下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素

鲍衍君, 张鹏辉, 陈建文, 梁杰, 孟祥豪, 付奕霖, 薛路, 张旭, 王拔秀

鲍衍君,张鹏辉,陈建文,等. 下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素[J]. 海洋地质与第四纪地质,2022,42(2): 144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
引用本文: 鲍衍君,张鹏辉,陈建文,等. 下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素[J]. 海洋地质与第四纪地质,2022,42(2): 144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
BAO Yanjun,ZHANG Penghui,CHEN Jianwen,et al. Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area[J]. Marine Geology & Quaternary Geology,2022,42(2):144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201
Citation: BAO Yanjun,ZHANG Penghui,CHEN Jianwen,et al. Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area[J]. Marine Geology & Quaternary Geology,2022,42(2):144-157. DOI: 10.16562/j.cnki.0256-1492.2021110201

下扬子地区官地1井下寒武统海相泥页岩孔隙发育特征及影响因素

基金项目: 江苏省研究生科研与实践创新计划项目“下扬子地区下寒武统海相页岩孔隙结构特征及影响因素”(KYCX_0522);中国科学院海洋地质与环境重点实验室开放基金课题“南黄海盆地崂山隆起下志留统泥页岩成岩演化及其对孔隙发育的影响”(MGE2021KG16);中央高校基本科研业务费项目“下扬子地区下寒武统海相页岩孔隙结构特征及影响因素”(B200203135),“下扬子地块早寒武世古海洋环境演化”(B200202144);中国地质调查局项目“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152);国家自然科学基金项目“下扬子地区下寒武统深水陆棚相富有机质泥页岩差异性成岩演化过程及其对孔隙发育的控制作用”(41702162),“南黄海崂山隆起二叠系储层油气成藏破坏与流体演化过程还原研究”(42076220);山东省自然科学基金项目“南黄海盆地崂山隆起石炭系油气保存条件的主控因素分析”(ZR2020MD071)
详细信息
    作者简介:

    鲍衍君(1996—),男,硕士,主要从事海洋地质研究,E-mail:baoyj025@163.com

    通讯作者:

    张鹏辉(1986—),男,博士,副教授,主要从事油气地质与海洋地质方面的教学与研究,E-mail:zph010@163.com

  • 中图分类号: P536

Pore characteristics and influencing factors of the Lower Cambrian marine shale in the Lower Yangtze area

  • 摘要: 以下扬子陆域地区官地1井下寒武统幕府山组海相泥页岩岩心样品为研究对象,综合运用场发射扫描电镜、X衍射分析、气体吸附、高压压汞和有机地球化学分析等实验测试手段,系统研究了官地1井幕府山组泥页岩孔隙结构特征和孔隙发育影响因素。研究表明:① 官地1井幕府山组泥页岩矿物组成以石英、方解石胶结物和黏土矿物为主,其总有机碳含量较高,有机质类型以I型干酪根为主且均处于过成熟阶段;② 泥页岩孔隙类型主要为基质孔隙(粒间孔隙和粒内孔隙)、有机质孔隙和微裂隙,其中以有机质孔隙含量居多,而粒间孔隙面孔率占比最高;③ 有机质丰度对有机质孔隙的孔径和比表面积具有一定的影响,压实作用则构成过成熟阶段孔隙演化的主要因素,而刚性矿物具有一定的支撑作用并对有机质孔隙的保存具有积极意义;④ 分形维数与总有机碳含量和比表面积相关性较好,而与孔隙体积相关性弱,反映孔壁粗糙程度及孔隙结构复杂程度受有机质丰度影响。
    Abstract: The marine shale samples of the Lower Cambrian Mufushan Formation collected from the Well GD1 in the Lower Yangtze area are systematically studied in this paper for pore structure characteristics and their influencing factors. Various testing methods, such as field emission scanning electron microscope, X-ray diffraction analysis, gas adsorption, high-pressure mercury injection and organic geochemical analysis are adopted for this research. It is revealed that the Mufushan shale is mainly composed of quartz, calcite and clay minerals in mineralogy. The total organic carbon content is quite high, and the organic matter is dominated by the type I of kerogen overmatured. The pores are dominated by matrix pores including intergranular and intragranular pores, organic matter pores and microfractures. Organic matter pores are well developed, and the proportion of intergranular pores is the highest. Organic matter abundance has certain influence on the pore size and specific surface area of organic matter pores. Compaction is the main factor for pore evolution in the overmatured stage, while rigid minerals, as supporting components, play a positive role in the preservation of organic matter pores. The fractal dimension has a good correlation with the total organic carbon content and specific surface area but weak correlation with pore volume, suggesting that the roughness of the pore wall and the complexity of the pore structure are affected by organic matter abundance.
  • 图  1   下扬子地区官地1井井位[32-33]及岩性地层特征

