Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods
-
摘要: 深海铁锰结壳的定年对其记录的百万年尺度古海洋环境变化研究至为关键。综合运用10Be/9Be、Co经验公式、230Thex/232Th和磁性地层学,对采自加瓜海脊的铁锰结壳样品开展了系统的年代学对比研究。结果表明:相对于开阔大洋的铁锰结壳,较多的陆源物质输入造成了不同定年方法获得的年龄或生长速率的明显差异。其中,因为大量陆源物质携带的232Th以及对Co含量的稀释,铁锰结壳表层的230Thex/232Th初始通量以及样品部分层位的Co通量出现显著变化,230Thex/232Th定年方法与Co经验公式获得的结果受到碎屑物质的影响最为显著。尽管10Be/9Be初始通量也受到了陆源物质输入的影响,但是10Be/9Be初始通量变化很小,应该是本研究中最为可信的结果。而古地磁地层学定年法需要参考其他定年结果,最后也只能得到几个年龄控制点。最终得出加瓜海脊该铁锰结壳样品的年龄为7.09 Ma,而不同核素在铁锰结壳中的赋存状态应该是今后值得深入研究的一个重要方向。Abstract: Precise dating of deep-sea Fe-Mn crust is crucial to the research of paleoceanographic changes. In this paper, dating methods of 10Be/9Be, Co empirical formula, 230Thex/232Th and paleomagnetic stratigraphy are comparatively used for systematical chronological studies of a Fe-Mn crust sample collected from the Gagua Ridge. Different growth rate or different age figures are observed as different dating methods are adopted due to large inputs of terrigenous materials. Co content is diluted by the excessive amounts of 232Th brought in by the terrigenous inputs, and the Co flux in certain layers and initial 230Thex/232Th flux at the surface layer are both greatly fluctuated, which will render greatly influence onto the dating results of the two methods. Although the 10Be/9Be initial flux is also influenced by terrigenous inputs, it remains relatively stable. Therefore, 10Be/9Be can be regarded as the most precise dating method in the case. Paleomagnetic stratigraphy dating results may provide several age controlling points after referring to other dating results. Finally, the initial growth age of the Fe-Mn crust is confirmed as 7.09 Ma. For more precise age figure, further studies are required on the occurrence of nuclides in the Fe-Mn crust.
-
Keywords:
- Fe-Mn crust /
- dating methods /
- paleomagnetism /
- isotopic geochemistry /
- the Gagua Ridge
-
潮滩是在潮汐作用显著、细颗粒沉积物供应丰富条件下形成的一种地貌类型,位于陆地、海洋、大气及人类活动相互作用的敏感地带。潮滩广泛分布在除基岩海岸和高纬度(70°~73°以上)海岸外的沿海地区,并且随着潮差、波浪、物质供应、植被类型等不同而表现出显著的空间差异[1-4]。目前全球潮滩面积约为127921 km2,主要分布在亚太地区,如印尼、中国、印度等国家[5]。我国的潮滩规模大且分布广泛,其中长江口-杭州湾及以北沿海地区主要为平原型潮滩,而长江口-杭州湾以南的浙、闽、粤、桂等沿海地区主要为港湾型潮滩[6]。从20世纪初开始,各国学者对潮滩沉积和地貌特征、潮滩沉积物输运和堆积的过程、盐沼植被对潮滩沉积过程的影响、极端事件对潮滩地貌演化影响等方面进行了系统研究和总结[7-16]。进入21世纪,随着现场观测技术和数值模拟的不断改进,我国科研人员开始关注潮滩沉积过程及其控制机制、植被-泥沙-地貌耦合的生物地貌过程、极端事件影响下的潮滩沉积物输运与地貌演化过程、潮滩沉积层序成因机制及潮滩演化趋势模拟等方面,取得了丰硕的成果[17-33]。
潮滩作为重要的海岸带生态系统,不仅在蓝色碳汇方面发挥着重要作用[34-35],而且在海岸防护方面起到至关重要的作用[36]。然而,随着海平面不断上升、地面沉降、流域及海岸带人类活动的不断加剧,潮滩面积逐渐减少[5],其中人类活动是主要驱动因素[37]。潮滩面积的减少不仅导致蓝色碳汇能力减弱[5, 35],而且引起诸多地区海岸遭受不同程度侵蚀[38]。高强度的人类活动显著影响了潮滩局部沉积物输运过程及地貌演化过程[20, 24],而流域输沙量的锐减则引起了潮滩冲淤格局的改变[39]。随着流域及河口地区人类活动强度的不断增大,河口系统状态正在发生转换[40],直接影响着河口潮滩未来演化趋势及其功能发挥。
