马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式

佟宏鹏, 姚凯, 陈琳莹, 胡海明, 崔彩英, 陈多福

佟宏鹏, 姚凯, 陈琳莹, 胡海明, 崔彩英, 陈多福. 马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式[J]. 海洋地质与第四纪地质, 2021, 41(6): 15-26. DOI: 10.16562/j.cnki.0256-1492.2021062501
引用本文: 佟宏鹏, 姚凯, 陈琳莹, 胡海明, 崔彩英, 陈多福. 马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式[J]. 海洋地质与第四纪地质, 2021, 41(6): 15-26. DOI: 10.16562/j.cnki.0256-1492.2021062501
TONG Hongpeng, YAO Kai, CHEN Linying, HU Haiming, CUI Caiying, CHEN Duofu. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 15-26. DOI: 10.16562/j.cnki.0256-1492.2021062501
Citation: TONG Hongpeng, YAO Kai, CHEN Linying, HU Haiming, CUI Caiying, CHEN Duofu. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 15-26. DOI: 10.16562/j.cnki.0256-1492.2021062501

马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式

基金项目: 国家自然科学基金项目“马里亚纳弧前蛇纹岩泥火山烟囱状自生沉积的成因及深源蛇纹石化流体渗漏活动记录”(41776080),“马里亚纳弧前海底蛇纹岩泥火山无机成因甲烷形成水合物的条件及潜力分析”(41776050)
详细信息
    作者简介:

    佟宏鹏(1985—),女,博士,副研究员,主要从事海底流体活动沉积记录研究,E-mail:hptong@shou.edu.cn

    通讯作者:

    陈琳莹(1988—),女,助理研究员,主要从事沉积物和孔隙水样品实验方法研究,E-mail:lychen@shou.edu.cn

  • 中图分类号: P736

Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc

  • 摘要: 马里亚纳弧前蛇纹岩泥火山顶发育烟囱状自生沉积,由海底低温碱性流体渗漏形成,它对示踪蛇纹石化流体渗漏有重要意义,但烟囱生长模式仍未明确。本文选取马里亚纳弧前Quaker蛇纹岩泥火山烟囱状自生碳酸盐岩,进行岩石学、矿物学和元素地球化学研究,查明不同生长阶段烟囱元素组成、矿物类型及演化规律,提出烟囱生长模式。幼年烟囱具有高MgO(18.5%~37.5%)和低CaO含量(12.2%~32.1%),由方解石(52.0%~77.6%)及以水镁石为主的富镁碱性矿物组成;成熟烟囱MgO含量显著降低(1.5%~23.6%),CaO含量显著升高(18.6%~53.3%),除发育方解石(59.8%)和少量富镁矿物外,还发育文石(23.4%);死亡烟囱不含富镁矿物,文石含量最高(33.2%),显微镜和扫描电镜下均观察到文石交代富镁矿物。不同类型烟囱间元素和矿物组成差异以及岩石学特征,说明渗漏流体导致方解石和水镁石沉淀,而文石为交代产物,在烟囱成熟过程中亚稳定的水镁石最终被文石交代,文石及CaO和MgO含量可指示烟囱的成熟程度。同一烟囱横截面由内向外微区样品的MgO含量依次降低,CaO含量依次升高,说明烟囱内侧较新,外侧较老,烟囱由外向内生长。同一烟囱下部横截面MgO含量低于上部横截面,CaO含量则相反,说明下部先形成,指示烟囱自下而上生长。
    Abstract: Authigenic chimneys, found at the top of serpentinite mud volcanos in the Mariana forearc, are induced by the seepage of low temperature and alkaline fluids. They are critical significant to trace the eruption of serpentinization fluids. However, few is known with regards to the formation mechanism of these chimneys. In this paper, detailed investigations are carried out on the petrology, mineralogy, and major elemental geochemistry of the chimneys collected from the Quaker serpentinite mud volcano in the Mariana forearc region so as to explore the formation model of these authigenic chimneys. Base on the mineral and elemental compositions, as well as neomorphic processes, three types of chimneys are identified. It is found that infancy chimneys are high in MgO (18.5%~37.5%) and low in CaO contents (12.2%~32.1%), and mineralogically composed of calcite (52.0%~77.6%) and magnesium-rich alkaline minerals, such as brucite, hydromagnesite, and hydrotalcite, while the mature chimneys are characterized by reduced MgO contents (1.5%~23.6%) and enhanced CaO contents (18.6%~53.3%), and mineralogically composed of calcite (59.8%), magnesium-rich minerals and aragonite (23.4%). Dead chimneys have the highest aragonite content (33.2%), but do not contain any magnesium-rich minerals. In addition, microscopic observation results have revealed the precursory magnesium-rich alkaline minerals replaced by aragonite. The variations of elemental and mineral compositions among different types of chimneys, and their petrological characteristics suggest that the fluid seepage induced calcite and brucite precipitation, while aragonite represents a replaced phase of brucite. Brucite occurrences indicate newly formed fabrics, while aragonite reflects an old precursory mineral. Micro-drilled samples from the same chimney cross section show successively decrease of MgO content and increase of CaO content from inner to outer, suggesting that the outer texture is older than the inner. The top of a chimney displays higher MgO and lower CaO contents than the bottom, indicating that the top is relatively younger.
  • 蛇纹石化常指中低温环境下,橄榄石和辉石等与水相互作用,发生蚀变形成蛇纹石的过程,同时形成水镁石、氢气和磁铁矿等,并释放热量[1],在含碳体系中还会产生费托反应,由氢与碳在磁铁矿催化下形成甲烷为主的短链烷烃和其他有机化合物[2-4]。蛇纹石化伴生的无机成因烷烃气体可聚集成藏[5-6],可在海底滋养无光合作用的化能自养生物群落,通过无机过程为生命的形成与演化提供物质和能量[2,7-9]。因此,蛇纹石化研究在能源资源和地球生命起源方面均具有重要的科学价值,是近年来地球科学领域的研究热点[4,7,10-11]

    马里亚纳弧前蛇纹岩泥火山是俯冲带弧前地幔楔发生大规模蛇纹石化的结果,它由泥质、粉砂质蛇纹石胶结蛇纹岩或蛇纹石化超基性岩及变质岩等岩屑或岩块组成,具有碎屑沉积结构[7,10]。20世纪80年代中期通过地球物理、海山形态学和沉积蛇纹岩的岩石学研究,Fryer等首次提出马里亚纳弧前的串珠状海山为泥火山成因,认为它们是地幔楔大规模发生蛇纹石化的产物[12-13]。随着板块俯冲深度的不断增加,洋壳发生压实、脱水作用,产生流体与上盘地幔橄榄岩发生蛇纹石化,导致密度低、塑性强的蛇纹岩泥浆在压力与浮力的驱动下沿弧前深断裂向上运移,同时携带破碎的岩块至海底,形成具有沉积结构的蛇纹岩海山[1,7,10,14]

    马里亚纳俯冲带弧前海山是目前已知的全球唯一正在活动的蛇纹岩泥火山群,它们直径为10~30 km、高度为0.5~2 km,在距离海沟轴线30~100 km的弧前呈串珠状分布[7,10]。蛇纹岩泥火山在地质历史时期也有发育,目前在全球汇聚边缘的弧前地层和混杂岩中已发现三十多处具有沉积结构的蛇纹岩,其中十多处被认为很可能是泥火山成因[15-20]。蛇纹岩泥火山作为联系海底与岩石圈深部的纽带,其发育的岩石及流体均携带地球深部信息,被认为是认识板块俯冲过程的最佳窗口[7,14,21-22]

