南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化

刘健, 段宗奇, 梅西, 刘青松, 张训华, 郭兴伟, 吴志强, 王红, 王飞飞, 陈彬, 张欣, 安郁辉

刘健, 段宗奇, 梅西, 刘青松, 张训华, 郭兴伟, 吴志强, 王红, 王飞飞, 陈彬, 张欣, 安郁辉. 南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5): 25-43. DOI: 10.16562/j.cnki.0256-1492.2021101701
引用本文: 刘健, 段宗奇, 梅西, 刘青松, 张训华, 郭兴伟, 吴志强, 王红, 王飞飞, 陈彬, 张欣, 安郁辉. 南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5): 25-43. DOI: 10.16562/j.cnki.0256-1492.2021101701
LIU Jian, DUAN Zongqi, MEI Xi, LIU Qingsong, ZHANG Xunhua, GUO Xingwei, WU Zhiqiang, WANG Hong, WANG Feifei, CHEN Bin, ZHANG Xin, AN Yuhui. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43. DOI: 10.16562/j.cnki.0256-1492.2021101701
Citation: LIU Jian, DUAN Zongqi, MEI Xi, LIU Qingsong, ZHANG Xunhua, GUO Xingwei, WU Zhiqiang, WANG Hong, WANG Feifei, CHEN Bin, ZHANG Xin, AN Yuhui. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43. DOI: 10.16562/j.cnki.0256-1492.2021101701

南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化

基金项目: 中国地质调查局项目(DD20160147)
详细信息
    作者简介:

    刘健(1965—),男,博士,研究员,从事海洋地质与第四纪地质调查与研究,E-mail:liujian0550@vip.sina.com

    通讯作者:

    段宗奇(1985—),男,博士,高级工程师,从事岩石磁学和环境磁学研究,E-mail:duanzq@ igsnrr.ac.cn刘健(1965—),男,博士,研究员,从事海洋地质与第四纪地质调查与研究,E-mail:liujian0550@vip.sina.com

  • 中图分类号: P736.21

Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea

  • 摘要: CSDP-2孔位于南黄海中部隆起,其孔深超过2800 m。该孔中下部中—古生代的固结成岩地层已被深入研究,但其最上部592 m未固结成岩的沉积序列尚未有研究报道。为了确定这部分沉积序列的地层划分,揭示其沉积演化历史,我们对其开展了古地磁测试、光释光测年、底栖有孔虫鉴定和沉积相分析,并与南黄海及其邻近海岸地区以往钻孔岩心分析成果进行对比研究。结果表明,CSDP-2孔0~592.00 m沉积序列最初形成于约5.2 Ma,其第四系底界位于孔深约227.91 m(年龄为2.59 Ma),下/中更新统界线位于孔深约65.23 m(年龄为0.78 Ma),中/上更新统界线位于孔深47.34 m(年龄约128 ka);自晚更新世以来形成的地层又可划分出MIS 5、MIS 4、MIS 3和MIS 1的沉积层段, MIS 2沉积缺失。南黄海中部隆起区在新近纪的剥蚀止于约5.2 Ma,从约5.2 Ma至约1.7 Ma发育河流沉积;由于浙闽隆起的逐渐沉降,约1.7 Ma发生自新生代以来的首次海侵,直至约0.83 Ma,发育潮坪—滨岸沉积与河流沉积的互层;从约0.83 Ma开始至今,浙闽隆起进一步沉降使得南黄海中部隆起区在间冰期高海平面时期的海洋环境基本接近现今环境;南黄海西部陆架在MIS 5发育范围比现今更广的冷水团沉积,在MIS 4、MIS 3早期、MIS 3晚期至MIS 2和MIS1分别依次发育河流、三角洲、河流和滨岸—内陆架环境。该沉积序列主要受控于区域构造沉降和海平面变化,其全新统、更新统及整个地层序列的沉积速率呈现依次明显下降的趋势,主要归因于地层时代越老其连续性越差,特别是晚更新世之前的地层有显著侵蚀的现象。本文的研究成果为深入理解南黄海西部陆架区晚新近纪以来的沉积环境演化进程和沉积地层的形成机制提供了新证据。
    Abstract: The Core of CSDP-2, which is more than 2800 m long, was retrieved from the Central Uplift of the South Yellow Sea, of which the Mesozoic-Paleozoic strata of the core have become a hot topic under research. However, research results of the uppermost sequence, 592 m in thickness made up of unconsolidated loose sediments, have not yet been reported so far. We have carried out paleomagnetic measurements, optically stimulated luminescence (OSL) dating, identification of benthic foraminifera and analyses of sedimentary facies for the sequence, in order to make its stratigraphic classification and reveal its history of sedimentary evolution. The results indicate that the 592 m- thick sequence came into being about 5.2 Ma, with its Quaternary bottom boundary at ~227.91 m of 2.59 Ma, the Lower and Middle Pleistocene boundary at ~65.23 m of 0.78 Ma, and the Middle - Upper Pleistocene boundary at 47.34 m of 128 ka, and covered by the Upper Pleistocene, which could be further subdivided into several sedimentary intervals formed during MIS 5, MIS 4, MIS 3 and MIS 1, while the MIS 2 deposits are missing. Also the results demonstrate that the denudation took place on the Central Uplift during Neogene and came to an end at ~5.2 Ma, followed by the deposition of fluvial deposits from ~5.2 to ~1.7 Ma, which was ceased as the first marine transgression took place in the region since Cenozoic presumably due to subsidence of the Zhe-Min Uplift. From ~1.7 to ~0.83 Ma, there was an alternation of tidal-flat and coastal deposits, and then from ~0.83 to the present the marine environments during high sea-level stands of the interglacial times were close to the marine environment of today in the region, due to the further subsidence of the Zhe-Min Uplift. On the western shelf of the South Yellow Sea, there was a cold water mass during MIS 5, which is broader than that of nowadays, and fluvial, deltaic, fluvial and coastal to inner-shelf environments prevailed successively during MIS 4, early MIS 3, late MIS 3 to MIS 2, and MIS 1. The sedimentary sequence was primarily controlled by tectonic subsidence and sea-level changes, and the sedimentation rates decreased evidently from the Holocene deposits to the Pleistocene and to the whole sequence, owing to the incompleteness of the older sediments comparing to the younger ones. Especially the pre-Late Pleistocene strata are marked by distinct erosion. The results of this study have provided new evidence for better understanding the evolution of sedimentary environments and the formation mechanism of strata in the western South Yellow Sea shelf since late Neogene.
  • 海底孕育了丰富的油气资源,近年来海洋油气勘探得到迅速发展,海上拖缆采集是高效的获取海洋地震资料的手段,由于海水面是一个强波阻抗界面,地震波传播到海水面产生的反极性强反射的多次波[1]是海洋地震资料处理中面临的一大难题。其压制方法可分为两大类:滤波法和预测相减法[2]。滤波法[3-4]是利用多次波与一次波的地震属性差异,选择合适的滤波方法将多次波去除;预测相减法[5-8]则通过正演或反演地震数据得到多次波模型,并由此求得多次波波场,再从原始地震记录中将其去除。