本文选择我国东南沿海典型的山溪性中小型河流河口潮滩作为研究区域,通过沉积物采样、定点冲淤观测和沉积动力学观测等手段,初步分析了河口潮滩的季节性冲淤变化过程及其控制机制,以期为科学评估潮滩的海岸防护和潮滩生态系统保护与修复能力提供科学依据。
1. 研究区概况
闽江发源于福建与江西省交界的武夷山东麓及仙霞岭南麓,总体呈NW-SE向横贯福建中北部,经福州汇入东海南部,全长2872 km,其中干流全长近577 km,流域面积为60992 km2,多年平均径流量为605.5×108 m3,多年平均输沙量为750×104 t,并且表现出明显的洪、枯季变化,即洪季(3—8月)径流量约占全年的76%,输沙量约占全年的92%[41]。近年来随着流域水库建设的不断增加,平均输沙量已经下降为原来的三分之一[42]。
受地转偏向力及台湾海峡地形效应作用,闽江河口区潮汐作用强,实测最大潮差达到7.04 m,平均潮差4.46 m(梅花站),属正规半日潮,河口内潮流基本呈往复流,其流向与河槽线一致,河口外潮流具有一定的旋转流特征[41]。闽江口外海面开阔,夏季以西南风为主,冬季以东北风为主,波浪作用强,波浪的主要形式为风浪及涌浪同时存在的混合浪,多年平均波高为1.1 m,历史最大波高为6.5 m[41]。此外,闽江口海域是我国东南沿海地区遭受台风影响最为严重的区域之一,平均每年影响的台风次数为5.7个,最大台风增水值可达2.52 m[43]。
闽江河口地区的潮滩主要分布在川石岛南部、琅岐岛东部以及梅花水道南侧海岸(图1a),其中琅岐岛潮滩宽度为600~1100 m(图1b),滩面平缓。现场调查结果显示(图1c),琅岐岛潮滩由岸向海主要分布有互花米草、海三棱藨草、光滩等,其中互花米草盐沼滩面平均坡度约为0.36°,海三棱藨草盐沼滩面平均坡度约为0.14°,潮间带中下部的光滩平均坡度约为0.08°,河道边缘地区的滩面坡度约为1.84°。
2. 研究方法
2.1 野外采样与观测
在琅岐岛东部潮滩选择一条剖面利用RTK对剖面进行了滩面高程测量,并在剖面上由岸向海设置了10个采样站位(图1b),分别于2022年8月和2023年2月采集了表层1 cm厚度的沉积物。为了掌握潮间带不同空间位置的冲淤变化特征,在互花米草盐沼边缘(L03站)、海三棱藨草盐沼中部(L05站)及光滩外缘(L09站)设置了3个站位,安装了冲淤观测架,在观测架上设置12个点,定期测量每个点距离滩面的高度,然后对各站位每次的测量数据进行平均,获得各站位的冲淤变化信息(图1c)。
为了解研究区水动力状况,在海三棱藨草内部靠近互花米草边缘设置一个沉积动力学观测站位(图1c,L04站),利用Nortek公司生产的声学多普勒海流计(ADV,VECTOR 6MHz)分别于2022年1月25日至2月1日、7月21—31日开展近底部潮流观测,仪器探头距离滩面30 cm,观测点位于滩面以上15 cm处;观测设置为脉冲模式进行采样,采样间隔为10 min,其中冬季采样频率为4 Hz,每次采集1024组数据,夏季采样频率为16 Hz,每次采集4096组数据;冬季利用北京海洲赛维科技有限公司生产的波潮仪(TWaves)进行淹没水深观测,以脉冲模式进行采样,以10 min为采样间隔,采样频率设置为8 Hz,每次采集时长为5 min,取平均值。
2.2 样品分析与数据处理
2.2.1 沉积物粒度分析
在实验室内将采集回来的常温保存样品充分混合,取约2 g重的沉积物加入浓度为5%的H2O2溶液以去除有机质,再加入浓度为1 mol/L的HCl溶液以去除碳酸盐,用蒸馏水清洗至溶液为中性,加入浓度为5‰的六偏磷酸钠溶液((NaPO3)6)浸泡24 h,并利用超声波震荡1 min,使样品充分混和、分散后,用英国马尔文公司生产的 Mastersizer 2000型激光粒度仪进行粒度分析,并用仪器自带软件导出中值粒径和各粒级组分数据,采用谢帕德分类体系对沉积物进行分类[44]。
2.2.2 悬沙浓度校对
利用在L04站采集的表层沉积物在室内配置不同悬沙浓度(SSC)的水体与ADV采集的声学信号进行相关分析,结果发现两者之间具有很好的相关性(图2)。因此,根据该回归方程可以将ADV观测获得的信噪比(Signal-Noise Ratio,SNR)转化成时间序列的SSC。
2.2.3 沉积动力学参数计算
利用仪器自带软件将观测数据导出,然后再利用该软件的数据转换功能,将原始数据转换成数据文件以便计算水平方向上的平均流速和波浪参数。
潮间带地区作为极浅水环境,整个水层都属于边界层范围内,平均水平流速在垂向上的分布遵循对数分布[45]:
$$ U\left(z\right)=\frac{{u}_{\mathrm{*}}}{\kappa}\mathrm{l}\mathrm{n}\left(\frac{z}{{z}_{0}}\right) $$ (1) $$\tau_{\rm b} = \rho_{w}u_{*}^{2} $$ (2) 其中,U(z)是平均水平流速度,u*是摩阻速度;κ是卡门常数(κ=0.4);z是距底床高度,z0是底部粗糙长度,τb是潮流引起的底部切应力,ρw是海水的密度。一般在边界层范围内,可以利用对数剖面方法计算潮流引起的底部切应力。
有效波高(Hs)采用如下公式计算[46]:
$$ H_{\rm s}=4\sqrt{\int S_ {\eta}(f){\rm d}f} $$ (3) 式中,Sη是水位的功率谱。将ADV测得的压力转换到水位时,需要考虑衰减,根据线性波理论,衰减系数可以表示为[47]:
$$ K f=\frac{\cosh [k(z+h)]}{\cosh k h} $$ (4) 其中,k是波数,h是平均水深,z是压力传感器的深度(负值)。波浪引起的底部切应力(τw)可以用如下公式计算[45]:
$$ \tau_{\rm w} = 0.5\rho f_{w}U_{w}^{2} $$ (5) 其中,fw为波浪摩擦因子,Uw为波浪轨迹速度,可以表达为波高(Hs)、波周期(T)和水深(h)的函数[45]:
$$ U_{\rm w} =\pi H_{\rm s} / [T{\rm{sinh}}(kh)] $$ (6) 其中k为波数,可以表达为:k = 2π/L,L为波长,可以用图解法计算得到[48]。波浪摩擦因子可以表达为:
$$ f_{w} = 1.39(A/z_{0})-0.52 $$ (7) 式中A为半轨迹距离,可以表达为:A=UwT/2π。
