Application of full waveform inversion to gas hydrate research
-
摘要: 含水合物地层的地球物理异常响应(包括似海底反射、纵波速度倒转、弹性参数异常等)是天然气水合物存在的直接证据之一,全波形反演作为一种高精度的速度建模及成像手段,也在含水合物地层的识别方面发挥了重要作用。国内外相关研究成果表明,针对含水合物地层的波形反演,涉及正演模拟方法、震源子波、初始模型、目标函数以及优化算法等多项关键技术。本文在大量文献调研的基础上,阐述了波形反演对刻画含水合物地层的技术优势,归纳总结了适用于含水合物地层的波形反演流程,为后续的研究工作提供了基础思路,同时提出多参数联合反演在未来具有广阔的应用前景。Abstract: The geophysical responses to the hydrate bearing formations, such as BSR, velocity reversion of P wave, elastic parameter anomalies, etc. are indicators of the existence of gas hydrates. Full waveform inversion used as a high-precision velocity modeling and imaging method, also played an important role in the identification of hydrate bearing formations. Relevant research results suggest that the waveform inversion of hydrate bearing formations involves a number of key techniques, such as forward simulation methods, source wavelets, initial models, objective functions, and optimization algorithms. Based on the investigations of literatures, this paper expounded the technical advantages of waveform inversion for characterizing hydrate bearing formations, summarized the waveform inversion process suitable for hydrate bearing formations, and provided some basic ideas for subsequent research. It is proposed that multi-parameter inversion has broad application prospects in the future.
-
Keywords:
- gas hydrate /
- full waveform inversion /
- wavelet estimation /
- initial model /
- forward modeling
-
海底多金属硫化物矿床蕴藏着丰富的Cu、Zn、Fe、Co、Au、Ag等金属,是未来可供人类开发利用的重要资源[1-2]。根据Hannington等[3]的估算,现代海底热液作用形成的多金属硫化物矿床储量可达6×108 t。在水深1 500~5 000 m的各类构造环境中均有发现多金属硫化物矿床[4-5]。前人通过矿物学、岩石学以及地球化学等方面的研究[6-8],对海底多金属硫化物矿床中的矿物结构、组合以及化学组成特征有了较为详细的认识。近年来海底多金属硫化物矿床中的贵金属Au和Ag的赋存形式和沉淀机制一直被广泛关注[9-10]。前人对海底多金属硫化物中Au和Ag的研究表明,在富铜和富锌的矿石中均可以含有较高的Au含量,而Ag主要在富锌的矿石中富集[11]。此外,洋中脊环境中超基性岩赋存的多金属硫化物矿床中的Au平均含量为2.63×10−6(n=11),高于玄武岩赋存的多金属硫化物中的0.89×10−6(n=47),但是超基性岩赋存的多金属硫化物矿床中的Ag含量为30.4×10−6(n=11),低于玄武岩赋存的多金属硫化物中的60.6×10−6(n
=48)[10-13]。这些统计结果表明,在海底热液中Au和Ag两种元素可能有着不同的地球化学行为和沉淀机制。Ye等[9]曾对西南印度洋龙旂热液区中的Au进行研究,得知该区域的Au主要是以AuHS0的形式存在的。杨铭等[14]对卡尔斯伯格脊天休热液区的研究表明,高温、强还原性条件下,Au以AuCl2−的形式迁移并且发生沉淀。相比于Au,前人对大洋中脊热液区中银的成矿作用研究相对较少,因此开展大洋中脊热液区银成矿作用研究具有重要的理论和经济意义。 在全球大洋中脊系统中,不同扩张速率的洋中脊均发育有热液喷口[15-16]。相对于慢速和超慢速扩张洋中脊,中速和快速扩张洋中脊由于其频繁的火山和构造活动导致热液区发育程度低,金属资源量低[17],但是中速扩张洋中脊中的Edmond热液区Ag含量为47×10−6,明显高于洋中脊环境产出的多金属硫化物中的平均Ag含量(2.78×10−6)[10]。前人对Edmond热液区的研究主要聚焦于闪锌矿中Ag的赋存形式以及闪锌矿与银矿化之间的关系[18-19],我们的研究发现Edmond热液区黄铁矿中也可以含有大量的自然银包体,因此,本文主要聚焦于黄铁矿和自然银之间的关系。通过对Edmond热液区矿物结构、组合以及黄铁矿中银赋存形式的详细研究,探讨Edmond热液区中银元素的富集和沉淀机制,这对揭示大洋中脊环境下热液区银矿化作用具有重要意义。
1. 地质背景
印度洋中脊呈“入”字形展布,根据扩张速率与洋盆演化过程可以分为西南印度洋中脊(SWIR)、中印度洋中脊(CIR)和东南印度洋中脊(SEIR)3段(图1),其中SEIR的扩张速率最快,CIR的扩张速率次之,SWIR的扩张速率最慢[20-21]。中印度洋中脊南起罗德里格斯三联点,北止于2°N附近,与卡尔斯伯格洋中脊相连,长约4 000 km,扩张速率约为47.5 mm/a,属于中速扩张洋中脊[22]。中印度洋中脊广泛发育轴部中央裂谷,裂谷跨度为5~8 km,整条洋中脊被众多非转换不连续带(NTD)和转换断层切割成若干条洋中脊段[23]。该区域内岩浆活动异常频繁,可见洋中脊玄武岩广泛裸露于洋底[24]。
Edmond热液区(23°52.68′S、69°35.80′E)位于CIR段S3北端的东裂谷壁上,距相邻山脊轴约6 km,深度范围为3 290~3 320 m。Edmond热液区是中印度洋上最早发现的活动热液系统之一[23, 25]。该热液区总面积约为6 000 m2,除了有块状多金属硫化物堆积体之外,还常见被大量微生物覆盖的橙棕色铁氧化物沉积物,在洼地中积聚几厘米厚,并覆盖在许多硫化物结构和大部分坡积物上[26]。多金属硫化物矿物主要有黄铁矿、闪锌矿、白铁矿和黄铜矿[27]。Edmond热液温度相对较高,喷口测量的热液流体温度最高可达382 °C[26]。前人从Edmond热液喷口收集的所有流体都具有低pH值(平均值为3.2, N=5)、铁含量较高(平均值为12.8 μmol/kg, N=4)和H2S含量较高(平均值为3.6 μmol/kg, N=4)的特征[28-29]。最值得注意的是,由于海水在超临界条件下存在相分离过程,Edmond热液流体的氯离子含量比环境海水高约70%,使其成为迄今为止观察到的大洋中脊热液系统排放的最热卤水,从而导致Fe、Mn、Cu、Zn、Cd等过渡族金属的浓度异常高[28, 30]。
2. 样品及分析方法
