海洋天然气水合物储层特性及其资源量评价方法

刘昌岭, 孙运宝

刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401
引用本文: 刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401
LIU Changling, SUN Yunbao. Characteristics of marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401
Citation: LIU Changling, SUN Yunbao. Characteristics of marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 44-57. DOI: 10.16562/j.cnki.0256-1492.2021082401

海洋天然气水合物储层特性及其资源量评价方法

基金项目: 国家自然科学基金“南海沉积物中水合物降压分解动力学行为及控制机理研究”(41876051);山东省泰山学者特聘专家计划(ts201712079);国家重点研发计划政府间国际科技创新合作重点专项“天然气水合物开采过程中井周储层动态响应行为与控制”(2018YFE0126400);国家重点研发计划“冷泉系统发育的地质条件及控制作用”(2018YFC0310001);中国地质调查局海洋地质调查专项项目(DD20190819)
详细信息
    作者简介:

    刘昌岭(1966—),男,研究员,从事天然气水合物研究工作,E-mail:qdliuchangling@163.com

    通讯作者:

    孙运宝(1983—),男,副研究员,从事天然气水合物资源评价研究,E-mail:yunbaos@sina.com

  • 中图分类号: P744

Characteristics of marine gas hydrate reservoir and its resource evaluation methods

  • 摘要: 天然气水合物资源开发的前提条件是准确评价其资源量,而正确理解天然气水合物储层特性是准确评价其资源量的基础。天然气水合物的含量及其赋存形态是影响储层特性的主要因素,赋存形态主要受海洋沉积物的储集的性质与大小控制。储层特征参数直接影响海洋天然气水合物资源评价的准确性。现有天然气水合物资源量评价方法的原理、评价参数及适用性各不相同,且均未考虑水合物的赋存类型。本文在前期工作的基础上,针对天然气水合物有利区块和矿体评价,分别提出了海洋天然气水合物“资源详评”与“资源精评”的新方法。基于小面元的资源详评方法,适用于钻井稀少、地球物理测网较为密集的有利区块孔隙填充型水合物控制地质储量评价;基于“水合物地层丰度”概念的资源精评方法,适用于井网密集的井场小范围矿体探明地质储量精准评价,可有效提高对块状、脉状和结核状等裂隙型填充型水合物资源评价的准确度。
    Abstract: To accurately make resource evaluation is the prerequisite for development of natural gas hydrate resources, and the correct understanding of the characteristics of gas hydrate reservoir is the basis for such evaluation. The content and occurrence of gas hydrate are closely related to and affected by reservoir properties. The occurrence forms of gas hydrate, which includes pore-filling and fracture-filling, mainly depends on the nature and size of pores, fractures and other accumulation spaces in the marine sediments. Different types of hydrate reservoirs have different physical property response characteristics, which directly affects the accuracy of marine gas hydrate resource evaluation. The principles, evaluation parameters and applicability of the existing natural gas hydrate resource evaluation methods are different, and the occurrence type of hydrate is not considered. Based on the previous work, this paper puts forward a new method of "Detail Resource Evaluation" and "Precise Resource Evaluation" for marine natural gas hydrates. The "Detail Resource Evaluation" method based on small panel is suitable for the evaluation of pore-filled hydrate reservoir with rare drilling and dense geophysical survey network in favorable block; The "Precise Resource Evaluation" method based on the concept of "hydrate abundance in reservoir" is applicable to the accurate evaluation of small-scale hydrate orebody with dense well pattern in the well field, and can effectively improve the accuracy of the evaluation of fracture- filled types (e.g. massive, vein and nodule) hydrate resources.
  • 雅浦岛弧位于菲律宾海板块东南边界,是太平洋板块和加罗林板块向菲律宾海板块之下俯冲的结果。前人研究将雅浦岛弧和帕劳岛弧归结为伊豆-小笠原-马里亚纳岛弧体系的组成部分[1],并认为马里亚纳、雅浦和帕劳岛弧分别代表岛弧演化过程中的最初阶段、过渡阶段和成熟阶段[2]。与其他岛弧相比,雅浦岛弧具有十分独特的地质特征,主要包括以下几个方面:(1)雅浦岛弧主要由变质岩组成,自西向东由绿片岩相转变为角闪岩相,变质程度逐渐加深,而雅浦岛弧火山岩分布较少[3-4];(2)雅浦岛弧地震以浅源地震为主,震源深度多小于40 km[5];(3)雅浦岛弧沟弧距离为50 km左右[6],明显短于西太平洋区域其他成熟岛弧的沟弧距离(100~200 km)[7-8];(4)雅浦岛弧缺少典型的弧前增生楔[9]

    McCabe和Uyeda[10]认为加罗林海岭在早中新世与雅浦海沟碰撞,后人对于雅浦区域的研究则集中在加罗林海岭碰撞的影响,认为该碰撞导致了雅浦岛弧火山活动的终止[4]或减弱[5-6],而雅浦岛弧缺失的增生楔可能与加罗林海岭俯冲碰撞导致的俯冲侵蚀有关[4, 6]。然而,现今地形资料显示加罗林海岭与雅浦海沟并非直接接触,二者中间存在一个明显的低地形区域,前人认为该区域可能是俯冲板片前缘正断层控制的半地堑结构[6, 11-12]。同时雅浦岛的变质基底以及雅浦岛以南的岛弧变质岩为高温—中温、低压—中压变质作用的产物[3, 13],缺少与碰撞相关的高压变质岩。因此,加罗林海岭是否与雅浦岛弧发生碰撞仍需要进一步研究,而前人所提出的雅浦岛弧构造演化模型[4, 6, 10, 12]多数以加罗林海岭与雅浦岛弧的碰撞为前提,这些模型也需要重新考虑。由此,本文通过总结雅浦区域的地球化学、地震、重力异常等多方面证据,对雅浦沟-弧体系的构造演化过程提出了一个全新的解释。

    雅浦海沟和雅浦岛弧是太平洋板块、加罗林板块和菲律宾海板块汇聚所形成的沟-弧构造体系,大地构造背景十分复杂(图1a)。雅浦海沟北侧与帕里西维拉海盆扩张中心相接,南侧与帕劳海沟相连,东侧为加罗林热点作用下形成的加罗林海岭,索罗尔海槽将加罗林海岭分为东加罗林海岭和西加罗林海岭两个部分(图1b)。