    多次波主要有自由表面多次波和层间多次波[9]两种类型,自由表面多次波是指与海水表面相关的多次波,层间多次波是指在海底及海底以下地层间多次震荡产生的多次波。自由表面多次波是存在于海洋地震资料中的主要多次波类型,它在海洋地震资料上常常表现为强振幅特性,这是因为海水表面是水与空气的分界面,其反射系数近似于-1,同时由于地震波在海水中的衰减很微弱,故其振幅往往很强。所有与海水表面相关的多次波统称为自由表面多次波,目前,自由表面多次波压制方法主要包括τ-P域反褶积多次波压制方法(属于滤波法)[10-11],高精度拉冬(radon)变换多次波压制方法(属于滤波法)[12-13]以及与此相关的技术改进算法[14-16], SRME方法(Surface-related Multiple Elimination)(属于预测相减法)[17-20]。τ-P域反褶积方法是利用多次波的周期性特征,设计相应的滤波器将周期出现的成分压制[21],该方法假设多次波需具有良好的周期性,对于短周期多次波的压制比较有效;高精度拉冬变换[11-13]是利用多次波与一次波的速度差异实现多次波与一次波的分离,首先将地震数据进行正常时差校正再变换到拉冬域,利用多次波与一次波在拉冬域的可分离性压制多次波组分,再将结果变换回时空域,该方法在消除中远偏移距多次波方面效果明显;SRME方法[22-23]为数据驱动的多次波预测方法,以地震数据本身作为预测算子,不需要已知地下介质的先验信息,并且可以同时预测出所有的自由表面多次波,该方法在深水区域去除多次波效果显著,但由于其需要在原始地震记录中减去多次波信息,易损害信噪比较低数据中的有效信号。稀疏反演一次波估计方法(Estimation of Primaries by Sparse Inversion, EPSI)无需对预测的多次波与原始数据进行匹配相减,即可同时重构一次波与多次波[24],避免了匹配相减对一次波的伤害,目前由于该方法计算成本限制,无法对实测数据进行工业应用[9]。但是目前并不存在一种方法能够完全一次性消除多次波,多次波的去除需要多种技术方法配合使用,通过多步去除最终达到消除多次波的目的。

    中国近海大陆架面积广阔,这些区域大多水深较浅,多道地震数据中往往存在较严重的浅水多次波干扰问题。浅水多次波降低了地震剖面的信噪比,掩盖了真实构造层位的空间展布。本文针对近海陆架浅水区地震资料,通过分析浅水区域多次波的特点,认为在海平面和海底面之间震荡的多次波对浅水区地震资料品质影响最大。因此,文章聚焦浅水区水层中震荡多次波的特点,研制对应的多次波压制手段:首先研究了浅水多次波的预测方法,并采用τ-P域的静校正延迟技术预测多次波模型,再通过自适应相减从原始数据中减去多次波以实现多次波的压制。中国近海某多道地震测线实际资料处理结果表明,本文方法在去除浅水多次波方面具有显著的效果,为近海浅水地震资料的多次波压制提供了良好的技术手段。

    浅水多次波的特点是由于海水较浅,有效波在海水层中多次震荡,并且水层对地震波能量衰减较小,造成有效波与多次波难以区分。图1给出了该类型浅水多次波的传播路径,在零偏移距条件下,多次波的周期为海平面到海底的双程旅行时。多次波的识别既可在炮集上进行也可在共偏移距道集上进行,由于共偏移距道集相对炮集更容易识别出地质构造,可靠性更高,因此,一般更倾向于在共偏移距道集上对多次波情况进行评估。近偏移距道集可以近似看作自激自收剖面,在层位上较容易识别出多次波(图2中的黑色箭头所指),由图可见多次波紧跟有效波,呈现出周期性特点,这种效应是由多次波在海水中反复传播引起的。

    图  1  浅水多次波传播路径示意图
    Figure  1.  Schematic diagram of multiple propagation paths in shallow water
    图  2  浅水多次波道集上的表现形态
    Figure  2.  The shallow water multiples in trace gather