本研究的Edmond热液区的样品(编号17A-IR-TVG-12-1、17A-IR-TVG-12-2、17A-IR-TVG-12-3、17A-IR-TVG-13-1、17A-IR-TVG-13-2、17A-IR-TVG-13-3、 17A-IR-TVG-13-4、17A-IR-TVG-13-5)来自中国大洋DY105-17航次,通过电视抓斗采集。通过观察手标本可以发现,Edmond热液区多金属硫化物质地比较致密,孔隙度较低,外观主要呈黄色或灰色,黄色矿物以黄铁矿为主(图2a),灰色矿物以闪锌矿为主(图2b),红褐色则主要是含铁矿物在表生风化作用下被氧化后形成的铁氧化物(图2c)。
把研究的样品进行打磨制成标靶和薄片以便于在光学显微镜和扫描电镜下详细观察。光学显微镜、扫描电镜以及能谱分析全部在河海大学海洋科学研究中心实验室内完成,扫描电镜型号为TESCAN MIRA3,工作电压20.0 kV。使用光学显微镜初步观察标靶和薄片,利用反射光识别样品中所含的主要常见矿物,寻找一些特殊的现象(如共生现象、交代现象等),对视域内具有代表性的矿物和特殊现象进行标记并拍照记录。扫描电镜主要是对光学显微镜观察后在薄片和标靶上标记的区域进一步放大观察,同时寻找薄片中是否存在稀有矿物以及贵金属矿物。能谱分析是对在扫描电镜下观察到的未知矿物进行元素半定量分析,从而确定矿物种类。
3. 结果与讨论
3.1 Edmond热液区硫化物的矿物学特征及其反应的流体演化过程
光学显微镜和扫描电镜的观察结果表明,Edmond热液区硫化物样品中所包含的主要矿物有黄铁矿、闪锌矿、黄铜矿和白铁矿,其次还有少量等轴古巴矿、针钠铁矾、重晶石、硬石膏以及自然银等矿物。
根据结构、形态以及矿物组合等特征,可知Edmond热液区硫化物中明显发育两期黄铁矿。一期黄铁矿(Py1)结晶较为松散,发育富含缝隙和孔洞,以细粒状和胶状形态分布(图3a)。因为在热液活动早期,喷口产生的高温热液与较冷海水(约2 °C)接触导致流体温度迅速降低,结晶时间短暂,形成细粒状和胶状黄铁矿,并且此过程伴随着“烟囱体”的产生。“烟囱体”外壁主要由重晶石、硬石膏以及早期结晶的硫化物所组成[31]。重晶石主要呈放射状,硬石膏为长条状(图3b-d)。二期黄铁矿(Py2)通常呈自形—半自形,粒径较大且杂质较少(图3e),形成于热液活动中后期。该时期存在的“烟囱体”阻滞了热液与海水的直接混合,使金属硫化物等矿物有足够的时间沉淀,矿物自形程度较高[32]。自形程度较高的黄铁矿、黄铜矿和闪锌矿等矿物组成了“烟囱体”的内壁。两期黄铁矿除了伴生之外,还可以形成长条状或者椭圆形的包体(图3f-i),Py1通常被Py2所包裹和交代。
图 3 Edmond热液区黄铁矿和其他矿物显微照片a. 细粒黄铁矿,b-d. 重晶石和硬石膏,e. 自形—半自形黄铁矿,f-i. 两期黄铁矿共生所形成的长条状和椭圆形的包裹体。Py1-一期黄铁矿,Py2-二期黄铁矿,Sp-闪锌矿,Brt-重晶石,Anh-硬石膏。Figure 3. Photomicrograph of minerals in the Edmond hydrothermal fielda: fine-grained pyrite; b-d: barite and anhydrite; e: euhedral-subhedral pyrite; f-i: elongated and elliptical inclusions formed by the symbiosis of two stages of pyrite. Py1: pyrite Ⅰ; Py2: pyrite Ⅱ; Sp: sphalerite; Brt: barite; Anh: anhydrite.Edmond热液区的闪锌矿有细粒和粗粒之分,并且他们多数都与Py1和Py2伴生。细粒闪锌矿主要存在于Py1和Py2的内部孔洞之中(图4a、b),而粗粒闪锌矿可以包裹Py2或者以集合体的形式出现(图4c-f),周围有时可见黄铁矿包裹体,部分黄铁矿包裹体内部可出现针钠铁矾。
图 4 Edmond热液区黄铜矿和闪锌矿显微照片a、b. 存在于黄铁矿内部的细粒闪锌矿, c-e. 粗粒闪锌矿包裹黄铁矿, f. 黄铜矿集合体,并且出溶等轴古巴矿, g-i. 存在于闪锌矿内部的黄铜矿。Py1-黄铁矿Ⅰ, Py2-黄铁矿Ⅱ, Sp-闪锌矿, Ccp-黄铜矿, Iso-等轴古巴矿, Frt-针钠铁矾。Figure 4. Photomicrograph of chalcopyrite and sphalerite in the Edmond hydrothermal fielda-b: fine sphalerite in pyrite; c-e: coarse sphalerite surrounded by pyrite; f: chalcopyrite aggregate and exsolution texture of isocubanite; g-i: chalcopyrite exists in sphalerite. Py1: pyrite Ⅰ; Py2: pyrite Ⅱ; Sp: sphalerite; Ccp: chalcopyrite; Iso: isocubanite; Frt: ferrinatrite.黄铜矿主要有两种存在形式。第一种是以圆弧状集合体的形式出现(图4g),并且部分集合体呈破碎状。第二种是与闪锌矿共生,以细小晶粒的形式出现在粗粒闪锌矿的内部(图4h、i),表明黄铜矿和粗粒闪锌矿是同期结晶形成。除此之外,黄铜矿普遍出溶等轴古巴矿,出溶体具有明显的网格状结构(图4g),并且与Py2和闪锌矿共生。等轴古巴矿作为一种高温矿物[33],其可以指示黄铜矿以及共生的矿物形成于高温环境(T>335 °C)[34]。
白铁矿在Edmond热液区硫化物样品中也是普遍存在的,呈胶状甚至自形—半自形的形态填充于Py1和Py2之间。白铁矿与Py1有明显的边界,并且Py1被白铁矿包裹(图5a、b),表明白铁矿的形成时期晚于Py1。Py2则大多包裹在白铁矿的外部(图5c、d),根据其包裹关系可知,Py2的形成时期晚于白铁矿。根据3种矿物之间的共生关系(图5e、f),可以合理地推断出这些矿物形成的先后顺序为:Py1、白铁矿、Py2。
图 5 Edmond热液区白铁矿显微照片a、b. 白铁矿包裹在一期黄铁矿的外部,存在明显界限;c、d. 二期黄铁矿包裹白铁矿,存在界限明显;e、f. 两期黄铁矿与白铁矿伴生。Py1-一期黄铁矿,Py2-二期黄铁矿,Mrt-白铁矿。Figure 5. Photomicrograph of marcasite in the Edmond hydrothermal fielda-b: marcasite surrounded by pyrite Ⅰ with a clear boundary; c-d: pyrite Ⅱ surrounded by marcasite with a clear boundary; e-f: two stages of pyrite and marcasite symbiosis. Py1: pyrite Ⅰ; Py2: pyrite Ⅱ; Mrt: marcasite.通过扫描电镜还可以观察到亮白色的自然银颗粒,其形状类似且粒径较小(图6)。大多数自然银颗粒位于Py1的边缘位置(图6a-c、f),部分自然银颗粒赋存于Py1的缝隙之中(图6d-g),少量自然银颗粒存在于Py2的包体矿物中(图6h、i)。根据自然银的晶体形态以及矿物共生组合关系可知,其形成时期应晚于Py1。
