量与孔隙度具有负相关关系(R2=0.5961,图8G),其与比表面积呈较弱的负相关关系(图8HR2=0.3399),这可能与黏土矿物的塑性特点以及填充堵塞粒间孔隙有关。黏土矿物与孔隙体积呈负相关关系(图8IR2=0.4233),黏土矿物含量增加可能导致抗压实能力降低,部分孔隙受压实作用而造成孔隙体积减小。

    官地1井下寒武统幕府山组泥页岩分形维数和孔隙结构特征分析表明,分形维数(D1D2D)均与比表面积具有较好的相关性,相关系数R2分别为0.8404、0.2667和0.422(图9A-C),与延长组、青山口组和龙马溪组泥页岩较为一致[24, 57-58]D1与比表面积的相关性较好,能够更好地反映表面粗糙度。

    图  9  官地1井下寒武统幕府山组泥页岩分形维数与孔隙结构的相关性特征
    Figure  9.  Relationship between fractal dimension and pore structure of the Lower Cambrian Mufushan shale in Well Guandi 1

    官地1井下寒武统幕府山组泥页岩由不同形状和不同孔径孔隙(主要为介孔和宏孔)组成复杂的孔隙系统,其分形维数D与BJH孔隙体积相关性较弱,这一特征与上扬子地区下志留统龙马溪组海相页岩类似[26],而与鄂尔多斯盆地三叠系延长组陆相页岩存在较大差异[57],可能与微裂隙是否发育有关。官地1井幕府山组泥页岩分形维数D1与孔隙体积呈弱的正相关关系,而D2与孔隙体积不具相关性(图9D-F),反映孔隙结构对分形维数D1D2影响不一,这与上扬子地区下志留统龙马溪组页岩分形维数(D1D2)与孔隙体积的相关性特征较为一致[59]

    官地1井下寒武统幕府山组泥页岩FHH分形维数(D1D2D)与TOC均呈正相关关系,而与TOC拟合直线的相关系数R2分别为0.5881、0.3909和0.4225(图10A-C)。上扬子地区下寒武统牛蹄塘组海相页岩分形维数多随TOC增加而单调递增[23-24,58],这与官地1井幕府山组泥页岩FHH分形维数随TOC的变化趋势类似。

    图  10  官地1井下寒武统幕府山组泥页岩分形维数与矿物组分的相关性特征
    Figure  10.  Relationship between fractal dimension and composition of the Lower Cambrian Mufushan shale in Well Guandi 1

    官地1井幕府山组泥页岩FHH分形维数与石英矿物含量均无相关性,表明石英对孔隙表面和孔隙结构影响不大(图10D-F);而四川盆地龙马溪组页岩中石英含量及分布特征则对孔隙结构具有一定的影响[60]。官地1井幕府山组泥页岩FHH分形维数D1D2与方解石胶结物呈较弱的正相关关系(R2分别为0.2505和0.1785,图10G-I),表明孔隙表面和孔隙结构的复杂程度受方解石胶结物影响,粒内孔多发育在方解石胶结物内,具有较强的非均质性。FHH分形维数D1与黏土矿物呈较弱的负相关关系(R2=0.1657,图10J-L),表明黏土矿物的发育对孔隙表面也有一定的影响。

    (1)下扬子地区官地1井下寒武统幕府山组泥页岩主要由石英、方解石胶结物和黏土矿物组成,含有少量长石和白云石胶结物。有机质类型为I型干酪根和II1型干酪根,均处于过成熟阶段。幕府山组泥页岩发育4种孔隙类型,孔径多集中于36~44 nm,孔隙排列无序性较高。

    (2)官地1井下寒武统幕府山组泥页岩有机质孔隙主要受有机质丰度的影响,而受有机质成熟度和干酪根类型影响较小。有机质孔隙以发育介孔为主,提供了大量的比表面积,有利于为页岩气吸附提供附着点,但对孔隙体积的贡献较小,表明有机质孔隙并非孔隙空间的主控因素。刚性矿物对孔隙度、比表面积和孔隙体积均具有一定的影响,刚性矿物的支撑作用有利于孔隙空间的保存,粒间孔隙构成了最主要的孔隙类型。