    通过分析浅水多次波的特点,发现以下规律:① 多次波在道集上表现出周期性特点,且这种周期性与海水深度有关,海水越深多次波出现的时间越晚;② 紧跟有效层位的多次波往往比较明显,即一阶多次波在成像剖面中比较明显,二阶以上多次波能量明显减弱,此种现象在海上多道地震数据中普遍存在。因此,根据以上基本假设条件,设计相应的处理流程来解决这种类型多次波的压制问题。

    根据上文的分析,对于浅水地震资料,海水中震荡的多次波对成像效果影响最大,因此,本文主要研究在海水间震荡的多次波压制方法。基本思路为先预测出多次波模型,再从数据中将多次波减去,问题的关键是寻找一种适合浅水特点的多次波模型预测方法。

    海上拖缆采集条件下,炮点和接收点一般放置于海水面以下,为简化问题,忽略海底以下反射信息,仅分析海底的一次反射波与多次波特点。零偏移距条件下,浅水多次波模型的预测过程如图3所示。图3a展示了地震波在海水模型中传播得到的有效波和多次波的脉冲振幅与极性,不考虑海水的吸收衰减,那么假设一次有效波的振幅为1,一阶多次波经历一次海水面反射,假设其振幅为−1,二阶多次波经历两次海水面反射,假设其振幅为1。多次波出现的周期T为海平面到海底的双程旅行时。

    图  3  浅水多次波模型预测原理
    Figure  3.  Prediction of shallow water multiples

    海水多次波的预测可以通过4步实现:① 将含有多次波的数据(图3a)做T时间延迟,再将振幅值乘以−0.5,得到图3b;② 将图3a减去图3b得到图3c;③ 再将图3cT时间延迟,并将振幅乘以−0.5,得到图3d;④ 将图3b图3d相加得到图3e。由图3e可见,经过以上4步,可以完全将一阶多次波预测出来,并能够预测出二阶多次波及多阶多次波的大部分能量。这样做的目的是防止由于多次波周期T计算不准时,误差累加会导致预测的多阶多次波时间与真实时间之间出现较大差距,有利于有效信号的保护。

    以上分析基于零偏移距假设,在非零偏移距条件下,由于双曲效应,时空域中多次波不再保持等时差出现。图4a给出了浅水多次波在时空t-x域和τ-P域中的特点,由图可见,在t-x域中(图4a)近偏移距时多次波近似满足周期性出现的特点,但是在远偏移距处,多次波的出现时间不符合等时差规律。图4b是将炮集数据从时空域通过线性拉冬变换转换到τ-P域,由图可见,在不同的radon时差量处,多次波均表现出良好的周期性。因此,在τ-P域中利用多次波的周期性出现特征可以实现浅水多次波的准确预测。

    图  4  浅水多次波在t-x域(a)和τ-P域(b)中的特点
    A和A′代表一次波,B、B′、C、C′、D和D′代表多次波。
    Figure  4.  The characteristics of shallow water multiples in t-x domain (fig.a) and τ-P domain (fig.b)
    A and A′represent primary reflection, B, B′, C, C′, D and D′represent multiples.

    通过对浅水多次波衰减原理的分析可知,浅水多次波去除方法的流程较长(图5),涉及到的浅水多次波的周期计算、自适应相减等都会影响多次波的压制效果,因此,有必要对关键参数的选择进行分析和研究,通过实际处理效果确定最佳参数组合。

    图  5  浅水多次波压制流程图
    Figure  5.  Flow chart of shallow water multiple suppression

    在τ-P域,浅水多次波具有周期性,其周期可以用下面的公式计算:

    $$ T = t\sqrt {1 - {{\left( {pv} \right)}^2}} $$ (1)

    其中,t为海底的反射时间,p为慢度,v为海水的速度。在实际处理时,一般更习惯使用radon时差量来表示慢度,表示为:

    $$ p = \frac{r}{x} $$ (2)

    其中,r为radon时差量,x为参考偏移距,一般设为最大偏移距。radon时差量决定了τ-P变换数据范围,通过最大时差和最小时差控制,最大时差为正值,方向向下,最大值一般以海水速度为依据,即

    $$ {\rm{max}}\_r = \frac{{{\rm{offset}}}}{v} $$ (3)

    其中,max_r为最大时差量,offset为参考偏移距,v为海水速度,一般设为1 500 m/s。在浅水区域,有效波基本上都是向下倾斜,很少存在向上绕射的有效波,因此,最小时差量的设置仅是为减少τ-P变换过程中的能量损失,一般设置为最大时差量的四分之一左右。参考偏移距、最小时差量和最大时差量的设置可见图6a

    图  6  τ-P变换和浅水多次波周期计算
    a. 炮集,b. τ-P域结果,c. 自相关。
    Figure  6.  The τ-P transform and the period of shallow water multiples
    a. τ-P transform of the shot gather, b. τ-P domain result, c. the autocorrelation.

    图6b图6a将蓝线区域内的数据变换到τ-P域的结果,可以看到浅水多次波在τ-P域上具有明显的周期性,其时差与计算的周期T吻合较好,对其做自相关可以发现浅水多次波周期T在自相关图中也可以较好吻合(图6c),表明浅水多次波符合在海水之间震荡的特点,这是本文方法压制浅水多次波的基础。实际上,对于本文的方法,多次波去除效果的好坏关键在于多次波模型预测的效果,对于多次波的预测关键在于其计算周期与实际资料能否很好地匹配,因此,通过τ-P域的自相关验证计算周期T与实际资料的符合程度是关键的质控手段。

    得到多次波模型后,需要通过自适应相减将多次波进行压制,这是浅水多次波压制的最后一步。自适应相减的实现是依据一定的规律将数据集在时间和空间上划分为多个重叠的窗口,在每个窗口中计算出地震数据与多次波模型的最佳匹配滤波器,再从地震数据中将滤波后的多次波模型减去。