    Figure  1.   Location of Well Guandi 1 and the generalized stratigraphic column of the well in the Lower Yangtze area

    图  2   官地1井下寒武统幕府山组泥页岩矿物组分三端元图 52

    图版据文献参考[52]。

    Figure  2.   Mineralogical classification of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  3   官地1井下寒武统幕府山组泥页岩场发射扫描电镜镜下孔隙特征

    A. 有机质发育铸模孔隙,与黄铁矿有关,57.8 m;B. 散块状有机质发育微孔,296.75 m;C. 填隙状有机质,可见有机质孔隙和裂隙发育,437.55 m;D. 方解石胶结物与石英颗粒之间的粒间孔隙,311.65 m;E. 石英颗粒之间的粒间孔隙,57.8 m;F. 草莓状黄铁矿粒内孔隙,127.45 m;G. 方解石胶结物粒内溶蚀孔隙,311.65 m;H. 黏土矿物间发育粒内孔隙,311.65 m;I. 石英颗粒内发育微裂隙,57.8 m。

    Figure  3.   Pore characteristic images under FE-SEM of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  4   官地1井下寒武统幕府山组泥页岩氮气吸附/脱附等温线

    Figure  4.   Adsorption isotherms of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  5   官地1井下寒武统幕府山组泥页岩样品压汞曲线特征

    Figure  5.   Mercury intrusion characteristics of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  6   基于JMicroVision软件分析官地1井幕府山组泥页岩电镜图像

    A. 有机质孔隙和基质孔隙选区,302.65 m,10000×,蓝线方框为基质孔隙选区,红线方框为有机质区域选区;B. A图对应能谱图像,可见方解石胶结物、白云石胶结物、黏土矿物和石英发育;C、D.分别为有机质孔隙选区150000×和基质孔隙选区50000×图像;E、F. JMicroVision软件定量处理分析孔隙图像,其中紫色圈定为有机质,蓝色圈定为有机质孔隙,橙色圈定为粒间孔隙,绿色圈定为粒内孔隙。

    Figure  6.   Analysis of FE-SEM images of the Lower Cambrian Mufushan shale in Well Guandi 1 based on JMicroVision software

    图  7   官地1井下寒武统幕府山组泥页岩TOC与孔隙度、BET比表面积和孔隙体积相关关系

    Figure  7.   Correlation of TOC with porosity, BET specific surface area and pore volume of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  8   官地1井下寒武统幕府山组泥页岩矿物含量与孔隙度、BET比表面积和孔隙体积相关关系

    Figure  8.   Relationships between mineral composition and porosity, BET specific surface area and pore volume of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  9   官地1井下寒武统幕府山组泥页岩分形维数与孔隙结构的相关性特征

    Figure  9.   Relationship between fractal dimension and pore structure of the Lower Cambrian Mufushan shale in Well Guandi 1

    图  10   官地1井下寒武统幕府山组泥页岩分形维数与矿物组分的相关性特征

    Figure  10.   Relationship between fractal dimension and composition of the Lower Cambrian Mufushan shale in Well Guandi 1

    表  1   官地1井下寒武统幕府山组泥页岩孔隙结构参数

    Table  1   Pore structure parameters of the Lower Cambrian Mufushan shale in Well Guandi 1

