海洋天然气水合物储层蠕变行为的主控因素与研究展望

吴能友, 李彦龙, 刘乐乐, 万义钊, 张正财, 陈明涛

吴能友, 李彦龙, 刘乐乐, 万义钊, 张正财, 陈明涛. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 2021, 41(5): 3-11. DOI: 10.16562/j.cnki.0256-1492.2021092201
引用本文: 吴能友, 李彦龙, 刘乐乐, 万义钊, 张正财, 陈明涛. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 2021, 41(5): 3-11. DOI: 10.16562/j.cnki.0256-1492.2021092201
WU Nengyou, LI Yanlong, LIU Lele, WAN Yizhao, ZHANG Zhengcai, CHEN Mingtao. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 3-11. DOI: 10.16562/j.cnki.0256-1492.2021092201
Citation: WU Nengyou, LI Yanlong, LIU Lele, WAN Yizhao, ZHANG Zhengcai, CHEN Mingtao. Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 3-11. DOI: 10.16562/j.cnki.0256-1492.2021092201

海洋天然气水合物储层蠕变行为的主控因素与研究展望

基金项目: 国家自然科学基金项目“南海神狐海域水合物储层的蠕变特征与主控因素研究”(42076217);山东省泰山学者特聘专家计划(ts201712079)
详细信息
    作者简介:

    吴能友(1965—),男,研究员,主要从事海洋地质与天然气水合物研究,E-mail:wuny@ms.giec.ac.cn

    通讯作者:

    李彦龙(1989—),男,副研究员,主要从事天然气水合物开采研究,E-mail:ylli@qnlm.ac

  • 中图分类号: P744

Controlling factors and research prospect on creeping behaviors of marine natural gas hydrate-bearing-strata

  • 摘要: 蠕变是指沉积物在特定应力状态下变形与时间的关系,属于沉积物的固有力学属性。厘清海洋天然气水合物开采过程中储层蠕变的主控因素及其控制机理,对量化评价潜在工程地质风险的发生和演变规律具有重要意义。本文将在综述海洋天然气水合物储层破坏特征的基础上,梳理海洋天然气水合物储层蠕变特征及主控因素,厘清关键科学问题;结合最新研究成果,阐述天然气水合物储层蠕变特征多尺度表征与探测技术体系的基本内涵,简要探讨该领域的未来研究方向。初步分析认为,海洋天然气水合物开采过程中储层蠕变行为是水合物本身及其分解产出过程中的应力、温度、渗流等动态因素综合作用的结果,现有蠕变本构模型无法完全反映上述相变-传热-渗流-应力多场多相多组分耦合过程。为建立适合南海北部水合物储层的蠕变本构,进而为后续开采工程安全设计提供理论支撑,建议从天然气水合物储层的力学性能弱化特征及蠕变各阶段的时效参数两方面入手,从分子尺度、纳微尺度、岩心尺度、中试尺度、矿藏尺度5个层面,建立天然气水合物储层蠕变行为的跨尺度研究方法体系;以南海实际储层样品为研究对象,剖析天然气水合物开采过程中储层蠕变行为的主控因素。
    Abstract: Creeping of HBS is a common behavior of hydrate-bearing strata in the process of gas production and has great impact on the occurrence and development of engineering geohazards. In this paper, we summarized the main failure modes of HBS based on the investigation of a large number of literatures. Then the research thoughts and strategies on strata creeping behaviors during hydrate exploitation are comprehensively discussed, based on the key scientific issues expounded. Afterwards, a multi-scale creeping detection and characterization approach for HBS is put forward, together with its future research trends. It is supposed that creeping behaviors of HBS during gas extraction are the result of combination of hydrate distribution and its dissociation-induced changes in multi-physical fields such as phase transformation, heat exchange, seepage, and stress evolution. The current constitutive models for conventional soils are not effective enough to reflect such a complex dynamic multifield, multiphase and multicomponent coupling effect, which are doubtlessly inadaptable for evaluating the geotechnical issues during hydrate exploitation in the case of northern South China Sea. For this reason, a multi-scale detection and characterization system needs to be established to analyze the dynamic damage behaviors of HBS during hydrate production, which consists of the molecular scale, nano-to-micro scale, core scale, pilot scale, and field scales techniques. Using the sediments collected from the HBS at the northern South China Sea, the control mechanisms of different geological and engineering parameters on hydrate-bearing strata creeping should be quantitatively modeled.
  • 库泰盆地是印尼最大的新生代盆地,位于加里曼丹岛东部,西部整体逐渐抬升,是库泰盆地新近纪沉积的主要物源区;东侧向望加锡海峡方向逐渐过渡为深海盆地;盆地中部的海陆过渡-浅海区的马哈坎褶皱带是油气勘探的重要区域(图1)。库泰盆地的油气勘探始于19世纪末期,油气发现主要集中在库泰盆地马哈坎三角洲的中—上中新统陆相成藏组合内[1],前人研究也大多集中于此。