    图  1  四国海盆、帕里西维拉海盆以及加罗林板块区域构造简图(a)与雅浦岛弧及周边的区域地质概况(b)
    水深数据来源于GEBCO 2019;地震数据来源于USGS和CMT
    Figure  1.  a: Regional tectonic map of the Shikoku basin, the Parece-Vela basin and the Caroline plate; b: Geological map of the Yap arc and its vicinity
    bathymetry data from GEBCO 2019; Earthquake data from USGS and CMT

    帕里西维拉海盆是渐新世沿着九州-帕劳海岭打开的弧后盆地,海盆内部S型转换断层分割的洋中脊段呈雁列状排布(图1a[14]。前人通过对地形和磁条带研究,提出帕里西维拉海盆经历了两个阶段的盆地扩张过程,其初始扩张方向为E-W向,在20~19 Ma扩张方向转变为NE-SW[14-15]。帕里西维拉海盆的洋壳扩张过程最终在约15 Ma终止[16],然而沿着帕里西维拉海盆的扩张中心还存在一期13~8.7 Ma的岩浆事件,分别为四国海盆的Kinan海山链[17]、帕里西维拉海盆中部的Gadzilla Megamullion拆离断层[18]以及海盆最南部的岛弧岩浆事件[19]图1a)。

    加罗林海岭为古近纪加罗林热点作用所形成的隆起,其包括东加罗林海岭和西加罗林海岭两个部分,分别属于太平洋板块和加罗林板块,二者之间以索罗尔海槽为界(图1b)。然而,太平洋板块和加罗林板块沿着马里亚纳-雅浦海沟俯冲速率差异较大,北部的太平洋板块的俯冲速率为20 mm/a,而加罗林板块的俯冲速率仅为5 mm/a[20]。地震以及重力资料研究显示索罗尔海槽具有扩张中心的属性,并且有洋壳的存在[21],然而现今索罗尔海槽内部的地震多为走滑型地震(图1),这与太平洋板块和加罗林板块之间相对运动相对应。Hawkins和Batiza[4]认为加罗林海岭与雅浦岛弧在早中新世时发生碰撞,致使雅浦岛弧的火山活动停止以及弧前侵蚀[10]。虽然,岩石地球化学研究证实雅浦岛弧以变质岩为主,岩浆活动较少,但是雅浦岛弧变质岩多为中—低压变质作用导致[3, 13],缺少与碰撞相关的高压—超高压变质岩的报道。同时,雅浦海沟和加罗林海岭之间存在一个三角形的地形平坦区域(图1),该区域内没有与加罗林热点相关的地形隆起。

    雅浦岛弧西侧为帕里西维拉海盆的洋壳,主体构造线走向为N-S向(图1b)。Okino等[22]通过地球物理资料的研究发现在该区域内存在一条近E-W向延伸的扩张中心。该扩张中心形成的洋壳构造线走向为NE-SW向,其东侧为帕里西维拉海盆的洋壳的N-S向构造线区域,二者之间以假断层为界(图1)。Okino等[22]认为这段扩张中心可能为帕里西维拉海盆早期扩张中心的一部分。

    前人对于雅浦岛弧岩石地球化学研究多集中在雅浦岛。Tayama[23]最早将雅浦岛地层划分为4个组,分别为雅浦组、Map组、Tomil集块岩和第四纪沉积地层(图2)。雅浦组是雅浦岛的基底,主要由基性火山岩变质而成的绿片岩和角闪岩组成,同时可见超基性—酸性侵入体和岩脉。覆盖在雅浦组之上的Map组主要为构造角砾岩、砂岩以及粉砂岩组成的沉积岩系,底部发现有角闪岩和绿片岩碎块,Map组有孔虫化石指示其沉积发生在晚渐新世—中新世[24]。Tomil集块岩由安山岩熔岩、角砾岩和凝灰岩组成,不整合于雅浦组和Map组之上。岩石地球化学研究表明Tomil集块岩中的安山岩属于钙碱性或岛弧拉斑玄武岩系列,与马里亚纳岛弧和帕劳岛弧类似[3]。由此可见,雅浦岛的构造演化可大体分为3个阶段:晚渐新世以前雅浦组的基性火山岩喷发以及绿片岩相和角闪岩相的变质作用、晚渐新世—中新世雅浦组变质岩风化沉积作用形成的Map组、中新世以后岛弧岩浆作用形成的Tomil集块岩。

    图  2  雅浦岛地质图[3]
    Figure  2.  Geological map of the Yap Island[3]

    岛弧火山岩组合多数以钙碱性系列的安山岩-英安岩-流纹岩组合为主,且K2O含量较低。雅浦组由绿片岩相-角闪岩相的变质岩组成,根据Pearce[25]提出的F1-F2判别图解(图3a),雅浦组变质岩原岩属于洋底玄武岩,明显区分于岛弧玄武岩。在板片俯冲过程中,由于Ti存于金红石和钛铁矿等残留体中进入地幔,加上其他不相容元素由于俯冲流体萃取作用,最终导致岛弧火山岩的TiO2含量较低,因此Ti含量在岛弧和弧后盆地区域样品中差别较为明显。雅浦组的变质岩Ti含量较高,与帕里西维拉海盆玄武岩相近,在Cr-Ti图解上多落于洋中脊玄武岩区域(图3b),与帕里西维拉海盆洋壳玄武岩类似。雅浦岛弧在同位素方面的研究十分匮乏,仅有Matsuda等[2]报道了一个雅浦岛绿片岩的87Sr/86Sr比值,为0.702 9。马里亚纳岛弧岩浆岩的87Sr/86Sr比值远高于0.703(图3c),雅浦岛绿片岩的87Sr/86Sr比值更接近于四国海盆洋壳的Sr同位素比值。因此,雅浦组在地球化学特征上更接近于帕里西维拉海盆洋壳,并非与岛弧岩浆作用相关。根据雅浦岛弧及周边区域构造解析,在雅浦岛弧西侧可以识别出NE-SW向的转换断层以及与之相关的NW-SE向海底构造线(图1),表明雅浦组的岩浆作用发生在帕里西维拉海盆NE-SW向扩张时期,也就是20~15 Ma期间[16]

