马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式

Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc

  • 摘要: 马里亚纳弧前蛇纹岩泥火山顶发育烟囱状自生沉积,由海底低温碱性流体渗漏形成,它对示踪蛇纹石化流体渗漏有重要意义,但烟囱生长模式仍未明确。本文选取马里亚纳弧前Quaker蛇纹岩泥火山烟囱状自生碳酸盐岩,进行岩石学、矿物学和元素地球化学研究,查明不同生长阶段烟囱元素组成、矿物类型及演化规律,提出烟囱生长模式。幼年烟囱具有高MgO(18.5%~37.5%)和低CaO含量(12.2%~32.1%),由方解石(52.0%~77.6%)及以水镁石为主的富镁碱性矿物组成;成熟烟囱MgO含量显著降低(1.5%~23.6%),CaO含量显著升高(18.6%~53.3%),除发育方解石(59.8%)和少量富镁矿物外,还发育文石(23.4%);死亡烟囱不含富镁矿物,文石含量最高(33.2%),显微镜和扫描电镜下均观察到文石交代富镁矿物。不同类型烟囱间元素和矿物组成差异以及岩石学特征,说明渗漏流体导致方解石和水镁石沉淀,而文石为交代产物,在烟囱成熟过程中亚稳定的水镁石最终被文石交代,文石及CaO和MgO含量可指示烟囱的成熟程度。同一烟囱横截面由内向外微区样品的MgO含量依次降低,CaO含量依次升高,说明烟囱内侧较新,外侧较老,烟囱由外向内生长。同一烟囱下部横截面MgO含量低于上部横截面,CaO含量则相反,说明下部先形成,指示烟囱自下而上生长。

     

    Abstract: Authigenic chimneys, found at the top of serpentinite mud volcanos in the Mariana forearc, are induced by the seepage of low temperature and alkaline fluids. They are critical significant to trace the eruption of serpentinization fluids. However, few is known with regards to the formation mechanism of these chimneys. In this paper, detailed investigations are carried out on the petrology, mineralogy, and major elemental geochemistry of the chimneys collected from the Quaker serpentinite mud volcano in the Mariana forearc region so as to explore the formation model of these authigenic chimneys. Base on the mineral and elemental compositions, as well as neomorphic processes, three types of chimneys are identified. It is found that infancy chimneys are high in MgO (18.5%~37.5%) and low in CaO contents (12.2%~32.1%), and mineralogically composed of calcite (52.0%~77.6%) and magnesium-rich alkaline minerals, such as brucite, hydromagnesite, and hydrotalcite, while the mature chimneys are characterized by reduced MgO contents (1.5%~23.6%) and enhanced CaO contents (18.6%~53.3%), and mineralogically composed of calcite (59.8%), magnesium-rich minerals and aragonite (23.4%). Dead chimneys have the highest aragonite content (33.2%), but do not contain any magnesium-rich minerals. In addition, microscopic observation results have revealed the precursory magnesium-rich alkaline minerals replaced by aragonite. The variations of elemental and mineral compositions among different types of chimneys, and their petrological characteristics suggest that the fluid seepage induced calcite and brucite precipitation, while aragonite represents a replaced phase of brucite. Brucite occurrences indicate newly formed fabrics, while aragonite reflects an old precursory mineral. Micro-drilled samples from the same chimney cross section show successively decrease of MgO content and increase of CaO content from inner to outer, suggesting that the outer texture is older than the inner. The top of a chimney displays higher MgO and lower CaO contents than the bottom, indicating that the top is relatively younger.

     

/

返回文章
返回