    蛇纹岩泥火山大规模的泥浆喷发活动停止或者间歇期间,海山顶部及裂缝带仍可发育富含氢气和无机成因甲烷的低温(约2 ℃)、强碱性(pH值高达12.5)的流体渗漏活动,对确认蛇纹岩海山的泥火山成因至关重要[23-30]。这些流体渗漏活动常伴生自生沉积,以烟囱状为主,少量呈胶结物产出[7,10,31]。1978年 “阿尔文”号深潜器在马里亚纳弧前Conical海山顶发现了由文石、方解石构成的碳酸盐岩烟囱[32],随后在其他蛇纹岩泥火山也陆续发现类似的烟囱状自生沉积,主要有水镁石质烟囱和碳酸盐质烟囱[7,28]。距离海沟较近的蛇纹岩泥火山发育水镁石质烟囱,距离海沟较远的蛇纹岩泥火山发育碳酸盐质烟囱,这种自生沉积类型与海沟距离显示系统性差异的特征,与相应泥火山渗漏流体性质相对应[7,27,29,33-34]。因此,烟囱状自生沉积记录了渗漏流体特征和俯冲带深部地球化学过程,为认识渗漏流体活动提供了可靠线索。

    水镁石烟囱成因简单,为高pH值、低碳酸盐碱度流体渗漏至海底,与富镁海水混合形成的类似泉华沉积,由于水镁石不稳定,在海水中易发生溶解,导致水镁石质烟囱体型细小,一般仅数厘米到数十厘米高[7,35]。而碳酸盐岩烟囱通常体型较大,甚至可达数米高的建造[7, 30],且矿物组成多样,可能包括方解石、文石和无定形相等[36],记录了复杂的流体信息及成岩过程,对认识蛇纹岩泥火山渗漏流体的演化至关重要,但关于碳酸盐岩烟囱的形成机制及生长模式仍没有明确认识,影响示踪渗漏流体活动等深入研究。因此,本文选取Quaker蛇纹岩泥火山发育的烟囱状自生碳酸盐岩,依据样品宏观岩石学特征区分出不同生长阶段烟囱,利用体视镜、显微镜和扫描电镜对各类型烟囱进行矿物及其微观形貌观测,结合X射线衍射分析(XRD)、能谱分析及元素含量分析,查明各阶段烟囱的矿物组成及形态特征、矿物生长次序及新生变形规律等,对比新老烟囱以及烟囱横截面内外沉积特征差异,提出烟囱的生长模式,为进一步深刻认识蛇纹岩泥火山流体活动提供基础。

    马里亚纳弧前是俯冲带体系的一部分,位于马里亚纳海沟以西、马里亚纳火山岛弧和马里亚纳海沟之间的狭长地带(图1a),从南到北长约1 200 km,宽约200~230 km,是西太平洋板块向菲律宾板块俯冲的产物[37]。海相沉积物和增生楔在该俯冲带的弧前体系并不发育,是典型的非增生型俯冲边缘[37-38],由于缺乏增生楔的改造,俯冲板块脱水衍生而成的孔隙流体,能够以最小的变化沿断层运移到海底。深部俯冲板片脱水及蛇纹石化作用导致大量蛇纹岩泥浆裹挟破碎的岩块,在压力与浮力作用下向上运移至海底,在马里亚纳弧前12°~20°N,距海沟轴线30~100 km的狭长范围内,形成串珠状分布的13座大型泥火山[7,39-40]

    图  1  马里亚纳弧前蛇纹岩泥火山分布图及泥火山顶海底照片
    a. 蛇纹岩泥火山分布图,b和c. Quaker蛇纹岩泥火山顶烟囱建造海底照片。图b来自作者与P. Fryer 私人通讯,图c引用自文献 [41]。
    Figure  1.  Distribution map of serpentinite mud volcanoes and photos of the sea bottom at top of the serpentinite mud volcano in the Mariana forearc
    a. distribution map of serpentinite mud volcanoes,b and c are photos of the sea bottom at top of the Quaker seamount showing chimneys. b from private communication with P. Fryer,c after reference [41].

    研究样品来自于马里亚纳弧前的Quaker蛇纹岩泥火山海山(图1a)。样品于2003年3—5月由夏威夷大学P. Fryer教授组织的马里亚纳弧前科考航次由深海无人深潜器(ROV)JasonⅡ在Dive 32和Dive37采集。Quaker蛇纹岩泥火山坐落于马里亚纳北部弧前(图1a),发育于东北-西南走向地垒之上,大致呈南北条形分布,与NE. Quaker和E. Quaker泥火山呈现V字形,高出正常海底约1 000~1 250 m,山顶水深约2 200 m[7]。Quaker海山距离海沟轴线68 km,位于俯冲板块上方21 km。海底声学调查结果显示Quaker海山以蛇纹岩泥浆为主,ROV下潜观测到海底发育显著流体渗漏及大规模烟囱建造(图1b1c)。

    采集的蛇纹岩泥火山自生烟囱使用去离子水清洗,在室温下自然风干。依手标本岩石学特征分类观察并拍照。选取典型部分制成薄片,在OLYMPUS BX53-P光学显微镜下观察其特征,使用高清数码相机拍摄显微图像。样品破裂新鲜断面在OLYMPUS体视镜及扫描电子显微镜COXEM EM-30 PLUS下观测微结构特征,元素成分通过能谱仪OXFROD测定。

    挑选的新鲜样品研磨至 200目,用于 X射线衍射(XRD)分析。XRD 分析在中国科学院广州地球化学研究所Rigaku MiniFlex-600型X射线衍射仪上进行,使用Cu靶Kα射线,石墨单色器,测试电压为40 kV,电流为15 mA,扫描角度为3°~80°(2θ),步进扫描,步宽0.02°,狭缝0.1 mm。矿物半定量依面积法确定[42]

    在3个手指状烟囱的横截面用手持牙钻由内向外依次取样,用于主量元素分析。主量元素使用中国科学院地球化学研究所Varian Vista Pro电感耦合等离子体原子发射光谱仪测定,称50 mg粉末样品放入50 mL 离心管中,加入HF和HNO3混合酸消解24 h,然后离心取上清液并转移至干净的特氟龙杯中,在电热板上加热蒸干,最后加入 Rh 内标及稀硝酸上机待测。分析平均标准偏差小于5%,平均相对标准偏差优于5%。

    依据海底采样过程观测到的流体渗漏情况及烟囱体在海底的风化程度,将Quaker蛇纹岩泥火山海底发育的自生烟囱分为幼年型、成熟型及死亡型烟囱3种类型,三者海底风化程度依次增强。

    (1)幼年烟囱:采样观测显示海底流体活动显著,烟囱呈手指状或锥形,手指状直径小于5 cm,烟囱中空,流体通道显著,表皮呈象牙白色或浅黄色,无明显风化特征(图2a2b)。

    图  2  Quaker海山烟囱样品手标本
    a. 锥形幼年烟囱底部,外壁浅黄色,烟囱内部呈白色疏松多孔结构,最内侧由白色片状矿物组成,发育中空残余流体通道;b. 手指状幼年烟囱,表皮呈象牙白色,烟囱内部组构与a类似;c. 螺旋手指状成熟烟囱,表皮浅灰色,风化特征明显,烟囱内部由白色疏松组构及最内侧白色片状矿物组成,发育中空残余流体通道;d. 成熟烟囱,烟囱表皮及内部主体与c类似,但中心发育白色片状组构;e. 不规则形态死亡烟囱,表皮棕黑色,风化特征显著,主体由白色致密组构组成,局部发育针状文石可能为残余流体通道充填物。
    Figure  2.  Chimney samples from the Quaker seamount
    a. an infancy chimney showing light yellow crust, loose and poriferous rim, white flaky core and remnant cavity of fluid channel, b. a finger shaped infancy chimney with bright white crust, but similar inner textures like the sample of a, c. a finger shaped mature chimney showing weathered light gray crust, loose and poriferous rim, white flaky core and remnant cavity of fluid channel, d. a mature chimney with crust and rim texture like the sample of c, but a filled channel, e. a dead chimney with anormal shape showing serious weathered brown crust, with most dense part and trace acicular aragonite. All the scale bars are 3 cm.