    (3)官地1井下寒武统幕府山组泥页岩分形维数与总有机碳含量及比表面积相关性较好,而与孔隙体积相关性弱;表明孔壁粗糙程度及孔隙结构复杂程度受有机质丰度影响,分形维数较大的泥页岩样品具有较大的比表面积,其不同形状和不同孔径的孔隙组合构成的复杂孔隙网络导致分形维数受孔隙体积影响较小。

  • 图  1   下扬子地区官地1井井位[32-33]及岩性地层特征

    Figure  1.   Location of Well Guandi 1 and the generalized stratigraphic column of the well in the Lower Yangtze area

    图  2   官地1井下寒武统幕府山组泥页岩矿物组分三端元图 52

    图版据文献参考[52]。

    Figure  2.   Mineralogical classification of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  3   官地1井下寒武统幕府山组泥页岩场发射扫描电镜镜下孔隙特征

    A. 有机质发育铸模孔隙,与黄铁矿有关,57.8 m;B. 散块状有机质发育微孔,296.75 m;C. 填隙状有机质,可见有机质孔隙和裂隙发育,437.55 m;D. 方解石胶结物与石英颗粒之间的粒间孔隙,311.65 m;E. 石英颗粒之间的粒间孔隙,57.8 m;F. 草莓状黄铁矿粒内孔隙,127.45 m;G. 方解石胶结物粒内溶蚀孔隙,311.65 m;H. 黏土矿物间发育粒内孔隙,311.65 m;I. 石英颗粒内发育微裂隙,57.8 m。

    Figure  3.   Pore characteristic images under FE-SEM of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  4   官地1井下寒武统幕府山组泥页岩氮气吸附/脱附等温线

    Figure  4.   Adsorption isotherms of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  5   官地1井下寒武统幕府山组泥页岩样品压汞曲线特征

    Figure  5.   Mercury intrusion characteristics of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  6   基于JMicroVision软件分析官地1井幕府山组泥页岩电镜图像

    A. 有机质孔隙和基质孔隙选区,302.65 m,10000×,蓝线方框为基质孔隙选区,红线方框为有机质区域选区;B. A图对应能谱图像,可见方解石胶结物、白云石胶结物、黏土矿物和石英发育;C、D.分别为有机质孔隙选区150000×和基质孔隙选区50000×图像;E、F. JMicroVision软件定量处理分析孔隙图像,其中紫色圈定为有机质,蓝色圈定为有机质孔隙,橙色圈定为粒间孔隙,绿色圈定为粒内孔隙。

    Figure  6.   Analysis of FE-SEM images of the Lower Cambrian Mufushan shale in Well Guandi 1 based on JMicroVision software

    图  7   官地1井下寒武统幕府山组泥页岩TOC与孔隙度、BET比表面积和孔隙体积相关关系

    Figure  7.   Correlation of TOC with porosity, BET specific surface area and pore volume of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  8   官地1井下寒武统幕府山组泥页岩矿物含量与孔隙度、BET比表面积和孔隙体积相关关系

    Figure  8.   Relationships between mineral composition and porosity, BET specific surface area and pore volume of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  9   官地1井下寒武统幕府山组泥页岩分形维数与孔隙结构的相关性特征

    Figure  9.   Relationship between fractal dimension and pore structure of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  10   官地1井下寒武统幕府山组泥页岩分形维数与矿物组分的相关性特征

    Figure  10.   Relationship between fractal dimension and composition of the Lower Cambrian Mufushan shale in Well Guandi 1

    表  1   官地1井下寒武统幕府山组泥页岩孔隙结构参数

    Table  1   Pore structure parameters of the Lower Cambrian Mufushan shale in Well Guandi 1