    图  1  印度尼西亚库泰盆地位置图及地震-地质综合解释成果剖面图
    Figure  1.  Location map of Kutai Basin, Indonesia and the cross-section of integrated seismic and geological interpretation results

    通过区域地质研究和成藏组合评价,中国石油于2009年首次在中中新统下部—下中新统滨海相砂岩中获得油气发现,并且首次对该区深层滨海相成藏组合进行了系统研究[2-4]。但是,滨海相沉积序列在野外发育特征如何,垂向上如何演化,仍需要深入研究。为此,对下库泰盆地马哈坎三角洲开展了多次野外地质考察,在识别研究进积型三角洲的同时,特别对早中新世滨海相沉积地层开展了识别研究,厘清了其展布特征,并建立了该沉积序列的发育模式。通过钻井详细分析和野外地质考察,认为研究区下中新统不仅是普遍发育的滨海相沉积,而且是在三角洲和古构造共同作用下发育的碎屑岩与碳酸盐岩混积序列层系,表现为生屑灰岩上覆在厚层砂岩之上,而且发育多套相似特征的沉积旋回。关于混合沉积的概念,前人指出,混合沉积在同一层形成碎屑岩—碳酸盐岩混积岩系列;而由碎屑岩与碳酸盐岩、碎屑岩与混积岩、碳酸盐岩与混积岩和不同类型混积岩之间的交互沉积以及与陆表海三角洲碎屑沉积交互成层,形成了混积序列。混积序列和混积岩共同构成广义的混合沉积[5-7]

    通常混合沉积在野外露头上难以保留,而本文研究区为混合沉积研究提供了非常宝贵的地质条件。通过对研究区钻井、露头下中新统滨海相沉积的研究,建立了滨海相沉积的发育模式,并建立了混积序列发育模式,分析了其主控因素,为混积序列这类特殊的沉积现象提供了研究素材,进而为预测岩性变化规律和有利储层发育层段提供了理论依据。

    库泰盆地位于加里曼丹岛的东部,包括陆上和海上部分,面积达27×104 km2,其中陆上面积约11×104 km2,海上面积约16×104 km2。其北部边界为芒卡力哈山,与打拉根盆地相隔;南为阿当断层将其与Paternoster台地和巴里托盆地分开;西部为中加里曼丹凸起,将其与莫拉维盆地分隔;库泰盆地东部延伸至望加锡海峡深水区,水深大于500 m的海域面积约6.7×104 km2。盆地中部的三马林达复背斜带将库泰盆地分为西部的上库泰盆地和东部的下库泰盆地,油气发现集中在下库泰盆地[8]

    受欧亚板块、太平洋板块和澳大利亚板块的相互作用影响,库泰盆地经历了始新世裂谷期、渐新世至中中新世的区域沉降期和中中新世的挤压反转期3个主要的演化阶段[9],发育了陆相-海相-三角洲相沉积旋回(图2)。其中,始于早中新世,剧烈于中中新世的构造抬升及同期的三角洲进积对区内油气成藏至关重要。

    图  2  库泰盆地岩性地质剖面图[8, 10]
    Figure  2.  Stratigraphic chart of Kutei Basin

    始新世裂谷期,盆地初始形态形成,主要沉积湖相、滨岸-陆架沉积,发育湖相-浅海相烃源岩,始新统油气发现指示该时期烃源岩以生油为主;始新世末期至晚渐新世沉降期,沉积了区域性海相泥岩,并在浅水区发育开阔海碳酸盐岩台地,局部发育浊积砂岩,有发育碳酸盐岩、深水浊积砂岩储层的潜力;早中新世末期至今的挤压反转导致东加里曼丹遭受挤压反转,形成一系列北东-南西走向的挤压反转背斜,自东向西挤压反转作用强度逐渐加大,盆地西部陆上部分沉积地层遭受强烈剥蚀,该时期为圈闭形成主要时期。中中新世开始,马哈坎进积型三角洲自西向东不断前积、推进,形成了巨厚马哈坎三角洲沉积体系,沉积中心地层厚度可达14 km,是盆地内迄今发现最主要的油气储层,同时也为油气系统提供了优质烃源岩,以生气为主[3],为形成最为富集的油气成藏组合提供了得天独厚的地质条件[10]