    (2)成熟烟囱:采样观测显示有流体活动,烟囱呈螺旋的手指状,直径5~8 cm,烟囱中空,流体通道显著,外壳呈浅灰色,风化现象显著(图2c2d)。

    (3)死亡烟囱:海底采样区域未观察到流体渗漏,烟囱呈不规则形态,外壳棕黑色,风化严重(图2e)。

    对Quaker蛇纹岩泥火山的幼年烟囱内侧、幼年烟囱全岩、成熟烟囱全岩及死亡烟囱进行了XRD物相分析(表1)。自生烟囱矿物组成以碳酸盐矿物为主(52.0%~97.1%)。还发育富镁碱性矿物,主要包括水镁石[Mg(OH)2],水菱镁矿[Mg5(CO3)4(OH)2·4H2O]和水滑石类矿物(水滑石属于阴离子型层状化合物,结构类似水镁石,通用化学式可以表示为[M1-x2+Mx3+(OH)2] [(An-x/n·mH2O](M为二价或三价金属阳离子,A为阴离子),常见如镁铝碳酸根型水滑石Mg6Al2(OH)16CO3·4H2O。富镁碱性矿物仅在幼年烟囱及成熟烟囱中发育;且幼年烟囱中富镁碱性矿物的种类及丰度均较成熟烟囱更高(表1)。文石仅发育于成熟烟囱及死亡烟囱中,且死亡烟囱的文石含量(33.2%)高于成熟烟囱(23.4%)。所有方解石均为低镁方解石。

    表  1  Quaker海山烟囱样品XRD数据
    Table  1.  XRD data of chimneys from Quaker seamount
    %
    样品编号样品描述方解石文石水菱镁矿水镁石水滑石类石盐
    Q1a幼年烟囱52.0017.318.312.30
    Q1b幼年烟囱77.6018.53.900
    Q3成熟全岩59.823.40016.80
    Q4死亡烟囱63.933.20002.8
    下载: 导出CSV 
    | 显示表格

    幼年烟囱、成熟烟囱及死亡烟囱分别具有不同特征的宏观及微观形貌特征。幼年烟囱发育中空的流体通道,通道内壁为薄层白色不规则片状矿物(图3a),向外依次发育白色易碎的疏松多孔组构(图3b),以及坚硬的象牙白色或浅黄色外壁(图2a2b)。薄片状组构主要由方解石和富镁碱性矿物组成(图4a-f)。方解石呈棱柱状,多具有双晶穿插结构(图4a4b)。富镁碱性矿物以水镁石为主,还包括水菱镁矿(图4d)和水滑石类矿物(主要是镁铝的层状双金属氢氧化物)(图4e)。水镁石主要呈细叶片状集合体,集合体可构成不规则的放射状结构(图4c),能谱结果显示部分细叶片组构中含少量碳,可能与水镁石溶解或者向水滑石及水菱镁矿转化有关。水菱镁矿呈粗叶片状或者刀刃状(图4d),能谱结果显示由碳、氧和镁元素组成,由于碳含量低于菱镁矿,结合XRD结果应该为水菱镁矿。水滑石类矿物主要是镁铝的层状双金属氢氧化物,呈六方板状,分布于水镁石附近,二者可能为共生或交代关系(图4e)。烟囱外壁和中间的疏松多孔组构主要由方解石组成,富镁碱性矿物组分含量降低,尤其是水镁石含量显著减少,烟囱外壁偶见针状文石交代富镁碱性矿物(图4f)。

    图  3  Quaker海山自生烟囱样品体视镜照片
    a. 烟囱通道内壁片状富镁碱性矿物,b. 烟囱内壁及外壁之间发育的疏松多孔组构,c. 充填烟囱残余流体通道的针状文石。
    Figure  3.  Stereoscope photos of chimneys from Quaker seamount
    a. magnesium-rich alkaline mineral from inner rim of an infancy chimney, b. the loose and poriferous texture between crust and inner rim, c. acicular aragonite filling in a channel.
    图  4  Quaker蛇纹岩泥火山海底自生烟囱扫描电镜照片
    a和b幼年烟囱内壁发育的棱柱状方解石和细叶片状水镁石,棱柱状方解石呈双晶或多晶穿插结构;c. 细叶片状水镁石/水菱镁矿集合体呈不规则放射状;d. 粗叶片状或刀刃状水菱镁矿;e. 细叶片状水镁石附近发育六方板状镁铝碳酸根型水滑石类矿物;f. 放射状文石集合体交代水菱镁矿。白色十字表示能谱测量点。
    Figure  4.  SEM images of authigenic chimneys from Quaker serpentinite mud volcano
    a & b prismatic calcite with and thin foliated brucite in an inner rim of an infancy chimney, c. aggregations of thin foliated brucite/hydromagnesite showing irregular radial texture. Top right corner is a zoomed-in image, d. thick foliated or blade hydromagnesite, e. hexagonal hydrotalcite occurring near brucite, f. acicular aragonite replacing precursory hydromagnesite. The white cross represent measurement point of EDS.

    成熟烟囱内壁也发育类似幼年烟囱的由方解石和富镁碱性矿物组成的薄层片状组构,向外依次发育白色疏松组构及坚硬的浅灰色外壁。显微镜观察显示烟囱内侧由棱柱状方解石和低突起波状消光的矿物组成,该矿物呈不规则扇形,发育微裂纹(图5a5b),可能为含水矿物失水收缩所致,与扫描电镜下细叶片状水镁石集合体组成的放射状组构类似。烟囱内壁与外壁之间主要发育碳酸盐矿物,主要由棱柱状方解石和交代了不规则扇形富镁碱性矿物的放射状文石组成(图5c5d)。烟囱外侧主要由方解石和文石组成,方解石多已重结晶呈半自形或他形,充填孔隙的组分为隐晶质或非晶质组分,正交偏光下全消光,可能为报道的无定形镁硅酸盐[36]。成熟烟囱的孔隙度显示从烟囱内侧向外逐渐降低的特征(如图5a5c5e的孔隙度依次降低)。