    自适应相减有一维滤波(仅时间)和二维滤波(包含时间和空间)两种算法,一维滤波仅对每一地震道在时间上进行匹配滤波,而二维滤波不但考虑每一地震道在时间上的匹配,同时考虑它与相邻地震道在空间上的匹配,所以理论上二维滤波效果好于一维滤波,但需要更大的计算内存与计算时间。在海底较平、构造简单,或多次波模型比较准确的条件下,两者计算结果差别不大,此时综合考虑计算效果与计算效率,往往采用一维滤波算法。

    此外,自适应相减可在炮域或道域中实现,炮域道集即常规的共炮点道集,道域道集为共偏移距道集。一般而言,自适应相减在共偏移距道域中实现效果更好,这是因为在共偏移距道域中,偏移距相同或相差不大,地质构造的影响在一个共偏移距道域剖面上被平均化;同时,近道(小偏移距)数据往往是由小角度入射的地震波组成的,而大偏移距数据往往包含更多大角度入射波信息,因此可以解决在炮记录中的各道记录由于方向性效应的影响,震源信号会随着传播角度的不同而有所差异的问题。

    根据对自适应相减的分析,经过实验,在实际资料处理中采用表1所示的参数。自适应相减的结果见图7,由图可见,黑色箭头指示一阶多次波,可以看到多次波模型预测较准确,在自适应相减后多次波得到明显压制;对比图7c图7d,可见图中粉色箭头指示处在炮集中进行自适应相减会有多次波的残留,在共偏移距道集中进行自适应相减可以实现多次波的最大化去除。图8对比了本文方法与SRME方法压制浅水多次波的效果,由图可见,SRME方法可以压制长周期的多次波,但对在海水间震荡的多次波去除效果不足,黑色箭头处存在较多的多次波残留。

    表  1  自适应相减所采用的参数
    Table  1.  The parameters of adaptive subtract
    参数参数值
    自适应相减类型最小平方1D算法
    计算域道域
    时间窗口长度500 ms
    空间窗口长度50
    滤波长度11
    下载: 导出CSV 
    | 显示表格
    图  7  自适应相减前后对比
    Figure  7.  Comparison of adaptive subtract
    图  8  不同压制方法对比
    Figure  8.  Comparison of different suppressing methods

    通过实际处理时参数的调整和实验,图9展示了本文方法压制浅水多次波前后的叠加剖面。由图可见,影响该区的多次波主要是一阶自由表面多次波,经过浅水多次波压制后,海底的一阶多次波和海底下强反射界面的一阶多次波得到有效衰减,有利于层位的识别与追踪;由于海底面的一阶多次波具有很强的能量,压制前海底下层位较多,各层能量级别相似,压制后有效波得到凸显,波组特征更加明显,信噪比得到提高。

    图  9  浅水去多次波前后叠加剖面的对比
    Figure  9.  Comparison of stack profiles before and after shallow water de-multiple

    (1)大陆架浅水平缓海底地区浅水多次波的特点表现为:在海水间传播的多次波最为发育,其中该类多次波中的一阶多次波对地震资料影响最为明显。

    (2)τ-P域静校正延迟方法可以实现多次波的准确预测,通过自适应相减可以对其进行有效压制。

    (3)在τ-P域,计算的多次波周期应该与实际资料相吻合,通过自相关道集进行质控是多次波模型预测准确与否的关键。

    (4)浅水多次波压制技术是根据实际资料的特点研究的一种组合算法,主要适用于海底平缓的浅水地区,中国渤海、黄海和东海大陆架的大多数海区都符合这一条件,本文算法对这些地区的地震资料处理均具适用性。

    致谢:感谢青岛海洋地质研究所东海油气调查项目提供地震数据支持。

  • 图  1   南黄海及其邻近地区地质构造简图以及本文涉及到的钻孔位置[8, 18]

    Figure  1.   Schematic map showing the tectonic division of the South Yellow Sea and the neighboring regions, as well as the locations of the sediment cores discussed in this study[8, 18]

    图  2   CSDP-2孔岩心柱状图

    a. 0~192 m, b.192~384 m, c. 384~592 m。

    Figure  2.   Lithologic logs of core CSDP-2, for depths of (a) 0~192 m, (b) 192~384 m, and (c) 384~592 m

    图  3   CSDP-2孔0~130 m岩芯中底栖有孔虫的丰度(a)、简单分异度(b)和主要属种含量(c—i)的垂向分布特征

    半咸水种:E. kiangsuensisH. germanicaHy. Balthica;较深水种:A. compressiusculaA. ketienziensis

    Figure  3.   Down-core changes in (a) benthic foraminiferal abundance, (b) simple diversity, and (c—i) relative abundance of the main foraminiferal species in the uppermost 130 m of core CSDP-2

    图  4   样品的磁化率各向异性特征

    a. 磁化率各向异性度(P)—体磁化率(K)关系图,b. 磁面理(F)— 磁线理(L)关系图,c. 磁化率各向异性主轴方向的等面积投影图。

    Figure  4.   Anisotropy of magnetic susceptibility for all samples of core CSDP-2, with (a) degree of magnetic anisotropy (P) versus volume susceptibility (K), (b) magnetic lineation (L) versus magnetic foliation (F), and (c) Stereonet projection of axes of maximum (K1), intermediate (K2) and minimum (K3) susceptibility axes.

    图  5   CSDP-2孔特征样品的交变退磁结果正交投影图(a—f),(g)特征剩磁的磁倾角变化和(h)地磁极性变化

    Figure  5.   Orthogonal diagrams of stepwise alternating-field demagnetization of representative samples (a)~(f), variations of ChRM inclinaton (g), and variations of the geomagnetic polarity (h) in core CSDP-2.

