新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据

孔丽茹, 罗敏, 陈多福

孔丽茹, 罗敏, 陈多福. 新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据[J]. 海洋地质与第四纪地质, 2021, 41(6): 115-123. DOI: 10.16562/j.cnki.0256-1492.2021071202
引用本文: 孔丽茹, 罗敏, 陈多福. 新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据[J]. 海洋地质与第四纪地质, 2021, 41(6): 115-123. DOI: 10.16562/j.cnki.0256-1492.2021071202
KONG Liru, LUO Min, CHEN Duofu. A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 115-123. DOI: 10.16562/j.cnki.0256-1492.2021071202
Citation: KONG Liru, LUO Min, CHEN Duofu. A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 115-123. DOI: 10.16562/j.cnki.0256-1492.2021071202

新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据

基金项目: 国家自然科学基金面上项目“新西兰Hikurangi俯冲带孔隙流体来源和水岩作用示踪研究:对流体活动和慢滑移事件的指示”(42076057)
详细信息
    作者简介:

    孔丽茹(1996—),女,硕士研究生,主要从事海洋地质研究,E-mail:m190200562@st.shou.edu.cn

    通讯作者:

    罗敏(1987—),男,副研究员,主要从事海洋地球化学研究,E-mail:mluo@shou.edu.cn

  • 中图分类号: P736.4

A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid

  • 摘要: 俯冲带是地球上地质活动最活跃的地带之一,对地球表面和内部的演化具有重要意义。俯冲带慢滑移事件作为一种重要的断层滑动方式在近十几年才逐渐被地球物理学家所认识。浅源慢滑移可以使浅部断层发生破裂至海底,引发大规模海啸。了解孔隙流体来源和俯冲带沉积物成岩作用有助于认识慢滑移事件的成因机制。以国际大洋发现计划(IODP)375航次在新西兰Hikurangi俯冲板块钻探站位(U1520)和变形前缘逆冲断层钻探站位(U1518)为研究对象,对两个站位沉积物孔隙流体的SO42-、Ca2+、Mg2+和Sr2+浓度以及放射性Sr同位素(87Sr/86Sr)进行了分析。结果显示两个站位Ca2+与Mg2+浓度、Sr2+浓度与87Sr/86Sr呈负相关关系是由于火山灰蚀变作用导致的。两个站位浅层0~14.3和0~37.3 mbsf沉积物孔隙水中的Ca2+、Mg2+浓度同时降低,表明发生了自生碳酸盐沉淀。同时,俯冲板块U1520站位的岩性单元IV(509.82~848.45 mbsf)Mg2+浓度随深度减小,Ca2+、Sr2+浓度则增加,但87Sr/86Sr基本保持不变,显示了碳酸盐重结晶作用。在其下部以火山碎屑岩为主的岩性单元V(848.45~1 016.24 mbsf)沉积物孔隙水的SO42-、Ca2+、Mg2+浓度均趋近海水值,这可能是由于海水在渗透性较好的火山碎屑岩中发生横向流动导致。因此,推测俯冲板片的岩性和成岩作用是高度的不均一,容易促使俯冲板片进入俯冲带后形成特殊的应力场和异常的流体压力,进而可能与Hikurangi俯冲带频发的慢滑移事件有关。
    Abstract: The subduction zone, as one of the most active zones on Earth, has great significance in the evolution of Earth's surface and interior. Slow slip events have not been recognized as an important form of faulting by geophysicists until recent decades. Slow slip event occurring in shallow sediments can rupture the seafloor and trigger large-scale tsunamis. Understanding the source of pore fluids and the diagenesis of subduction zone sediments is helpful to understand the formation mechanism of slow slip events. This paper presents the results of SO42-, Ca2+, Mg2+ and Sr2+ and the radiogenic Sr isotope (87Sr/86Sr) on the pore fluid collected from the drilling sites on the subducting plate (Site U1520) and the deformation front (Site U1518) of the Hikurangi subduction margin, offshore New Zealand, drilled during the International Ocean Discovery Program IODP Expedition 375. The results show that Ca2+ and Mg2+ concentrations, Sr2+ concentration and 87Sr/86Sr ratio are negatively correlated, indicating the widespread occurrence of volcanic ash alteration at both sites. In addition, the simultaneous decrease of Ca2+ and Mg2+ concentrations in the pore waters of the shallow 0~14.3 and 0~37.3 mbsf sediments is due to authigenic carbonate precipitation. In addition, the significant decrease in Mg2+ concentration with depth and increase in both Ca2+ and Sr2+ concentrations with depth accompanied by relatively constant 87Sr/86Sr values at the lithologic Unit IV (509.82~848.45 mbsf) of Site U1520 point to the ongoing carbonate recrystallization. In the lithological Unit V (848.45~1016.24 mbsf) which is dominated by pyroclastic rocks, the SO42-, Ca2+, and Mg2+ concentrations in pore fluids are all close to seawater values. This observation likely implies the lateral flow of seawater-like fluid within the more permeable pyroclastic rocks compared to neighboring lithologic units. Therefore, we propose that the lithologic heterogeneity and various diagenetic processes of the subducting slab may lead to the formation of abnormal stress field and high fluid pressure after being subducted, which is likely related to the frequent occurrence of slow slip events in the Hikurangi subduction zone.
  • 热液成因矿物是海底热液活动的产物,形成于海底热液与低温海水的混合过程中,主要类型包括金属硫化物矿物、富铁氧化物(硅化物)、铁锰氢氧化物、硫酸盐矿物[1]。其矿物组合、矿物学和矿物形貌学等特征携带有热液成因的相关信息,常被用来反映热液流体组成及温度等要素[2-4]。热液成因矿物主要存在两种沉积形式:热液堆积体(如热液丘和烟囱体等)的失稳垮塌迁移和热液羽流自生矿物颗粒的沉降[5-8]。热液成因矿物的沉积范围受到热液系统的热源、洋中脊构造环境等要素制约,不同制约条件的热液系统,热液成因矿物的空间分布范围具有一定的差异性[9-13],如在快速扩张的东太平洋海隆,岩浆活动频繁,热液成因矿物可扩散至距海隆超1 000 km的区域[14-15],而在慢速扩张的北大西洋洋脊,热液成因矿物分布范围较小,主要集中分布在中央裂谷[15-16]。因而,热液成因矿物的空间分布对于热液活动区的位置与范围具有一定指示作用。