    样品编号深度/
    m
    孔隙度/
    %
    BET比表面积/
    (m2/g)
    BJH孔隙体积/
    (cm3/g)
    Z747.5022.32423.7320.03
    Z1055.4019.86510.9160.018
    Z1257.8014.72513.2000.016
    Z1465.3517.74413.8580.024
    Z1772.6511.73613.1470.016
    Z26127.452.2993.0030.029
    Z53292.954.3250.6230.003
    Z56296.751.3330.6460.002
    Z71402.052.7864.2660.004
    Z80432.054.76212.4570.012
    Z82437.556.5408.0100.006
    Z90452.357.5262.2930.006
    下载: 导出CSV

    表  2   官地1井下寒武统幕府山组泥页岩FHH氮气吸附分形维数

    Table  2   Fractal dimension obtained from the nitrogen adsorption isotherm using the Frenkel-Halsey-Hill (FHH) equation of the Lower Cambrian Mufushan shale in Well Guandi 1

    样品深度/mA1R2D1A2R2D2AR2D
    Z747.50−0.39360.9972.6064−0.22770.99452.7723−0.2630.97832.737
    Z1055.40−0.4970.99882.503−0.24840.97292.7516−0.31490.95322.6851
    Z1257.80−0.42130.99872.5787−0.19670.9672.8033−0.25030.94312.7497
    Z1465.35−0.44510.99842.5549−0.26250.99842.7375−0.31740.9772.6826
    Z1772.65−0.42210.99682.5779−0.17080.95422.8292−0.22470.91932.7753
    Z26127.45−0.570.99662.43−0.57470.91762.4253−0.52470.94822.4753
    Z53292.95−0.69350.98992.3065−0.4570.99342.543−0.5290.98192.471
    Z56296.75−0.63550.99492.3645−0.37320.98512.6268−0.46180.96732.5382
    Z71402.05−0.51730.98542.4827−0.23940.98712.7606−0.32410.94992.6759
    Z80432.05−0.46620.96762.5338−0.17240.98872.8276−0.2280.92252.772
    Z82437.55−0.51070.98322.4893−0.14920.942.8508−0.23330.87012.7667
    Z90452.35−0.48310.97432.5169−0.18580.97232.8142−0.27230.91992.7277
    下载: 导出CSV
  • [1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653 doi: 10.1016/S1876-3804(11)60001-3

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China [J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3

    [2]

    Slatt R M, O’Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks [J]. AAPG Bulletin, 2011, 95: 2017-2030. doi: 10.1306/03301110145

    [3]

    Nelson P H. Pore-throat sizes in sandstones, tight sanstones, and shales [J]. AAPG Bulletin, 2009, 93: 329-340. doi: 10.1306/10240808059

    [4]

    Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs [J]. Marine and Petroleum Geology, 2009, 26: 916-927. doi: 10.1016/j.marpetgeo.2008.06.004

    [5]

    Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insight from organic petrology, gas adsorption, and mercury intrusion [J]. AAPG Bulletin, 2013, 97: 1621-1643. doi: 10.1306/04011312194

    [6]

    Bernard S, Horsfield B. Thermal maturation of gas shale systems [J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 635-651. doi: 10.1146/annurev-earth-060313-054850

    [7] 张鹏辉, 梁杰, 陈建文, 等. 海相页岩气储层特征研究进展与发展动态[J]. 海相油气地质, 2017, 22(4):69-76 doi: 10.3969/j.issn.1672-9854.2017.04.009

    ZHANG Penghui, LIANG Jie, CHEN Jianwen, et al. Reservoir characteristics of marine gas shales: Advances and trends [J]. Marine Origin Petroleum Geology, 2017, 22(4): 69-76. doi: 10.3969/j.issn.1672-9854.2017.04.009

    [8] 王阳, 朱炎铭. 上扬子区龙马溪组页岩微观孔缝演化与页岩气赋存[M]. 徐州: 中国矿业大学出版社, 2018

    WANG Yang, ZHU Yanming. Microscopic pore evolution and shale gas occurrence of Longmaxi Formation in Upper Tangtze aera[M]. Xuzhou: China University of Mining and Technology Press, 2018.