图 6 Edmond热液区自然银显微照片a-c、f. 存在于黄铁矿和其他矿物之间的自然银颗粒,d、e、g. 存在于一期黄铁矿缝隙的自然银颗粒,h、i. 存在于黄铁矿内部缝隙中的自然银颗粒。Py1-一期黄铁矿,Py2-二期黄铁矿,Ag-自然银,Frt-针钠铁矾。Figure 6. Photomicrograph of native silver in the Edmond hydrothermal fielda-c and f: native silver particles in-between pyrite and other minerals; d-e and g: native silver particles present in the crevices of pyrite Ⅰ; h-i: native silver particles present within internal crevices of pyrite. Py1: pyrite Ⅰ; Py2- pyrite Ⅱ; Ag: native silver; Frt: ferrinatrite.根据上述的矿物学特征以及共生关系,可将Edmond热液区硫化物成矿过程大致分为3个阶段(图7):第一阶段为早期低温环境矿物迅速结晶阶段,热液与海水的混合导致温度迅速降低,主要的结晶组合为Py1、重晶石、硬石膏、细粒闪锌矿等;第二阶段为中低温环境成矿阶段,此阶段为热液活动早期和晚期的过渡阶段,主要有白铁矿的结晶和交代;第三阶段为晚期中高温成矿阶段,“黑烟囱”的存在阻隔了热液与海水的直接混合,使得矿物有足够的时间结晶,自形程度较高,此阶段有Py2、黄铜矿、粗粒闪锌矿、等轴古巴矿等矿物结晶,并且具有明显的共生关系。
3.2 Ag的迁移形式和沉淀机制
通过对Edmond热液区硫化物的矿物学特征进行研究,探明了该热液区硫化物的成矿顺序以及流体演化过程,并且在黄铁矿的周围发现了自然银颗粒。根据前人对热液流体中金属元素的研究,结合Edmond热液区流体演化过程,可以探究该热液区Ag的迁移形式和沉淀机制。
金属元素在热液流体中的迁移和沉淀是一个非常复杂的物理化学综合过程。根据前人的研究可知,热液流体中的贵金属主要以络合物的形式存在,其络合物的种类取决于外界物理化学条件的变化,包括温度、pH、压力以及流体成分等[35-37]。在热液流体中可以与Ag形成络合物的配体主要有HS−和Cl−,存在形式包括AgHS0、Ag(HS)2−和AgCl2− [38-39]。在碱性、中高温及以上(200~500 ℃)的热液流体中,占主导作用的络合物为Ag(HS)2− [18, 38-39]。在酸性至近中性、低氯化物浓度和中低温热液流体中,Ag的主要络合物形式为AgHS0 [38-40]。在酸性、弱酸性、中高温及以上(200~500 ℃)的热液流体中,AgCl2−是占主导作用的络合物,其反应方程式如下[18, 38]:
$$\rm Ag(s) + 2 Cl^- + H^+ + 1/4 O_{2} = AgCl_{2}^- + 1/2 H_{2}O $$ (1) 前人的研究表明,Edmond热液区的热液温度较高,最高达382℃,pH为酸性[24, 26],所以该热液区Ag的存在形式为AgCl2−,形成过程如反应式(1)所示。根据反应式(1)可知,促进Ag沉淀的因素有Cl-浓度降低,pH值升高以及氧逸度降低。由于Edmond热液流体中Cl−含量显著高于环境海水[28, 30],当高温热液与海水混合时Cl−浓度会大幅度降低,从而促进了热液流体中Ag沉淀。混合作用也会导致H+浓度降低,pH值升高,对Ag的沉淀起到促进作用。除此之外,混合作用会导致温度的迅速降低,AgCl2−的溶解度随着温度的降低而减小[39]。根据前人的研究可知[41-42],海底热液中可用配体(HS−和Cl−)的浓度几乎都超过了形成稳定的Ag络合物所需的量,AgCl2−在热液流体中达到了饱和的状态,所以AgCl2−溶解度的减少对Ag的沉淀起到了促进作用。前人对闪锌矿中的Ag研究表明,热液流体中的Ag主要以AgCl2−的形式存在,并且影响其沉淀的因素包括温度、pH以及流体的氧化还原条件,与本文对黄铁矿中Ag的迁移形式与沉淀机制的研究所得结论基本一致[18-19]。
4. 结论
(1)Edmond热液区硫化物主要是闪锌矿、黄铁矿和黄铜矿,黄铜矿出溶等轴古巴矿现象普遍。除此之外,还观察到针钠铁矾、重晶石、硬石膏以及自然银等矿物。自然银粒径较小,主要存在于Py1边缘和缝隙之中。
(2)根据矿物组合和共生关系,Edmond热液区硫化物成矿过程大致可以分为3个阶段:第一阶段的主要矿物结晶组合为Py1、重晶石、硬石膏等;第二阶段主要有白铁矿结晶;第三阶段则有Py2、黄铜矿、粗粒闪锌矿、等轴古巴矿等矿物结晶,并且具有明显的共生关系。
(3)Edmond热液区Ag的主要迁移形式为AgCl2−,促进其沉淀的因素主要是高温热液与海水混合作用导致的Cl−浓度降低、pH值的升高和温度的降低。
致谢:感谢中国大洋17航次全体科考队员和船员的辛勤工作,感谢实验过程中老师和同学的帮助,感谢两名匿名审稿专家提出的宝贵意见。
-
图 7 不同优化算法得到的全波形反演速度模型
a. 最速下降法,b. 对角海森尺度化方法,c. 共轭梯度法,d. 对角海森+共轭梯度法,e. 高斯-牛顿法,f. L-BFGS方法[88]。
Figure 7. FWI results of (a) steepest-descent method ,(b) diagonal Hessian matrix scaled method, (c) conjugate gradient method, (d) diagonal Hessian matrix scaled gradient + conjugate gradient method, (e) Gauss-Newton method and, (f) L-BFGS method [88]
-
[1] Tarantola A. Inversion of seismic reflection data in the Acoustic approximation [J]. Geophysics, 1984, 49(8): 1259-1266. doi: 10.1190/1.1441754
[2] Pratt R G, Worthington M H. Inverse theory applied to Multi-source cross-hole tomography. Part 1: Acoustic wave-Equation method [J]. Geophysical Prospecting, 1990, 38(3): 287-310. doi: 10.1111/j.1365-2478.1990.tb01846.x
[3] Pratt R G, Shin C, Hicks G J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion [J]. Geophysical Journal International, 1998, 133(2): 341-362. doi: 10.1046/j.1365-246X.1998.00498.x
[4] Pratt R G. Seismic waveform inversion in the frequency Domain, Part 1: Theory and verification in a physical scale Model [J]. Geophysics, 1999, 64(3): 888-901. doi: 10.1190/1.1444597
[5] Pratt R G, Shipp R M. Seismic waveform inversion in the Frequency domain, Part 2: Fault delineation in sediments using crosshole data [J]. Geophysics, 1999, 64(3): 902-914. doi: 10.1190/1.1444598
[6] Shin C, Cha Y H. Waveform inversion in the Laplace domain [J]. Geophysical Journal International, 2008, 173(3): 922-931. doi: 10.1111/j.1365-246X.2008.03768.x