    图  3  雅浦岛变质岩和岛弧岩浆岩F1-F2图解(a)与雅浦组变质岩Cr-Ti图解(b)及帕里西维拉海盆洋壳以及马里亚纳火山弧的Pb-Sr同位素图解(c)
    WPB:板内玄武岩;SHO:钾玄岩;CAB:钙碱性玄武岩;LKT:低钾拉斑玄武岩和岛弧玄武岩;OFB:洋底玄武岩. 雅浦组变质岩数据来自于参考文献[3, 4, 26],雅浦岛弧岩浆岩数据来自于参考文献[19],帕里西维拉海盆数据来自于参考文献[27-29],马里亚纳火山弧数据来自于参考文献[30-34],全球岛弧数据来自于GEOROC
    Figure  3.  a: F1-F2 diagram of the metamorphic rocks and island arc igneous rocks from the Yap island(WPB: Within Plate Basalts; SHO: Shoshonites; CAB: Calc-Alkali Basalts; LKT: Low-potassium Tholeiites and Island Arc Basalts; OFB: Ocean Floor Basalts); b: Cr-Ti diagram of the metamorphic rocks from the Yap Formation; c: Isotope Pb-Sr diagram of the Parece-Vela basin and the Mariana volcanic arc
    (Data source: Metamorphic rocks of Yap group: [3, 4, 26]; island arc igneous rocks from the Yap Island: [19]; Parece-Vela Basin: [27-29]; Mariana volcanic arc: [27-29]; global island arc: GEOROC)

    加罗林海岭与雅浦岛弧的碰撞一直是雅浦岛弧研究的重点。McCabe和Uyeda1[10]认为加罗林海岭在早中新世与雅浦岛弧发生碰撞,并导致雅浦岛弧活动停止。Fujiwara等[6]认为碰撞发生在晚渐新世,碰撞导致雅浦岛弧的弧前部分缺失、异常近的沟-弧距离、雅浦弧前下地壳物质的暴露以及雅浦岛弧的变质作用。然而,现今地形数据显示,加罗林海岭并未与雅浦岛弧相接,二者之间存在一个三角形的平坦地形区域(图1),该区域水深较深。在俯冲前缘区域的俯冲板片弯曲通常情况下会导致平行于海沟的正断层,Fujiwara等[6]认为这些正断层所控制的半地堑结构形成了这个三角形区域,Dong等[12]认为加罗林海岭和雅浦岛弧在早中新世发生碰撞,晚中新世时期开始的索罗尔海槽的扩张导致了半地堑结构的形成。

    加罗林海岭是热点所导致的地形隆起,热点的岩浆作用通常会形成沿着热点轨迹的地球物理特征异常,包括凸起的地形、加厚的洋壳、高的自由空间重力异常以及较低的布格重力异常。与加罗林海岭相比,雅浦海沟东侧的三角形区域水深较深,在重力上表现为较低的自由空间重力异常。根据Fujiwara等[6]的半地堑模型,该区域东部边界为切穿岩石圈的正断层,然而该三角形区域内地震较少,在其东部边界并没有观测到与正断层相关的地震发生(图1b)。在半地堑模型中的正断层不会改变地壳厚度,然而该三角形区域内的地壳厚度明显比加罗林海岭薄(图4c)。对于Dong等[12]提出的索罗尔海槽扩张形成半地堑的模型,该三角区域内应该存在索尔罗海槽向西的延伸,然而该区域内并没有观测到与索尔罗海槽现今地震类似的走滑性质的地震(图1b),说明索罗尔海槽的中央裂谷并未延伸到该区域内部。同时该区域内构造线多为N-S走向,与索罗尔海槽N-S向扩张形成的E-W向构造线相悖。因此,该三角形区域内的洋壳并未受到加罗林热点的影响,同时也表明加罗林海岭并未与雅浦岛弧发生碰撞。另一方面,雅浦岛弧基底是中温—高温变质作用导致的绿片岩相-角闪岩相变质作用[3, 13],并非碰撞相关的高压—超高压变质作用,这也印证了雅浦岛弧与加罗林海岭之间并未发生碰撞。

    图  4  雅浦岛弧及周边区域自由空间重力异常(a)与布格重力异常(b)、莫霍面起伏(c)及地磁场强度(d)
    a、b的数据来源于BGI,d的数据来源于NGDC
    Figure  4.  a: The free air gravity anomalies of the Yap arc and its vicinity; b: the bouguer gravity anomalies; c: The undulation of Moho; d: The geomagnetic field intensity
    a, b. data from BGI, d. geomagnetism data from NGDC

    雅浦岛弧的岛弧岩浆作用最典型代表为雅浦岛上的Tomil集块岩,根据Map组晚渐新世—中新世的沉积历史[24]推断,Tomil集块岩所代表的岛弧岩浆作用不会早于中新世。九州-帕劳海岭上的始新世岛弧记录表明太平洋板块的俯冲在始新世已经开始[35]。作为太平洋板块向菲律宾海板块之下俯冲导致的弧后盆地,帕里西维拉海盆在约29 Ma开始扩张[16],雅浦岛的变质岩基底则为帕里西维拉海盆NE-SW向扩张(20~15 Ma)形成的洋壳,除此之外在雅浦岛弧上并没有存在其他更老的地质记录。因此,雅浦岛弧的岛弧岩浆事件与其东侧的太平洋板块俯冲时间相悖。

    板片俯冲启动时间可以根据俯冲板片形态和俯冲速率进行大致推测。前人根据雅浦岛弧地震数据,推测雅浦岛弧之下的俯冲板片深度为40 km左右[5, 36]。因此,根据最新的雅浦岛弧地震数据以及微地震数据[5],我们沿着剖面a推测了俯冲板片的大致形态(图5)。同时,根据Ulithi岛礁的GPS观测数据[36-37]可知,雅浦海沟的俯冲速率为5 mm/a左右,因此沿着雅浦海沟的板片俯冲启动时间为约12.5 Ma。但这同样与太平洋板块始新世的俯冲以及帕里西维拉海盆渐新世的扩张相悖。在渐新世时期雅浦岛弧为帕里西维拉弧后盆地洋壳的一部分,在这一时期雅浦岛弧东侧还应该存在一个俯冲带对应于太平洋板块的俯冲以及帕里西维拉海盆作为弧后盆地的扩张,直到中新世时期雅浦海沟才形成与俯冲相关的沟-弧体系。由于初始俯冲位置并非雅浦海沟,所以雅浦海沟约12.5 Ma的俯冲起始时间不可信。