    [9]

    Zhang P H, Lee Y I, Zhang J L. A review of high-resolution X-ray computered tomography applied to petroleum geology and a case study [J]. Micron, 2019, 124,102702: 1-10.

    [10] 鲍衍君, 张鹏辉, 梁杰, 等. 加拿大魁北克省奥陶系Utica海相页岩矿物分析及孔隙结构特征[J]. 海洋地质前沿, 2020, 36(10):57-67

    BAO Yanjun, ZHANG Penghui, LIANG Jie, et al. Mineralogy and pore structures of the Ordovician Utica shale in Quebec, Canada [J]. Marine Geology Frontiers, 2020, 36(10): 57-67.

    [11]

    Keller L M, Schuetz P, Erni R, et al. Characterization of multi-scale microstructural features in Opalinus clay [J]. Microporous and Mesoporous Materials, 2012, 170(4): 84-90.

    [12]

    Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas [J]. AAPG Bulletin, 2015, 99: 1713-1744. doi: 10.1306/03051514151

    [13] 王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3):278-285

    WANG Yu, JIN Chan, WANG Lihua, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling [J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.

    [14] 张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1):80-86 doi: 10.11743/ogg20160111

    ZHANG Leilei, LU Zhengyuan, WANG Jun, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2016, 37(1): 80-86. doi: 10.11743/ogg20160111

    [15] 戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3):260-269

    QI Minghui, LI Junjun, CAO Qian. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision [J]. Rock and Mineral Analysis, 2019, 38(3): 260-269.

    [16]

    Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation [J]. Physical Review Letters, 1985, 54(12): 1325-1328. doi: 10.1103/PhysRevLett.54.1325

    [17]

    Cox B L, Wang J S Y. Fractal surfaces: Measurement and applications in the earth sciences [J]. Fractals, 1993, 1(1): 87-115. doi: 10.1142/S0218348X93000125

    [18]

    Schlueter E M, Zimmerman R W, Witherspoon P A, et al. The fractal dimension of pores in sedimentary rocks and its influence on permeability [J]. Engineering Geology., 1997, 48(3): 199-215.

    [19]

    Yu B M, Cheng P. A fractal permeability model for bi-dispersed porous media [J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993. doi: 10.1016/S0017-9310(02)00014-5

    [20]

    Sun W, Zuo Y J, Wu Z H, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou province: Investigations using NMR, SEM and image analyses [J]. Marine and Petroleum Geology, 2019, 99: 416-428. doi: 10.1016/j.marpetgeo.2018.10.042

    [21]

    Song W H, Wang D Y, Yao J, et al. Multiscale image-based fractal characteristic of shale pore structure with implication to accurate prediction of gas permeability [J]. Fuel, 2019, 241: 522-532. doi: 10.1016/j.fuel.2018.12.062

    [22]

    Liu B, Gao Y F, Liu K Q, et al. Pore structure and adsorption hysteresis of the middle Jurassic Xishanyao shale formation in the Southern Junggar Basin, northwest China [J]. Energy Exploration & Exploitation, 2021, 39(3): 761-778.

    [23]

    Yang F, Ning Z F, Liu H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China [J]. Fuel, 2014, 115: 378-384. doi: 10.1016/j.fuel.2013.07.040

    [24]

    Wang M, Xue H T, Tian S S, et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China [J]. Marine and Petroleum Geology, 2015, 67: 144-153. doi: 10.1016/j.marpetgeo.2015.05.011

    [25]

    Li A, Ding W L, He J H, et al. Investigation of pore structure and fractal characteristics of organicrich shale reservoirs: A case study of Lower Cambrian Qiongzhusi Formation in Malong block of eastern Yunnan Province, South China [J]. Marine and Petroleum Geology, 2016, 70: 46-57. doi: 10.1016/j.marpetgeo.2015.11.004

    [26]

    Yang R, He S, Yi J Z, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry [J]. Marine and Petroleum Geology, 2016, 70: 27-45. doi: 10.1016/j.marpetgeo.2015.11.019

    [27]

    Hao F, Zou H, Lu Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China [J]. AAPG Bulletin, 2013, 97: 1325-1346. doi: 10.1306/02141312091

    [28] 张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1):074-086

    ZHANG Jinchuan, YANG Chao, CHEN Qian, et al. Deposition and distribution of potential shales in China [J]. Earth Science Frontiers, 2016, 23(1): 074-086.