[7] Gauthier O, Virieux J, Tarantola A. Two-dimensional nonlinear inversion of seismic waveforms: numerical Results [J]. Geophysics, 1986, 51(7): 1387-1403. doi: 10.1190/1.1442188
[8] Mora P. Nonlinear two-dimensional elastic inversion of multioffset seismic data [J]. Geophysics, 1987, 52(9): 1211-1228. doi: 10.1190/1.1442384
[9] Song Z M, Williamson P R, Pratt R G. Frequency-domain Acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, Synthetic experiments and real-data results [J]. Geophysics, 1995, 60(3): 796-809. doi: 10.1190/1.1443818
[10] Ravaut C, Operto S, Improta L, et al. Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt [J]. Geophysical Journal International, 2004, 159(3): 1032-1056. doi: 10.1111/j.1365-246X.2004.02442.x
[11] Smithyman B, Pratt R G, Hayles J, et al. Detecting near-surface objects with seismic waveform tomography [J]. Geophysics, 2009, 74(6): WCC119-WCC127. doi: 10.1190/1.3223313
[12] Sirgue L, Barkved O I, Dellinger J, et al. Thematic Set: Full waveform inversion: the next leap forward in imaging at Valhall [J]. First Break, 2010, 28(4): 65-70.
[13] Prieux V, Brossier R, Kommendal J R, et al. Application of 2D acoustic frequency-domain full-waveform inversion to OBC wide-aperture data from the Valhall field[C]//The 2010 SEG Annual Meeting. Denver, Colorado: Society of Exploration Geophysicists, 2010: 920-924.
[14] Ratcliffe A, Win C, Vinje V, et al. Full waveform inversion: a North Sea OBC case study[C]//Proceedings of the 81st Annual International Meeting. Society of Exploration Geophysicists, 2011: 2384-2388.
[15] Takougang E M T, Calvert A J. Application of waveform tomography to marine seismic reflection data from the Queen Charlotte Basin of western Canada [J]. Geophysics, 2011, 76(2): B55-B70. doi: 10.1190/1.3553478
[16] 韩淼. 深水区地震全波形反演策略与应用[D]. 吉林大学博士学位论文, 2014. HAN Miao. Method and application of full waveform inversion for abyssal seismic data[D]. Doctor Dissertation of Jilin University, 2014.
[17] Plessix R É, Baeten G, De Maag J W, et al. Full waveform inversion and distance separated simultaneous sweeping: a study with a land seismic data set [J]. Geophysical Prospecting, 2012, 60(4): 733-747. doi: 10.1111/j.1365-2478.2011.01036.x
[18] 杨勤勇, 胡光辉, 王立歆. 全波形反演研究现状及发展趋势[J]. 石油物探, 2014, 53(1):77-83 doi: 10.3969/j.issn.1000-1441.2014.01.011 YANG Qinyong, HU Guanghui, WANG Lixin. Research status and development trend of full waveform inversion [J]. Geophysical Prospecting for Petroleum, 2014, 53(1): 77-83. doi: 10.3969/j.issn.1000-1441.2014.01.011
[19] 任浩然, 王华忠, 黄光辉. 地震波反演成像方法的理论分析与对比[J]. 岩性油气藏, 2012, 24(5):12-17 doi: 10.3969/j.issn.1673-8926.2012.05.002 REN Haoran, WANG Huazhong, HUANG Guanghui. Theoretical analysis and comparison of seismic wave inversion and imaging methods [J]. Lithologic Reservoirs, 2012, 24(5): 12-17. doi: 10.3969/j.issn.1673-8926.2012.05.002
[20] 宋海斌, OSAMU M, SHIN’ICHI M. 天然气水合物似海底反射层的全波形反演[J]. 地球物理学报, 2003, 46(1):42-46 doi: 10.3321/j.issn:0001-5733.2003.01.007 SONG Haibin, OSAMU M, SHIN’ICHI M. Full waveform inversion of gas hydrate-related bottom simulating reflectors [J]. Chinese Journal of Geophysics, 2003, 46(1): 42-46. doi: 10.3321/j.issn:0001-5733.2003.01.007
[21] 霍元媛, 张明. 基于遗传算法的天然气水合物似海底反射层速度结构全波形反演[J]. 石油地球物理勘探, 2010, 45(1):55-59 HUO Yuanyuan, ZHANG Ming. The genetic algorithm based velocity structure waveform inversion for gas hydrate bottom simulating Reflection (BSR) [J]. Oil Geophysical Prospecting, 2010, 45(1): 55-59.