    样品编号深度/
    m
    孔隙度/
    %
    BET比表面积/
    (m2/g)
    BJH孔隙体积/
    (cm3/g)
    Z747.5022.32423.7320.03
    Z1055.4019.86510.9160.018
    Z1257.8014.72513.2000.016
    Z1465.3517.74413.8580.024
    Z1772.6511.73613.1470.016
    Z26127.452.2993.0030.029
    Z53292.954.3250.6230.003
    Z56296.751.3330.6460.002
    Z71402.052.7864.2660.004
    Z80432.054.76212.4570.012
    Z82437.556.5408.0100.006
    Z90452.357.5262.2930.006
    下载: 导出CSV

    表  2   官地1井下寒武统幕府山组泥页岩FHH氮气吸附分形维数

    Table  2   Fractal dimension obtained from the nitrogen adsorption isotherm using the Frenkel-Halsey-Hill (FHH) equation of the Lower Cambrian Mufushan shale in Well Guandi 1

    样品深度/mA1R2D1A2R2D2AR2D
    Z747.50−0.39360.9972.6064−0.22770.99452.7723−0.2630.97832.737
    Z1055.40−0.4970.99882.503−0.24840.97292.7516−0.31490.95322.6851
    Z1257.80−0.42130.99872.5787−0.19670.9672.8033−0.25030.94312.7497
    Z1465.35−0.44510.99842.5549−0.26250.99842.7375−0.31740.9772.6826
    Z1772.65−0.42210.99682.5779−0.17080.95422.8292−0.22470.91932.7753
    Z26127.45−0.570.99662.43−0.57470.91762.4253−0.52470.94822.4753
    Z53292.95−0.69350.98992.3065−0.4570.99342.543−0.5290.98192.471
    Z56296.75−0.63550.99492.3645−0.37320.98512.6268−0.46180.96732.5382
    Z71402.05−0.51730.98542.4827−0.23940.98712.7606−0.32410.94992.6759
    Z80432.05−0.46620.96762.5338−0.17240.98872.8276−0.2280.92252.772
    Z82437.55−0.51070.98322.4893−0.14920.942.8508−0.23330.87012.7667
    Z90452.35−0.48310.97432.5169−0.18580.97232.8142−0.27230.91992.7277
    下载: 导出CSV
  • [1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653 doi: 10.1016/S1876-3804(11)60001-3

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China [J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3

    [2]

    Slatt R M, O’Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks [J]. AAPG Bulletin, 2011, 95: 2017-2030. doi: 10.1306/03301110145

    [3]

    Nelson P H. Pore-throat sizes in sandstones, tight sanstones, and shales [J]. AAPG Bulletin, 2009, 93: 329-340. doi: 10.1306/10240808059

    [4]

    Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs [J]. Marine and Petroleum Geology, 2009, 26: 916-927. doi: 10.1016/j.marpetgeo.2008.06.004

    [5]

    Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insight from organic petrology, gas adsorption, and mercury intrusion [J]. AAPG Bulletin, 2013, 97: 1621-1643. doi: 10.1306/04011312194

    [6]

    Bernard S, Horsfield B. Thermal maturation of gas shale systems [J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 635-651. doi: 10.1146/annurev-earth-060313-054850

    [7] 张鹏辉, 梁杰, 陈建文, 等. 海相页岩气储层特征研究进展与发展动态[J]. 海相油气地质, 2017, 22(4):69-76 doi: 10.3969/j.issn.1672-9854.2017.04.009

    ZHANG Penghui, LIANG Jie, CHEN Jianwen, et al. Reservoir characteristics of marine gas shales: Advances and trends [J]. Marine Origin Petroleum Geology, 2017, 22(4): 69-76. doi: 10.3969/j.issn.1672-9854.2017.04.009

    [8] 王阳, 朱炎铭. 上扬子区龙马溪组页岩微观孔缝演化与页岩气赋存[M]. 徐州: 中国矿业大学出版社, 2018

    WANG Yang, ZHU Yanming. Microscopic pore evolution and shale gas occurrence of Longmaxi Formation in Upper Tangtze aera[M]. Xuzhou: China University of Mining and Technology Press, 2018.

    [9]

    Zhang P H, Lee Y I, Zhang J L. A review of high-resolution X-ray computered tomography applied to petroleum geology and a case study [J]. Micron, 2019, 124,102702: 1-10.