    图  5  雅浦海沟地震及俯冲板片形态
    Figure  5.  Earthquakes and slab geometry of the Yap trench

    地球物理资料显示(图4),雅浦岛弧与加罗林海岭并未直接发生碰撞,二者之间存在一个三角形区域,该区域具有较深的水深、较低的自由空间重力异常以及较薄的地壳厚度。热点导致的地形隆起与周边原始地形区域之间通常为渐变过渡,例如加罗林海岭南部和北部边界的渐变地形变化。然而加罗林海岭与三角形区域之间的弧形边界十分陡峭,地震记录(图1)否定了东部边界切穿岩石圈正断层的存在。导致这种陡峭地形的另外一种可能是俯冲作用,在俯冲过程中俯冲板片上的海山等隆起地形会被上覆板块切割并且拼贴在增生楔区域[38],而上覆板块的巨大压力会导致俯冲板片被压缩而变薄。现今,在雅浦海沟东侧的三角形区域之上不存在上覆板块,然而该三角形区域减薄的地壳以及陡峭的东部边界(图4)均与俯冲板片特征相符合。将三角形区域东部边界假设为起始俯冲带的位置,根据板片形态(图5)以及俯冲速率[11, 26]计算雅浦海沟东侧的太平洋板块俯冲起始时间为29~28 Ma,这与帕里西维拉海盆的弧后扩张开始时间相符合。

    雅浦岛弧的构造解析(图1)以及地球化学(图2)等方面证据表明雅浦沟-弧系统的构造演化经历了3个阶段,分别为晚渐新世以前帕里西维拉海盆弧后扩张以及中温—高温变质作用形成变质基底、晚渐新世—中新世变质基底风化形成Map组沉积层以及中新世发生岛弧岩浆作用。这说明雅浦海沟在中新世才出现,而在此之前雅浦岛弧东部必然存在另外一条俯冲带对应始新世以来太平洋板块的俯冲[35]和渐新世—中新世帕里西维拉海盆的扩张[16]。俯冲起始年龄的计算(图5)则表明这条中新世以前的俯冲带很可能位于加罗林海岭西边界,上覆板块则位于雅浦岛弧和加罗林海岭之间的三角形区域之上,为帕里西维拉海盆的一部分。因此,中新世时期在雅浦岛弧及邻区发生的构造事件最终导致了雅浦海沟的出现以及雅浦海沟东侧上覆板块的消失。

    前人根据地形、地球物理以及磁条带等方面的研究证实帕里西维拉海盆在约20 Ma扩张方向由E-W转变为NE-SW[16]。帕里西维拉海盆在20~15 Ma的NE-SW向扩张最直接的表现为S型转换断层、雁列式排布的洋中脊段、NW-SE向的海底构造线[14]。同时洋壳NE-SW向扩张会将两侧洋壳沿着NE-SW方向推离,从而导致帕里西维拉海盆洋中脊东侧和西侧的洋壳发生类似于左旋走滑的相对运动(图1a图6)。帕里西维拉海盆西侧的洋壳与西菲律宾海盆相连,根据古地磁研究发现西菲律宾海盆在20~15 Ma期间基本不发生向北移,同时其顺时针旋转也基本停止[39-40]。因此,20~15 Ma帕里西维拉海盆洋中脊东侧和西侧洋壳的相对运动更多地表现为海盆东部洋壳向NE方向推离。而海盆东部洋壳向NE方向移动会导致在帕里西维拉海盆南部原本已经俯冲的部分洋壳重新暴露,对应于加罗林海岭和雅浦岛弧之间的三角形区域,而该三角形区域东侧的弧形边界也与西马里亚纳海岭南部的弧形岛弧形态相符合(图1)。帕里西维拉海盆东部洋壳向NE方向移动另外一方面结果则是帕里西维拉海盆南部的一部分扩张中心暴露出来。太平洋板块和加罗林板块向NW方向连续的俯冲则导致帕里西维拉海盆南部暴露的部分洋中脊转变成了雅浦海沟。

    图  6  雅浦俯冲带构造演化模型
    KPR:九州-帕劳海岭,WMR:西马里亚纳海岭,CR:加罗林海岭,YA:雅浦岛弧
    Figure  6.  Evolutionary model of the Yap subduction zone
    KPR: Kyushu-Palau ridge; WMR: West Mariana ridge; CR: Caroline ridge; YA: Yap arc

    雅浦沟-弧系统与西太平洋其他的沟-弧-盆体系存在很大的不同,主要表现在很少的岛弧岩浆作用、极短的沟-弧距离以及弧前增生楔的缺失[3-8]。板块构造理论中,增生楔是由板块俯冲过程中上覆板块切削下来的沉积物以及岩石等在弧前区域堆积形成。俯冲到一定深度的板块在温度和压力作用下脱水形成流体,而流体会导致地幔岩石熔点降低形成向上的岛弧岩浆。俯冲板片在俯冲初期角度较小,随着俯冲深度的加深,俯冲角度逐渐变陡,这也是典型沟-弧-盆体系中具有一定的沟-弧距离的原因。雅浦海沟是由洋中脊暴露而产生的,其东侧的三角形区域为原本已经俯冲的板块,因而在雅浦海沟区域的俯冲板块缺少了俯冲初期的较小的俯冲角度(图5),导致在距离岛弧较近的位置就达到俯冲板片脱水的深度,形成了雅浦沟-弧系统很短的沟-弧距离。雅浦岛弧的弧前增生楔缺失则与东侧部分已俯冲的洋壳重新暴露有关,由于重新暴露的洋壳之上没有沉积物,加上雅浦海沟较低的俯冲速率[11, 37],在雅浦岛弧的弧前区域很难形成增生楔。同时,较低的俯冲速率[11, 37]也是导致岛弧岩浆作用较少的原因。