由流速和悬沙浓度数据计算近底层悬沙瞬时水平输运率f (t)及潮周期内悬沙净水平输运通量F (t)[45]:
$$ f(t) = U(z, t)\times C(z, t) $$ (8) $$ F(t) = \int_0^T {f(t)} {\rm d}t = \sum\limits_1^j {\Delta t{f_j}} (t) $$ (9) 其中U(z, t)和C(z, t) 分别表示距离海底高度z(m)处t时刻的瞬时水平流速(ua,m/s)和悬沙浓度 (SSC, mg/L),Δt表示实测时刻代表时间长度。
研究区表层沉积物冬季以粗颗粒沉积物为主,夏季以细颗粒沉积物为主,因此,在计算沉积物临界侵蚀切应力时分别选择适合非粘性沉积物和粘性沉积物的计算公式。非粘性沉积物临界侵蚀切应力时选择如下计算公式[45]:
$$ \theta = {\tau _{\text{b}}}/\left[ {{\text{g}}\rho \left( {s - 1} \right)d} \right] $$ (10) $$ {\theta _{{\text{cr}}}} = \frac{{0.30}}{{1 + 1.2{D_*}}} + 0.055\left( {1 - {{\rm e}^{ - 0.020{D_*}}}} \right) $$ (11) $$ {D_{\text{*}}} = {\left[ {{\rm g}\left( {s - 1} \right)/{\nu ^2}} \right]^{1/3}}d $$ (12) 其中,θ是Shields参数,θcr是沉积物临界起动Shields参数,s=ρs/ρw,ρs是沉积物密度(取值为2650 kg/m3),ρw是海水密度(取值为1025 kg/m3),d是沉积物粒径,g是重力加速度(取值为9.81 m/s2), D*是一个与沉积物粒径有关的无量纲参数,ν是水体的运动黏滞系数,取值为1.36×10−6 m2/s。对于黏性沉积物,其临界侵蚀切应力计算用如下公式[49]:
$$ {\tau _{\rm{cr}}} = 0.05 + \beta {\left\{ {\frac{1}{{{{\left[ {({\text π} /6)(1 + sW)} \right]}^{1/3}} - 1}}} \right\}^2} $$ (13) 其中,β是与颗粒粒径有关的系数,根据试验资料[49],在中值粒径小且表层沉积物含水量较大时,取β=0.3,W为含水量,定义为样品中水的质量与沉积物质量之比,根据采集的现场表层底质样品的分析获得。
3. 研究结果
3.1 沉积物粒度的季节分布特征
粒度分析结果显示(图3、图4),琅岐岛潮滩表层沉积物粒度组分以粉砂和砂为主,黏土含量相对较少,呈现出显著的时空差异。从季节方面看,冬季表层沉积物砂含量显著增大,黏土含量显著减小,沉积物中值粒径Φ值较小;夏季则相反,砂含量显著减小,黏土含量和粉砂明显增大,沉积物中值粒径Φ值较大(表1)。从空间上看,潮间带上部的互花米草盐沼内表层沉积物组分以粉砂为主,平均含量为60.6%,砂含量平均为21.0%,黏土含量平均为18.4%,中值粒径平均为5.60 Φ;在潮间带中部的海三棱藨草盐沼,沉积物组分以砂为主,平均含量为57.1%,粉砂含量平均为32.4%,黏土含量平均为10.5%,中值粒径平均为4.31 Φ;在潮间带下部的光滩地区,表层沉积物组分以粉砂为主,平均含量为58.7%,砂含量平均为23.0%,黏土含量平均为18.3%,中值粒径平均为5.56 Φ(图3、图4)。
表 1 琅岐岛潮间带不同季节表层沉积物粒度组分及中值粒径Table 1. Seasonal variations of composition and median grain-size of surficial sediment采样时间 砂含量/% 粉砂含量/% 黏土含量/% 中值粒径/Φ 变化范围 平均值 变化范围 平均值 变化范围 平均值 变化范围 平均值 2022年8月 0.2~39.9 10.3 43.6~70.3 63.6 16.4~32.9 26.1 5.03~7.23 6.52 2023年2月 14.6~95.7 60.8 4.0~73.3 32.8 0.2~14.4 6.4 2.57~5.24 3.79 根据Shepard三角分类图,琅岐岛潮间带表层沉积物类型以黏土质粉砂(YT)为主,并且呈现出显著的季节变化,其中夏季表层沉积物黏土质粉砂占80%,仅在潮间带中部出现砂质粉砂(ST)和砂-粉砂-黏土(STY);冬季以砂(S)和砂质粉砂为主,其次为粉砂质砂(TS)(图5)。
3.2 潮滩侵蚀-淤积的时空变化特征
潮间带不同空间位置的冲淤观测结果显示,琅岐岛潮间带滩面冲淤表现出显著的时空变化特征。互花米草盐沼边缘滩面表现出总体持续淤积的变化特征,仅在冬末至初春季节出现轻微侵蚀(0.55 cm),观测期间年淤积厚度为1.22 cm(图6a)。海三棱藨草中部滩面在初夏至初秋季节表现为持续淤积,淤积厚度为14.13 cm;初秋至冬末季节表现为持续侵蚀,侵蚀深度为20.13 cm;冬末至春末期间呈现出缓慢淤积,淤积厚度为2.54 cm;整个初夏至翌年春末表现为净侵蚀,侵蚀深度为3.42 cm(图6b)。光滩外缘滩面在初夏至秋末季节表现为持续侵蚀,侵蚀深度为5.90 cm;秋末至翌年春末季节表现为持续淤积,侵蚀深度为5.38 cm,整个初夏至翌年春末表现为净侵蚀,侵蚀深度为0.52 cm(图6c)。
3.3 潮间带水动力特征
琅岐岛潮间带中上部L04站位淹没水深观测结果显示(图7a、8a),冬季和夏季观测期间大潮最大淹没水深分别为2.20和1.86 m,小潮最大淹没水深分别为1.37和0.90 m。潮流观测结果显示(图7b、8b),冬季小潮观测期间近底部潮流流速为0.008 ~0.127 m/s,大潮期间为0.004 ~0.187 m/s;夏季小潮观测期间近底部潮流流速为0.001 ~0.046 m/s,大潮期间为0.001 ~0.060 m/s;无论冬季还是夏季,潮周期内潮流流速最大值均出现在落潮后期。波浪计算结果显示(图7c、8c),冬季和夏季观测期间有效波高最大值分别为0.63和0.20 m,平均值分别为0.26 和0.07 m,冬季波浪明显较夏季强。底部切应力计算结果显示(图7d、8d),冬季和夏季观测期间潮流引起的底部切应力最大值分别为0.551和0.057 N/m2,平均值分别为0.067和0.003 N/m2;波浪引起的底部切应力最大值分别为1.885和0.293 N/m2,平均值分别为0.652和0.097 N/m2,冬季潮流和波浪引起的底部切应力明显大于夏季。