    图  6   CSDP-2钻孔的综合磁性地层年龄框架及其与邻近钻孔磁性地层的对比

    a. XH1孔磁性地层[36], b. GZK01孔磁性地层[23], c. CSDP-1磁性地层[21],d. CSDP-1孔的磁化率变化[21],e. CSDP-2孔的磁化率变化, f. CSDP-2孔特征剩磁磁倾角变化,g. CSDP-2孔的磁性地层结果(来自本文),h. 标准地磁极性年代表(GPTS)[35]

    Figure  6.   Magnetostratigraphic framework of core CSDP-2 and its correlation with those of other cores in the neighboring areas, showing (a) magnetostatigraphy of core XH1[36], (b) magnetostatigraphy of core GZK01[23], (c) magnetostatigraphy of core CSDP-1[21], (d) magnetic susceptibility variations of CSDP-1[21], (e) magnetic susceptibility variations of CSDP-2, (f) ChRM inclinaton of core CSDP-2, (g) Magnetostatigraphy of core CSDP-2 of this study, and (h) GPTS[35]

    图  7   CSDP-2孔的年龄-深度曲线

    0~592.00 m各主要年龄控制点之间的沉积速率(黑线)、0~592.00 m平均沉积速率(紫色线)和第四纪地层的平均沉积速率(绿线)。横轴显示的标准地磁极性年代表(GPTS)引自文献[35],纵轴显示的CSDP-2孔磁性地层详见图6

    Figure  7.   Age-depth curve of core CSDP-2

    With the black line showing the sedimentation rates between the various time control points, the purple line showing the average sedimentation rate in the entire core of 592.00 m, and the green line showing the average sedimentation rate in the Quaternary.

    图  8   CSDP-2 孔 0~592.00 m 与 CSDP-1 孔沉积序列主要磁性地层界面的对比(蓝线)和 3 个主要海侵界面的对比(红线)(a) 以及 CSDP-2 和 CSDP-1 孔 MIS 5 以来沉积相序、地层划分及其对比(b)

    CSDP-2的资料来自本文,CSDP-1的资料来自文献[8],标准地磁极性年代表(GPTS)来自文献[35],MIS 6晚期以来全球海平面高程的资料来自文献[37]。

    Figure  8.   (a) correlation of main magnetostratigraphic boundaries (blue lines) and three major marine transgressive boundaries (red lines) between the uppermost 592.00 m of core CSDP-2 and core CSDP-1, and (b) the post-MIS 5 sedimentary facies sequences, stratigraphic divisions of core CSDP-2 and core CSDP-1 and their correlation between the two cores

    Data sources: CSDP-2 from this study, CSDP-1 from Reference [8], GPTS from Reference[35], and the data of global sea level since the late MIS 6 from Reference [37].

    表  1   本文涉及的南黄海海岸带-陆架区钻孔信息

    Table  1   Details of the sediment cores in the coastal to shelf areas of the South Yellow sea as described in this paper

    钻孔编号位置水深/m孔深/m资料来源
    CSDP-234°33′18.9″N、121°15′41″E22.002809.88本文
    CSDP-134°18′10.7730″N、122°22′0.4896″E52.50300.10[7]
    QC234°18′N、122°16′E49.05108.83[22]
    SYS-070134°39.7535′N、121°27.0000′E33.0070.20[23]
    SYS-070234°18.0919′N、122°05.7459′E32.0070.25[23]
    GZK0134°10′N、119°29′E285[24]
    XH-132°45′N、119°51′N350[25]
    下载: 导出CSV

    表  2   CSDP-2孔沉积物样品OSL测年结果

    Table  2   Optically stimulated luminescence (OSL) dating results for sediment samples of core CSDP-2

    孔深/m粒径/μmU/10−6Th/10−6K/%含水率/%等效剂量/Gy剂量率/(Gy/ka)年代/ka
    0.4738~631.59 ± 0.39.17 ± 0.61.94 ± 0.0319 ± 52.71 ± 0.032.69 ± 0.121.0 ± 0.1
    1.0638~631.35 ± 0.39.03 ± 0.61.77 ± 0.0322 ± 52.57 ± 0.042.27 ± 0.121.1 ± 0.1
    1.7838~631.42 ± 0.38.43 ± 0.61.86 ± 0.0320 ± 52.70 ± 0.031.81 ± 0.091.1 ± 0.1
    3.0338~631.52 ± 0.39.77 ± 0.62.10 ± 0.0419 ± 53.96 ± 0.072.77 ± 0.121.4 ± 0.1
    3.938~631.47 ± 0.310.05 ± 0.72.06 ± 0.0420 ± 55.91 ± 0.122.42 ± 0.112.4 ± 0.1
    7.8738~631.56 ± 0.39.67 ± 0.62.11 ± 0.0425 ± 510.82 ± 0.202.59± 0.114.2 ± 0.2
    9.3838~632.23 ± 0.411.53 ± 0.72.16 ± 0.0423 ± 511.85 ± 0.392.9 ± 0.134.0 ± 0.2
    17.7538~631.98 ± 0.311.04 ± 0.72.14 ± 0.0421 ± 5193.4 ± 18.12.82 ± 0.1268.5 ± 7.1
    18.8238~633.09± 0.411.97 ± 0.71.91 ± 0.0318 ± 5197.2 ± 18.22.99 ± 0.1465.9 ± 6.8
    24.7238~632.04 ± 0.412.69 ± 0.71.87 ± 0.0318 ± 5225.3 ±15.72.78 ± 0.1381.1 ± 6.8
    26.3138~631.57 ± 0.38.88 ± 0.61.93 ± 0.0316 ± 5169.2 ± 17.12.55 ± 0.1266.3 ± 7.4
    27.0238~631.75 ± 0.310.16 ± 0.71.77 ± 0.0315 ± 5205.4 ± 20.02.56 ± 0.1280.4 ± 8.7
    30.2938~631.60 ± 0.39.93 ± 0.61.81 ± 0.0317 ± 5196.0 ± 14.63.00 ± 0.1065.4 ± 5.3
    31.1538~631.0 ± 0.36.14 ± 0.62.02 ± 0.0416 ± 5169.5 ± 11.12.33 ± 0.1272.6 ±6.1
    32.1638~631.59 ± 0.39.45 ± 0.61.68 ± 0.0314 ± 5188.0 ± 21.02.42 ± 0.1277.7 ± 9.5
    37.0538~631.70 ± 0.38.65 ± 0.62.01 ± 0.0416 ± 5241 ± 162.62 ± 0.1392 ± 7*
    38.7438~631.79 ± 0.39.39 ± 0.62.01 ± 0.0419 ± 5266 ± 212.61 ± 0.12102 ± 9*
    39.9638~631.91 ± 0.39.59 ± 0.61.86 ± 0.0318 ± 5244 ± 112.54 ± 0.1296 ± 6.*
    48.3138~631.83 ± 0.311.49 ± 0.71.97 ± 0.0318 ± 5286 ± 192.73 ± 0.12105 ± 12*
    49.538~631.03 ± 0.36.55 ± 0.61.94 ± 0.0312 ± 5291 ± 192.39 ± 0.13122 ± 10*
    下载: 导出CSV
  • [1] 庞玉茂, 张训华, 肖国林, 等. 下扬子南黄海沉积盆地构造地质特征[J]. 地质论评, 2016, 62(3):604-616