    雅浦沟-弧系统为帕里西维拉海盆的一部分,帕里西维拉海盆的扩张过程直接控制了雅浦沟-弧系统的产生以及构造演化。雅浦沟-弧系统西侧具有N-S向构造线的洋壳为帕里西维拉海盆在29~20 Ma期间E-W向扩张的产物。在这一时期,马里亚纳俯冲带、西马里亚纳海岭以及雅浦岛弧西侧N-S向构造线的洋壳组成了帕里西维拉海盆南部正常的沟-弧-盆体系,马里亚纳俯冲带位于现今雅浦海沟东侧三角形区域的东部边界位置。此时,加罗林海岭与帕里西维拉海盆之间的碰撞发生在西马里亚纳海岭南部(图6a)。在20~15 Ma期间,帕里西维拉海盆的扩张方向变为NE-SW向。扩张方向的改变将帕里西维拉海盆东侧的洋壳向NE方向推离,帕里西维拉海盆南部的部分洋中脊暴露形成了雅浦俯冲带(图6b)。俯冲伴随的岛弧岩浆作用则导致了雅浦岛弧的隆升以及雅浦岛上Tomil集块岩为代表的岛弧岩浆作用,而雅浦组的角山岩相-绿片岩相变质岩则可能为岛弧隆升过程中暴露的深部地壳。在这一时期,帕里西维拉海盆南侧已经俯冲的板片也由于帕里西维拉海盆东侧洋壳的NE方向移动而重新暴露,形成了现今雅浦海沟东侧的三角形区域(图6b)。

    雅浦岛弧原本为帕里西维拉海盆NE-SW向扩张形成的洋壳。帕里西维拉海盆在20~15 Ma的NE-SW向扩张使海盆东西两侧洋壳发生相对移动,这导致了帕里西维拉海盆南部的部分洋中脊段暴露而转变为雅浦海沟。同时雅浦海沟东侧部分已经俯冲的板片重新暴露形成了一个地球物理特征十分特殊的三角形区域。

  • 图  1   海洋天然气水合物调查研究现状[5]

    Figure  1.   Current status of scientific and industrial researches for Marine gas hydrate [5]

    图  2   粗粒沉积物孔隙中水合物的3种赋存模式示意图

    Figure  2.   Occurrence types of hydrate in coarse-grained sediments

    图  3   块状水合物岩心样品CT二维截面图

    Figure  3.   CT section of massive hydrate sample

    图  4   分散状水合物岩心样品CT二维截面图

    Figure  4.   CT section of dispersed hydrate sample

    图  5   海洋天然气水合物资源量评价结果

    绿色代表体积法,紫色代表类比法,青色代表成因法。

    Figure  5.   Marine gas hydrate resources evaluation

    Green, purple and cyan represents the resources calculated by volume method, analogy method and genetic method respectively.

    图  6   海洋天然气水合物资源评价思路

    Figure  6.   Thoughts on evaluation of marine gas hydrate resources

    表  1   主要海洋天然气水合物资源量评价结果

    Table  1   Evaluation of main marine gas hydrate resources

    评价阶段评价方法资源量/(1015 m3)参考文献
    探索研究阶段
    (1970’)
    体积法3 053[79]
    体积法1 573[80]
    体积法120[81]
    资源发现阶段
    (1980’—1990’)
    体积法40[82]
    体积法、类比法26.4[83]
    体积法、类比法21[84]
    能源开发阶段
    (2000年至今)
    成因法3.05~3.81[85]
    体积法、类比法3.34[86]
    成因法1.05[87]
    成因法2.13[88]
    下载: 导出CSV
  • [1]

    Boswell R, Hancock S, Yamamoto K, et al. 6-Natural gas hydrates: status of potential as an energy resource[M]// Letcher T M. Future Energy. 3rd ed. Boston: Elsevier, 2020: 111−131.

    [2] 吴能友. 天然气水合物运聚体系: 理论、方法与实践[M]. 合肥: 安徽科学技术出版社, 2020: 1−294.

    WU Nengyou. Gas Hydrate Migration and Accumulation System: Theory, Method and Practice[M]. Hefei: Anhui Science and Technology Press, 2020: 1−294.

    [3] 宁伏龙, 梁金强, 吴能友, 等. 中国天然气水合物赋存特征[J]. 天然气工业, 2020, 40(8):1-24

    NING Fulong, LIANG Jinqiang, WU Nengyou, et al. Reservoir characteristics of natural gas hydrates in China [J]. Natural Gas Industry, 2020, 40(8): 1-24.

    [4]

    Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. Applied Energy, 2016, 162: 1633-1652.

    [5]

    Collett T, Bahk J J, Baker R, et al. Methane hydrates in nature-current knowledge and challenges [J]. Journal of Chemical & Engineering Data, 2015, 60(2): 319-329.

    [6]

    Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope [J]. Marine and Petroleum Geology, 2011, 28(2): 279-294.

    [7]

    Miyakawa A, Saito S, Yamada Y, et al. Gas hydrate saturation at Site C0002, IODP Expeditions 314 and 315, in the Kumano Basin, Nankai trough [J]. Island Arc, 2014, 23(2): 142-156.

    [8] 吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1):2-8

    WU Shiguo, WANG Jiliang. On the China's successful gas production test from marine gas hydrate reservoirs [J]. Chinese Science Bulletin, 2018, 63(1): 2-8.

    [9]

    Boswell R, Collett T S. Current perspectives on gas hydrate resources [J]. Energy & Environment Science, 2011, 4(4): 1206-1215.

    [10] 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. Geology In China, 2020, 47(3): 557-568.

    [11]

    Haeckel M, Bialas J, Klaucke I, et al. Gas hydrate occurrences in the Black Sea- new observations from the German sugar Project [J]. Fire in the Ice:Methane Hydrate Newsletter, 2015, 15(2): 6-9.

    [12]

    Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate Joint Industry Project Leg II logging‐while‐drilling data acquisition and analysis [J]. Marine and Petroleum Geology, 2012, 34(1): 41-61.

    [13]

    Komatsu Y, Suzuki K, Fujii T. Sedimentary facies and paleoenvironments of a gas-hydrate- bearing sediment core in the eastern Nankai Trough, Japan [J]. Marine and Petroleum Geology, 2015, 66: 358-367.

    [14]

    Malinverno A, Goldberg D S. Testing short‐range migration of microbial methane as a hydrate formation mechanism: Results from Andaman Sea and Kumano basin drill sites and global implications [J]. Earth and Planetary Science Letters, 2015, 422: 105-114.