    库泰盆地主力储层即马哈坎三角洲沉积体系内的中中新统三角洲砂岩储层,获得了巨大发现。随着勘探研究工作的深入,不断向西部勘探,在下中新统混积序列中的滨海相砂岩储层中获得了突破。这两类砂岩具有很多相似的特征,因此在研究过程中需要通过综合地质研究进行判别,认准勘探层系,为进一步的勘探提供理论支撑。

    中中新统三角洲砂岩典型特征为伽马曲线表现为一系列反旋回,局部层段夹正旋回。这些反旋回解释为粒度自下而上变粗的沉积序列,为典型河口坝沉积;而局部夹的正旋回解释为粒度自下而上逐渐变细的正粒序沉积序列,为典型的水下分流河道沉积。这些水下分流河道砂岩、河口坝砂岩即为库泰盆地主要油气储层。河口坝砂岩与水下分流河道砂岩厚度相当,主体厚度为2~5 m(图3)。整个库泰盆地内,水下分流河道砂岩的储集物性最好,储层的孔隙度为8%~39%,一般为中至高孔;渗透率普遍较高,为(30~5000)×10-3 μm2[12-13]。但这两类储层均受三角洲前缘相带迁移控制,储层非均质性强,厚度在纵横向上变化较快。钻井揭示局部层段表现为高GR值,为三角洲平原亚相沉积和前三角洲亚相沉积,以泥质为主,局部发育煤层,是油气藏有利的层间盖层(图3)。

    图  3  钻井-1三角洲相沉积测井曲线柱状图
    Figure  3.  Lithologic and sediment facies interpretation based on well log response of Well-1

    库泰盆地受挤压变形强度由西向东减弱,盆地西部的陆上区域隆升幅度较大、遭受强烈剥蚀,而东部海域部分变形较弱,并被不断前积的三角洲楔状体覆盖[11-13]。马哈坎三角洲主要受马哈坎河大量沉积输入的控制,类型上可归为河控三角洲。中中新世,三角洲前缘位置到达研究区,因此露头多表现为三角洲平原、三角洲前缘亚相沉积,局部可见前三角洲亚相沉积[14]图4)。

    图  4  研究区中中新统三角洲相沉积露头
    位置见图1
    Figure  4.  Outcrop of Middle Miocene deltaic sediment in study area

    研究区内中中新统三角洲相沉积露头特征在野外延伸可达数百米甚至上千米。整个露头以褐色、黑灰色为背景,岩性主要为砂泥岩互层夹煤层。水下分流河道沉积单层厚度一般5~10 m,底部具有明显的侵蚀特征,切割了三角洲平原泥岩和煤层(图4),局部可见水下分流河道侵蚀前三角洲暗色泥岩,形成不规则起伏的表面(图4)。水下分流河道砂岩表现为正粒序特征,自下而上粒度变细,常见大型交错层理和冲刷面。

    河口坝砂岩没有明显的侵蚀特征,呈透镜体“包裹”在厚层泥岩内(图4),并表现为反粒序特征,自下而上粒度变粗。河口坝砂岩单层厚度较水下分流河道小,一般为1~2 m,横向延伸范围也有限,一般5~10 m。但马哈坎三角洲浅海区的油气勘探证实,库泰盆地河口坝砂岩的规模可达上百平方千米[11-13]

    进入下中新统,虽然地层整体以砂泥岩互层为主,地层发育特征与中中新统三角洲沉积相似,但是出现中厚层碳酸盐岩,指示沉积环境的变化。

    由于中中新统三角洲砂岩储层在研究区已遭受抬升剥蚀,研究区的勘探层系由中中新统转为更深层的下中新统,并获成功[2-4]。通过钻井分析,主力含气储层为下中新统砂岩,该下中新统砂岩储层为滨海相砂岩,表现为一系列反旋回特征,主体为进积型的中—细粒砂岩,顶部为中厚层碳酸盐岩(图5)。

    图  5  钻井1下中新统滨海相沉积测井响应及岩性解释成果图
    井位见图1
    Figure  5.  Lithologic and sediment facies interpretation based on well log response of Well-1