    2015年,中国大洋33航次在卡尔斯伯格脊63°50′E附近发现了天休热液区,并通过海底视像观察到块状硫化物堆积体以及一处活动喷口[17]。邱中炎等[18]对天休热液区表层沉积物进行了全岩稀土元素分析,结果初步指示沉积物中存在高温热液组分。本文在此基础上进一步对天休热液区活动喷口及其周边地区所采集的表层沉积物进行研究,分析其中热液成因矿物的粒度特征、矿物学特征以及丰度变化情况,旨在总结天休热液区热液成因矿物相对活动喷口的空间变化规律。

    卡尔斯伯格脊(Carlsberg Ridge)是慢速扩张洋中脊,其全扩张速率为22~32 mm/a[19]。该洋脊地处西北印度洋10°~2°N之间,北起欧文断裂带,南至郦道元断裂带,走向由西北-东南向逐渐弯曲至近南北向,全长约1 500 km[20-22]。卡尔斯伯格脊具有5个一级洋脊段[20, 22]。其中,第4洋脊段位于徐霞客断裂带和宝船断裂带之间,为非对称扩张洋脊段,构造变形强烈,岩浆供给不充分,轴部具有深大断裂,平均水深3 750 m[19-20]。天休热液区位于3°45′N、63°45′E附近,是卡尔斯伯格脊上发现的首个以超镁铁质岩为围岩的热液系统[17],地处中央裂谷南侧山坡,距离洋脊中轴约5 km,平均水深约为3 450 m,沿北东-西南向呈不规则展布,与洋脊走向大体垂直(图1[23]

    图  1  天休热液区及本文沉积物采样点位置图 多波束地形数据来自中国大洋24航次EM120多波束测深系统,精度80 m,等深线间距200 m。
    Figure  1.  The location of the Tianxiu Hydrothermal Field and sampling stations
    All bathymetry is based on the EM120 data collected by DY 24th cruise in 2012 (200 m contours, accuracy 80 m).

    表层沉积物样品由大洋26航次和33航次利用电视抓斗获取。4个采样站位分别位于天休热液区活动喷口处、喷口西南侧0.22 km、西北侧1.84 km和西南侧6.05 km,水深分布在2 700~3 500 m(表1图1)。其中33I-TVG07和26I-TVG05站位于活动热液喷口附近,样品含大量热液成因矿物及围岩碎屑矿物,颜色深(图2a),密度大,黏稠度高,易污手。26I-TVG04和33I-TVG11站位与热液喷口距离较远,样品为正常远洋沉积物,成分以钙质生物碎屑为主,含有极少量金属氧化物(氢氧化物),呈浅黄色,分选较好,有颗粒感(图2b)。

    表  1  采样位置信息
    Table  1.  The coordinates of sampling stations
    站位号纬度(N)经度(E)水深/m采样位置
    33I-TVG073.6863.83°3 504活动热液喷口处
    26I-TVG053.69°63.83°3 477活动热液喷口西南侧0.22 km
    26I-TVG043.70°63.82°3 611活动热液喷口西北侧1.84 km
    33I-TVG113.66°63.79°2 789活动热液喷口西南侧6.05 km
    下载: 导出CSV 
    | 显示表格
    图  2  天休热液区沉积物甲板照片
    a.近喷口端沉积物甲板采样照片,b.远喷口端沉积物甲板采样照片。
    Figure  2.  The pictures of sediments near the active vent and in a distance
    a. Sediments collected near the hydrothermal vent, b. Sediments collected far from hydrothermal vent.