    图  5  Quaker海山烟囱样品显微结构照片
    a和b 成熟烟囱靠近内壁的部分,孔隙度高,由方解石及呈波状消光的富镁碱性矿物组成,少量文石为交代富镁矿物产物(a单偏光;b正交偏光);c和d成熟烟囱中间部分,孔隙度中等,主要由方解石和文石组成,方解石呈自形-半自形,文石呈放射状交代先驱富镁矿物(c单偏光;d正交偏光);e. 成熟烟囱外壁,低孔隙度,大部分孔隙被充填,几乎全部由方解石和文石组成,方解石重结晶呈半自形-他形(单偏光);f. 充填死亡烟囱残余流体通道的针状文石(正交偏光)。
    Figure  5.  Microstructures of chimneys from Quaker seamount
    a & b a part near inner rim of a mature chimney with high porosity composed of calcite and magnesium-rich alkaline mineral with wavy extinction. Trace magnesium-rich alkaline mineral were replaced by aragonite(a plane-polarized light; b polarized light), c & d a part between inner rim and outer rim with medium porosity mainly composed of euhedral-subhedral calcite and radial aragonite. Aragonite replaced the precursory magnesium-rich mineral(c plane-polarized light; d polarized light), e. the crust of a mature chimney with low porosity mainly composed of calcite and aragonite. Calcite suffered recrystallization is subhedral-anhedral(plane-polarized light), f. acicular aragonite filling in a channel of a dead chimney(polarized light).

    死亡烟囱主要由方解石和文石组成。烟囱主体部分与成熟烟囱中间及外侧组构类似,由半自形到他形的方解石和文石组成。此外死亡烟囱的显著特征是残余的流体通道被针状文石充填(图3c5f)。

    自生烟囱主量元素含量详见表2。结果显示,自生烟囱主量元素以MgO(1.5%~37.5 %)和CaO(12.2%~53.3 %)为主,Na2O(1.2%~2.9 %)和Al2O3(0.01%~4.01 %)少量。MgO和CaO呈显著负相关关系,且二者含量显示了与烟囱类型及在横截面中位置的良好相关性,即幼年烟囱的MgO高于成熟烟囱,CaO低于成熟烟囱;同一烟囱截面内侧样品的MgO含量高于外侧样品,而外侧样品CaO高于内侧样品(图6)。

    表  2  Quaker海山烟囱状自生沉积主量元素分析结果
    Table  2.  The major elemental compositions of the chimneys from Quaker seamount
    %  
    样品编号样品描述CaOMgONa2OAl2O3P2O5K2OFe2O3-T
    Q101幼年烟囱截面12.237.52.00.120.020.050.0007
    Q102幼年烟囱截面21.729.01.60.050.030.030.0015
    Q103幼年烟囱截面32.118.51.40.020.040.020.0135
    Q201成熟烟囱顶截面18.623.62.94.010.140.100.0029
    Q202成熟烟囱顶截面34.215.01.30.210.030.030.0267
    Q203成熟烟囱顶截面36.513.01.30.030.030.030.0174
    Q204成熟烟囱底截面28.414.82.82.790.090.090.0020
    Q205成熟烟囱底截面51.92.01.20.290.040.010.0029
    Q206成熟烟囱底截面53.31.71.20.040.050.010.0028
    Q207成熟烟囱底截面52.71.51.30.010.050.010.0019
      注:Fe2O3-T代表全岩铁含量。
    下载: 导出CSV 
    | 显示表格
    图  6  Quaker海山自生烟囱CaO和MgO元素含量特征图
    a. CaO和MgO元素含量相关图,b. 烟囱横截面由中心向外的 CaO含量变化图,c. 烟囱横截面由中心向外的 MgO含量变化图。b和c中点位表示微区取样位置,1,2,3,4依次向外。
    Figure  6.  The major elemental compositions of chimneys from Quaker seamount
    a. CaO vs. MgO plot, b. the CaO contents of micro-drilled samples of chimney cross sections from inner to outer, c. the MgO contents of micro-drilled samples of chimney cross sections from inner to outer. The Arabic numerals represent sampling point in the cross sections. 1, 2, 3, 4 outward successively.

    Quaker蛇纹岩泥火山海底发育的自生烟囱由以水镁石为主的富镁碱性矿物和碳酸盐矿物组成。水镁石是海洋蛇纹石化环境流体渗漏活动典型的自生矿物,大西洋中脊Lost City低温热液场及马里亚纳弧前南部海底蛇纹岩出露区海底的流体渗漏活动区(Shinkai Seep Field)均发育水镁石烟囱[8,31,43-45]。蛇纹石化导致流体碱性增强,并通常具有贫镁的特征[3,8,28,34,46],当高pH的碱性渗漏流体在海底与海水混合时,由渗漏流体供给OH,从海水中获取Mg2+,导致水镁石矿物沉淀[43,45]。但是,水镁石仅在低CO2浓度流体中稳定[47],暴露于海水将导致水镁石变得不稳定并发生溶解。这也是已发现的海底蛇纹石化流体渗漏环境自生烟囱沉积在演化晚期均不含水镁石的原因[35]

    Quaker蛇纹岩泥火山渗漏流体的pH值为9.2,极度亏损镁(Mg2+ 浓度0.5 mmol/kg)[34],与海水混合后有利于水镁石沉淀,幼年烟囱内层水镁石含量最高,说明水镁石为渗漏流体导致的原生沉淀矿物。Quaker蛇纹岩泥火山的死亡烟囱中完全不发育水镁石,指示水镁石在海水环境中发生了溶解作用。Quaker海山自生烟囱的MgO与CaO显著负相关,相关系数R2达0.93(图6a),说明二者之间可能存在转化关系。MgO含量在幼年烟囱、成熟烟囱及死亡烟囱中依次降低,而CaO情况则相反,在幼年烟囱、成熟烟囱及死亡烟囱中依次升高,说明成岩过程中发育水镁石向碳酸盐矿物的转变(公式1和公式2)。Okumura等认为,水镁石溶解的微环境非常富集镁,阻碍方解石沉淀,最终导致碳酸盐以文石相交代水镁石[45]。Quaker海山自生烟囱可见文石交代富镁碱性矿物的特征(图4f5c5d),并且XRD结果显示文石在幼年烟囱中不发育,但在成熟烟囱及死亡烟囱中逐渐增多(表1),进一步说明文石形成于自生烟囱在海水环境的成岩过程中,并非流体渗漏活动直接的产物。充填死亡烟囱残余流体通道的针状文石可能直接从海水中沉淀。Quaker蛇纹岩泥火山自生烟囱中文石含量可以指示烟囱的生长阶段和成熟程度,如文石是否发育作为界定成熟烟囱与幼年烟囱的标准,文石含量相对高低定性判断烟囱相对成熟程度。

    $$ {\rm{Mg}}{\left( {{\rm{OH}}} \right)_{\rm{2}}} \to {\rm{M}}{{\rm{g}}^{{\rm{2 + }}}}{\rm{ + 2O}}{{\rm{H}}^{\rm{ - }}} $$ (1)
    $$ {\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}{\rm{ + HC}}{{\rm{O}}_{\rm{3}}}^{\rm{ - }}{\rm{ + O}}{{\rm{H}}^{\rm{ - }}} \to {\rm{CaC}}{{\rm{O}}_{\rm{3}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{O}} $$ (2)