    通过钻井对比,认为这套滨海相准层序发育5个沉积旋回,均以中—厚层碳酸盐岩出现为标志,每期旋回的GR测线整体表现为逐渐变小的特征,呈反韵律特征(图5)。钻井1钻遇3期旋回,总厚度158.5 m,单层砂岩厚度可达13.5 m[4]。可以通过反韵律特征,将钻井1揭示的3期旋回细分为7期次旋回,每个次旋回的厚度为20~40 m。虽然有些旋回内岩性有缺失,旋回1内的次旋回1,未揭示厚层砂岩,表现为碳酸盐岩直接上覆在厚层泥岩之上;旋回2内的次旋回5和6,顶部未揭示厚层碳酸盐岩,表现为厚层砂岩作为旋回顶面(图5)。整体而言,自下而上均为泥岩-砂岩-碳酸盐岩组合特征。表现最为典型的为旋回2内的次旋回3和4,均表现为典型的反韵律特征,泥岩在下部,上覆厚层砂岩,顶部为厚层碳酸盐岩(图5)。

    下中新统滨海相沉积在野外露头上—中中新统三角洲沉积中具有相似性,均以厚层砂岩为典型特征,但是泥岩含量有所增加,特别是这套滨海相沉积在野外露头上以厚层碳酸盐岩为标志层,通过岩性判别,这些厚层碳酸盐岩为生屑灰岩。该生屑灰岩在野外露头上表现为浅灰色,厚度约2~3 m,由于暴露风化,多具有破碎特征(图6)。该灰岩内生物碎屑发育,主要有鹿角珊瑚、海胆、贝壳类等生屑化石(图7)。通过野外岩石样品取样制片观察,这些生屑灰岩内富含珊瑚、海绵等造礁生物化石(图8)。

    图  6  滨海相沉积野外露头剖面图
    位置见图1
    Figure  6.  Outcrop of littoral facies sediment
    图  7  生屑灰岩野外露头
    露头位置见图6黄色方框。
    Figure  7.  Outcrop of bioclastic limestone
    The location of the outcrop is shown in the yellow box in Fig. 6.
    图  8  生屑灰岩镜下特征照片
    Figure  8.  Microscopic pictures of bioclastic limestone

    该厚层生屑灰岩上覆在厚层砂岩之上,二者之间没有明显的泥岩层发育。厚层砂岩表现为黄色-浅黄色,厚度约4~5 m,钻井揭示最大厚度可达20 m。砂岩内多发育水平层理、丘状-槽状交错层理,顶部有大量炭屑和虫孔,反映了滨浅海相沉积环境。岩性由下向上:底部为粉砂岩-细粒砂岩、并向上逐渐变粗、变厚,呈现反韵律特征,厚层砂岩之下为暗色—浅棕色厚层泥岩,下伏厚层生屑灰岩,指示着另一沉积旋回。

    库泰盆地马哈坎褶皱带在早中新世临近陆架坡折,在海平面较高时期,主要沉积海相泥岩,对应着钻井和露头观察到的厚层暗色—浅棕色泥岩。由于马哈坎三角洲向东进积发育,携带大量物源至研究区,在相对海平面较低时期,大量的粗粒碎屑被搬运至河口进入海岸,在波浪的搬运下,沉积至临滨,且细粒、偏泥质沉积物被携带相对较远(图9)。随着相对海平面持续下降,粗粒物质能被携带的距离越来越远,在垂向上形成反韵律特征(图9)。

    图  9  滨海相地层发育模式图
    Figure  9.  Sketched model for the development of shallow marine sediments

    在一段时间的相对海平面下降后,发生海侵事件,海平面快速升高,三角洲退积,陆源碎屑影响不到研究区。由于研究区处于热带,有利于生屑灰岩发育,在研究区沉积厚层生屑灰岩(图9)。但随着海平面不断上升,一段时间后,生屑灰岩被海水淹没,停止发育,此时研究区沉积海相泥岩,表现为厚层泥岩覆盖在生屑灰岩之上,此时对应最大海泛面,也标志着海侵事件的结束。

    随后,另一期海退事件发生,相对海平面快速下降,马哈坎三角洲进积,碎屑岩沉积占主导地位,沉积进积型砂岩,开始一个新的旋回。马哈坎褶皱带早中新世多次海侵、海退频繁发生导致了多套滨海相泥岩-砂岩-生屑灰岩沉积旋回的发育。