图 7 潮滩中上部光滩冬季近底部水动力时间序列变化过程a:淹没水深,b:近底部流速,c:有效波高,d:底部切应力,e:近底部悬沙浓度。Figure 7. Time-series of near-bottom hydrodynamic processes in winter on the mid-upper tidal flata: Inundation height, b: near-bottom mean current speed, c: significant wave height, d: bottom shear stress induced by tidal current and wave, e: near-bottom suspended sediment concentration.3.4 潮间带近底部悬沙浓度变化
悬沙浓度计算结果显示,琅岐岛潮间带中上部L04站位近底部悬沙浓度呈现出显著的时间变化特征(图7e、8e)。在季节尺度上,冬季观测期间近底部悬沙浓度为17.4 ~844.5 mg/L,平均值为306.8 mg/L,而夏季观测期间近底部悬沙浓度为3.4 ~607.8 mg/L,平均值为138.5 mg/L,冬季悬沙浓度显著高于夏季。在大-小潮周期尺度上,小潮期间近底部悬沙浓度相对较低,大潮期间相对较高,但潮周期平均值相差不大,如冬季大潮和小潮观测期间近底部悬沙浓度平均值分别为296.5和268.6 mg/L,而夏季大潮和小潮观测期间近底部悬沙浓度平均值分别为158.1和123.7 mg/L。在潮周期尺度上,涨潮初期和落潮后期相对较高,高平潮期间悬沙浓度相对较低。
3.5 潮间带近底部悬沙输运
近底部悬沙东向水平输运率计算结果呈现出显著的时间变化特征(图9),冬季观测期间近底部悬沙在东向上水平输运率为−0.118 ~0.051 kg·m−2·s−1,平均值为0.011 kg·m−2·s−1;夏季观测期间近底部悬沙水平输运率为−0.006 ~0.009 kg·m−2·s−1,平均值为0.001 kg·m−2·s−1。
图 9 近底部瞬时悬沙水平输运率及潮周期内悬沙水平输运净通量a:冬季,b:夏季。正值为向海输运,负值为向岸输运;T1—T19为观测期间的潮周期数。Figure 9. Seaward transport rate and net flux of near-bottom instantaneous suspended sediment in a tidal cycle in winter (a) and summer (b)Positive values indicate seaward transport, negative ones are landward transport; T1—T19: the number of tidal cycle during the observation.每个潮周期内的东-西方向上的净悬沙输运量计算结果显示(图9),琅岐岛潮间带中部潮周期内近底部悬沙水平净输运通量呈现出明显的时间变化特征。在大-小潮时间尺度上,小潮期间潮周期内悬沙净水平输运通量显著小于大潮,而净输运方向则呈现出季节性差异:小潮期间冬季呈现出向岸净输运和向海净输运交替出现,而夏季则整体呈现向海净输运的变化特征;中潮期间冬季总体表现为向海净输运,而夏季则整体呈现向陆净输运的变化特征;大潮期间冬季总体呈现向岸净输运,而夏季则呈现向岸净输运和向海净输运交替出现的变化特征。在季节尺度上,冬季潮周期内悬沙净水平输运通量为−124.30~243.24 kg/m,观测期间净输运通量为289.49 kg/m;夏季周期内悬沙净水平输运通量仅为−38.07 ~4.13 kg/m,观测期间净输运通量仅为−58.73 kg/m,即冬季潮周期内净水平输运通量显著大于夏季,并且冬季悬沙净向海输运,而夏季净向陆输运。
4. 讨论
河口潮滩是由地质过程以及水动力过程、沉积物供应和生态过程的相互作用形成的,其地貌形态及沉积物组成受动力、物源及生物活动控制,具有高度的时空变化特征[4, 50]。大量的河流入海泥沙进入河口后,在水动力的作用下发育了广泛的潮滩[6, 51],但由于我国河流泥沙入海主要集中在夏季,冬季入海泥沙通量很小[41],因此,潮滩表层沉积物也表现出显著的季节差异[52-54]。闽江河流泥沙入海通量也主要集中在夏季[55],本文断面表层沉积物分析结果(图3、图4)和冲淤观测结果(图6)也显示,夏季期间河口潮滩捕获了大量的河流入海沉积物,潮滩为淤积状态,潮滩表层沉积物以粉砂和黏土为主,平均粒径较小;冬季期间河流入海泥沙很少,河口潮滩很少能捕获到来自河流的泥沙,潮滩表层沉积物在水动力的作用下不断发生改造,最终细颗粒沉积物被搬运带走,潮滩发生侵蚀,表层沉积物以砂和粉砂为主。关于沉积物供应变化对闽江口潮滩沉积物组成的影响综合分析详见李海琪等[56],本文不再赘述,但需要指出的是,随着闽江入海泥沙通量的显著减少[55],河流输沙季节变化对琅岐岛潮滩季节性冲淤变化的影响将会减小。本文将主要从水动力方面阐述闽江河口潮滩冲淤的季节性变化机制。