    PANG Yumao, ZHANG Xunhua, XIAO Guolin, et al. Structural and geological characteristics of the South Yellow Sea Basin in lower Yangtze block [J]. Geological Review, 2016, 62(3): 604-616.

    [2] 庞玉茂, 张训华, 郭兴伟, 等. 南黄海北部盆地中、新生代构造热演化史模拟研究[J]. 地球物理学报, 2017, 60(8):3177-3190 doi: 10.6038/cjg20170824

    PANG Yumao, ZHANG Xunhua, GUO Xingwei, et al. Mesozoic and Cenozoic tectono-thermal evolution modeling in the Northern South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2017, 60(8): 3177-3190. doi: 10.6038/cjg20170824

    [3] 姚永坚, 夏斌, 冯志强, 等. 南黄海古生代以来构造演化[J]. 石油实验地质, 2005, 27(2):124-128 doi: 10.3969/j.issn.1001-6112.2005.02.005

    YAO Yongjian, XIA Bin, FENG Zhiqiang, et al. Tectonic evolution of the South Yellow Sea since the Paleozoic [J]. Petroleum Geology & Experiment, 2005, 27(2): 124-128. doi: 10.3969/j.issn.1001-6112.2005.02.005

    [4] 侯方辉, 张志珣, 张训华, 等. 南黄海盆地地质演化及构造样式地震解释[J]. 海洋地质与第四纪地质, 2008, 28(5):61-68

    HOU Fanghui, ZHANG Zhixun, ZHANG Xunhua, et al. Geologic evolution and tectonic styles in the South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2008, 28(5): 61-68.

    [5] 杨长清, 董贺平, 李刚. 南黄海盆地中部隆起的形成与演化[J]. 海洋地质前沿, 2014, 30(7):17-21,33

    YANG Changqing, DONG Heping, LI Gang. Formation and tectonic evolution of the central uplift of the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 17-21,33.

    [6]

    Pang Y M, Guo X W, Han Z Z, et al. Mesozoic–Cenozoic denudation and thermal history in the Central Uplift of the South Yellow Sea Basin and the implications for hydrocarbon systems: constraints from the CSDP-2 borehole [J]. Marine and Petroleum Geology, 2019, 99: 355-369. doi: 10.1016/j.marpetgeo.2018.10.027

    [7]

    Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea [J]. Quaternary Science Reviews, 2016, 144: 1-15. doi: 10.1016/j.quascirev.2016.05.025

    [8]

    Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~ 3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005

    [9]

    Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: tectonic or climate forcing? [J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002

    [10] 张晓华, 张训华, 吴志强, 等. 南黄海中部隆起中-古生代地层发育新认识: 基于大陆架科学钻探CSDP-02井钻探成果[J]. 地球物理学报, 2018, 61(6):2369-2379 doi: 10.6038/cjg2018L0124

    ZHANG Xiaohua, ZHANG Xunhua, WU Zhiqiang, et al. New understanding of Mesozoic-Paleozoic strata in the central uplift of the South Yellow Sea basin from the drilling of well CSDP-02 of the “continental shelf drilling program” [J]. Chinese Journal of Geophysics, 2018, 61(6): 2369-2379. doi: 10.6038/cjg2018L0124

    [11] 郭兴伟, 朱晓青, 牟林, 等. 南黄海中部隆起二叠纪-三叠纪菊石的发现及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3):121-128

    GUO Xingwei, ZHU Xiaoqing, MU Lin, et al. Discovery of Permian-Triassic ammonoids in the central uplift of the South Yellow Sea and its geological implications [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 121-128.

    [12] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705

    CAI Laixing, GUO Xingwei, XU Zhaohui, et al. Depositional environment of upper Paleozoic in the central uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.