    [15]

    Ginsburg G, Soloviev V, Matveeva T, et al. 24. Sediment grain‐size control on gas hydrate presence, sites 994, 995 and 997[M]//Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program: Scientific Results 164. College Station, TX: Ocean Drilling Program, 2000: 1 − 459.

    [16]

    Wang X J, Collett T S, Lee M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu Area, South China Sea [J]. Marine Geology, 2014, 357: 272-292.

    [17]

    Portnov A, Santra M, Cook A E, et al. The Jackalope gas hydrate system in the northeastern Gulf of Mexico [J]. Marine and Petroleum Geology, 2020, 111: 261-278.

    [18]

    Matsumoto R, Tanahashi M, Kakuwa Y, et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures, eastern margin of Japan Sea: Japan Sea shallow gas hydrate project [J]. Fire in the Ice:Methane Hydrate Newsletter, 2017, 17(1): 1-22.

    [19]

    Liu C L, Meng Q G, Hu G W, et al. Characterization of hydrate-bearing sediments recovered from the Shenhu Area of the South China Sea [J]. Interpretation, 2017, 5(3): SM13-SM23.

    [20] 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学:中国地质大学学报, 2013, 38(5):907-915

    Chen Fang, Su Xin, Lu Hongfeng, et al. Relations between biogenic component (foraminifera) and highly saturated gas hydrates distribution from Shenhu Area, northern South China Sea [J]. Earth Science:Journal of China University of Geosciences, 2013, 38(5): 907-915.

    [21]

    Li C F, Hu G W, Zhang W, et al. Influence of foraminifera on formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from ShenHu Area, South China Sea [J]. Science China Earth Sciences, 2016, 59(11): 2223-2230.

    [22]

    Bahk J J, Kim D H, Chun J H, et al. Gas hydrate occurrences and their relation to host sediment properties: results from Second Ulleung basin gas hydrate Drilling Expedition, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 21-29.

    [23]

    Liu C L, Ye Y G, Meng Q G, et al. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea [J]. Marine Geology, 2012, 307-310: 22-27.

    [24]

    Liu C L, Meng Q G, He X L, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea [J]. Marine and Petroleum Geology, 2015, 61: 14-21.

    [25]

    Max M D, Johnson A H. Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for Commercialization[M]. Switzerland: Springer, 2016.

    [26]

    Wei J G, Liang J Q, Lu J G, et al. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea - Results of the fifth gas hydrate drilling expedition [J]. Marine and Petroleum Geology, 2019, 110: 287-298.

    [27] 张辉, 卢海龙, 梁金强, 等. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 2016, 61(3):388-397

    ZHANG Hui, LU Hailong, LIANG Jinqiang, et al. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea [J]. Chinese Science Bulletin, 2016, 61(3): 388-397.

    [28] 姜衡, 苏明, 邬黛黛, 等. 南海北部陆坡神狐海域GMGS01 区块细粒浊积体的识别特征及意义[J]. 海洋地质与第四纪地质, 2017, 37(5): 131 − 140.

    JIANG Heng, SU Ming, WU Daidai, et al. Fine- grained turbidites in GMGS01 of the Shenhu Area, northern South China Sea and its significance[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 131 − 140.

    [29]

    Horozal S, Kim G Y, Bahk J J, et al. Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan Sea) [J]. Marine and Petroleum Geology, 2015, 59: 535-562.

    [30]

    Miyajima Y, Watanabe Y, Yanagisawa Y, et al. A late Miocene methane-seep deposit bearing methane-trapping silica minerals at Joetsu, central Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 455: 1-15.

    [31]

    Winters W J, Wilcox-Cline R W, Long P, et al. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems [J]. Marine and Petroleum Geology, 2014, 58: 139-167.

    [32]

    Liu X L, Flemings P B. Capillary effects on hydrate stability in marine sediments [J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B7): B07102.

    [33]

    Lorenson T. Microscopic character of marine sediment containing disseminated gas hydrate: Examples from the Blake Ridge and the Middle America Trench[M]//Holder G D, Bishnoi P R. Gas Hydrates: Challenges for the Future. New York: Annals of the New York Academy of Sciences 2000: 1 − 1039.

    [34]

    Collett T S, Boswell R, Cochran J R, et al. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01 [J]. Marine and Petroleum Geology, 2014, 58: 3-28.

    [35]

    Hutchinson D R, Hart P E, Collett T S, et al. Geologic framework of the 2005 Keathley Canyon gas hydrate research well, northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 906-918.

    [36]

    Matsumoto R, Paull C, Wallace P. Gas hydrate sampling on the Blake Ridge and the Carolina Rise[R]. Ocean Drilling Program Leg 164 Preliminary Report, College Station, TX: Ocean Drilling Program, 1996(64): 1-72.

    [37]

    Tréhu A M, Torres M E, Bohrmann G, et al. Leg 204 synthesis: gas hydrate distribution and dynamics in the central Cascadia accretionary complex[M]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program: Scientific Results 204. College Station, TX: Ocean Drilling Program, 2006: 1-815.

    [38] 钟广法, 张迪, 赵峦啸. 大洋钻探天然气水合物储层测井评价研究进展[J]. 天然气工业, 2020, 40(8):25-44

    ZHONG Guangfa, ZHANG Di, ZHAO Luanxiao. Current states of well-logging evaluation of deep-sea gas hydrate-bearing sediments by international scientific ocean drilling (DSDP/ODP/IODP) programs [J]. Natural Gas Industry, 2020, 40(8): 25-44.

    [39] 胡高伟, 业渝光, 张剑, 等. 松散沉积物中天然气水合物生成、分解过程与声学特性的实验研究[J]. 现代地质, 2008, 22(3):465-474

    HU Gaowei, YE Yuguang, ZHANG Jian, et al. Study on gas hydrate formation-dissociation and its acoustic responses in unconsolidated sands [J]. Geoscience, 2008, 22(3): 465-474.

    [40] 胡高伟, 业渝光, 张剑, 等. 基于弯曲元技术的含水合物松散沉积物声学特性研究[J]. 地球物理学报, 2012, 55(11):3762-3773

    HU Gaowei, YE Yuguang, ZHANG Jian, et al. Acoustic properties of hydrate-bearing unconsolidated sediments based on bender element technique [J]. Chinese Journal of Geophysics, 2012, 55(11): 3762-3773.