    方解石是Quaker蛇纹岩泥火山自生碳酸盐岩的重要矿物组成,在不同类型烟囱中含量变化不大(表1),但在幼年烟囱及成熟烟囱内侧大多呈棱柱状,发育双晶结构,并与水镁石共生产出(图4a4b),指示来源于渗漏流体导致的沉淀,但在成熟烟囱外壁及死亡烟囱中多呈半自形或他形(图5e),说明方解石在烟囱成岩过程中发生了重结晶作用。前人对马里亚纳弧前另一座蛇纹岩泥火山(Conical海山)自生碳酸盐岩的同位素地球化学研究显示渗漏流体在形成方解石和文石过程中的贡献不同,在形成方解石沉淀流体中的贡献显然大于在形成文石沉淀流体中的贡献[36],说明蛇纹岩泥火山渗漏流体可能更加有利于方解石沉淀,而非文石,这可能与渗漏流体低温、强碱性以及贫镁的特征有关。关于蛇纹岩泥火山与流体渗漏有关的自生碳酸盐矿物的形成,基于渗漏流体富集甲烷,已发现自生烟囱δ13C值最低可达−27.4‰(V-PDB)[48],以及泥火山浅表层蛇纹岩泥的孔隙水中硫酸根与还原性硫的含量负相关[27,49]等现象,推测自生碳酸盐形成过程中存在甲烷缺氧氧化作用(AOM)。但是,尽管自生碳酸盐岩δ13C值分布于−27.4‰~10.2‰,其中大部分仍集中在0附近[13,36,38,48,50],与典型的甲烷缺氧氧化作用形成的自生碳酸盐岩的δ13C值特征(一般低于−30‰)相差甚远[51],且至今未找到有关生物标志物等更加确凿的证据,以致于甲烷缺氧氧化作用在蛇纹岩泥火山自生烟囱形成中是否为普遍现象仍不清楚。此外,本文作者在另外的研究中发现Quaker海山自生烟囱中并未发育碳同位素特别轻的特征,碳酸盐晶格硫(CAS)的硫和氧同位素组成与海水值类似(另文发表),说明并未显示硫酸盐还原作用的改造,说明甲烷缺氧氧化作用对自生方解石形成的贡献可能有限,甲烷缺氧氧化作用对蛇纹岩泥火山自生碳酸盐岩的贡献量可能受来自深部经历高温的蛇纹石化渗漏流体在浅部微生物加入等因素影响[52]。因此,Quaker蛇纹岩泥火山自生烟囱中方解石大多数为高pH,低碳酸盐碱度的渗漏流体与富CO2海水混合的结果。

    此外,Quaker蛇纹岩泥火山自生烟囱中还发育水菱镁矿和水滑石类矿物,该二类矿物在陆地蛇绿岩环境流体渗漏导致的自生沉积中有报道过,该环境还发育更多种类的富镁碱性矿物,认为其与环境蒸发以及先驱矿物的富CO2环境蚀变有关[53]。水镁石富CO2的转化,随着CO2分压的增高可能会经历水滑石、纤水菱镁矿、水菱镁矿转变过程[54-55]。如前所述,Quaker蛇纹岩泥火山自生烟囱中先形成的水镁石矿物与渗漏流体隔离后,会最终转化为文石,这是在相对富CO2的海水中新生变形过程。因此,有理由推测水镁石在与渗漏流体隔离不彻底条件下,流体CO2分压相对较低,先转化成了水滑石或水菱镁矿。

    总之,Quaker蛇纹岩泥火山渗漏流体具有高pH值,贫镁及低碳酸盐碱度,在喷出海底后与海水混合,形成水镁石和方解石为主的沉淀,水镁石在海水中不稳定,与渗漏流体隔离暴露于海水后经转化为水滑石或水菱镁矿,最终转化为文石,此过程中还伴随方解石的重结晶作用。

    烟囱的生长模式是海底流体渗漏环境、热液和冷泉研究中普遍关心的问题, 目前普遍接受的模式是渗漏流体在浅表层沉积物中或喷出海底后遭遇海水,形成雏形烟囱壁,随着渗漏流体持续不断活动,烟囱发生向上和向内生长[5,56-61]。Quaker蛇纹岩泥火山自生烟囱外侧孔隙度明显小于内侧(图5),外壁风化程度显著大于内侧,说明烟囱外壁经历了更复杂的成岩作用,可能最早形成,支持由外向内生长的模式。从矿物演化规律看,渗漏环境形成的水镁石会最终在海水环境转化为文石,因此水镁石及富镁矿物代表了烟囱新形成组分,新组分元素化学上以高MgO含量为特征;而文石代表成岩改造组分,文石发育说明其先驱的水镁石及富镁矿物较早构成了烟囱体,较老组分元素化学上以低MgO、高CaO含量为特征。对比同一烟囱横截面外侧和内侧的矿物及元素组成,显示外侧样品富镁矿物及MgO含量更低,CaO含量却更高(图6b6c),且文石发育,支持烟囱外侧先形成,内侧后形成,为由外向内的生长模式。同一烟囱下部横截面样品的CaO含量高于上部横截面,MgO含量低于上部横截面(图6b6c),说明烟囱下部先形成,支持自下而上的生长。烟囱呈螺旋状,可能与渗漏流体喷出海底后受底流影响改变流体运移方向有关,螺旋状可能说明底流方向多次发生改变。

    因此,本文依据Quaker蛇纹岩泥火山自生烟囱的矿物沉淀演化及元素组成特征,提出蛇纹岩自生烟囱由外向内的生长模式。即流体活动初期(幼年期),高pH、贫镁、低碳酸盐碱度的渗漏流体喷出海底后,与海水混合形成水镁石和方解石组成的雏形烟囱外壁,流体持续渗漏过程中,烟囱向内及向上生长,随着内部矿物的沉淀逐渐使雏形烟囱外壁与渗漏流体隔离,导致水镁石受海水影响发生溶解,首先经历向水滑石和水菱镁矿的转变;随着流体继续活动烟囱逐渐发育成熟(成熟期),烟囱体越来越厚,雏形烟囱外壁及烟囱体外侧完全暴露于海水环境,水镁石及所有富镁碱性矿物最终转化为碳酸盐(文石),方解石发生重结晶作用呈半自形或他形,但烟囱最内侧流体渗漏活动仍然维持形成水镁石沉淀;当渗漏流体活动停止(死亡期),烟囱体完全暴露在海水环境,富镁矿物全部转化为碳酸盐,方解石发生重结晶作用,残余流体通道微环境对文石饱和,沉淀交织的针状文石充填物。

    (1)依据海底采样信息及烟囱的海底风化程度,将烟囱分为幼年烟囱、成熟烟囱和死亡烟囱。

    (2)对比不同类型烟囱、同一烟囱不同位置、以及同一烟囱横截面不同微区取样点的矿物以及元素组成特征,发现渗漏流体有利于水镁石和方解石沉淀,自生烟囱成岩过程中发育水镁石向碳酸盐矿物的转化,伴随MgO的降低及CaO的升高。

    (3)在流体活动初期形成幼年烟囱雏形外壁,由方解石和水镁石组成,烟囱由外向内,自下而上生长,随着自生矿物向内生长使外侧矿物逐渐与渗漏流体隔离,暴露于海水中,导致水镁石发生溶解,经历由水菱镁矿及水滑石过渡,最终转化为海水中稳定的文石。

    (4)成熟烟囱和死亡烟囱主要由方解石和文石组成。流体渗漏活动停止后,文石充填残余流体通道和孔隙空间,使烟囱孔隙度进一步减小。

    致谢:感谢美国夏威夷大学Patty Fryer教授提供样品和采样信息。

  • 图  1   马里亚纳弧前蛇纹岩泥火山分布图及泥火山顶海底照片

    a. 蛇纹岩泥火山分布图,b和c. Quaker蛇纹岩泥火山顶烟囱建造海底照片。图b来自作者与P. Fryer 私人通讯,图c引用自文献 [41]。

    Figure  1.   Distribution map of serpentinite mud volcanoes and photos of the sea bottom at top of the serpentinite mud volcano in the Mariana forearc

    a. distribution map of serpentinite mud volcanoes,b and c are photos of the sea bottom at top of the Quaker seamount showing chimneys. b from private communication with P. Fryer,c after reference [41].