    研究区下中新统滨海相沉积独特之处在于厚层砂岩上覆厚层生屑灰岩,具有明显的交互混合沉积特征[15-17],这种混积序列主要控制因素包括构造升降、海平面变化、气候、物源供应、突发性事件等[17]。下中新统滨海相沉积发育多套特征相似的混合沉积旋回,在相对纯净的砂岩之上发育厚层生屑灰岩,似乎与经典的碳酸盐岩生长模式相悖[18-27]。但是研究区所处的构造背景和地理位置可以解释该交互混积序列发育的可能。

    相对海平面的频繁变化可能为该混积序列发育的主控因素。伴随南海扩张、东苏拉威西海消亡及晚期苏禄海扩张,库泰盆地进入拗陷期,海平面整体处于上升阶段。但是,由于库泰盆地马哈坎褶皱带处于近东西向挤压应力场,早中新世开始,构造变形即比较强烈,研究区挤压背斜开始形成。始于早中新世的挤压反转构造运动造就了一系列近北北东-南南西向背斜,这些背斜的轴部走向基本与海岸线、陆架坡折带平行[10-13]。挤压反转隆升速率和海平面的变化主要控制了相对海平面的变化,进而导致了三角洲进积的速率,影响了滨海相沉积旋回的发育。由于马哈坎褶皱带挤压应力活跃,幕式挤压反转作用导致研究区相对海平面频繁快速变化,导致碎屑岩和生屑灰岩交互发育。

    在海平面相对低时期,三角洲占据主导地位,虽然早中新世马哈坎三角洲还未发育至中中新世规模,但也能输入大量的陆源碎屑至河口,进而被波浪作用携带至临滨,沉积厚层砂岩;在构造相对平静期,整体南海扩张和苏禄海扩张的背景下,海平面上升,马哈坎褶皱带发育的一系列背斜构造为生屑灰岩的发育提供了有利的场所,这些生屑灰岩往往在这些局部高点上生长[20-22],沿着或平行于陆架坡折带,呈北北东-南南西向展布(图10),而且研究区位于热带,所处的地理位置有利于生屑灰岩的发育[23]

    图  10  研究区混积序列沉积模式图
    Figure  10.  Sketched model for the mixed sediment system in shallow marine system

    随着海平面持续上升,生屑灰岩停止发育,之上覆盖厚层海相泥岩,这套泥岩也代表一次最大海泛面。但在此之后,挤压构造又占据主导,相对海平面下降,三角洲进积,在厚层海相泥岩之上沉积厚层滨海相砂岩,一个新的沉积旋回开始。因此,在研究区这种特殊的挤压构造活动频繁的热带地区[22- 23],发育了生屑灰岩直接上覆于砂岩之上的沉积现象,泥岩上覆于生屑灰岩之上。

    库泰盆地下中新统交互混积序列的发现,揭示了下中新统受碳酸盐岩碎屑干扰的规模砂岩储层,扩展了库泰盆地油气勘探新层系,这套混积序列临近烃源岩层系,厚度大、分布广、物性好,是规模有利储层,在库泰盆地马哈坎褶皱带及其以西地区,寻找该混积序列是油气勘探的关键。同时,该套混积序列明确了研究区滨海相砂岩储层的重要标志层—上覆的碳酸盐岩沉积。在钻井过程中,厚层海相碳酸盐岩的出现,即预示下伏规模滨海相砂岩储层的出现,可能发现规模气层,为油气勘探作业提供了技术保障。

    (1)库泰盆地马哈坎大型三角洲的发育,为马哈坎褶皱带中中新统三角洲砂岩储层提供了充足的物源,使马哈坎褶皱带成为库泰盆地主要油气产区。同时,马哈坎三角洲的发育与相对海平面的变化,控制了下中新统海相地层的沉积旋回的发育,导致研究区内沉积多期次旋回的混合沉积。

    (2)早中新世,在相对海平面低时期,三角洲占主导,马哈坎三角洲输入的陆源碎屑被波浪作用搬运至临滨,形成滨海相砂岩;在相对海平面高时期,马哈坎三角洲退积,在滨海-陆架坡折位置发育生屑灰岩;随着海平面持续上升,生屑灰岩淹没,被厚层泥岩覆盖;随着海平面的下降,开始下一个沉积旋回,以厚层滨海相砂岩为标志。挤压应力场为主的环境控制了频繁的相对海平面变化,导致了研究区内滨海相混合沉积的发育。

  • 图  1   天然气水合物空间分布对沉积物蠕变行为的潜在影响机理示意图

    Figure  1.   Schematic diagram illustrating influences of gas hydrate distribution on creeping behaviors of its host sediment