    样品分析流程如下:首先对各站位样品分别进行洗盐、筛分和烘干处理,并对样品进行分粒径称量。将筛分后粒径>1 mm(砾—粗砂)的样品和<1 mm(砂—泥)的样品分别进行实验(参照Udden-Wentworth粒度分级标准)[24-25]。用扫描电镜-能谱(SEM-EDS)对粒径>1 mm的样品进行矿物组成鉴定。对粒径<1 mm的样品,先利用X射线衍射分析(XRD)初步确定矿物种类和相对丰度,再通过双目体视显微镜(型号:LEICA M205 C)进行镜下鉴定及统计,并用SEM-EDS对挑选的典型样品进行矿物学分析。所使用的X射线衍射仪型号为X’ Pert PRO,选用Cu靶,激发电压45 kV,电流40 mA,测试范围为0~70°。扫描电镜型号为Zeiss Ultra-55,加速电压15 kV,能谱型号为Oxford-Inca X-Max 20,两项测试分析时使用高真空模式。以上实验均在自然资源部海底科学重点实验室完成。

    对各站位粒径>1 mm(砾—粗砂)与<1 mm(砂—泥)的沉积物样品称量统计结果如图3所示。在研究区不同站位,两种粒径的样品质量百分比不同。近喷口端砾—粗砂级组分百分含量较高,而远喷口端主体为砂—泥级组分。33I-TVG07站位(活动喷口处)砾—粗砂级组分质量百分比为43%,砂—泥级组分质量百分比为57%;26I-TVG05站位(距喷口0.22 km)砾—粗砂组分质量百分比为22%,砂—泥级组分质量百分比为78%;26I-TVG04站位(距喷口1.84 km)砾—粗砂组分约为3%,砂—泥级组分上升至97%;33I-TVG11站位(距喷口6.05 km),未见砾—粗砂组分。

    图  3  表层沉积物热液成因矿物中粗颗粒(>1 mm)和细颗粒(<1 mm)的占比及细颗粒热液成因矿物的丰度与喷口距离变化的关系图
    Figure  3.  The weight percentage of coarse size(>1 mm)and fine size(<1 mm)hydrothermal minerals in the surface sediments and the variation of abundances of fine size hydrothermal minerals ( <1 mm ) with distance from active venting site
    The bar graph represents the weight percentage of minerals for two grain sizes in metalliferous sediments

    对各站位沉积物的矿物组成进行了鉴定统计(图36表2),结果如下:热液成因矿物在近喷口端和远喷口端均存在,且矿物类型具有明显差异,近喷口端主要有黄铁矿、磁黄铁矿、古巴矿、等轴古巴矿、闪锌矿、硬石膏、铁的氧化物和氢氧化物等,远喷口端仅可见铁锰氧化物和氢氧化物。对粒径<1 mm的热液成因矿物进行数量统计,发现33I-TVG07和26I-TVG05站位中的热液成因矿物分别占该粒级沉积物中矿物总量的21%和16%;在33I-TVG07站位,磁黄铁矿、闪锌矿、古巴矿、等轴古巴矿和硬石膏等矿物丰度明显高于26I-TVG05站位。远喷口端的26I-TVG04和33I-TVG11站位,以远洋钙质沉积为主,热液成因矿物的丰度极低,数量百分比低于该粒级沉积物中矿物总量的1%。除热液成因矿物外,在近喷口端的沉积物中可见围岩蚀变矿物,主要以蛇纹石为主;在远喷口端可见大量生物成因钙质矿物。