    [10] 鲍衍君, 张鹏辉, 梁杰, 等. 加拿大魁北克省奥陶系Utica海相页岩矿物分析及孔隙结构特征[J]. 海洋地质前沿, 2020, 36(10):57-67

    BAO Yanjun, ZHANG Penghui, LIANG Jie, et al. Mineralogy and pore structures of the Ordovician Utica shale in Quebec, Canada [J]. Marine Geology Frontiers, 2020, 36(10): 57-67.

    [11]

    Keller L M, Schuetz P, Erni R, et al. Characterization of multi-scale microstructural features in Opalinus clay [J]. Microporous and Mesoporous Materials, 2012, 170(4): 84-90.

    [12]

    Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas [J]. AAPG Bulletin, 2015, 99: 1713-1744. doi: 10.1306/03051514151

    [13] 王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3):278-285

    WANG Yu, JIN Chan, WANG Lihua, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling [J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.

    [14] 张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1):80-86 doi: 10.11743/ogg20160111

    ZHANG Leilei, LU Zhengyuan, WANG Jun, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin [J]. Oil & Gas Geology, 2016, 37(1): 80-86. doi: 10.11743/ogg20160111

    [15] 戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3):260-269

    QI Minghui, LI Junjun, CAO Qian. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision [J]. Rock and Mineral Analysis, 2019, 38(3): 260-269.

    [16]

    Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation [J]. Physical Review Letters, 1985, 54(12): 1325-1328. doi: 10.1103/PhysRevLett.54.1325

    [17]

    Cox B L, Wang J S Y. Fractal surfaces: Measurement and applications in the earth sciences [J]. Fractals, 1993, 1(1): 87-115. doi: 10.1142/S0218348X93000125

    [18]

    Schlueter E M, Zimmerman R W, Witherspoon P A, et al. The fractal dimension of pores in sedimentary rocks and its influence on permeability [J]. Engineering Geology., 1997, 48(3): 199-215.

    [19]

    Yu B M, Cheng P. A fractal permeability model for bi-dispersed porous media [J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993. doi: 10.1016/S0017-9310(02)00014-5

    [20]

    Sun W, Zuo Y J, Wu Z H, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou province: Investigations using NMR, SEM and image analyses [J]. Marine and Petroleum Geology, 2019, 99: 416-428. doi: 10.1016/j.marpetgeo.2018.10.042

    [21]

    Song W H, Wang D Y, Yao J, et al. Multiscale image-based fractal characteristic of shale pore structure with implication to accurate prediction of gas permeability [J]. Fuel, 2019, 241: 522-532. doi: 10.1016/j.fuel.2018.12.062

    [22]

    Liu B, Gao Y F, Liu K Q, et al. Pore structure and adsorption hysteresis of the middle Jurassic Xishanyao shale formation in the Southern Junggar Basin, northwest China [J]. Energy Exploration & Exploitation, 2021, 39(3): 761-778.

    [23]

    Yang F, Ning Z F, Liu H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China [J]. Fuel, 2014, 115: 378-384. doi: 10.1016/j.fuel.2013.07.040

    [24]

    Wang M, Xue H T, Tian S S, et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China [J]. Marine and Petroleum Geology, 2015, 67: 144-153. doi: 10.1016/j.marpetgeo.2015.05.011

    [25]

    Li A, Ding W L, He J H, et al. Investigation of pore structure and fractal characteristics of organicrich shale reservoirs: A case study of Lower Cambrian Qiongzhusi Formation in Malong block of eastern Yunnan Province, South China [J]. Marine and Petroleum Geology, 2016, 70: 46-57. doi: 10.1016/j.marpetgeo.2015.11.004

    [26]

    Yang R, He S, Yi J Z, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry [J]. Marine and Petroleum Geology, 2016, 70: 27-45. doi: 10.1016/j.marpetgeo.2015.11.019

    [27]

    Hao F, Zou H, Lu Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China [J]. AAPG Bulletin, 2013, 97: 1325-1346. doi: 10.1306/02141312091

    [28] 张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1):074-086

    ZHANG Jinchuan, YANG Chao, CHEN Qian, et al. Deposition and distribution of potential shales in China [J]. Earth Science Frontiers, 2016, 23(1): 074-086.