    图  2   天然气水合物降压开采多场动态耦合过程对蠕变行为的潜在影响机理示意图

    Figure  2.   Interactions between creeping behaviors of hydrate-bearing strata and multi-physical fields evolving behaviors during gas extraction

    图  3   典型水合物晶界微观结构示意图[38]

    Figure  3.   Schematic of typical grain boundary of methane hydrate[38]

    图  4   基于LF-NMR探测水合物沉积物中微元损伤演化的装置流程图

    Figure  4.   Device flowchart for micro-damage detection of hydrate-bearing sediment based on LF-NMR

    图  5   典型沉积物体积应变量随水合物分解的变化规律

    Figure  5.   An example of volumetric strain behaviors during hydrate dissociation

  • [1] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11.

    [2]

    Collett T. Gas hydrate production testing – knowledge gained[C]//Offshore Technology Conference. Houston, Texas: Offshore Technology Conference, 2019: 1-16.

    [3]

    Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2014.

    [4]

    Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir [J]. RSC Advances, 2019, 9(45): 25987-26013. doi: 10.1039/C9RA00755E

    [5]

    Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003

    [6]

    Mao P X, Sun J X, Ning F L, et al. Effect of permeability anisotropy on depressurization-induced gas production from hydrate reservoirs in the South China Sea [J]. Energy Science & Engineering, 2020, 8(8): 2690-2707.

    [7]

    Wu N Y, Li Y L, Chen Q, et al. Sand production management during marine natural gas hydrate exploitation: review and an innovative solution [J]. Energy & Fuels, 2021, 35(6): 4617-4632.

    [8]

    Li Y L, Wu N Y, Ning F L, et al. A sand-production control system for gas production from clayey silt hydrate reservoirs [J]. China Geology, 2019, 2(2): 121-132. doi: 10.31035/cg2018081

    [9]

    Jin Y R, Li Y L, Wu N Y, et al. Characterization of sand production for clayey-silt sediments conditioned to openhole gravel-packing: experimental observations [J]. SPE Journal, 2021: 1-18. doi: 10.2118/206708-PA

    [10]

    Mu Y H, Ma W, Li G Y, et al. Long-term thermal and settlement characteristics of air convection embankments with and without adjacent surface water ponding in permafrost regions [J]. Engineering Geology, 2020, 266: 105464. doi: 10.1016/j.enggeo.2019.105464

    [11]

    Wang R H, Liu W G, Li Y H, et al. Effects of porosity on the creep behavior of hydrate-bearing sediments[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2012.

    [12]

    Liu L L, Zhang Z, Li C F, et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments [J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103109. doi: 10.1016/j.jngse.2019.103109

    [13]

    Li Y H, Liu W G, Song Y C, et al. Creep behaviors of methane hydrate coexisting with ice [J]. Journal of Natural Gas Science and Engineering, 2016, 33: 347-354. doi: 10.1016/j.jngse.2016.05.042

    [14]

    Yang J, Hassanpouryouzband A, Tohidi B, et al. Gas hydrates in permafrost: distinctive effect of gas hydrates and ice on the geomechanical properties of simulated hydrate-bearing permafrost sediments [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3): 2551-2563. doi: 10.1029/2018JB016536

    [15]

    Pearson C F, Halleck P M, McGuire P L, et al. Natural gas hydrate deposits: a review of in situ properties [J]. The Journal of Physical Chemistry, 1983, 87(21): 4180-4185. doi: 10.1021/j100244a041

    [16] 张峰瑞, 姜谙男, 杨秀荣, 等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2):509-519

    ZHANG Fengrui, JIANG Annan, YANG Xiurong, et al. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.

    [17] 陈国庆, 万亿, 裴本灿, 等. 冻融循环作用下砂岩蠕变特性及损伤模型研究[J]. 工程地质学报, 2020, 28(1):19-28

    CHEN Guoqing, WAN Yi, PEI Bencan, et al. The creep characteristics and damage model of sandstone under freeze-thaw cycles [J]. Journal of Engineering Geology, 2020, 28(1): 19-28.