    表  2  粒径<1 mm沉积物中主要矿物半定量统计分析
    Table  2.  Abundance of major minerals in sediments with grain size <1 mm
    矿物名称理想化学式近端远端
    33I-TVG0726I-TVG0526I-TVG0433I-TVG11
    金属硫化物
    磁黄铁矿Fe1-XS+++
    黄铁矿FeS2++++
    闪锌矿(Zn,Fe)S+++
    古巴矿/等轴古巴矿CuFe2S3+++
    金属氧化物
    铁的氧化物/氢氧化物Fe2O3/Fe3O4/Fe-(Mn)-OOH++++++
    围岩碎屑++++++
    钙质生物碎屑++++++++
      注:+++ 代表数量百分比>70%,++ 代表数量百分比1%~10%,+ 代表数量百分比<1%。
    下载: 导出CSV 
    | 显示表格
    图  6  沉积物中粒径<1mm的热液成因矿物典型扫描电镜形貌和能谱图
    a-f. 33I-TVG07和26I-TVG05站位粒径<1 mm的硫化物矿物和氧化物矿物,g和h. 分别为f的局部放大图像及其对应能谱图,i-l. 分别为26I-TVG04和33I-TVG11站位铁的氢氧化物和能谱图,a-f和g. 扫描电子显微镜拍摄的二次电子图像,i和k. 双目体视显微镜镜下图像。Sph-闪锌矿,Po-磁黄铁矿,Py-黄铁矿,Iso-等轴古巴矿,Fe-O-铁的(氢)氧化物。
    Figure  6.  SEM Photos and EDS data of typical hydrothermal minerals in sediments with grain size <1 mm
    a-f. sulfide and oxide minerals at station 33I-TVG07 and 26I-TVG05,g. enlargement of image f and h is corresponding EDS figure,i-l. oxide minerals at station 26I-TVG04 and 33I-TVG11, a-f and g. SEM images, i and k. images taken by optical microscope.
    图  4  各站位沉积物样品中粒径<1 mm矿物的X射线衍射分析图谱
    a. 33I-TVG07站位,b. 26I-TVG05站位,c. 26I-TVG04站位,d. 33I-TVG11站位。Iso-等轴古巴矿;Sph-闪锌矿,Py-黄铁矿,Po-磁黄铁矿,Lz-利蛇纹石,Ctl-纤蛇纹石,Cal-方解石,Qtz-石英。
    Figure  4.  XRD patterns of sediments ( grain size <1 mm) from different sampling station
    a. station 33I-TVG07,b. station 26I-TVG05, c. station 26I-TVG04,d. station 33I-TVG11.

    利用体视镜和SEM观察到,沉积物中粒径>1 mm(砾—粗砂)和<1 mm(砂—泥)粒级的热液成因矿物有明显的形貌学差别。粒径>1 mm的热液成因碎屑由硫化物矿物及围岩矿物的集合体组成,多呈棱角状,部分存在风化现象(图5a5b);粒径<1 mm的热液成因矿物多由硫化物单矿物或细粒矿物集合体组成。在近喷口端,可见大量自形—半自形硫化物和氧化物矿物,如33I-TVG07站位可见六方板状磁黄铁矿(图6b)、四面体和菱形十二面体闪锌矿(图6a)、半自形等轴古巴矿(图6e),铁氧化物细晶集合体(图6f);在26I-TVG05站位可见四面体和十二面体黄铁矿(图6c6d)。远喷口端26I-TVG04和33I-TVG11站位样品中,金属氢氧化物多为铁锈色或橙黄色,呈疏松多孔的隐晶质集合体或胶状集合体,该形貌特征与Popoola(2018)所述氢氧化物较为一致[26]图6i6k)。

    图  5  沉积物中粒径>1 mm的碎屑矿物的典型显微照片和能谱图
    a和b. 33I-TVG07站位粒径>1 mm的矿物集合体,c-h. a和b的局部放大图像及对应能谱图,a. 双目体视显微镜镜下图像,b、c、e和g. 扫描电子显微镜拍摄的二次电子图像;Cub-古巴矿,Lz-利蛇纹石,Fe-O-铁的(氢)氧化物。
    Figure  5.  Microphotos of typical minerals and their EDS data in sediments with grain size >1 mm
    a, b. mineral aggregates from station 33I-TVG07 (grain size >1 mm),c-h. enlargement of image a or b and corresponding EDS figures,a. images taken by optical microscope,b, c, e and g. SEM images.

    前人研究认为,海底硫化物堆积体垮塌和坡移是一种普遍存在的物理迁移过程,可以垮塌碎片等形式向低势能区输送热液信号[8]。该过程由热液硫化物堆积体的硬石膏骨架阶段性溶解所导致,贯穿整个热液活动始终[8, 27]。据此判断,研究区沉积物中应存在硫化物堆积体垮塌和坡移成因的热液成因物质输入。研究结果显示,研究区粒径>1 mm(砾—粗砂)的硫化物、氧化物和围岩矿物的集合体(图5a5b),其棱角状结构以及局部氧化现象均与上述过程较为符合,推测为物理迁移的产物,而该类矿物集合体可能为热液丘体垮塌产生的碎屑。

    研究区近喷口端的活动喷口处(33I-TVG07)和220 m(26I-TVG05)处样品中均发现有上述砾—粗砂粒级的碎屑物质(图5a5b),而在远喷口端的1.84 km(26I-TVG04)和6.05 km(33I-TVG11)站位样品中未见。同时,统计结果显示,物理迁移对活动喷口处(33I-TVG07)的影响最为显著,对西南侧距喷口220 m处的26I-TVG05站位的物质输入相较前一站位减半,但仍有较大影响,对1.84 km处的26I-TVG04和6.05 km处的33I-TVG11的影响极小。(图3)这在一定程度上表明了随着与热液喷口的距离增加,沉积物中垮塌来源的物质输入减少,相应的砾—粗砂级热液成因碎屑物质丰度迅速降低(图7)。

    图  7  天休热液区热液成因矿物运移方式及分布特征示意图(修改自文献[8])
    Figure  7.  Schematic diagram of the migration and distribution of the hydrothermal minerals in Tianxiu Hydrothermal Field (Modified after reference [8])