[22] Singh S C, Minshull T A, Spence G D. Velocity structure of a gas hydrate reflector [J]. Science, 1993, 260(5105): 204-207. doi: 10.1126/science.260.5105.204
[23] Yuan T, Spence G D, Hyndman R D, et al. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: amplitude modeling and full waveform inversion [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B1): 1179-1191. doi: 10.1029/1998JB900020
[24] Minshull T A, Singh S C, Westbrook G K. Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion [J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B3): 4715-4734. doi: 10.1029/93JB03282
[25] Pecher I A, Minshull T A, Singh S C, et al. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 459-469. doi: 10.1016/0012-821X(95)00242-5
[26] Sain K, Minshull T A, Singh S C, et al. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism [J]. Marine Geology, 2000, 164(1-2): 3-12. doi: 10.1016/S0025-3227(99)00122-X
[27] Westbrook G K, Chand S, Rossi G, et al. Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway [J]. Marine and Petroleum Geology, 2008, 25(8): 744-758. doi: 10.1016/j.marpetgeo.2008.02.003
[28] Jaiswal P, Dewangan P, Ramprasad T, et al. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform inversion [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B10): B10305.
[29] 唐勇, 方银霞, 高金耀, 等. 冲绳海槽天然气水合物稳定带特征及资源量评价[J]. 海洋地质与第四纪地质, 2005, 25(4):80-84 TANG Yong, FANG Yinxia, GAO Jinyao, et al. Characteristics of gas hydrate stability zone and evaluation of resources in Okinawa trough [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 80-84.
[30] 徐宁, 吴时国, 王秀娟, 等. 东海冲绳海槽陆坡天然气水合物的地震学研究[J]. 地球物理学进展, 2006, 21(2):564-571 doi: 10.3969/j.issn.1004-2903.2006.02.036 XU Ning, WU Shiguo, WANG Xiujuan, et al. Seismic study of the Gas hydrate in the continental slope of the Okinawa trough, east China sea [J]. Progress in Geophysics, 2006, 21(2): 564-571. doi: 10.3969/j.issn.1004-2903.2006.02.036
[31] Sun Y B, Wu S G, Dong D D, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea [J]. Marine Geology, 2012, 311-314: 32-40. doi: 10.1016/j.margeo.2012.04.003
[32] Wang J L. Study on geophysical characterization of concentrated gas hydrate reservoirs[D]. Doctor Dissertation of University of Chinese Academy of Science, 2015.
[33] 刘斌, 张衡. 海底水合物OBS数据全波形反演数值例子[J]. 地球物理学进展, 2018, 33(1):379-384 doi: 10.6038/pg2018AA0580 LIU Bin, ZHANG Heng. Full waveform inversion of OBS data from ocean gas hydrate: synthetic example [J]. Progress in Geophysics, 2018, 33(1): 379-384. doi: 10.6038/pg2018AA0580
[34] 章婷. 复杂介质地震波波场正演模拟方法研究[D]. 电子科技大学, 2014. ZHANG Ting. Research on forward simulation methods of seismic wave fields in complex mediums[D]. Master Dissertation of University of Electronic Science and Technology of China, 2014.
[35] Kennett B L N. Theoretical reflection seismograms for elastic media [J]. Geophysical Prospecting, 1979, 27(2): 301-321. doi: 10.1111/j.1365-2478.1979.tb00972.x
[36] Kennett B L N. Seismic waves in a stratified half space-II. Theoretical seismograms [J]. Geophysical Journal International, 1980, 61(1): 1-10. doi: 10.1111/j.1365-246X.1980.tb04299.x
[37] Singh S C, Royle G, Sears T, et al. Elastic (Visco) Full Waveform Inversion of multi-component marine seismic data in the time domain: A tribute to Albert Tarantola[C]//72nd EAGE Conference & Exhibition Incorporating SPE EUROPEC 2010: Barcelona: SPE, 2010.
[38] Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations [J]. Geophysics, 1984, 49(5): 533-549. doi: 10.1190/1.1441689
[39] 何彦锋, 孙伟家, 符力耘. 复杂介质地震波传播模拟中边界元法与有限差分法的比较研究[J]. 地球物理学进展, 2013, 28(2):664-678 doi: 10.6038/pg20130215 HE Yanfeng, SUN Weijia, FU Liyun. Comparison of boundary element method and finite-difference method for simulating seismic wave propagation in complex media [J]. Progress in Geophysics, 2013, 28(2): 664-678. doi: 10.6038/pg20130215
[40] Virieux J. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method [J]. Geophysics, 1984, 49(11): 1933-1942. doi: 10.1190/1.1441605
[41] Barnes C, Noble M. Feasibility study to quantify gas hydrates Using an anisotropic full waveform inversion in the time domain[C]//2007 SEG Annual Meeting. San Antonio, Texas: SEG, 2007: 1825-1829.
[42] Pratt R U, Bauer K, Weber M. Crosshole waveform tomography velocity and attenuation images of arctic gas hydrates[C]//73th Annual Meeting. Dallas, Texas: Society of Exploration Geophysicists, 2003: 2255-2258.
[43] Operto S, Virieux J, Amestoy P, et al. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study [J]. Geophysics, 2007, 72(5): SM195-SM211. doi: 10.1190/1.2759835
[44] Brossier R, Operto S, Virieux J. Two-dimensional seismic imaging of the Valhall model from synthetic OBC data by frequency domain elastic full-waveform inversion[C]//2009 SEG Annual Meeting. Houston, Texas: SEG, 2009, 28: 2293-2297.