    图  2   Quaker海山烟囱样品手标本

    a. 锥形幼年烟囱底部,外壁浅黄色,烟囱内部呈白色疏松多孔结构,最内侧由白色片状矿物组成,发育中空残余流体通道;b. 手指状幼年烟囱,表皮呈象牙白色,烟囱内部组构与a类似;c. 螺旋手指状成熟烟囱,表皮浅灰色,风化特征明显,烟囱内部由白色疏松组构及最内侧白色片状矿物组成,发育中空残余流体通道;d. 成熟烟囱,烟囱表皮及内部主体与c类似,但中心发育白色片状组构;e. 不规则形态死亡烟囱,表皮棕黑色,风化特征显著,主体由白色致密组构组成,局部发育针状文石可能为残余流体通道充填物。

    Figure  2.   Chimney samples from the Quaker seamount

    a. an infancy chimney showing light yellow crust, loose and poriferous rim, white flaky core and remnant cavity of fluid channel, b. a finger shaped infancy chimney with bright white crust, but similar inner textures like the sample of a, c. a finger shaped mature chimney showing weathered light gray crust, loose and poriferous rim, white flaky core and remnant cavity of fluid channel, d. a mature chimney with crust and rim texture like the sample of c, but a filled channel, e. a dead chimney with anormal shape showing serious weathered brown crust, with most dense part and trace acicular aragonite. All the scale bars are 3 cm.

    图  3   Quaker海山自生烟囱样品体视镜照片

    a. 烟囱通道内壁片状富镁碱性矿物,b. 烟囱内壁及外壁之间发育的疏松多孔组构,c. 充填烟囱残余流体通道的针状文石。

    Figure  3.   Stereoscope photos of chimneys from Quaker seamount

    a. magnesium-rich alkaline mineral from inner rim of an infancy chimney, b. the loose and poriferous texture between crust and inner rim, c. acicular aragonite filling in a channel.

    图  4   Quaker蛇纹岩泥火山海底自生烟囱扫描电镜照片

    a和b幼年烟囱内壁发育的棱柱状方解石和细叶片状水镁石,棱柱状方解石呈双晶或多晶穿插结构;c. 细叶片状水镁石/水菱镁矿集合体呈不规则放射状;d. 粗叶片状或刀刃状水菱镁矿;e. 细叶片状水镁石附近发育六方板状镁铝碳酸根型水滑石类矿物;f. 放射状文石集合体交代水菱镁矿。白色十字表示能谱测量点。

    Figure  4.   SEM images of authigenic chimneys from Quaker serpentinite mud volcano

    a & b prismatic calcite with and thin foliated brucite in an inner rim of an infancy chimney, c. aggregations of thin foliated brucite/hydromagnesite showing irregular radial texture. Top right corner is a zoomed-in image, d. thick foliated or blade hydromagnesite, e. hexagonal hydrotalcite occurring near brucite, f. acicular aragonite replacing precursory hydromagnesite. The white cross represent measurement point of EDS.

    图  5   Quaker海山烟囱样品显微结构照片

    a和b 成熟烟囱靠近内壁的部分,孔隙度高,由方解石及呈波状消光的富镁碱性矿物组成,少量文石为交代富镁矿物产物(a单偏光;b正交偏光);c和d成熟烟囱中间部分,孔隙度中等,主要由方解石和文石组成,方解石呈自形-半自形,文石呈放射状交代先驱富镁矿物(c单偏光;d正交偏光);e. 成熟烟囱外壁,低孔隙度,大部分孔隙被充填,几乎全部由方解石和文石组成,方解石重结晶呈半自形-他形(单偏光);f. 充填死亡烟囱残余流体通道的针状文石(正交偏光)。

    Figure  5.   Microstructures of chimneys from Quaker seamount

    a & b a part near inner rim of a mature chimney with high porosity composed of calcite and magnesium-rich alkaline mineral with wavy extinction. Trace magnesium-rich alkaline mineral were replaced by aragonite(a plane-polarized light; b polarized light), c & d a part between inner rim and outer rim with medium porosity mainly composed of euhedral-subhedral calcite and radial aragonite. Aragonite replaced the precursory magnesium-rich mineral(c plane-polarized light; d polarized light), e. the crust of a mature chimney with low porosity mainly composed of calcite and aragonite. Calcite suffered recrystallization is subhedral-anhedral(plane-polarized light), f. acicular aragonite filling in a channel of a dead chimney(polarized light).

    图  6   Quaker海山自生烟囱CaO和MgO元素含量特征图

    a. CaO和MgO元素含量相关图,b. 烟囱横截面由中心向外的 CaO含量变化图,c. 烟囱横截面由中心向外的 MgO含量变化图。b和c中点位表示微区取样位置,1,2,3,4依次向外。

    Figure  6.   The major elemental compositions of chimneys from Quaker seamount

    a. CaO vs. MgO plot, b. the CaO contents of micro-drilled samples of chimney cross sections from inner to outer, c. the MgO contents of micro-drilled samples of chimney cross sections from inner to outer. The Arabic numerals represent sampling point in the cross sections. 1, 2, 3, 4 outward successively.

    表  1   Quaker海山烟囱样品XRD数据

    Table  1   XRD data of chimneys from Quaker seamount

    %
    样品编号样品描述方解石文石水菱镁矿水镁石水滑石类石盐
    Q1a幼年烟囱52.0017.318.312.30
    Q1b幼年烟囱77.6018.53.900
    Q3成熟全岩59.823.40016.80
    Q4死亡烟囱63.933.20002.8
    下载: 导出CSV

    表  2   Quaker海山烟囱状自生沉积主量元素分析结果

    Table  2   The major elemental compositions of the chimneys from Quaker seamount

    %  
    样品编号样品描述CaOMgONa2OAl2O3P2O5K2OFe2O3-T
    Q101幼年烟囱截面12.237.52.00.120.020.050.0007
    Q102幼年烟囱截面21.729.01.60.050.030.030.0015
    Q103幼年烟囱截面32.118.51.40.020.040.020.0135
    Q201成熟烟囱顶截面18.623.62.94.010.140.100.0029
    Q202成熟烟囱顶截面34.215.01.30.210.030.030.0267
    Q203成熟烟囱顶截面36.513.01.30.030.030.030.0174
    Q204成熟烟囱底截面28.414.82.82.790.090.090.0020
    Q205成熟烟囱底截面51.92.01.20.290.040.010.0029
    Q206成熟烟囱底截面53.31.71.20.040.050.010.0028
    Q207成熟烟囱底截面52.71.51.30.010.050.010.0019
      注:Fe2O3-T代表全岩铁含量。
    下载: 导出CSV
  • [1]

    Evans B W, Hattori K, Baronnet A. Serpentinite: what, why, where? [J]. Elements, 2013, 9(2): 99-106. doi: 10.2113/gselements.9.2.99

    [2]

    Schrenk M O, Brazelton W J, Lang S Q. Serpentinization, carbon, and deep life [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 575-606. doi: 10.2138/rmg.2013.75.18

    [3] 黄瑞芳, 孙卫东, 丁兴, 等. 蛇纹石化过程中铁活动性的高温高压实验研究[J]. 岩石学报, 2015, 31(3):883-890

    HUANG Ruifang, SUN Weidong, DING Xing, et al. Experimental investigation of iron mobility during serpentinization [J]. Acta Petrologica Sinica, 2015, 31(3): 883-890.