影响潮滩沉积和地貌演化的动力过程主要包括潮汐、波浪、跨岸/沿岸流、风致环流、潮不对称等[50, 57],尤其是在极浅水环境下,潮流、波浪是影响潮滩沉积物分布的主要动力因素[27-28]。沉积物是否发生侵蚀和淤积,主要是看水动力引起的底部切应力是否会超过临界切应力,当水动力引起的底部切应力大于沉积物的临界侵蚀切应力,则沉积物发生再悬浮,滩面呈现侵蚀状态;当水动力引起的底部切应力小于泥沙临界沉降切应力,则泥沙发生沉降,滩面呈现淤积状态。根据本文观测期间采集的表层沉积物粒度分析结果,冬季表层沉积物砂含量达到了93.9%,中值粒径为2.85 Φ,属于典型的非粘性沉积物,而夏季表层沉积物砂、粉砂和黏土含量分别为24.4%、54.2%和21.4%,中值粒径为6.17 Φ,属于典型的粘性沉积物。因此,根据相应的计算公式可知,观测站位冬季和夏季表层沉积物临界侵蚀切应力分别为0.158和0.107 N/m2。对比结果发现(图7d、8d),琅岐岛潮滩中上部地区近底层流速相对较小,由此产生的底部切应力也相对较小,对沉积物的活动性影响不明显,但冬季观测期间波浪引起的底部切应力显著大于表层沉积物的临界侵蚀切应力,表明冬季观测期间观测站位附近滩面发生强烈的侵蚀;夏季观测期间波浪引起的底部切应力的变化大部分时刻均小于表层沉积物临界侵蚀切应力,表明夏季观测期间观测站位附近滩面表层沉积物不易发生侵蚀。在长江口及江苏沿海潮间带观测结果也显示,在这种极浅水环境下波浪作用显著影响潮滩冲淤过程[28, 58]。研究表明[59],悬沙临界沉降切应力(τcrd)一般为0.06~0.1 N/m2,根据Whitehouse等的推荐,本文取τcrd=0.08 N/m2(其值适用于细颗粒泥沙),则对比结果显示(图8d),夏季观测期间大部分时刻由潮流和波浪引起的底部切应力小于临界沉降切应力,表明观测期间观测站位附近水体悬沙易发生沉降,导致滩面出现淤积。近底部悬沙净输运通量计算结果显示,冬季观测期间泥沙净向海输运,而夏季则净向岸输运。该结果表明,波浪是引起潮间带表层沉积物发生侵蚀的主要动力,而潮流则是搬运泥沙的主要动力。涨落潮不对称现象是河口海岸地区重要的水动力特征,是影响区域泥沙不对称输运的重要因素[60],在河口海岸地区泥沙输运和地貌演变过程中扮演着十分重要的角色[57, 61]。由图8和图9可知,冬季涨潮期间悬沙浓度总体大于落潮,但由于波浪引起的底部切应力显著大于悬沙临界沉降切应力,导致悬沙很少发生沉降,涨潮流带来的悬沙除部分被潮间带上部的互花米草盐沼植被捕获外,其他悬沙又在落潮流的作用下向海输运,而研究区无论冬季还是夏季,潮流均以落潮流占优,因此,落潮期间的底层悬沙输运通量总体大于涨潮,潮周期内表现为净向海输运;夏季,虽然是落潮流占优,但涨潮期间的底层悬沙浓度总体大于落潮,仅在大潮期间波浪作用较强时期出现落潮悬沙浓度大于涨潮的情况,因此涨潮期间的悬沙输运通量总体大于落潮,并且在多数时刻底部切应力小于临界沉降切应力,悬沙沿途发生沉降。该结论得到了本文现场冲淤观测结果的支持(图6),同时也与其他河口地区潮滩冲淤过程一致[52, 62]。
图 8 潮滩中上部光滩夏季近底部水动力时间序列变化过程a:淹没水深,b:近底部流速,c:有效波高,d:底部切应力,e:近底部悬沙浓度。Figure 8. Time-series of near-bottom hydrodynamic processes in summer on the mid-upper tidal flata: Iinundation height, b: near-bottom mean current speed, c: significant wave height, d: bottom shear stress induced by tidal current and wave, e: near-bottom suspended sediment concentration.本文观测结果显示,琅岐岛潮间带中部地区,冬季观测期间的潮流和波浪作用(图7b、c)均明显较夏季强(图8b、c),这主要一方面是由于研究区冬季主要受东北季风控制,而夏季主要受西南季风控制,冬季期间风速大于夏季,由此引起研究区冬季期间潮流和波浪作用较夏季强[43, 63];另一方面,则与潮间带地貌的季节性变化有关。现场调查发现,琅岐岛潮间带中部夏季被海三棱藨草覆盖,而冬季则变为光滩。现场观测和数值模拟结果均表明,盐沼植被具有显著的弱流、消波作用[64-66]。琅岐岛潮滩夏季由于生长了大面积的海三棱藨草,起到了一定的缓流作用,因此,夏季观测期间最大潮流流速和平均潮流流速均小于没有盐沼植被覆盖的冬季,波浪作用也是夏季显著小于冬季,表明琅岐岛潮间带海三棱藨草的生长具有一定弱流和显著的消波作用。根据不同站位冲淤变化对比分析(图6),在观测期间互花米草盐沼边缘滩面冲淤变化幅度很小,并且与其他两个站位的冲淤变化趋势没有明显的一致性,说明该地区滩面冲淤主要受水动力和互花米草的影响。位于海三棱藨草覆盖区域和光滩区域滩面冲淤变化总体表现为相反的变化趋势,这可能与海三棱藨草生长和消亡会引起潮间带中部地区冲淤变化有关,即在有海三棱藨草覆盖时,在动力-植被-泥沙的耦合作用下,涨潮带来的泥沙被植被捕获并沉积下来[30],退潮水体悬沙浓度降低,导致在光滩地区退潮水流携沙能力有所增强,在一定程度上可能会引起潮间带下部光滩的侵蚀;当没有植被覆盖时,潮间带中部遭受显著侵蚀,侵蚀下来的泥沙在被落潮流携带至河口的过程中沿途发生沉降,引起潮间带下部滩面淤积。上述分析表明,盐沼植被在潮滩冲淤变化过程和潮滩发育演变中发挥着重要作用。
综上所述,琅岐岛潮间带中上部潮滩冲淤变化的动力学机制为:冬季,由于潮间带中部的海三棱藨草消失,潮间带被水淹没期间的波浪作用强,由此引起的底部切应力显著大于表层沉积物的临界侵蚀切应力,表层沉积物发生再悬浮,再悬浮起来的泥沙在潮流的作用下向海输运,导致滩面发生侵蚀;夏季潮间带中部被海三棱藨草覆盖,潮流和波浪均减弱,由此引起的底部切应力在大部分时刻小于表层沉积物的临界侵蚀切应力和临界沉降切应力,水体中的悬沙易发生沉降,导致滩面发生淤积。
5. 结论
(1)琅岐岛潮滩表层沉积物粒度组分以粉砂和砂为主,黏土含量相对较少,呈现出显著的时空差异,夏季主要以粉砂和黏土组成的细颗粒沉积物为主,冬季则主要以砂和粉砂组成的粗颗粒沉积物为主。
(2)琅岐岛潮间带上部的互花米草盐沼总体以持续淤积为主,潮间带中部和下部表现出周期性的冲淤特征,总体以夏季淤积、冬季侵蚀为总特征,并且潮间带中部的冲淤变化幅度较潮间带下部大。
(3)沉积动力观测与计算结果表明,琅岐岛潮间带中上部近底部潮流流速相对较小,但波浪作用强,近底部悬沙浓度相对较高,其中冬季潮流流速、波浪作用及悬沙浓度均大于夏季,冬季潮周期内近底部悬沙以净向海输运为主,而夏季则以净向岸输运为主。
(4)琅岐岛潮滩冲淤变化主要受动力过程控制,冬季因潮间带海三棱藨草消失,波浪作用强,导致表层沉积物易发生再悬浮,再悬浮的泥沙在较强的潮流作用下净向海输运;夏季因潮间带有海三棱藨草生长,波浪作用较弱,水体中的悬沙易发生沉降,较弱的潮流将泥沙净向岸输运,导致潮间带发生淤积。
致谢:黄书仁、黄思添、余永泽、陈海煌、刘三善参与了野外采样工作,黄书仁参与了实验室样品分析,谨致谢忱!