[45] Etienne V, Chaljub E, Virieux J, et al. An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling [J]. Geophysical Journal International, 2010, 183(2): 941-962. doi: 10.1111/j.1365-246X.2010.04764.x
[46] 张伟, 彭真明, 章婷. 全波形反演中的GPU/CPU协同计算[C]//中国地球物理2013: 第十八专题论文集. 昆明: 中国地球物理学会, 2013: 350. ZHANG Wei, PENG Zhenming, ZHANG Ting. GPU/CPU collaborative computing in full waveform inversion[C]//The 29th Annual Academic Conference of the Chinese Geophysical Society. Kunming: China Geophysical Society, 2013: 350.
[47] Kim Y, Shin C, Calandra H. 3D Hybrid Waveform Inversion with GPU devices[C]//2012 SEG Annual Meeting. Las Vegas, Nevada: Society of Exploration Geophysicists, 2012.
[48] Guasch L. 3D elastic full-waveform inversion[D]. Doctor Dissertation of Imperial College London, 2012.
[49] 何兵红, 吴国忱. 时间域全波形反演方法研究[C]//中国地球物理学会第二十八届年会论文集. 北京: 中国地球物理学会, 2012: 558. HE Binghong, WU Guochen. Study of full waveform inversion in time domain[C]//The 28th Annual Academic Conference of the Chinese Geophysical Society. Beijing: China Geophysical Society, 2012: 558.
[50] Crutchley G J, Gorman A R, Pecher I A, et al. Geological controls on focused fluid flow through the gas hydrate stability zone on the southern Hikurangi Margin of New Zealand, evidenced from multi-channel seismic data [J]. Marine and Petroleum Geology, 2011, 28(10): 1915-1931. doi: 10.1016/j.marpetgeo.2010.12.005
[51] Xia G Y, Sen M K, Stoffa P L. 1-D elastic waveform inversion: A divide-and-conquer approach [J]. Geophysics, 1998, 63(5): 1670-1684. doi: 10.1190/1.1444463
[52] Lee K H, Kim H J. Source-independent full-waveform Inversion of seismic data [J]. Geophysics, 2003, 68(6): 2010-2015. doi: 10.1190/1.1635054
[53] Zhou B, Greenhalgh S A. Crosshole seismic inversion with Normalized full-waveform amplitude data [J]. Geophysics, 2003, 68(4): 1320-1330. doi: 10.1190/1.1598125
[54] Choi Y, Alkhalifah T. Source-independent time-domain Waveform inversion using convolved wavefields: Application to The encoded multisource waveform inversion [J]. Geophysics, 2011, 76(5): R125-R134. doi: 10.1190/geo2010-0210.1
[55] Choi Y, Shin C, Min D J, et al. Efficient calculation of the Steepest descent direction for source-independent seismic Waveform inversion: An amplitude approach [J]. Journal of Computational Physics, 2005, 288(2): 455-468.
[56] Cheong S, Pyun S, Shin C. Two efficient steepest-descent Algorithms for source signature-free waveform inversion [J]. The Journal of Seismic Exploration, 2006, 14(4): 335-348.
[57] Xu K, Greenhalgh S A, Wang M Y. Comparison of source-independent methods of elastic waveform inversion [J]. Geophysics, 2006, 71(6): R91-R100. doi: 10.1190/1.2356256
[58] Tran K T, McVay M. Site characterization using Gauss-Newton inversion of 2-D full seismic waveform in the time domain [J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 16-24. doi: 10.1016/j.soildyn.2012.07.004
[59] 敖瑞德, 董良国, 迟本鑫. 不依赖子波、基于包络的FWI初始模型建立方法研究[J]. 地球物理学报, 2015, 58(6):1998-2010 doi: 10.6038/cjg20150615 AO Ruide, DONG Liangguo, CHI Benxin. Source-independent envelope-based FWI to build an initial model [J]. Chinese Journal of Geophysics, 2015, 58(6): 1998-2010. doi: 10.6038/cjg20150615
[60] 秦宁, 王延光, 杨晓东, 等. 时域全波形反演影响因素分析及井数据约束探索[J]. 地球物理学进展, 2015, 30(1):210-216 doi: 10.6038/pg20150132 QIN Ning, WANG Yanguang, YANG Xiaodong, et al. Analysis of influencing factors and exploration of well constrained for full waveform inversion in time domain [J]. Progress in Geophysics, 2015, 30(1): 210-216. doi: 10.6038/pg20150132
[61] Virieux J, Operto S. An overview of Full-waveform Inversion in exploration geophysics [J]. Geophysics, 2009, 74(6): WCC1-WCC26. doi: 10.1190/1.3238367
[62] Shah N, Warner M, Nangoo T, et al. Quality assured full-waveform inversion: Ensuring starting model adequacy[C]//2012 SEG Annual Meeting. Las Vegas, Nevada: SEG, 2012.
[63] Brenders A J, Pratt R G. Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model [J]. Geophysical Journal International, 2006, 168(1): 133-151.
[64] Prieux V, Operto S, Brossier R, et al. Application of acoustic full waveform inversion to the synthetic Valhall velocity model[C]//2009 SEG Annual Meeting. Houston, Texas: SEG, 2009: 2268-2272.
[65] Billette F, Lambaré G. Velocity macro-model estimation from seismic reflection data by stereotomography [J]. Geophysical Journal International, 1998, 135(2): 671-690. doi: 10.1046/j.1365-246X.1998.00632.x
[66] Billette F, Le Bégat S, Podvin P, et al. Practical aspects and applications of 2D stereotomography [J]. Geophysics, 2003, 68(3): 1008-1021. doi: 10.1190/1.1581072
[67] 李振伟, 杨锴, 倪瑶, 等. 基于立体层析反演的偏移速度建模应用研究[J]. 石油物探, 2014, 53(4):444-452 doi: 10.3969/j.issn.1000-1441.2014.04.010 LI Zhenwei, YANG Kai, NI Yao, et al. Migration velocity analysis with stereo-tomography inversion [J]. Geophysical Prospecting for Petroleum, 2014, 53(4): 444-452. doi: 10.3969/j.issn.1000-1441.2014.04.010
[68] 倪瑶, 杨锴, 陈宝书. 立体层析反演方法理论分析与应用测试[J]. 石油物探, 2013, 52(2):121-130 doi: 10.3969/j.issn.1000-1441.2013.02.002 NI Yao, YANG Kai, CHEN Baoshu. Stereotomography inversion method: theory and application testing [J]. Geophysical Prospecting for Petroleum, 2013, 52(2): 121-130. doi: 10.3969/j.issn.1000-1441.2013.02.002
[69] Prieux V, Lambaré G, Operto S, et al. Building starting models for full waveform inversion from wide-aperture data by stereotomography [J]. Geophysical Prospecting, 2013, 61(S1): 109-137.