    但值得考虑的是,物理迁移的距离是否会受到海底地形等因素的影响。前人研究发现,TAG热液区丘状体直径200 m,垂向高度50 m,丘状体西、北、东侧均为陡坡,陡坡顶底垂向高差约20 m,可见硫化物垮塌扇,从硫化物丘底部向外延伸近百米;南侧为缓坡,垮塌碎屑堆积范围明显小于前者[28],反映了地形陡缓程度对物理迁移距离确实存在影响。研究区活动喷口向北为重力势能降低的方向,西南侧距喷口220 m处与活动喷口处高差约为27 m(图1),由于存在重力作用,从低处向高处搬运时,地形对物理迁移存在一定的抑制作用,但本文研究结果显示,该区存在明显的垮塌成因物质输入(图3)。此外,在活动喷口西北侧1.84 km与活动喷口高差约为−107 m处,其物理迁移输入的信号极小。上述现象在一定程度上说明地形的影响作用受到与活动喷口的距离的制约。因此,与活动喷口距离仍是垮塌成因热液成因矿物丰度变化的主要控制因素。砾—粗砂级热液成因碎屑物质是热液活动的直观信号,对热液堆积体及热液喷口的位置具有重要指示意义。

    Feely等[29]在对东太平洋Juan de Fuca洋脊ASHES喷口区的研究中发现,矿物在羽流运移过程中保持持续生长,当其重力大于羽流浮力时沉积至海底面,发生沉降的矿物粒径普遍为2~500 μm,少数可达到900 μm[29]。由此可推测,天休热液区及其周边区域<1 mm的热液成因矿物主要形成于羽流沉降过程。同时,Feely等[29]对羽流中颗粒物的矿物类型进行了观察鉴定,总结得到羽流中热液成因矿物主要包括重晶石、硬石膏等硫酸盐矿物、Cu-Zn-Fe硫化物矿物和Fe氧化物等。这与研究区<1 mm的沉积物中存在的热液成因矿物类型较为一致。

    此后,German等[30]对大西洋中脊羽流沉降过程进行了研究,认为元素的沉降具有多阶段性。Rudnicki等[31]将Fe元素的沉降分为两个阶段,首先在热液羽流上升阶段主要形成硫化物矿物和氧化物,而后到达中性浮力面并发生扩散沉降,产物主要为氢氧化物。Feely等[32]认为,在热液羽流上升初期,Cu、Zn、Fe等元素同时发生沉降。根据上述研究不难发现,沉降成因的热液成因矿物在以活动喷口为中心的开放区域会形成较为显著的空间分带特征。研究区粒径<1 mm的热液成因矿物分布具有以下特征:Cu-Zn硫化物矿物,如等轴古巴矿和闪锌矿等集中分布于活动喷口周围(图7),Fe元素在喷口周围以硫化物、氧化物和氢氧化物的形式沉淀,在远喷口端仅以氧化物和氢氧化物的形式出现。该分布现象与前人报道的羽流中元素的沉降规律[30-32]较为一致。

    热液成因矿物的数量统计结果显示,随着与活动喷口的距离增加,热液羽流沉降来源的热液成因矿物百分含量呈现先快速减少,后基本不变的整体趋势(图3)。与活动喷口处相比,距离活动喷口约220 m处的表层沉积物中,热液成因矿物类型和丰度均明显降低,远洋沉积的影响有所增加。随着与活动喷口的距离继续增大(在220 m~1.84 km的区间内),热液成因矿物类型和丰度进一步减少至趋于稳定,接近1.84 km(26I-TVG04)外的极低值。

    此外,近喷口端的表层沉积物中普遍存在有半自形的等轴古巴矿(图6e)和磁黄铁矿(图6b)等硫化物矿物。等轴古巴矿是现代海底硫化物矿床指示高温的标型矿物[3, 33-34];而磁黄铁矿的形成温度与晶体对称性相关,六方晶型的磁黄铁矿形成温度高于308 ℃[35]。因此,在近喷口端沉积物中发现上述晶型矿物(图6b6e)指示了天休热液区存在高温热液成矿作用。

    (1)该热液区表层沉积物中的热液成因矿物可分为两类:①海底热液硫化物堆积体(如硫化物烟囱体)失稳垮塌产生的碎屑;②热液活动产生的羽流中沉降的热液成因矿物。前者多为砾—粗砂级棱角状的矿物集合体,后者多为砂—泥级单矿物或细粒矿物集合体。

    (2)垮塌来源的热液成因矿物在活动喷口附近大量堆积,其分布主要受到与喷口距离的制约,随距离增加,丰度迅速下降。羽流沉降的热液成因矿物的分布具有规律性,Cu-Zn-Fe硫化物矿物(等轴古巴矿、古巴矿和闪锌矿等)集中分布于活动喷口周围,氧化物和氢氧化物在近喷口端和远喷口端均有出现。随着与活动喷口的距离增加,羽流沉降的热液成因矿物数量百分比呈现先快速减少、后变化缓慢的整体趋势。

    (3)围绕热液堆积体及热液喷口,沉积物中热液成因矿物的类型、粒度、丰度具有的规律性分布特征可以对未知的活动和非活动热液区提供良好的指示。

    致谢:中国大洋33航次第一航段和26航次第一航段全体参航队员对样品采集给予了支持,自然资源部海底科学重点实验室为本文样品分析测试提供了实验支撑,本次实验所用样品由中国大洋协会提供,在此一并感谢!