    [13]

    Cai L X, Xiao G L, Guo X W, et al. Assessment of Mesozoic and Upper Paleozoic source rocks in the South Yellow Sea Basin based on the continuous borehole CSDP-2 [J]. Marine and Petroleum Geology, 2019, 101: 30-42. doi: 10.1016/j.marpetgeo.2018.11.028

    [14]

    Guo X W, Xu H H, Zhu X Q, et al. Discovery of Late Devonian plants from the southern Yellow Sea borehole of China and its palaeogeographical implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108444. doi: 10.1016/j.palaeo.2017.08.039

    [15] 吴志强, 郭兴伟, 祁江豪, 等. 大陆架科学钻探南黄海CSDP-2井的垂直地震剖面资料采集技术[J]. 海洋地质与第四纪地质, 2018, 38(3):199-207

    WU Zhiqiang, GUO Xingwei, QI Jianghao, et al. Vertical seismic profiling data acquisition from Well CSDP-2 in the Central uplift of South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 199-207.

    [16] 许薇龄. 论南黄海区的两个新生代盆地[J]. 海洋地质研究, 1982, 2(1):66-78

    XU Weiling. Discussion on the two Cenozoic Basins of the South Yellow Sea [J]. Marine Geological Research, 1982, 2(1): 66-78.

    [17] 陈沪生, 张永鸿, 徐师文, 等. 下扬子及邻区岩石圈结构构造特征与油气资源评价[M]. 北京: 地质出版社, 1999: 1-287

    CHEN Husheng, ZHANG Yonghong, XU Shiwen, et al. The Lithospheric Textural and Structural Features as Well as Oil and Gas Evaluation in the Lower Yangtze Area and its Adjacent Region, China[M]. Beijing: Geological Publishing House, 1999: 1-287. ]

    [18] 邱检生, 胡建, 李真, 等. 大别—苏鲁造山带变质岩原岩组合与闽浙沿海晚中生代岩浆岩组合的对比: 对扬子板块北东缘新元古构造属性的启示[J]. 高校地质学报, 2010, 16(4):413-425 doi: 10.3969/j.issn.1006-7493.2010.04.001

    QIU Jiansheng, HU Jian, LI Zhen, et al. Comparison of protolith assemblages of metamorphic rocks in the Dabie-Sulu Orogen and the late Mesozoic magmatic rock associations in the coastal region of Zhejiang and Fujian provinces: implications for the neoproterozoic tectonic setting of northeastern Yangtze Block [J]. Geological Journal of China Universities, 2010, 16(4): 413-425. doi: 10.3969/j.issn.1006-7493.2010.04.001

    [19] 侯方辉, 郭兴伟, 吴志强, 等. 南黄海有关地层与构造的研究进展及问题讨论[J]. 吉林大学学报:地球科学版, 2019, 49(1):96-105

    HOU Fanghui, GUO Xingwei, WU Zhiqiang, et al. Research progress and discussion on formation and tectonics of South Yellow Sea [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 96-105.

    [20]

    Jin X L, Yu P Z. Tectonics of the Yellow Sea and the East China Sea[M]//C. A. O. S. IOCAS (Institute of Oceanology). Beijing: The Geology of the Yellow Sea and the East China Sea Science Press, 1982: 1-22.

    [21] 沈淑敏, 郑芳芳, 刘文英. 中国东南大陆边缘地区中、新生代构造特点与构造应力场[J]. 中国地质科学院地质力学研究所所刊, 1986(8):9-34

    SHEN Shumin, ZHENG Fangfang, LIU Wenying. Mesozoic-Cenozoic tectonic features of southeast China continental margin and the tectonic stress field [J]. Bulletin of the Institute of Geomechanics CAGS, 1986(8): 9-34.

    [22] 杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366

    YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron [J]. Acta Geologica Sinica, 1993, 67(4): 357-366.

    [23]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003

    [24]

    Gao X B, Ou J, Guo S Q, et al. Sedimentary history of the coastal plain of the south Yellow Sea since 5.1 Ma constrained by high-resolution magnetostratigraphy of onshore borehole core GZK01 [J]. Quaternary Science Reviews, 2020, 239: 106355. doi: 10.1016/j.quascirev.2020.106355

    [25] 舒强, 萧家仪, 赵志军, 等. 苏北盆地XH-1钻孔0.78 Ma以来的气候环境变化记录[J]. 地层学杂志, 2010, 34(1): 27-34

    SHU Qiang, XIAO Jiayi, ZHAO Zhijun, et al. Environmental records in XH-1 core in northern Jiangsu Basin since about 780 ka B. P. [J]. Journal of Stratigraphy, 2010, 34(1): 27-34.

    [26]

    Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol [J]. Radiation Measurements, 2000, 32(1): 57-73. doi: 10.1016/S1350-4487(99)00253-X

    [27]

    Roberts H M, Duller G A T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots [J]. Radiation Measurements, 2004, 38(2): 241-252. doi: 10.1016/j.radmeas.2003.10.001

    [28]

    Lai Z P. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau [J]. Radiation Measurements, 2006, 41(1): 9-16. doi: 10.1016/j.radmeas.2005.06.031

    [29] 中华人民共和国国家质量监督检验检疫总局. GB/T 12763.8-2007 海洋调查规范 第8部分: 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2008: 7-9

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 12763.8-2007 Specifications for oceanographic survey—Part 8: marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2008: 7-9. ]

    [30]

    Amorosi A, Pavesi M, Lucchi M R, et al. Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po Plain, Italy [J]. Sedimentary Geology, 2008, 209(1-4): 58-68. doi: 10.1016/j.sedgeo.2008.06.010

    [31]

    Guion P D, Fulton I M, Jones N S. Sedimentary facies of the coal-bearing Westphalian A and B north of the Wales-Brabant High [J]. Geological Society, London, Special Publications, 1995, 82: 45-78. doi: 10.1144/GSL.SP.1995.082.01.03