    [29] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):1-13

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (II) [J]. Petroleum Exploration and Development, 2016, 43(2): 1-13.

    [30] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一)——南方四套区域性海相烃源岩的分布[J]. 海相石油地质, 2008, 13(2):1-16

    LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks [J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.

    [31] 刘小平, 潘继平, 刘东鹰, 等. 苏北地区下寒武统幕府山组页岩气勘探前景[J]. 成都理工大学学报:自然科学版, 2012, 39(2):198-205

    LIU Xiaoping, PAN Jiping, LIU Dongying, et al. Shale-gas exploration prospect of Lower Cambrian Mufushan Formation in the northern Jiangsu, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 198-205.

    [32] 张鹏辉, 付奕霖, 梁杰, 等. 南黄海盆地下古生界油气地质条件与勘探前景[J]. 地质通报, 2021, 40(2/3):243-251

    ZHANG Penghui, FU Yilin, LIANG Jie, et al. Hydrocarbon geological conditions and exploration prospects of Lower Paleozoic in the South Yellow Sea Basin [J]. Geological Bulletin of China, 2021, 40(2/3): 243-251.

    [33] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.

    [34]

    Du X B, Zhang M Q, Lu Y C, et al. Lithofacies and depositional characteristics of gas shales in the western area of the Lower Yangtze, China. Geological Journal, 2015, 50(5): 683-701.

    [35]

    Cai Z R, Huang Q T, Xia B, et al. Differences in shale gas exploration prospects of the upper Yangtze Platform and the lower Yangtze Platform: Insights from computer modelling of tectonic development [J]. Journal of Natural Gas Science and Engineering, 2016, 36: 42-53. doi: 10.1016/j.jngse.2016.10.004

    [36] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29

    CHEN Jianwen, LIANG Jie, ZHANG Yingguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.

    [37] 梁杰, 许明, 陈建文, 等. 印支运动在南黄海盆地的响应及其对油气地质条件的影响[J]. 地质通报, 2021, 40(2/3):252-259

    LIANG Jie, XU Ming, CHEN Jianwen, et al. The response of the Indosinian Movement to the South Yellow Sea basin and its influence on the hydrocarbon geological conditions [J]. Geological Bulletin of China, 2021, 40(2/3): 252-259.

    [38] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.

    [39] 吴淑玉, 刘俊, 陈建文, 等. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5):136-148

    WU Shuyu, LIU Jun, CHEN Jianwen, et al. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148.

    [40] 张玉玺, 周江羽, 陈建文, 等. 下扬子地区幕府山组陆缘海-台地黑色细粒沉积岩系沉积学和孔隙结构特征[J]. 地球科学, 2021, 46(1):186-199

    ZHANG Yuxi, ZHOU Jiangyu, CHEN Jianwen, et al. Sedimentology and porosity structures of the epicontinental sea-platform fine-grained deposits of Mufushan Formation in Lower Yangtze area [J]. Earth Science, 2021, 46(1): 186-199.

    [41]

    Zhang K, Song Y, Jiang S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze region [J]. Marine and Petroleum Geology, 2019, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044

    [42]

    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J]. AAPG Bulletin, 2012, 96: 1071-1098. doi: 10.1306/08171111061

    [43]

    Sing K S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. doi: 10.1351/pac198557040603

    [44]

    Wee J H, Jun C S, Lee K Y. The Surface fractal investigation of anode electrode of molten carbonate fuel cell [J]. Studies in Surface Science and Catalysis, 2006, 159: 621-624.