  • 图  1   研究区和采样站位位置[27]

    Figure  1.   Location of the study area and drilling sites[27]

    图  2   岩性柱状图及孔隙流体SO42-、Ca2+、Mg2+、Sr2+浓度以及放射性Sr同位素组成(87Sr/86Sr)[28-29]

    a. U1518站位,b. U1520站位。

    Figure  2.   Lithologic column and SO42-、Ca2+、Mg2+、Sr2+ concentrations and radiogenic Sr isotope composition in pore fluid(87Sr/86Sr)[28-29]

    a. Site U1518, b. Site U1520.

    图  3   火山灰层及火山玻璃[28-29]

    a. 灰色的火山灰层,b. 火山碎屑砾岩,c-e. 火山玻璃碎片。

    Figure  3.   Volcanic ash layer and volcanic glass[28-29]

    a. gray volcanic ash layer, b. pyroclastic conglomerate, c-e. volcanic glass fragments.

    图  4   孔隙流体Ca2+与Mg2+浓度关系图[28-29]

    a. U1518站位,b. U1520站位。

    Figure  4.   Cross-plots of pore-fluid Ca2+ vs. Mg2+ concentrations[28-29]

    a. Site U1518, b. Site U1520.

    图  5   1/Sr-87Sr/86Sr关系图[28-29]

    a. U1518站位,b. U1520站位。

    Figure  5.   Cross-plots of 1/Sr vs. 87Sr/86Sr[28-29]

    a. Site U1518, b. Site U1520.

  • [1]

    Stern J R. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 1012. doi: 10.1029/2001RG000108

    [2]

    Zheng Y F, Chen Y X. Continental versus oceanic subduction zones [J]. National Science Review, 2016, 3(4): 495-519. doi: 10.1093/nsr/nww049

    [3] 唐盼, 郭顺. 绿帘石记录俯冲带变质流体活动[J]. 岩石学报, 2019, 35(7):2045-2060 doi: 10.18654/1000-0569/2019.07.07

    TANG Pan, GUO Shun. Epidote records subduction-zone metamorphic fluid actions [J]. Acta Petrologica Sinica, 2019, 35(7): 2045-2060. doi: 10.18654/1000-0569/2019.07.07

    [4]

    Davis D, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(B2): 1153-1172. doi: 10.1029/JB088iB02p01153

    [5]

    Huene R V, Ranero C R, Vannucchi P. Generic model of subduction erosion [J]. Geology, 2004, 32(10): 913-916. doi: 10.1130/G20563.1

    [6]

    Moore C J, Saffer D. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress [J]. Geology, 2001, 29(2): 183-186. doi: 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2

    [7]

    Schnabel M, Flueh E R, Klaeschen D, et al. AVA analysis reveals in situ sediment diagenesis at the Costa Rican décollement [J]. Sedimentary Geology, 2007, 196(1-4): 269-277. doi: 10.1016/j.sedgeo.2006.06.003

    [8] 于在平. 俯冲带的流体地质作用[J]. 地学前缘, 1995, 2(1-2):175-182

    YU Zaiping. Fluids in subduction zones [J]. Earth Science Frontiers, 1995, 2(1-2): 175-182.

    [9]

    Deyhle A, Kopf A, Frape S, et al. Evidence for fluid flow in the Japan Trench forearc using isotope geochemistry (Cl, Sr, B): Results from ODP Site 1150 [J]. Island Arc, 2004, 13(1): 258-270. doi: 10.1111/j.1440-1738.2003.00424.x

    [10]

    Clough G W, Sitar N, Bachus R C, et al. Cemented sands under static loading [J]. Journal of the Geotechnical Engineering Division, 1981, 107(6): 799-817. doi: 10.1061/AJGEB6.0001152

    [11]

    Karig D E. Reconsolidation tests and sonic velocity measurements of clay-rich sediments from the Nankai Trough [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1993, 131: 247-260.