    [29] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):1-13

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (II) [J]. Petroleum Exploration and Development, 2016, 43(2): 1-13.

    [30] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(一)——南方四套区域性海相烃源岩的分布[J]. 海相石油地质, 2008, 13(2):1-16

    LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks [J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.

    [31] 刘小平, 潘继平, 刘东鹰, 等. 苏北地区下寒武统幕府山组页岩气勘探前景[J]. 成都理工大学学报:自然科学版, 2012, 39(2):198-205

    LIU Xiaoping, PAN Jiping, LIU Dongying, et al. Shale-gas exploration prospect of Lower Cambrian Mufushan Formation in the northern Jiangsu, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 198-205.

    [32] 张鹏辉, 付奕霖, 梁杰, 等. 南黄海盆地下古生界油气地质条件与勘探前景[J]. 地质通报, 2021, 40(2/3):243-251

    ZHANG Penghui, FU Yilin, LIANG Jie, et al. Hydrocarbon geological conditions and exploration prospects of Lower Paleozoic in the South Yellow Sea Basin [J]. Geological Bulletin of China, 2021, 40(2/3): 243-251.

    [33] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23

    CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.

    [34]

    Du X B, Zhang M Q, Lu Y C, et al. Lithofacies and depositional characteristics of gas shales in the western area of the Lower Yangtze, China. Geological Journal, 2015, 50(5): 683-701.

    [35]

    Cai Z R, Huang Q T, Xia B, et al. Differences in shale gas exploration prospects of the upper Yangtze Platform and the lower Yangtze Platform: Insights from computer modelling of tectonic development [J]. Journal of Natural Gas Science and Engineering, 2016, 36: 42-53. doi: 10.1016/j.jngse.2016.10.004

    [36] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29

    CHEN Jianwen, LIANG Jie, ZHANG Yingguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.

    [37] 梁杰, 许明, 陈建文, 等. 印支运动在南黄海盆地的响应及其对油气地质条件的影响[J]. 地质通报, 2021, 40(2/3):252-259

    LIANG Jie, XU Ming, CHEN Jianwen, et al. The response of the Indosinian Movement to the South Yellow Sea basin and its influence on the hydrocarbon geological conditions [J]. Geological Bulletin of China, 2021, 40(2/3): 252-259.

    [38] 陈建文, 龚建明, 李刚, 等. 南黄海盆地海相中—古生界油气资源潜力巨大[J]. 海洋地质前沿, 2016, 32(1):1-7

    CHEN Jianwen, GONG Jianming, LI Gang, et al. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(1): 1-7.

    [39] 吴淑玉, 刘俊, 陈建文, 等. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5):136-148

    WU Shuyu, LIU Jun, CHEN Jianwen, et al. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148.

    [40] 张玉玺, 周江羽, 陈建文, 等. 下扬子地区幕府山组陆缘海-台地黑色细粒沉积岩系沉积学和孔隙结构特征[J]. 地球科学, 2021, 46(1):186-199

    ZHANG Yuxi, ZHOU Jiangyu, CHEN Jianwen, et al. Sedimentology and porosity structures of the epicontinental sea-platform fine-grained deposits of Mufushan Formation in Lower Yangtze area [J]. Earth Science, 2021, 46(1): 186-199.

    [41]

    Zhang K, Song Y, Jiang S, et al. Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: A case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze region [J]. Marine and Petroleum Geology, 2019, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044

    [42]

    Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J]. AAPG Bulletin, 2012, 96: 1071-1098. doi: 10.1306/08171111061

    [43]

    Sing K S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. doi: 10.1351/pac198557040603

    [44]

    Wee J H, Jun C S, Lee K Y. The Surface fractal investigation of anode electrode of molten carbonate fuel cell [J]. Studies in Surface Science and Catalysis, 2006, 159: 621-624.