-
表 1 铁锰结壳的10Be/9Be测试结果以及10Be/9Be初始通量
Table 1 10Be/9Be testing results of Fe-Mn crust and initial flux of 10Be/9Be
序号 矫正深度/mm 10Be/9Be/10−10 年龄/Ma (10Be/9Be)初始通量/10−10 Dive08-1 0.50 1.535 0.080 1.598 Dive08-2 3.50 1.208 0.560 1.598 Dive08-3 6.50 0.564 2.085 1.599 Dive08-4 11.75 0.439 2.589 1.601 Dive08-5 16.25 0.273 3.544 1.604 Dive08-6 20.75 0.239 3.814 1.605 Dive08-7 25.00 0.187 4.299 1.606 Dive08-8 28.25 0.137 4.923 1.606 Dive08-9 32.50 0.125 5.110 1.607 Dive08-10 36.00 0.113 5.306 1.609 Dive08-11 39.25 0.081 5.989 1.608 空白样 0.002 表 2 结壳表层230Thex/232Th测试结果以及230Thex/232Th初始通量
Table 2 Experimental results of 230Thex/232Th and initial flux of 230Thex/232Th
序号 深度/mm 质量/g 238U /(μg/kg) 230Th / 232Th/原子数×10−6 230Th / 238U 230Thex/232Th 年龄/Ma (230Thex/232Th)0 D08-1 0.08 0.023100 7684.3±36.7 159.015159±3.348 46.7555±0.3114 30.01 0.01 32.25 D08-2 0.27 0.033700 7459.7±31.2 87.168225±1.812 31.1138±0.1780 16.60 0.03 21.29 D08-3 0.47 0.024700 7467.8±29.3 65.836530±1.362 22.5662±0.1255 12.67 0.05 19.49 D08-4 0.64 0.026800 7715.4±29.0 66.634394±1.405 21.3219±0.1441 12.85 0.06 23.20 D08-5 0.81 0.023200 7891.3±35.2 60.799142±1.278 17.5236±0.1188 11.83 0.08 24.95 D08-6 0.98 0.027800 7358.8±41.0 23.237013±3.394 8.7137±1.1560 4.74 0.10 11.71 D08-7 1.14 0.021000 8267.8±35.7 45.847210±0.963 13.5603±0.0882 9.05 0.12 26.03 D08-8 1.28 0.020000 6918.1±34.2 35.667330±0.779 11.4776±0.1039 7.12 0.13 23.27 D08-9 1.41 0.019300 6830.7±22.5 37.542399±0.865 12.3548±0.1423 7.45 0.14 27.53 D08-10 1.53 0.014500 6557.2±42.6 30.485152±0.682 9.8458±0.1022 6.16 0.15 25.28 D08-11 1.62 0.014000 10020.1±71.8 24.628982±0.533 7.5091±0.0642 5.10 0.16 22.89 D08-12 1.75 0.023800 7926.5±44.1 21.876682±0.489 6.3202±0.0604 4.63 0.18 23.34 D08-13 1.87 0.011200 8203.9±48.0 19.038096±0.428 5.5576±0.0583 4.10 0.19 23.05 D08-14 1.95 0.013800 6689.5±36.2 18.846383±0.411 5.5571±0.0508 4.05 0.20 24.62 D08-14R 6171.4±46.5 16.099030±0.356 4.5886±0.0463 3.56 注:(230Thex/232Th)0代表初始通量,D08-14R为重复样。 表 3 南海和太平洋深层水10Be/9Be初始通量
Table 3 Initial flux of 10Be/9Be in SCS and Pacific
序号 年龄/Ma 10Be/9Be/10−9 (10Be/9Be)初始通量/10−9 J158-1 0.390 5.160 6.270 J158-2 1.330 3.230 6.279 J158-3 2.170 2.130 6.300 J158-4 3.170 1.290 6.289 J158-5 4.520 0.660 6.318 05E-1 0.250 5.420 6.141 05E-2 0.550 4.650 6.121 05E-3 1.060 3.610 6.131 05E-4 1.870 2.400 6.110 05E-5 2.340 1.900 6.118 05E-6 2.71 1.58 6.121 MDD46-1-1 0.96 65.48 106 MDD46-1-5 1.370 68.32 135 MDD46-1-10 1.750 60.89 146 MDD46-1-15 2.320 47.56 152 MDD46-1-20 2.750 24.31 96 MDD46-1-25 3.190 19.79 97 MDD46-1-30 3.680 7.93 50 MDD46-1-35 4.150 11.10 88 MDD46-1-40 4.560 14.99 147 MDD46-1-41 4.650 14.29 146 注:J158[41]和05E[42]记录南海深层水10Be/9Be初始通量,结壳
MDD46-1[40]记录太平洋深层水10Be/9Be初始通量。表 4 全球大洋、边缘海结壳主微量元素平均含量
Table 4 Major and trace elements content of Fe-Mn crust from oceans and marginal seas
元素 大西洋 印度洋 南大洋 Non-Prime Zone 北太平洋Prime Zone 加瓜海脊* 菲律宾海盆 加利福利亚湾 南海** 主量元素/% Fe 20.9 22.3 18.1 22.5 16.8 23.92 21.16 23.8 16.01 Mn 14.5 17 21.7 23.4 22.8 18.59 5.08 19.5 15.43 Al 2.2 1.83 1.28 1.8 1.01 5.80 4 1.79 2.02 微量元素/(mg/kg) Co 3608 3291 6167 3733 6655 2258.95 1450 3131 1639.25 Cu 861 1105 1082 1074 982 1077.06 815.3 383 484.88 Ni 2581 2563 4643 3495 4216 2286.86 886.15 2269 2992.88 Th 52 56 15 36 12 63.03 31.66 48 8.68 注:*数据来自Chen[28]以及本研究,**数据来自Guan[54],其他数据来自Hein[1]。 -
[1] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001
[2] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 13: 273-291.