    [4] 王先彬, 欧阳自远, 卓胜广, 等. 蛇纹石化作用、非生物成因有机化合物与深部生命[J]. 中国科学: 地球科学, 2014, 57(5):878-887 doi: 10.1007/s11430-014-4821-8

    WANG Xianbin, OUYANG Ziyuan, ZHUO Shengguang, et al. Serpentinization, Abiogenic Organic Compounds, and Deep life [J]. Science China Earth Sciences, 2014, 57(5): 878-887. doi: 10.1007/s11430-014-4821-8

    [5] 焦鑫, 柳益群, 周鼎武, 等. "白烟型"热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2):221-232 doi: 10.11867/j.issn.1001-8166.2013.02.0221

    JIAO Xin, LIU Yiqun, ZHOU Dingwu, et al. Progress of research on “White Smoke Type” exhalative hydrothermal rocks [J]. Advances in Earth Science, 2013, 28(2): 221-232. doi: 10.11867/j.issn.1001-8166.2013.02.0221

    [6] 王先彬, 郭占谦, 妥进才, 等. 中国松辽盆地商业天然气的非生物成因烷烃气体[J]. 中国科学 D辑: 地球科学, 2009, 52(2):213-226 doi: 10.1007/s11430-009-0015-1

    WANG Xianbin, GUO Zhanqian, TUO Jincai, et al. Abiogenic hydrocarboris in commercial gases ftom the Songliao Basin, China [J]. Science China Ser D: Earth Science, 2009, 52(2): 213-226. doi: 10.1007/s11430-009-0015-1

    [7]

    Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4: 345-373. doi: 10.1146/annurev-marine-120710-100922

    [8]

    Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556

    [9]

    Russell M J, Hall A J, Martin W. Serpentinization as a source of energy at the origin of life [J]. Geobiology, 2010, 8(5): 355-371. doi: 10.1111/j.1472-4669.2010.00249.x

    [10]

    Fryer P, Wheat C G, Williams T, et al. Expedition 366 summary[M]//Fryer P, Wheat C G, Williams T, et al. Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018, 366: 1-23.

    [11]

    Schwarzenbach E M. RESEARCH FOCUS: Serpentinization and the formation of fluid pathways [J]. Geology, 2016, 44(2): 175-176. doi: 10.1130/focus022016.1

    [12]

    Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts [J]. Geology, 1985, 13(11): 774-777. doi: 10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2

    [13]

    Haggerty J A. Petrology and geochemistry of neocene sedimentary rocks from Mariana forearc seamounts: Implications for emplacement of the seamounts[C]//Keating B H, Fryer P, Batiza R, et al. Seamounts, Islands, and Atolls. Washington, DC: American Geophysical Union, 1987: 175-185.

    [14]

    Frery E, Fryer P, Kurz W, et al. Episodicity of structural flow in an active subduction system, new insights from mud volcano's carbonate veins – Scientific Ocean drilling expedition IODP 366 [J]. Marine Geology, 2021, 434: 106431. doi: 10.1016/j.margeo.2021.106431

    [15]

    Grimmer J C, Greiling R O. Serpentinites and low-K island arc meta-volcanic rocks in the Lower Köli Nappe of the central Scandinavian Caledonides: Late Cambrian–early Ordovician serpentinite mud volcanoes in a forearc basin? [J]. Tectonophysics, 2012, 541-543: 19-30. doi: 10.1016/j.tecto.2012.03.014

    [16]

    Lockwood J P. Sedimentary and gravity-slide emplacement of serpentinite [J]. GSA Bulletin, 1971, 82(4): 919-936. doi: 10.1130/0016-7606(1971)82[919:SAGEOS]2.0.CO;2

    [17]

    Pons M L, Quitté G, Fujii T, et al. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17639-17643. doi: 10.1073/pnas.1108061108

    [18]

    Spaggiari C V, Gray D R, Foster D A. Formation and emplacement of the Dolodrook serpentinite body, Lachlan Orogen, Victoria [J]. Australian Journal of Earth Sciences, 2003, 50(5): 709-723. doi: 10.1111/j.1440-0952.2003.01021.x

    [19]

    Yoshida K, Iba Y, Taki S, et al. Deposition of serpentine-bearing conglomerate and its implications for Early Cretaceous tectonics in northern Japan [J]. Sedimentary Geology, 2010, 232(1-2): 1-14. doi: 10.1016/j.sedgeo.2010.09.002

    [20] 李鸿莉, 冯俊熙, 佟宏鹏, 等. 台湾利吉蛇纹岩角砾碎屑岩地球化学特征及其指示意义[J]. 地球化学, 2020, 49(1):50-61

    LI Hongli, FENG Junxi, TONG Hongpeng, et al. Geochemical characteristics and their indicative significance of serpentine breccia clasolites in Lichi, Taiwan, China [J]. Geochimica, 2020, 49(1): 50-61.

    [21]

    Albers E, Kahl W A, Beyer L, et al. Variant across-forearc compositions of slab-fluids recorded by serpentinites: Implications on the mobilization of FMEs from an active subduction zone (Mariana forearc) [J]. Lithos, 2020, 364-365: 105525. doi: 10.1016/j.lithos.2020.105525

    [22]

    Scambelluri M, Cannaò E, Gilio M. The water and fluid-mobile element cycles during serpentinite subduction. A review [J]. European Journal of Mineralogy, 2019, 31(3): 405-428. doi: 10.1127/ejm/2019/0031-2842

    [23]

    Alt J C, Shanks Ⅲ W C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism [J]. Earth and Planetary Science Letters, 2006, 242(3-4): 272-285. doi: 10.1016/j.jpgl.2005.11.063

    [24]

    Benton L D, Ryan J G, Tera F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc [J]. Earth and Planetary Science Letters, 2001, 187(3-4): 273-282. doi: 10.1016/S0012-821X(01)00286-2

    [25]

    Benton L D, Ryan J G, Savov I P. Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): Q08J12.

    [26]

    Mottl M J. Pore waters from serpentinite seamounts in the mariana and izu-bonin forearcs, leg 125: evidence for volatiles from the subducting slab[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 373-385.

    [27]

    Mottl M J, Komor S C, Fryer P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean drilling program leg 195 [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11): 9009.