[70] 刘定进, 胡光辉, 蔡杰雄, 等. 高斯束层析与全波形反演联合速度建模[J]. 石油地球物理勘探, 2019, 54(5):1046-1056 LIU Dingjin, HU Guanghui, CAI Jixing, et al. A joint velocity model building method with Gaussian beam tomography and full waveform inversion for land seismic data [J]. Oil Geophysical Prospecting, 2019, 54(5): 1046-1056.
[71] Shin C, Min D J. Waveform inversion using a logarithmic wavefield [J]. Geophysics, 2006, 71(3): R31-R42. doi: 10.1190/1.2194523
[72] 刘张聚, 童思友, 方云峰, 等. 基于时域加权的拉普拉斯—频率域弹性波全波形反演[J]. 石油地球物理勘探, 2021, 1,56(2):302-312, 331 LIU Zhangju, TONG Siyou, FANG Yunfeng, et al. Full elastic waveform inversion in Laplace-Fourier domain based on time domain weighting [J]. Oil Geophysical Prospecting, 2021, 1,56(2): 302-312, 331.
[73] 王连坤, 方伍宝, 段心标, 等. 全波形反演初始模型建立策略研究综述[J]. 地球物理学进展, 2016, 31(4):1678-1687 doi: 10.6038/pg20160436 WANC Liankun, FANG Wubao, DUAN Xinbiao, et al. Review of full waveform inversion initial model building strategy [J]. Progress in Geophysics, 2016, 31(4): 1678-1687. doi: 10.6038/pg20160436
[74] Brossier R, Operto S, Virieux J. Which data residual norm for robust elastic frequency-domain Full Waveform Inversion? [J]. Geophysics, 2010, 75(3): R37-R46. doi: 10.1190/1.3379323
[75] Liu Y S, Ting J W, Xu T, et al. Robust time-domain full waveform inversion with normalized zero-lag cross-correlation objective function [J]. Geophysical Journal International, 2016, 209(1): 106-122.
[76] Shin C, Pyun S, Bednar J B. Comparison of waveform inversion, Part 1: Conventional wavefield vs logarithmic wavefield [J]. Geophysical Prospecting, 2007, 55(4): 449-464. doi: 10.1111/j.1365-2478.2007.00617.x
[77] Bednar J B, Shin C, Pyun S. Comparison of waveform inversion, Part 2: Phase approach [J]. Geophysical Prospecting, 2007, 55(4): 465-475. doi: 10.1111/j.1365-2478.2007.00618.x
[78] Pyun S, Shin C, Bednar J B. Comparison of waveform inversion, Part 3: Amplitude approach [J]. Geophysical Prospecting, 2007, 55(4): 477-485. doi: 10.1111/j.1365-2478.2007.00619.x
[79] 廖文, 杨艳, 张东. 基于改进目标函数的频率域全波形反演研究[J]. 科技通报, 2016, 32(4):1-5 doi: 10.3969/j.issn.1001-7119.2016.04.001 LIAO Wen, YANG Yan, ZHANG Dong. Frequency-domain Full waveform inversion algorithm based on improved objective function [J]. Bulletin of Science and Technology, 2016, 32(4): 1-5. doi: 10.3969/j.issn.1001-7119.2016.04.001
[80] 张宝金, 张光学, 耿建华, 等. 南海含天然气水合物地层速度反演方法探讨[J]. 南海海洋地质, 2008(1):78-85 ZHANG Baojin, ZHANG Guangxue, GENG Jianhua, et al. Discuss on the methods of velocity inversion of the stratum containing gas hydrates in South China Sea [J]. Geological Research of South China Sea, 2008(1): 78-85.
[81] Kormendi F, Dietrich M. Nonlinear waveform inversion of plane-wave seismograms in stratified elastic media [J]. Geophysics, 1991, 56(5): 664-674. doi: 10.1190/1.1443083
[82] 杨文采. 非线性波动方程地震反演的方法原理及问题[J]. 地球物理学进展, 1992, 7(1):9-19 YANG Wencai. Methods and problems in seismic inversion of nonlinear wave equations [J]. Progress in Geophysics, 1992, 7(1): 9-19.
[83] 孙为涛, 董渊. 波动方程反演的全局优化方法研究[J]. 地球物理学进展, 2007, 22(3): 797-803 SUN Weitao, DONG Yuan. Study on global optimization methods for wave equation inversion problems[J]. Progress in Geophysics, 22(3): 797-803.
[84] 苗永康. 基于L-BFGS算法的时间域全波形反演[J]. 石油地球物理勘探, 2015, 50(3):469-474 MIAO Yongkang. Full waveform inversion in time domain based on limited-memory BFGS algorithm [J]. Oil Geophysical Prospecting, 2015, 50(3): 469-474.
[85] 陈禹. 共轭梯度法的收敛性研究[D]. 长江大学硕士学位论文, 2011. CHEN Yu. The convergence research on conjugate gradient method[D]. Master Dissertation of Yangtze University, 2011.