    [18]

    Fan Z, Sun C M, Kuang Y M, et al. MRI analysis for methane hydrate dissociation by depressurization and the concomitant ice generation [J]. Energy Procedia, 2017, 105: 4763-4768. doi: 10.1016/j.egypro.2017.03.1038

    [19] 陈卫忠, 李翻翻, 雷江, 等. 热-水-力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2):379-388 doi: 10.16285/j.rsm.2019.0016

    CHEN Weizhong, LI Fanfan, LEI Jiang, et al. Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388. doi: 10.16285/j.rsm.2019.0016

    [20]

    Sun Y H, Ma X L, Guo W, et al. Numerical simulation of the short- and long-term production behavior of the first offshore gas hydrate production test in the South China Sea [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106196. doi: 10.1016/j.petrol.2019.106196

    [21]

    Yang M J, Zhao J, Zheng J N, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: A review [J]. Applied Energy, 2019, 256: 113878. doi: 10.1016/j.apenergy.2019.113878

    [22]

    Li Y L, Wu N Y, He C Q, et al. Nucleation probability and memory effect of methane-propane mixed gas hydrate [J]. Fuel, 2021, 291: 120103. doi: 10.1016/j.fuel.2020.120103

    [23]

    Zhu Y M, Chen C, Luo T T, et al. Creep behaviours of methane hydrate-bearing sediments [J]. Environmental Geotechnics, 2019: 1-11. doi: 10.1680/jenge.18.00196

    [24]

    Bu Q T, Hu G W, Liu C L, et al. Acoustic characteristics and micro-distribution prediction during hydrate dissociation in sediments from the South China Sea [J]. Journal of Natural Gas Science and Engineering, 2019, 65: 135-144. doi: 10.1016/j.jngse.2019.02.010

    [25] 于超云, 唐世斌, 唐春安. 含水率对红砂岩瞬时和蠕变力学性质影响的试验研究[J]. 煤炭学报, 2019, 44(2):473-481

    YU Chaoyun, TANG Shibin, TANG Chun'an. Experimental investigation on the effect of water content on the short-term and creep mechanical behaviors of red sandstone [J]. Journal of China Coal Society, 2019, 44(2): 473-481.

    [26] 李彦龙, 刘昌岭, 廖华林, 等. 泥质粉砂沉积物—天然气水合物混合体系的力学特性[J]. 天然气工业, 2020, 40(8):159-168 doi: 10.3787/j.issn.1000-0976.2020.08.013

    LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates [J]. Natural Gas Industry, 2020, 40(8): 159-168. doi: 10.3787/j.issn.1000-0976.2020.08.013

    [27] 郝永卯, 黎晓舟, 李淑霞, 等. 天然气水合物降压开采半解析两相产能模型[J]. 中国科学:物理学 力学 天文学, 2020, 50(6):064701

    HAO Yongmao, LI Xiaozhou, LI Shuxia, et al. The semi-analytical two-phase productivity model of natural gas hydrate by depressurization [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(6): 064701.

    [28] 罗飞, 张元泽, 朱占元, 等. 一种青藏高原冻结砂土蠕变本构模型[J]. 哈尔滨工业大学学报, 2020, 52(2):26-32 doi: 10.11918/201810053

    LUO Fei, ZHANG Yuanze, ZHU Zhanyuan, et al. Creep constitutive model for frozen sand of Qinghai-Tibet Plateau [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 26-32. doi: 10.11918/201810053

    [29] 李彦龙, 刘昌岭, 刘乐乐, 等. 含甲烷水合物松散沉积物的力学特性[J]. 中国石油大学学报(自然科学版), 2017, 41(3):105-113

    LI Yanlong, LIU Changling, LIU Lele, et al. Mechanical properties of methane hydrate-bearing unconsolidated sediments [J]. Journal of China University of Petroleum, 2017, 41(3): 105-113.

    [30]

    Li Y L, Dong L, Wu N Y, et al. Influences of hydrate layered distribution patterns on triaxial shearing characteristics of hydrate-bearing sediments [J]. Engineering Geology, 2021, 294: 106375. doi: 10.1016/j.enggeo.2021.106375

    [31]

    Liu Z C, Dai S, Ning F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt [J]. Geophysical Research Letters, 2018, 45(2): 715-723. doi: 10.1002/2017GL076374

    [32]

    Li Y L, Hu G W, Wu N Y, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea [J]. Acta Oceanologica Sinica, 2019, 38(3): 114-123. doi: 10.1007/s13131-019-1404-8

    [33] 孔亮, 刘文卓, 袁庆盟, 等. 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9):3319-3326

    KONG Liang, LIU Wenzhuo, YUAN Qingmeng, et al. Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.