    [41]

    Best A I, Priest J A, Clayton C R I, et al. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions [J]. Earth and Planetary Science Letters, 2013, 368: 78-87.

    [42] 宁伏龙, 吴能友, 李实, 等. 基于常规测井方法估算原位水合物储集层力学参数[J]. 石油勘探与开发, 2013, 40(4):507-512

    NING Fulong, WU Nengyou, LI Shi, et al. Estimation of in-situ mechanical properties of gas hydrate-bearing sediments by well logging [J]. Petroleum Exploration and Development, 2013, 40(4): 507-512.

    [43] 陆敬安, 杨胜雄, 吴能友, 等. 南海神狐海域天然气水合物地球物理测井评价[J]. 现代地质, 2008, 22(3):447-451

    LU Jing’an, YANG Shengxiong, WU Nengyou, et al. Well logging evaluation of gas hydrates in Shenhu Area, South China Sea [J]. Geoscience, 2008, 22(3): 447-451.

    [44]

    Zhang W, Liang J Q, Wei J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, Northern South China Sea [J]. Marine and Petroleum Geology, 2020, 114: 104191.

    [45]

    Ren S R, Liu Y J, Liu Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments [J]. Journal of Petroleum Science and Engineering, 2010, 70(1-2): 52-56.

    [46]

    Lei L, Liu Z C, Seol Y, et al. An investigation of hydrate formation in unsaturated sediments using X‐Ray computed tomography [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4): 3335-3349.

    [47]

    Dong H M, Sun J M, Zhu J J, et al. Developing a new hydrate saturation calculation model for hydrate-bearing sediments [J]. Fuel, 2019, 248: 27-37.

    [48]

    Dong H M, Sun J M, Arif M, et al. A novel hybrid method for gas hydrate filling modes identification via digital rock [J]. Marine and Petroleum Geology, 2020, 115: 104255.

    [49] 陈国旗, 李承峰, 刘昌岭, 等. 多孔介质中甲烷水合物的微观分布对电阻率的影响[J]. 新能源进展, 2019, 7(6):493-499

    Chen Guoqi, Li Chengfeng, Liu Changling, et al. Effect of microscopic distribution of methane hydrate on resistivity in porous media [J]. Advances in New and Renewable Energy, 2019, 7(6): 493-499.

    [50]

    Shankar U, Riedel M. Gas hydrate saturation in the Krishna-Godavari basin from P-wave velocity and electrical resistivity logs [J]. Marine and Petroleum Geology, 2011, 28(10): 1768-1778.

    [51]

    Wang X J, Wu S G, Lee M, et al. Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu Area, South China Sea [J]. Marine and Petroleum Geology, 2011, 28(9): 1625-1633.

    [52] 胡高伟, 李彦龙, 吴能友, 等. 神狐海域W18/19 站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5):151-158

    HU Gaowei, LI Yanlong, WU Nengyou, et al. Undrained shear strength estimation of the cover layer of hydrate at site W18/19 of Shenhu Area [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 151-158.

    [53]

    Luo T T, Song Y C, Zhu Y M, et al. Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea [J]. Marine and Petroleum Geology, 2016, 77: 507-514.

    [54] 石要红, 张旭辉, 鲁晓兵, 等. 南海水合物黏土沉积物力学特性试验模拟研究[J]. 力学学报, 2015, 47(3):521-528

    SHI Yaohong, ZHANG Xuhui, LU Xiaobing, et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 521-528.

    [55] 关进安, 卢静生, 梁德青, 等. 高压下南海神狐水合物区域海底沉积地层三轴力学性质初步测试[J]. 新能源进展, 2017, 5(1):40-46

    GUAN Jin’an, LU Jingsheng, LIANG Deqing, et al. Preliminary tri-axial mechanical test on the hydrate-bearing media from Shenhu Area of South China Sea under high confining pressures [J]. Advances in New and Renewable Energy, 2017, 5(1): 40-46.

    [56]

    Wang B, Huo P, Luo T T, et al. Analysis of the physical properties of hydrate sediments recovered from the Pearl River Mouth Basin in the South China Sea: Preliminary investigation for gas hydrate exploitation [J]. Energies, 2017, 10(4): 531.

    [57]

    Wang L, Li Y H, Wu P, et al. Physical and mechanical properties of the overburden layer on gas hydrate-bearing sediments of the South China Sea [J]. Journal of Petroleum Science and Engineering, 2020, 189: 107020.

    [58] 宁伏龙, 刘力, 李实, 等. 天然气水合物储层测井评价及其影响因素[J]. 石油学报, 2013, 34(3):591-606

    NING Fulong, LIU Li, LI Shi, et al. Well logging assessment of natural gas hydrate reservoirs and relevant influential factors [J]. Acta Petrolei Sinica, 2013, 34(3): 591-606.

    [59]

    Liu Z C, Wei H Z, Peng L, et al. An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: The direct shear test [J]. Journal of Petroleum Science and Engineering, 2017, 149: 56-64.

    [60]

    Liu Z C, Dai S, Ning F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt [J]. Geophysical Research Letters, 2018, 45(2): 715-723.

    [61] 张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3):193-202

    ZHANG Yongchao, LIU Changling, LIU Lele, et al. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation [J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202.

    [62]

    Li C F, Liu C L, Hu G W, et al. Investigation on the multi-parameter of hydrate-bearing sands using nano focus X-ray computed tomography [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(3): 2286-2296.

    [63]

    Zhang L X, Ge K, Wang J Q, et al. Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT [J]. Marine and Petroleum Geology, 2020, 113: 104157.

    [64]

    Li J F, Ye J L, Qin X W, et al, The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.

    [65] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11.

    [66]

    Sun J X, Zhang L, Ning F L, et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea: A preliminary feasibility study [J]. Marine and Petroleum Geology, 2017, 86: 447-473.

    [67]

    Zhang W, Liang J Q, Wei J G, et al. Origin of natural gases and associated gas hydrates in the Shenhu Area, northern South China Sea: Results from the China gas hydrate drilling expeditions [J]. Journal of Asian Earth Sciences, 2019, 183: 103953.

    [68]

    Qin X W, Lu J A, Lu H L, et al. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea [J]. China Geology, 2020, 3(2): 210-220.

    [69]

    Wang X J, Liu B, Qian J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 27-37.