    [45]

    Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals [J]. International Journal of Coal Geology, 2008, 73(1): 27-42. doi: 10.1016/j.coal.2007.07.003

    [46]

    Bu H L, Ju Y W, Tan J Q, et al. Fractal characteristics of pores in non-marine shales from the Huainan coalfield, eastern China [J]. Journal of Natural Gas Science and Engineering, 2015, 24: 166-177. doi: 10.1016/j.jngse.2015.03.021

    [47]

    Pfeifer P, Avnir D. Chemistry in Noninteger Dimensions Between Two and Three: I. Fractal Theory of Heterogeneous Surfaces [J]. Journal of Chemical Physics, 1983, 79(7): 3558-3565. doi: 10.1063/1.446210

    [48]

    Ahnad A L, Mustafa N N N. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel–Halsey–Hill (FHH) model [J]. Journal of Colloid and Interface Science, 2006, 301(2): 575-584. doi: 10.1016/j.jcis.2006.05.041

    [49] 汪啸风, Hoffknecht A, 萧建新, 等. 笔石、几丁虫和牙反射率在热成熟度上的应用[J]. 地质学报, 1992, 66(3):269-279

    WANG Xiaofeng, Hoffknecht A, XIAO Jianxin, et al. Graptolite, Chitinozoan and Scolecodont Reflec, Tances and their use as an indicator of thermal maturity [J]. Acta Geologica Sinica, 1992, 66(3): 269-279.

    [50]

    Bertrand R. Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts [J]. Organic Geochemistry, 1990, 15(6): 565-574. doi: 10.1016/0146-6380(90)90102-6

    [51]

    Liu B, Schieber J, Mastalerz M. Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany shale during thermal maturation: Implications for kerogen transformation[C]// Shale Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. Tulsa: AAPG Memoir, 2019: 165-188.

    [52] 张鹏辉, 陈志勇, 薛路, 等. 塔里木盆地西北缘下寒武统黑色岩系差异性成岩演化及其影响因素[J]. 岩石学报, 2020, 36(11):3463-3476

    ZHANG Penghui, CHEN Zhiyong, XUE Lu, et al. The differential diagenetic evolution and its influencing factors of Lower Cambrian black rock series in the northwestern margin of Tarim Basin [J]. Acta Petrologica Sinica, 2020, 36(11): 3463-3476.

    [53]

    Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. doi: 10.1515/pac-2014-1117

    [54]

    Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted ore system, Marcellus formation (Devonian), Pennsylvania [J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048

    [55]

    Zhang Y F, Yu B S, Pan Z J, et al. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China [J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103089. doi: 10.1016/j.jngse.2019.103089

    [56]

    Li X, Jiang Z X, Wang P F, et al. Porosity-preserving mechanisms of marine shale in Lower Cambrian of Sichuan Basin, South China [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 191-205. doi: 10.1016/j.jngse.2018.05.002

    [57]

    Liu X J, Xiong J, Liang L X. Investigation of pore structure and fractal characteristics of organicrich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis [J]. Journal of Natural Gas Science and Engineering, 2015, 27(2): 402-409.

    [58]

    Ji W M, Song Y, Jiang Z X, et al. Fractal characteristics of nano-pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, south China [J]. Marine and Petroleum Geology, 2016, 78: 88-98. doi: 10.1016/j.marpetgeo.2016.08.023

    [59] 陈燕燕, 邹才能, Maria Mastalerz, 等. 页岩微观孔隙演化及分形特征研究[J]. 天然气地球科学, 2015, 26(9):1646-1656

    CHEN Yanyan, ZOU Caineng, Maria Mastalerz, et al. Porosity and fractal characteristics of shale across a maturation gradient [J]. Natural Gas Geoscience, 2015, 26(9): 1646-1656.

    [60] 胡琳, 朱炎铭, 陈尚斌, 等. 蜀南双河龙马溪组页岩孔隙结构的分形特征[J]. 新疆石油地质, 2013, 34(1):79-82

    HU Lin, ZHU Yanming, CHEN Shangbin, et al. Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in southern Sichuan [J]. Xinjiang Petroleum Geology, 2013, 34(1): 79-82.

图(10)  /  表(2)
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  445
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2021-11-23
  • 录用日期:  2021-11-23
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2022-04-27

目录

    /

    返回文章
    返回