    [34] 韦昌富, 颜荣涛, 田慧会, 等. 天然气水合物开采的土力学问题: 现状与挑战[J]. 天然气工业, 2020, 40(8):116-132 doi: 10.3787/j.issn.1000-0976.2020.08.009

    WEI Changfu, YAN Rongtao, TIAN Huihui, et al. Geotechnical problems in exploitation of natural gas hydrate: Status and challenges [J]. Natural Gas Industry, 2020, 40(8): 116-132. doi: 10.3787/j.issn.1000-0976.2020.08.009

    [35] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016, 37(10):1273-1279 doi: 10.7623/syxb201610007

    LI Yanlong, LIU Changling, LIU Lele. Damage statistic constitutive model of hydrate-bearing sediments and the determination method of parameters [J]. Acta Petrolei Sinica, 2016, 37(10): 1273-1279. doi: 10.7623/syxb201610007

    [36] 颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12):4421-4428

    YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions [J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428.

    [37]

    Chen J, Liu C J, Zhang Z C, et al. Molecular study on the behavior of methane hydrate decomposition induced by ions electrophoresis [J]. Fuel, 2022, 307: 121866. doi: 10.1016/j.fuel.2021.121866

    [38]

    Zhang Z C, Kusalik P G, Guo G J, et al. Insight on the stability of polycrystalline natural gas hydrates by molecular dynamics simulations [J]. Fuel, 2021, 289: 119946. doi: 10.1016/j.fuel.2020.119946

    [39]

    Cao P Q, Wu J Y, Zhang Z S, et al. Mechanical properties of methane hydrate: intrinsic differences from ice [J]. The Journal of Physical Chemistry C, 2018, 122(51): 29081-29093. doi: 10.1021/acs.jpcc.8b06002

    [40]

    Cladek B R, Everett S M, McDonnell M T, et al. Guest-host interactions in mixed CH4-CO2 hydrates: insights from molecular dynamics simulations [J]. Journal of Physical Chemistry C, 2018, 122(34): 19575-19583. doi: 10.1021/acs.jpcc.8b05228

    [41]

    Song W L, Sun X L, Zhou G G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate [J]. ChemistrySelect, 2020, 5(44): 1393613950.

    [42]

    Zhang Y C, Liu L L, Wang D G, et al. Application of Low-Field Nuclear Magnetic Resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media [J]. Energy & Fuels, 2021, 35(3): 2174-2182.

    [43] 张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3):193-202

    ZHANG Yongchao, LIU Changling, LIU Lele, et al. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation [J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202.

    [44] 吴能友, 李彦龙, 刘昌岭, 等. 一种基于低场核磁分析水合物沉积物力学特性的装置及方法: 中国, 202010147539.5[P]. 2021-02-26

    .WU Nengyou, LI Yanlong, LIU Changling, et al. Dwtection device and method for mechanical properties of hydrate-bearing sediment based on low-field nuclear magnetic resonance: CN, 202010147539.5[P]. 2021-02-26. ]

    [45]

    Seol Y, Lei L, Choi J H, et al. Integration of triaxial testing and pore-scale visualization of methane hydrate bearing sediments [J]. Review of Scientific Instruments, 2019, 90(12): 124504. doi: 10.1063/1.5125445

    [46] 张诚成, 施斌, 朱鸿鹄, 等. 分布式光纤探测地裂缝的理论基础探讨[J]. 工程地质学报, 2019, 27(6):1473-1482

    ZHANG Chengcheng, SHI Bin, ZHU Honghu, et al. A theoretical framework for detecting and monitoring ground fissures using distributed fiber optic sensing [J]. Journal of Engineering Geology, 2019, 27(6): 1473-1482.

    [47]

    Zhang C C, Zhu H H, Liu S P, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements [J]. Engineering Geology, 2018, 234: 83-96. doi: 10.1016/j.enggeo.2018.01.002

    [48] 万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4):117-128 doi: 10.3787/j.issn.1000-0976.2018.04.014

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea [J]. Natural Gas Industry, 2018, 38(4): 117-128. doi: 10.3787/j.issn.1000-0976.2018.04.014

    [49]

    Jin G R, Lei H W, Xu T F, et al. Simulated geomechanical responses to marine methane hydrate recovery using horizontal wells in the Shenhu area, South China Sea [J]. Marine and Petroleum Geology, 2018, 92: 424-436. doi: 10.1016/j.marpetgeo.2017.11.007

图(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 修回日期:  2021-10-07
  • 网络出版日期:  2021-10-26
  • 刊出日期:  2021-10-27

目录

/

返回文章
返回