    [12]

    White R J, Spinelli G A, Mozley P S, et al. Importance of volcanic glass alteration to sediment stabilization: offshore Japan [J]. Sedimentology, 2011, 58(5): 1138-1154. doi: 10.1111/j.1365-3091.2010.01198.x

    [13]

    Kameda J, Hina S, Kobayashi K, et al. Silica diagenesis and its effect on interplate seismicity in cold subduction zones [J]. Earth and Planetary Science Letters, 2012, 317-318: 136-144. doi: 10.1016/j.jpgl.2011.11.041

    [14]

    Harris R, Yamano M, Kinoshita M, et al. A synthesis of heat flow determinations and thermal modeling along the Nankai Trough, Japan [J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6): 2687-2702. doi: 10.1002/jgrb.50230

    [15]

    Audet P, Bostock M G, Christensen N I, et al. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing [J]. Nature, 2009, 457(7225): 76-78. doi: 10.1038/nature07650

    [16]

    Bell R, Sutherland R, Barker D H N, et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events [J]. Geophysical Journal International, 2010, 180(1): 34-48. doi: 10.1111/j.1365-246X.2009.04401.x

    [17]

    Song T R A, Helmberger D V, Brudzinski M R, et al. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico [J]. Science, 2009, 324(5926): 502-506. doi: 10.1126/science.1167595

    [18]

    Veizer J. Strontium isotopes in seawater through time [J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 141-167. doi: 10.1146/annurev.ea.17.050189.001041

    [19]

    Teichert B M A, Torres M E, Bohrmann G, et al. Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry [J]. Earth and Planetary Science Letters, 2005, 239(1-2): 106-121. doi: 10.1016/j.jpgl.2005.08.002

    [20]

    Torres M E, Teichert B M A, Tréhu A M, et al. Relationship of pore water freshening to accretionary processes in the Cascadia margin: Fluid sources and gas hydrate abundance [J]. Geophysical Research Letters, 2004, 31(22): L22305.

    [21]

    Mccarthy M, Zirkle B, Torres M E, et al. Data report: 87Sr/86Sr in pore fluids from Expedition 362[R]. Proceedings of the International Ocean Discovery Program, 2019, 362.

    [22]

    Murray N A, McManus J, Palmer M R, et al. Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints [J]. Geochimica et Cosmochimica Acta, 2018, 228: 119-135. doi: 10.1016/j.gca.2018.02.039

    [23]

    Gieskes J M, Elderfield H, Palmer M R. Strontium and its isotopic composition in interstitial waters of marine carbonate sediments [J]. Earth and Planetary Science Letters, 1986, 77(2): 229-235. doi: 10.1016/0012-821X(86)90163-9

    [24]

    Wallace L M, Beavan J, McCaffrey R, et al. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12406. doi: 10.1029/2004JB003241

    [25]

    Pedley K L, Barnes P M, Pettinga J R, et al. Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand [J]. Marine Geology, 2010, 270(1-4): 119-138. doi: 10.1016/j.margeo.2009.11.006

    [26]

    Wallace L M, Beavan J. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B12): B12402. doi: 10.1029/2010JB007717

    [27]

    Wallace L M, Saffer D M, Barnes P M, et al. Hikurangi subduction margin coring, logging, and observatories[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.

    [28]

    Saffer D M, Wallace L M, Barnes P M, et al. Site U1518[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.

    [29]

    Barnes P M, Wallace L M, Saffer D M, et al. Site U1520[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.

    [30]

    Gieskes J M, Lawrence J R. Alteration of volcanic matter in deep sea sediments: evidence from the chemical composition of interstitial waters from deep sea drilling cores [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1687-1703. doi: 10.1016/0016-7037(81)90004-1

    [31]

    Gieskes J M. The chemistry of interstitial waters of deep sea sediments: Interpretation of deep sea drilling data[M]//Riley J P, Chester R. Chemical Oceanography. London: Academic Press, 1983, 8: 221-269.

    [32]

    Hein J R, O'Neil J R, Jones M G. Origin of authigenic carbonates in sediment from the deep Bering Sea [J]. Sedimentology, 1979, 26(5): 681-705. doi: 10.1111/j.1365-3091.1979.tb00937.x

    [33]

    Gieskes J M, Lawrence J R, Perry E A, et al. Chemistry of interstitial waters and sediments in the Norwegian-Greenland Sea, Deep Sea Drilling Project Leg 38 [J]. Chemical Geology, 1987, 63(1-2): 143-155. doi: 10.1016/0009-2541(87)90081-7

    [34]

    Scholz F, Hensen C, Schmidt M, et al. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins [J]. Geochimica et Cosmochimica Acta, 2013, 100: 200-216. doi: 10.1016/j.gca.2012.09.043

    [35]

    Martin J B, Kastner M, Henry P, et al. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B9): 20325-20345. doi: 10.1029/96JB00140

    [36]

    James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: the role of sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3111-3122. doi: 10.1016/S0016-7037(00)00418-X

    [37]

    Mcduff R E, Gieskes J M. Calcium and magnesium profiles in DSDP interstitial waters: Diffusion or reaction? [J]. Earth and Planetary Science Letters, 1976, 33(1): 1-10. doi: 10.1016/0012-821X(76)90151-5

    [38]

    Lyons T W, Murray R W, Pearson D G. 19. A comparative study of diagenetic pathways in sediments of the Caribbean Sea: highlights from pore-water results [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 165: 287-298.