[3] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177
[4] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4
[5] Christensen J N, Halliday A N, Godfrey L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts [J]. Science, 1997, 277(5328): 913-918. doi: 10.1126/science.277.5328.913
[6] Burton K W, Ling H F, O'Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic [J]. Nature, 1997, 386(6623): 382-385. doi: 10.1038/386382a0
[7] Ling H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 345-361. doi: 10.1016/j.jpgl.2004.12.009
[8] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016
[9] Klemm V, Frank M, Levasseur S, et al. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 175-183. doi: 10.1016/j.jpgl.2008.06.028
[10] 王洋, 方念乔. 80Ma以来海水Os同位素组成曲线的精细特征: 中、西太平洋多金属结壳的记录[J]. 海洋科学, 2020, 44(9):21-28 WANG Yang, FANG Nianqiao. Precise characteristics of Os isotopic composition of seawater since 80 Ma: recorded in polymetallic crusts from CW Pacific [J]. Marine Sciences, 2020, 44(9): 21-28.
[11] Cowen J P, Decarlo E H, Mcgee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount [J]. Marine Geology, 1993, 115(3-4): 289-306. doi: 10.1016/0025-3227(93)90057-3
[12] 苏新, 马维林, 程振波. 中太平洋海山区富钴结壳的钙质超微化石地层学研究[J]. 地球科学——中国地质大学学报, 2004, 29(2):141-147 doi: 10.3321/j.issn:1000-2383.2004.02.003 SU Xin, MA Weilin, CHENG Zhenbo. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from central Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 141-147. doi: 10.3321/j.issn:1000-2383.2004.02.003
[13] 张海生, 韩正兵, 雷吉江, 等. 太平洋海山富钴结壳钙质超微化石生物地层学及生长过程[J]. 地球科学——中国地质大学学报, 2014, 39(7):775-783 doi: 10.3799/dqkx.2014.073 ZHANG Haisheng, HAN Zhengbing, LEI Jijiang, et al. Calcareous nannofossil biostratigraphy and growth periods of Co-rich crusts from Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(7): 775-783. doi: 10.3799/dqkx.2014.073
[14] 任向文, Pulyaeva I, 吕华华, 等. 麦哲伦海山群MK海山富钴结壳钙质超微化石生物地层学研究[J]. 地学前缘, 2017, 24(1):276-296 REN Xiangwen, Pulyaeva I, LÜ Huahua, et al. Calcareous nannofossil biostratigraphy of a Co-rich ferromanganese crust from seamount MK of Magellan Seamount Cluster [J]. Earth Science Frontiers, 2017, 24(1): 276-296.
[15] Han X Q, Jin X L, Yang S F, et al. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin [J]. Earth and Planetary Science Letters, 2003, 211(1-2): 143-157. doi: 10.1016/S0012-821X(03)00169-9
[16] Josso P, van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts [J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651
[17] Ku T L, Kusakabe M, Nelson D E, et al. Constancy of oceanic deposition of 10Be as recorded in manganese crusts [J]. Nature, 1982, 299(5880): 240-242. doi: 10.1038/299240a0
[18] Von Blanckenburg F, O'Nions R K. Response of beryllium and radiogenic isotope ratios in Northern Atlantic Deep Water to the onset of northern hemisphere glaciation [J]. Earth and Planetary Science Letters, 1999, 167(3-4): 175-182. doi: 10.1016/S0012-821X(99)00028-X
[19] Somayajulu B L K. Growth rates of oceanic manganese nodules: implications to their genesis, palaeo-earth environment and resource potential [J]. Current Science, 2000, 78(3): 300-308.
[20] 方志浩, 屠霄霞, 乔志国, 等. 铁锰结壳年代学方法及其应用[J]. 海洋科学, 2019, 43(9):104-113 doi: 10.11759/hykx20190130003 FANG Zhihao, TU Xiaoxia, QIAO Zhiguo, et al. Review and application of dating methods of ferromanganese crusts [J]. Marine Sciences, 2019, 43(9): 104-113. doi: 10.11759/hykx20190130003
[21] Crecelius E A, Carpenter R, Merrill R T. Magnetism and magnetic reversals in ferromanganese nodules [J]. Earth and Planetary Science Letters, 1973, 17(2): 391-396. doi: 10.1016/0012-821X(73)90206-9
[22] Oda H, Usui A, Miyagi I, et al. Ultrafine-scale magnetostratigraphy of marine ferromanganese crust [J]. Geology, 2011, 39(3): 227-230. doi: 10.1130/G31610.1
[23] Noguchi A, Yamamoto Y, Nishi K, et al. Paleomagnetic study of ferromanganese crusts recovered from the northwest Pacific-Testing the applicability of the magnetostratigraphic method to estimate growth rate [J]. Ore Geology Reviews, 2017, 87: 16-24. doi: 10.1016/j.oregeorev.2016.07.018
[24] Yuan W, Zhou H Y, Zhao X X, et al. Magnetic stratigraphic dating of marine hydrogenetic ferromanganese crusts [J]. Scientific Reports, 2017, 7(1): 16748. doi: 10.1038/s41598-017-17077-8
[25] Yi L, Medina-Elizalde M, Kletetschka G, et al. The potential of marine ferromanganese nodules from eastern pacific as recorders of earth's magnetic field changes during the past 4.7 Myr: a geochronological study by magnetic scanning and authigenic 10Be/9Be dating [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(7): e2019JB018639.
[26] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5
[27] Chen S, Yin X B, Wang X Y, et al. The geochemistry and formation of ferromanganese oxides on the eastern flank of the Gagua Ridge [J]. Ore Geology Reviews, 2018, 95: 118-130. doi: 10.1016/j.oregeorev.2018.02.026
[28] Du Y J, Zhou W J, Xian F, et al. 10Be signature of the Matuyama-Brunhes transition from the Heqing paleolake basin [J]. Quaternary Science Reviews, 2018, 199: 41-48. doi: 10.1016/j.quascirev.2018.09.020
[29] Tu X X, Zhou H Y, Wang C H, et al. Basin-scale seawater lead isotopic character and its geological evolution indicated by Fe-Mn deposits in the SCS [J]. Marine Georesources & Geotechnology, 2020, 38(7): 876-886.
[30] Cheng H, Edwards R L, Shen C C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry [J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91. doi: 10.1016/j.jpgl.2013.04.006
[31] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0
[32] Liu R L, Wang M Y, Li W Q, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the Late Quaternary [J]. Geophysical Research Letters, 2020, 47(11): e2019GL085995.