    [70]

    Yang S X, Liang J Q, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea [J]. Fire in the Ice:Methane Hydrate Newsletter, 2017, 17(1): 7-11.

    [71]

    Majumdar U, Cook A E. The volume of gas hydrate‐bound gas in the northern gulf of Mexico [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11): 4313-4328.

    [72]

    Shankar U, Ojha M, Ghosh R. Assessment of gas hydrate reservoir from inverted seismic impedance and porosity in the northern Hikurangi margin, New Zealand [J]. Marine and Petroleum Geology, 2021, 123: 104751.

    [73]

    Piñero E, Hensen C, Haeckel M, et al. 3-D numerical modelling of methane hydrate accumulations using PetroMod [J]. Marine and Petroleum Geology, 2016, 71: 288-295.

    [74]

    Su P B, Liang J Q, Peng J, et al. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu Area, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 57-76.

    [75]

    Kroeger K F, Plaza-Faverola A, Barnes P M, et al. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation-a model study [J]. Marine and Petroleum Geology, 2015, 63: 97-114.

    [76]

    Hillman J I T, Crutchley G J, Kroeger K. Investigating the role of faults in fluid migration and gas hydrate formation along the southern Hikurangi Margin, New Zealand [J]. Marine Geophysical Research, 2020, 41(1): 8.

    [77]

    Burwicz E, Haeckel M. Basin-scale estimates on petroleum components generation in the Western Black Sea basin based on 3-D numerical modelling [J]. Marine and Petroleum Geology, 2020, 113: 104122.

    [78]

    Tsuji Y, Ishida H, Nakamizu M, et al. Overview of the MITI Nankai trough Wells: a milestone in the evaluation of methane hydrate resources [J]. Resource Geology, 2004, 54(1): 3-10.

    [79]

    Trofimuk A A, Cherskiy N V, Tsarev V P. Accumulation of natural gases in zones of hydrate formation in the hydrosphere [J]. Doklady Akademii Nauk SSSR, 1973, 212: 931-934(inRussian).

    [80]

    Cherskiy N V, Tsarev V P. Evaluation of the reserves in the light of search and prospecting of natural gases from the bottom sediments of the world’s ocean [J]. Geologiya i Geofizika, 1977, 5: 21-31.

    [81]

    Trofimuk A A, Cherskiy N V, Tsarev V P. Gas hydrates-new sources of hydrocarbons [J]. Priroda (Nature), 1979, 1: 18-27.

    [82]

    Kvenvolden K A, Claypool GE. Gas hydrates in oceanic sediment[R]. Open-File Report 88-216, Denver: US Geological Survey, 1988: 1-50.

    [83]

    Gornitz V, Fung I. Potential distribution of methane hydrates in the world’s oceans [J]. Global Biogeochemical Cycles, 1994, 8(3): 335-347.

    [84]

    Kvenvolden K A. Potential effects of gas hydrate on human welfare [J]. Proceedings of National Academy of Science of the United States of America, 1999, 96(7): 3420-3426.

    [85]

    Archer D, Buffet B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601.

    [86]

    Johnson A H. Global resource potential of gas hydrate- a new calculation [J]. Fire in the Ice:Methane Hydrate Newsletter, 2011, 11(2): 1-4.

    [87]

    Piñero E, Marquardt M, Hensen C, et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions [J]. Biogeosciences, 2013, 10(2): 959-975.

    [88]

    Kretschmer K, Biastoch A, Rüpke L, et al. Modeling the fate of methane hydrates under global warming [J]. Global Biogeochemical. Cycles, 2015, 29(5): 610-625.

    [89]

    Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates: A review[M]//Collett TS, Johnson A, Knapp C, et al. Natural gas hydrates-Energy resource potential and associated geologic hazards. Tulsa, Oklahoma, USA: American Association of Petroleum Geologists, 2009, 89: 146-219.

  • 期刊类型引用(9)

    1. 张更,李文拓,黄洪林,罗鸣,马传华,吴艳辉,李军. 考虑盐浓度的天然气水合物三维相平衡曲面热力学预测模型. 钻井液与完井液. 2025(01): 90-101 . 百度学术
    2. Pi-bo Su,Wei Wei,Yun-bao Sun,Yao-yao Lü,Huai Cheng,Wei-feng Han,Wei Zhang,Jin-qiang Liang. Geological reservoir and resource potential(10~(13) m~3) of gas hydrates in the South China Sea. China Geology. 2024(03): 422-444 . 必应学术
    3. 贾培文,吕瑶瑶,苏丕波,袁胜,刘鹏奇. 神狐海域天然气水合物测井-地震响应特征. 地质学报. 2024(09): 2654-2665 . 百度学术
    4. 高斌,赵葶,王华杰,周奇. 基于克里金插值法的天然气水合物分布评价与预测. 技术与市场. 2024(12): 15-26 . 百度学术
    5. 刘欣欣,王小杰,徐华宁,杨睿,刘鸿,陈江欣. 天然气水合物地层剪切模量参数岩石物理计算及叠前反演. 海洋地质与第四纪地质. 2024(06): 60-70 . 本站查看
    6. 于倩男,张涵,李宁,唐慧敏,李承龙,吴卓霖,彭威. 天然气水合物藏开发品质评价研究. 油气藏评价与开发. 2023(03): 385-392 . 百度学术
    7. 李小洋,张欣,田英英,张永勤,梁金强,黄伟. 海洋天然气水合物开采增产新技术可行性研究. 钻采工艺. 2023(05): 87-92 . 百度学术
    8. 董刚,蔡峰,孙治雷,闫桂京,梁杰,李清,孙运宝,李昂,骆迪,翟滨,郭建卫,窦振亚. 海洋浅表层天然气水合物地质取样技术及样品现场处置方法. 海洋地质前沿. 2022(07): 1-9 . 百度学术
    9. 刘乐乐,李彦龙,张旭辉,罗大双,刘昌岭. 降压开采导致天然气水合物系统状态演化模拟实验. 工程地质学报. 2021(06): 1916-1925 . 百度学术

    其他类型引用(9)

图(6)  /  表(1)
计量
  • 文章访问数:  58105
  • HTML全文浏览量:  4210
  • PDF下载量:  131
  • 被引次数: 18
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-09-06
  • 网络出版日期:  2021-09-25
  • 刊出日期:  2021-10-27

目录

/

返回文章
返回