    [39]

    Gieskes J M, Vrolijk P, Blanc G. Hydrogeochemistry, ODP Leg 110: An Overview [J]. Proceedings of the Ocean Drilling Program, Scientific results, 1986, 110: 395-408.

    [40]

    Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Ltd., 2014, 8: 293-334.

    [41]

    Hesse R, Schacht U. Early diagenesis of deep-sea sediments [J]. Developments in Sedimentology, 2011, 63: 557-713.

    [42]

    Joseph C, Torres M E, Martin R A, et al. Using the 87Sr/86Sr of modern and paleoseep carbonates from northern Cascadia to link modern fluid flow to the past [J]. Chemical Geology, 2012, 334: 122-130. doi: 10.1016/j.chemgeo.2012.10.020

    [43]

    Sample J C, Torres M E, Fisher A, et al. Geochemical constraints on the temperature and timing of carbonate formation and lithification in the Nankai Trough, NanTroSEIZE transect [J]. Geochimica et Cosmochimica Acta, 2017, 198: 92-114. doi: 10.1016/j.gca.2016.10.013

    [44]

    Perry E A Jr, Gieskes J M, Lawrence J R. Mg, Ca and exchange in the sediment-pore water system, hole 149, DSDP [J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 413-423. doi: 10.1016/0016-7037(76)90006-5

    [45]

    Higgins J A, Schrag D P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids [J]. Earth and Planetary Science Letters, 2012, 357-358: 386-396. doi: 10.1016/j.jpgl.2012.08.030

    [46]

    Saffer D M, Tobin H J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure [J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 157-186. doi: 10.1146/annurev-earth-040610-133408

    [47]

    Saffer D M, Wallace L M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes [J]. Nature Geoscience, 2015, 8(8): 594-600. doi: 10.1038/ngeo2490

    [48]

    Torres M E, Cox T, Hong W L, et al. Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan [J]. Geobiology, 2015, 13(6): 562-580. doi: 10.1111/gbi.12146

    [49]

    Morgan J K, Karig D E, Maniatty A. The estimation of diffuse strains in the toe of the western Nankai accretionary prism: A kinematic solution [J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B4): 7019-7032. doi: 10.1029/93JB03367

    [50]

    Saidi F, Bernabé Y, Reuschlé T. The mechanical behaviour of synthetic, poorly consolidated granular rock under uniaxial compression [J]. Tectonophysics, 2003, 370(1-4): 105-120. doi: 10.1016/S0040-1951(03)00180-X

    [51]

    Schnaid F, Prietto P D M, Consoli N C. Characterization of cemented sand in triaxial compression [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 857-868. doi: 10.1061/(ASCE)1090-0241(2001)127:10(857)

    [52]

    Spinelli G A, Mozley P S, Tobin H J, et al. Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough subduction zone [J]. GSA Bulletin, 2007, 119(3-4): 377-390. doi: 10.1130/B25920.1

    [53]

    McDuff R E. Major cation gradients in DSDP interstitial waters: the role of diffusive exchange between seawater and upper oceanic crust [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1705-1713. doi: 10.1016/0016-7037(81)90005-3

  • 期刊类型引用(4)

    1. Zhongyan QIU,Yejian WANG,Xiqiu HAN,Honglin LI,Xing YU,Ruyong CUI,Mou LI,Xuegang CHEN,Jiqiang LIU. Discovery and characterization of a new hydrothermal field at 2°N on the slow-spreading Carlsberg Ridge. Journal of Oceanology and Limnology. 2024(04): 1106-1118 . 必应学术
    2. Jin Liang,Chunhui Tao,Xiangxin Wang,Cheng Su,Wei Gao,Yadong Zhou,Weikun Xu,Xiaohe Liu,Zhongjun Ding. Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge. Acta Oceanologica Sinica. 2023(09): 62-70 . 必应学术
    3. Shengyi Mao,Hongxiang Guan,Lihua Liu,Xiqiu Han,Xueping Chen,Juan Yu,Yongge Sun,Yejian Wang. Lipid biomarker composition in surface sediments from the Carlsberg Ridge near the Tianxiu Hydrothermal Field. Acta Oceanologica Sinica. 2021(08): 53-64 . 必应学术
    4. 沈芳,韩喜球,李洪林,王叶剑. 海底多金属硫化物资源预测:方法与思考. 中国有色金属学报. 2021(10): 2682-2695 . 百度学术

    其他类型引用(1)

图(5)
计量
  • 文章访问数:  2312
  • HTML全文浏览量:  634
  • PDF下载量:  78
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-07-11
  • 修回日期:  2021-08-08
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2021-12-27

目录

/

返回文章
返回