[86] HU W Y, ABUBAKAR A, HABASHY T M. Simultaneous multifrequency inversion of full-waveform seismic data [J]. Geophysics, 2009, 74(2): R1-R14. doi: 10.1190/1.3073002
[87] 刘璐, 刘洪, 张衡, 等. 基于修正拟牛顿公式的全波形反演[J]. 地球物理学报, 2013, 56(7):2447-2451 doi: 10.6038/cjg20130730 LIU Lu, LIU Hong, ZHANG Heng, et al. Full waveform inversion based on modified quasi-Newton equation [J]. Chinese Journal of Geophysics, 2013, 56(7): 2447-2451. doi: 10.6038/cjg20130730
[88] 高凤霞, 刘财, 冯晅, 等. 几种优化方法在频率域全波形反演中的应用效果及对比分析研究[J]. 地球物理学进展, 2013, 28(4):2060-2068 doi: 10.6038/pg20130450 GAO Fengxia, LIU Cai, FENG Xuan, et al. Comparisons and analyses of several optimization methods in the application of frequency-domain full waveform inversion [J]. Progress in Geophysics, 2013, 28(4): 2060-2068. doi: 10.6038/pg20130450
[89] Cary P W, Chapman C H. Automatic 1-D waveform inversion of marine seismic refraction data [J]. Geophysical Journal International, 1988, 93(3): 527-546. doi: 10.1111/j.1365-246X.1988.tb03879.x
[90] Holland J H. Adaptation in Natural and Artificial System[M]. Ann Arbor: University of Michigan Press, 1975.
[91] Mallick S. Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand [J]. Geophysics, 1999, 64(2): 326-336. doi: 10.1190/1.1444538
[92] Mallick S, Huang X R, Lauve J, et al. Hybrid seismic inversion: A reconnaissance tool for deepwater exploration [J]. The Leading Edge, 2000, 19(11): 1230-1237. doi: 10.1190/1.1438512
[93] Ingber L. Very fast simulated re-annealing [J]. Mathematical and Computer Modelling, 1989, 12(8): 967-973. doi: 10.1016/0895-7177(89)90202-1
[94] 刘鹏程, 纪晨. 改进的模拟退火-单纯形综合反演方法[J]. 地球物理学报, 1995, 38(2):200-204 LIU Pengcheng, JI Chen. An improved simulated annealing downhill simplex hybrid global inverse algorithm [J]. Acta Geophysica Sinica, 1995, 38(2): 200-204.
[95] Fallat M R, Dosso S E. Geoacoustic inversion via local, global, and hybrid algorithms [J]. The Journal of the Acoustical Society of America, 1999, 105(6): 3219-3230. doi: 10.1121/1.424651
[96] 陈章. 叠前全波形反演方法研究[D]. 电子科技大学硕士学位论文, 2012, [CHEN Zhang. Study of Full Waveform Inversion[D]. Master Dissertation of University of Electronic Science and Technology of China, 2012. ] [97] 董良国, 黄超, 迟本鑫, 等. 基于地震数据子集的波形反演思路、方法与应用[J]. 地球物理学报, 2015, 58(10):3735-3745 doi: 10.6038/cjg20151024 DONG Liangguo, HUANG Chao, CHI Benxin, et al. Strategy and application of waveform inversion based on seismic data subset [J]. Chinese Journal of Geophysics, 2015, 58(10): 3735-3745. doi: 10.6038/cjg20151024
[98] 王毓玮, 董良国, 黄超, 等. 弹性波全波形反演目标函数性态与反演策略[J]. 石油物探, 2016, 55(1):123-132,141 doi: 10.3969/j.issn.1000-1441.2016.01.016 WANG Yuwei, DONG Liangguo, HUANG Chao, et al. Objective function behavior and inversion strategy in elastic full-waveform inversion [J]. Geophysical Prospecting for Petroleum, 2016, 55(1): 123-132,141. doi: 10.3969/j.issn.1000-1441.2016.01.016
[99] 崔栋, 张研, 胡英, 等. 近地表速度建模方法综述[J]. 地球物理学进展, 2014, 29(6):2635-2641 doi: 10.6038/pg20140625 CUI Dong, ZHANG Yan, HU Ying, et al. The review of near surface velocity modeling [J]. Progress in Geophysics, 2014, 29(6): 2635-2641. doi: 10.6038/pg20140625
[100] 卞爱飞, 於文辉, 周华伟. 频率域全波形反演方法研究进展[J]. 地球物理学进展, 2010, 25(3):982-993 doi: 10.3969/j.issn.1004-2903.2010.03.037 BIAN Aifei, YU Wenhui, HOU Huawei. Progress in the frequency-domain full waveform inversion method [J]. Progress in Geophysics, 2010, 25(3): 982-993. doi: 10.3969/j.issn.1004-2903.2010.03.037
[101] 杨午阳, 王西文, 雍学善, 等. 地震全波形反演方法研究综述[J]. 地球物理学进展, 2013, 28(2):766-776 doi: 10.6038/pg20130225 YANG Wuyang, WANG Xiwen, YONG Xueshan, et al. The review of seismic Full waveform inversion method [J]. Progress in Geophysics, 2013, 28(2): 766-776. doi: 10.6038/pg20130225
[102] Guasch L, Warner M R, Ravaut C. Adaptive waveform inversion: Practice [J]. Geophysics, 2019, 84(3): R447-R466. doi: 10.1190/geo2018-0377.1
[103] Chen G X, Wu R S, Chen S C. Reflection multi-scale envelope inversion [J]. Geophysical Prospecting, 2018, 66(7): 1258-1271. doi: 10.1111/1365-2478.12624
[104] Chen G X, Chen S C, Yang W C. Reflection waveform inversion based on full-band seismic data reconstruction for salt structure inversion [J]. Geophysical Journal International, 2020, 220(1): 235-247. doi: 10.1093/gji/ggz442
[105] Hu Y, Wu R S, Han L G, et al. Joint Multiscale direct envelope inversion of phase and amplitude in the time –frequency domain [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 7(7): 5108-5120.
[106] Wang G C, Alkhalifah T, Wang S X. Enhancing low-wavenumber information in reflection waveform inversion by the energy norm born scattering [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 8000205.
[107] 胡勇, 黄兴国, 陈玉婷, 等. 基于反射地震数据的时频域包络反演[J]. 地球物理学进展, 2021, 36(5):1988-1994 doi: 10.6038/pg2021FF0195 HU Yong, HUANG Xingguo, CHEN Yuting, et al. Reflection seismic data based envelope inversion in the time-frequency domain [J]. Progress in Geophysics, 2021, 36(5): 1988-1994. doi: 10.6038/pg2021FF0195
[108] Ratcliffe A, Jupp R, Wombell R, et al. Full-waveform inversion of variable-depth streamer data: An application to shallow channel modeling in the North Sea [J]. The Leading Edge, 2013, 32(9): 1110-1115. doi: 10.1190/tle32091110.1