    [32]

    Duan Z Q, Liu Q S, Shi X F, et al. Reconstruction of high-resolution magnetostratigraphy of the Changjiang (Yangtze) River Delta, China [J]. Geophysical Journal International, 2016, 204(2): 948-960. doi: 10.1093/gji/ggv497

    [33]

    Duan Z Q, Liu Q S, Gai C C, et al. Magnetostratigraphic and environmental implications of greigite (Fe3S4) formation from Hole U1433A of the IODP Expedition 349, South China Sea [J]. Marine Geology, 2017, 394: 82-97. doi: 10.1016/j.margeo.2017.02.008

    [34]

    Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data [J]. Geophysical Journal of the Royal Astronomical Society, 1980, 62(3): 699-718. doi: 10.1111/j.1365-246X.1980.tb02601.x

    [35]

    Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale[M]. Boston: Elsevier, 2012: 1-1144.

    [36] 张茂恒, 李吉均, 舒强, 等. 兴化XH-1孔记录的苏北盆地晚新生代沉积体系及环境变化过程[J]. 地理研究, 2011, 30(3):513-522

    ZHANG Maoheng, LI Jijun, SHU Qiang, et al. The sediments sequence and environmental oscillation of the core XH-1 in Subei Basin since late Cenozoic [J]. Geographical Research, 2011, 30(3): 513-522.

    [37]

    Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change [J]. Science, 2005, 310(5752): 1293-1298. doi: 10.1126/science.1116412

    [38] 杨子赓, 林和茂, 王圣洁, 等. 对末次间冰期南黄海古冷水团沉积的探讨[J]. 海洋地质与第四纪地质, 1998, 18(1):47-58

    YANG Zigeng, LIN Hemao, WANG Shengjie, et al. A study of the ancient Cold Water Mass sediments in South Yellow Sea during Last Interglacial [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 47-58.

    [39]

    Chappell J, Omura A, Esat T, et al. Reconciliaion of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records [J]. Earth and Planetary Science Letter, 1996, 141(1-4): 227-236. doi: 10.1016/0012-821X(96)00062-3

    [40]

    Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze Shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China [J]. Marine Geology, 2020, 423: 106080. doi: 10.1016/j.margeo.2019.106080

    [41]

    Sommerfield C K. On sediment accumulation rates and stratigraphic completeness: lessons from Holocene ocean margins [J]. Continental Shelf Research, 2006, 26(17-18): 2225-2240. doi: 10.1016/j.csr.2006.07.015

    [42] 管秉贤. 黄、东海浅海水文学的主要特征[J]. 黄渤海海洋, 1985, 3(4):1-10

    HUANG Bingxian. Major features of the shallow water hydrography in the East China Sea and Huanghai Sea [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1985, 3(4): 1-10.

    [43] 庞玉茂, 郭兴伟, 韩作振, 等. 南黄海中部隆起晚白垩世以来地层剥蚀的磷灰石裂变径迹分析[J]. 地球科学, 2018, 43(6):1921-1930

    PANG Yumao, GUO Xingwei, HAN Zuozhen, et al. Apatite fission track constrains on denudation since late cretaceous in central uplift, South Yellow Sea Basin [J]. Earth Science, 2018, 43(6): 1921-1930.

  • 期刊类型引用(9)

    1. 刘鸿,徐华宁,刘欣欣,陈江欣,张菲菲,王小杰,颜中辉,杨佳佳,杨睿. 海洋地球物理数据处理现状及展望. 海洋地质与第四纪地质. 2024(03): 40-52 . 本站查看
    2. 王小杰,刘欣欣,颜中辉,刘鸿,杨佳佳. 基于曲波域模型优化的多次波压制方法在浅地层剖面的应用. 石油物探. 2024(06): 1155-1162 . 百度学术
    3. 周东红,段新意. 浅水环境下气云发育区高孔低胶结地层地震资料成像策略研究——以渤海莱北地区A油田为例. 石油物探. 2023(01): 105-118 . 百度学术
    4. 邢子浩,蔡砥柱,张林,陈靓,孟庆杰,王瑞,李奇,陈治国,鲁旭. 基于整形正则化非平稳回归技术的匹配滤波压制单道地震鬼波方法及应用. 地球物理学进展. 2023(01): 502-512 . 百度学术
    5. 龙成,孙辉,安永宁. 海上风电场址浅地层剖面信息采集及关键处理技术. 水道港口. 2023(03): 473-479 . 百度学术
    6. 易虎,詹文欢,闵伟,吴晓川,李健,冯英辞,任治坤. 小多道地震震源效果在海域活动断裂探测中的对比研究. 地震地质. 2022(02): 333-348 . 百度学术
    7. 邢子浩,陈靓,杨德鹏,杨册,翟继锋,周大森,王明,韦成龙. 基于正则化非平稳回归技术的自适应匹配相减在单道地震多次波压制中的应用. 海洋地质前沿. 2021(02): 70-76 . 百度学术
    8. 王小杰,颜中辉,刘俊,刘欣欣,杨佳佳. 基于模型优化的广义自由表面多次波压制技术在印度洋深水海域的应用. 海洋地质与第四纪地质. 2021(05): 221-230 . 本站查看
    9. 颜中辉,王小杰,刘媛媛,徐华宁,杨佳佳,杨长清,杨传胜. 东海多次波压制的关键技术. 海洋地质前沿. 2020(07): 64-72 . 百度学术

    其他类型引用(3)

图(10)  /  表(2)
计量
  • 文章访问数:  23614
  • HTML全文浏览量:  1713
  • PDF下载量:  264
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-10-16
  • 修回日期:  2021-10-19
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2021-10-27

目录

/

返回文章
返回