[33] Frank M. Radiogenic isotopes: tracers of past ocean circulation and erosional input [J]. Reviews of Geophysics, 2002, 40(1): 1001. doi: 10.1029/2000RG000094
[34] Von Blanckenburg F, Bouchez J. River fluxes to the sea from the ocean's 10Be/9Be ratio [J]. Earth and Planetary Science Letters, 2014, 387: 34-43. doi: 10.1016/j.jpgl.2013.11.004
[35] Beer J, Muscheler R, Wagner G, et al. Cosmogenic nuclides during Isotope Stages 2 and 3 [J]. Quaternary Science Reviews, 2002, 21(10): 1129-1139. doi: 10.1016/S0277-3791(01)00135-4
[36] Frank M, Porcelli D, Andersson P, et al. The dissolved Beryllium isotope composition of the Arctic Ocean [J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6114-6133. doi: 10.1016/j.gca.2009.07.010
[37] Suganuma Y, Yokoyama Y, Yamazaki T, et al. 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary [J]. Earth and Planetary Science Letters, 2010, 296(3-4): 443-450. doi: 10.1016/j.jpgl.2010.05.031
[38] Simon Q, Thouveny N, Bourlès D L, et al. Increased production of cosmogenic 10Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama–Brunhes transition [J]. Earth and Planetary Science Letters, 2018, 489: 191-202. doi: 10.1016/j.jpgl.2018.02.036
[39] Von Blanckenburg F, O’Nions R K, Belshaw N S, et al. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts [J]. Earth and Planetary Science Letters, 1996, 141(1-4): 213-226. doi: 10.1016/0012-821X(96)00059-3
[40] Cui L F, Hu Y, Dong K J, et al. 10Be/9Be constrain of varying weathering rate since 5 Ma: evidence from a Co-rich ferromanganese crust in the western Pacific [J]. Science Bulletin, 2021, 66(7): 664-666. doi: 10.1016/j.scib.2020.12.022
[41] Zhong Y, Chen Z, Hein J R, et al. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene [J]. Quaternary Science Reviews, 2020, 229: 106106. doi: 10.1016/j.quascirev.2019.106106
[42] Zhong Y, Liu Q S, Chen Z, et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes [J]. Marine Geology, 2019, 410: 146-163. doi: 10.1016/j.margeo.2018.12.006
[43] Puteanus D, Halbach P. Correlation of Co concentration and growth rate: a method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3
[44] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3
[45] 周怀阳. 深海海底铁锰结核的秘密[J]. 自然杂志, 2015, 37(6):397-404 ZHOU Huaiyang. Metallogenetic mystery of deep sea ferromanganese nodules [J]. Chinese Journal of Nature, 2015, 37(6): 397-404.
[46] Burton K W, Lee D C, Christensen J N, et al. Actual timing of neodymium isotopic variations recorded by Fe-Mn crusts in the western North Atlantic [J]. Earth and Planetary Science Letters, 1999, 171(1): 149-156. doi: 10.1016/S0012-821X(99)00138-7
[47] Neff U, Bollhöfer A, Frank N, et al. Explaining discrepant depth profiles of 234U/238U and 230Thexc in Mn-crusts [J]. Geochimica et Cosmochimica Acta, 1999, 63(15): 2211-2218. doi: 10.1016/S0016-7037(99)00135-0
[48] Henderson G M, Burton K W. Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crusts [J]. Earth and Planetary Science Letters, 1999, 170(3): 169-179. doi: 10.1016/S0012-821X(99)00104-1
[49] Hayes C T. Marine thorium and protactinium distributions: Tools for past and present chemical flux[D]. Doctor Dissertation of Columbia University, 2013.
[50] Claude C, Suhr G, Hofmann A W, et al. U-Th chronology and paleoceanographic record in a Fe-Mn crust from the NE Atlantic over the last 700 ka [J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4845-4854. doi: 10.1016/j.gca.2005.05.016
[51] Huh C A, Ku T L. Distribution of thorium 232 in manganese nodules and crusts: Paleoceanographic implications [J]. Paleoceanography, 1990, 5(2): 187-195. doi: 10.1029/PA005i002p00187
[52] Hsieh Y T, Henderson G M, Thomas A L. Combining seawater 232Th and 230Th concentrations to determine dust fluxes to the surface ocean [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 280-290. doi: 10.1016/j.jpgl.2011.10.022
[53] O'Nions R K, Frank M, Von Blanckenburg F, et al. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans [J]. Earth and Planetary Science Letters, 1998, 155(1-2): 15-28. doi: 10.1016/S0012-821X(97)00207-0
[54] Guan Y, Sun X M, Ren Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea [J]. Ore Geology Reviews, 2017, 89: 206-227. doi: 10.1016/j.oregeorev.2017.06.020
[55] Yuan W, Zhou H Y, Yang Z Y, et al. Magnetite magnetofossils record biogeochemical remanent magnetization in hydrogenetic ferromanganese crusts [J]. Geology, 2020, 48(3): 1-1.
-
期刊类型引用(6)
1. 孙乃泉,江东辉,潘杰,高阳,蒲仁海,董新旭. 西湖凹陷平南地区新生代火山机构特征. 煤田地质与勘探. 2025(01): 215-225 . 百度学术
2. 刘峰,时新强,张传运,杨鹏程,黄苏卫,张昆. 西湖凹陷K构造平湖组成藏系统分析. 海洋石油. 2023(01): 1-6+15 . 百度学术
3. 吴文雯,孙莉,刘方圆,雷蕾,刘梦颖. 西湖凹陷X气田断层精细分析及其控藏作用. 海洋石油. 2023(03): 1-7 . 百度学术
4. 张盼盼,杨开利,蒲阳峰,张明浪. 致密砂岩气藏压后返排技术设计优化研究. 粘接. 2023(10): 130-133 . 百度学术
5. 李文俊,段冬平,蒋云鹏,王伟,潘威,张伯成. 西湖凹陷黄岩区深层低渗天然气藏差异聚集规律及成因浅析. 西安石油大学学报(自然科学版). 2022(02): 9-15+72 . 百度学术
6. 余逸凡,张建培,程超,唐贤君,许怀智. 东海陆架盆地西湖凹陷油气成藏主控因素及成藏模式. 海洋地质前沿. 2022(07): 40-47 . 百度学术
其他类型引用(0)