    [28]

    Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037

    [29]

    Wheat C G, Fryer P, Takai K, et al. SPOTLIGHT•South chamorro seamount [J]. Oceanography, 2010, 23(1): 174-175. doi: 10.5670/oceanog.2010.81

    [30]

    Wheat C G, Seewald J S, Takai K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount [J]. Geochimica et Cosmochimica Acta, 2020, 269: 413-428. doi: 10.1016/j.gca.2019.10.037

    [31] 冯俊熙, 罗敏, 胡钰, 等. 海底蛇纹岩化伴生的碳酸盐岩研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4):789-799 doi: 10.3969/j.issn.1007-2802.2016.04.019

    FENG Junxi, LUO Ming, HU Yu, et al. Progress of the research on authigenic carbonates associated with oceanic serpentinization [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 789-799. doi: 10.3969/j.issn.1007-2802.2016.04.019

    [32]

    Fryer P, Saboda K L, Johnson L E, et al. Conical seamount: SeaMARC II, Alvin submersible, and seismic reflection studies[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Initial Reports. College Station, TX: Ocean Drilling Program, 1990: 69-80.

    [33]

    Haggerty J A, Chaudhuri S. Strontium isotopic composition of the interstitial waters from Leg 125: Mariana and bonin forearcs[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 397-400.

    [34]

    Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01X09.

    [35]

    Klein F, Humphris S E, Bach W. Brucite formation and dissolution in oceanic serpentinite [J]. Geochemical Perspectives Letters, 2020, 16: 1-5. doi: 10.7185/geochemlet.2035

    [36]

    Tran T H, Kato K, Wada H, et al. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: Evidence from geochemistry and carbon, oxygen, and strontium isotopes [J]. Journal of Geochemical Exploration, 2014, 137: 55-64. doi: 10.1016/j.gexplo.2013.11.013

    [37]

    Stern R J, Smoot N C. A bathymetric overview of the Mariana forearc [J]. Island Arc, 1998, 7(3): 525-540. doi: 10.1111/j.1440-1738.1998.00208.x

    [38]

    Haggerty J A. Evidence from fluid seeps atop serpentine seamounts in the Mariana forearc: Clues for emplacement of the seamounts and their relationship to forearc tectonics [J]. Marine Geology, 1991, 102(1-4): 293-309. doi: 10.1016/0025-3227(91)90013-T

    [39]

    Fryer P, Mottl M J. Lithology, mineralogy, and origin of serpentine muds recovered from conical and torishima forearc seamounts[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 343-362.

    [40]

    Oakley A J, Taylor B, Fryer P, et al. Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc [J]. Geophysical Journal International, 2007, 170(2): 615-634. doi: 10.1111/j.1365-246X.2007.03451.x

    [41]

    Fryer P, Gharib J, Ross K, et al. Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08014.

    [42]

    Taylor J C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile [J]. Powder Diffraction, 1991, 6(1): 2-9. doi: 10.1017/S0885715600016778

    [43]

    Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2006, 70(14): 3625-3645. doi: 10.1016/j.gca.2006.04.016

    [44]

    Ohara Y, Reagan M K, Fujikura K, et al. A serpentinite-hosted ecosystem in the Southern Mariana Forearc [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2831-2835. doi: 10.1073/pnas.1112005109

    [45]

    Okumura T, Ohara Y, Stern R J, et al. Brucite chimney formation and carbonate alteration at the Shinkai Seep Field, a serpentinite-hosted vent system in the southern Mariana forearc [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(9): 3775-3796. doi: 10.1002/2016GC006449

    [46]

    Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N [J]. Nature, 2001, 412(6843): 145-149. doi: 10.1038/35084000

    [47] 王秀璋, 徐学炎. 我国发现的水菱镁矿特征及其成因的探讨[J]. 地质科学, 1965, 4:374-382

    WANG Xiuchang, XU Xueyan. On the mineralogical properties and origin of hydromagneiste from China [J]. Scientia Geologica Sinica, 1965, 4: 374-382.

    [48]

    Gharib J J. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc: Implications for sub-forearc subduction processes[D]. Doctor Dissertation of University of Hawaii, 2006.

    [49]

    Curtis A C, Wheat C G, Fryer P, et al. Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic Archaea [J]. Geomicrobiology Journal, 2013, 30(5): 430-441. doi: 10.1080/01490451.2012.705226

    [50]

    Yamanaka T, Mizota C, Satake H, et al. Stable isotope evidence for a putative endosymbiont-based lithotrophic Bathymodiolus sp. mussel community atop a serpentine seamount [J]. Geomicrobiology Journal, 2003, 20(3): 185-197. doi: 10.1080/01490450303876

    [51]

    Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps [J]. Chemical Geology, 2004, 205(3-4): 443-467. doi: 10.1016/j.chemgeo.2003.12.025

    [52]

    Eickenbusch P, Takai K, Sissman O, et al. Origin of short-chain organic acids in serpentinite mud volcanoes of the mariana convergent margin [J]. Frontiers in Microbiology, 2019, 10: 1729. doi: 10.3389/fmicb.2019.01729

    [53]

    Giampouras M, Garrido C J, Bach W, et al. On the controls of mineral assemblages and textures in alkaline springs, Samail Ophiolite, Oman [J]. Chemical Geology, 2020, 533: 119435. doi: 10.1016/j.chemgeo.2019.119435

    [54]

    Königsberger E, Königsberger L C, Gamsjäger H. Low-temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O [J]. Geochimica et Cosmochimica Acta, 1999, 63(19-20): 3105-3119. doi: 10.1016/S0016-7037(99)00238-0

    [55]

    Purgstaller B, Dietzel M, Baldermann A, et al. Control of temperature and aqueous Mg2+/Ca2+ ratio on the (trans-) formation of ikaite [J]. Geochimica et Cosmochimica Acta, 2017, 217: 128-143. doi: 10.1016/j.gca.2017.08.016

    [56]

    Bayon G, Henderson G M, Bohn M. U-Th stratigraphy of a cold seep carbonate crust [J]. Chemical Geology, 2009, 260(1-2): 47-56. doi: 10.1016/j.chemgeo.2008.11.020

    [57]

    Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism [J]. Marine and Petroleum Geology, 2010, 27(4): 748-756. doi: 10.1016/j.marpetgeo.2009.08.006

    [58]

    Ludwig K A, Shen C C, Kelley D S, et al. U–Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2011, 75(7): 1869-1888. doi: 10.1016/j.gca.2011.01.008

    [59]

    Palandri J L, Reed M H. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation [J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1115-1133. doi: 10.1016/j.gca.2003.08.006

    [60]

    Teichert B M A, Eisenhauer A, Bohrmann G, et al. U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations [J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3845-3857. doi: 10.1016/S0016-7037(03)00128-5

    [61] 刘长华, 曾志刚, 殷学博. 现代海底热液硫化物烟囱体的生长模式研究现状[J]. 海洋科学, 2006, 30(5):71-73 doi: 10.3969/j.issn.1000-3096.2006.05.014

    LIU Changhua, ZENG Zhigang, YIN Xuebo. Current research on chimneys growth model of modern sea-floor hydrothermal sulfide [J]. Marine Science, 2006, 30(5): 71-73. doi: 10.3969/j.issn.1000-3096.2006.05.014

  • 期刊类型引用(1)

    1. 佟宏鹏,胡海明,陈琳莹,陈多福. 马里亚纳弧前Conical蛇纹岩泥火山顶自生沉积物特征及其对渗漏流体的指示. 海洋地质与第四纪地质. 2022(06): 1-10 . 本站查看

    其他类型引用(1)

图(6)  /  表(2)
计量
  • 文章访问数:  2132
  • HTML全文浏览量:  542
  • PDF下载量:  71
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-07-01
  • 网络出版日期:  2021-09-26
  • 刊出日期:  2021-12-27

目录

/

返回文章
返回