    [45]

    Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals [J]. International Journal of Coal Geology, 2008, 73(1): 27-42. doi: 10.1016/j.coal.2007.07.003

    [46]

    Bu H L, Ju Y W, Tan J Q, et al. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China [J]. Journal of Natural Gas Science and Engineering, 2015, 24: 166-177. doi: 10.1016/j.jngse.2015.03.021

    [47]

    Pfeifer P, Avnir D. Chemistry in Noninteger Dimensions Between Two and Three: I. Fractal Theory of Heterogeneous Surfaces [J]. Journal of Chemical Physics, 1983, 79(7): 3558-3565. doi: 10.1063/1.446210

    [48]

    Ahnad A L, Mustafa N N N. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel–Halsey–Hill (FHH) model [J]. Journal of Colloid and Interface Science, 2006, 301(2): 575-584. doi: 10.1016/j.jcis.2006.05.041

    [49] 汪啸风, Hoffknecht A, 萧建新, 等. 笔石、几丁虫和牙反射率在热成熟度上的应用[J]. 地质学报, 1992, 66(3):269-279

    WANG Xiaofeng, Hoffknecht A, XIAO Jianxin, et al. Graptolite, Chitinozoan and Scolecodont Reflec, Tances and their use as an indicator of thermal maturity [J]. Acta Geologica Sinica, 1992, 66(3): 269-279.

    [50]

    Bertrand R. Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts [J]. Organic Geochemistry, 1990, 15(6): 565-574. doi: 10.1016/0146-6380(90)90102-6

    [51]

    Liu B, Schieber J, Mastalerz M. Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany shale during thermal maturation: Implications for kerogen transformation[C]// Shale Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. Tulsa: AAPG Memoir, 2019: 165-188.

    [52] 张鹏辉, 陈志勇, 薛路, 等. 塔里木盆地西北缘下寒武统黑色岩系差异性成岩演化及其影响因素[J]. 岩石学报, 2020, 36(11):3463-3476

    ZHANG Penghui, CHEN Zhiyong, XUE Lu, et al. The differential diagenetic evolution and its influencing factors of Lower Cambrian black rock series in the northwestern margin of Tarim Basin [J]. Acta Petrologica Sinica, 2020, 36(11): 3463-3476.

    [53]

    Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. doi: 10.1515/pac-2014-1117

    [54]

    Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted ore system, Marcellus formation (Devonian), Pennsylvania [J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048

    [55]

    Zhang Y F, Yu B S, Pan Z J, et al. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China [J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103089. doi: 10.1016/j.jngse.2019.103089

    [56]

    Li X, Jiang Z X, Wang P F, et al. Porosity-preserving mechanisms of marine shale in Lower Cambrian of Sichuan Basin, South China [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 191-205. doi: 10.1016/j.jngse.2018.05.002

    [57]

    Liu X J, Xiong J, Liang L X. Investigation of pore structure and fractal characteristics of organicrich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis [J]. Journal of Natural Gas Science and Engineering, 2015, 27(2): 402-409.

    [58]

    Ji W M, Song Y, Jiang Z X, et al. Fractal characteristics of nano-pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, south China [J]. Marine and Petroleum Geology, 2016, 78: 88-98. doi: 10.1016/j.marpetgeo.2016.08.023

    [59] 陈燕燕, 邹才能, Maria Mastalerz, 等. 页岩微观孔隙演化及分形特征研究[J]. 天然气地球科学, 2015, 26(9):1646-1656

    CHEN Yanyan, ZOU Caineng, Maria Mastalerz, et al. Porosity and fractal characteristics of shale across a maturation gradient [J]. Natural Gas Geoscience, 2015, 26(9): 1646-1656.

    [60] 胡琳, 朱炎铭, 陈尚斌, 等. 蜀南双河龙马溪组页岩孔隙结构的分形特征[J]. 新疆石油地质, 2013, 34(1):79-82

    HU Lin, ZHU Yanming, CHEN Shangbin, et al. Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in southern Sichuan [J]. Xinjiang Petroleum Geology, 2013, 34(1): 79-82.

  • 期刊类型引用(0)

    其他类型引用(1)

图(10)  /  表(2)
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  445
  • PDF下载量:  22
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2021-11-23
  • 录用日期:  2021-11-23
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2022-04-27

目录

/

返回文章
返回