机载激光雷达在水下地貌识别与断裂构造精细解译中的应用

刘刚, 金鼎坚, 吴芳, 于坤, 李奇, 张文凯, 王建超

刘刚,金鼎坚,吴芳,等. 机载激光雷达在水下地貌识别与断裂构造精细解译中的应用[J]. 海洋地质与第四纪地质,2022,42(2): 190-199. DOI: 10.16562/j.cnki.0256-1492.2021061502
引用本文: 刘刚,金鼎坚,吴芳,等. 机载激光雷达在水下地貌识别与断裂构造精细解译中的应用[J]. 海洋地质与第四纪地质,2022,42(2): 190-199. DOI: 10.16562/j.cnki.0256-1492.2021061502
LIU Gang,JIN Dingjian,WU Fang,et al. Application of airborne LiDAR to identification of underwater geomorphology and fine interpretation of faults.[J]. Marine Geology & Quaternary Geology,2022,42(2):190-199. DOI: 10.16562/j.cnki.0256-1492.2021061502
Citation: LIU Gang,JIN Dingjian,WU Fang,et al. Application of airborne LiDAR to identification of underwater geomorphology and fine interpretation of faults.[J]. Marine Geology & Quaternary Geology,2022,42(2):190-199. DOI: 10.16562/j.cnki.0256-1492.2021061502

机载激光雷达在水下地貌识别与断裂构造精细解译中的应用

基金项目: 国家高分专项“航空观测系统科研”(04-H30G01-9001-20/22);中国地质调查局项目“重要海峡通道遥感地质调查”(DD20191011)
详细信息
    作者简介:

    刘刚(1963—),男,高级工程师,主要从事遥感地质研究工作,E-mail:lgang666@126.com

    通讯作者:

    金鼎坚(1985—),男,高级工程师,主要从事航空遥感地质调查技术方法研究,E-mail:jindingjian@mail.cgs.gov.cn

  • 中图分类号: TP79

Application of airborne LiDAR to identification of underwater geomorphology and fine interpretation of faults.

  • 摘要: 机载激光雷达水深测量是高效获取高精度近岸海底地形的一种新型技术,具有测量精度高、效率高、作业区域广的特点。通过分析CZMIL Nova Ⅱ机载激光雷达测深系统获取的南海某岛高分辨率海底地形数据,发现除地貌类型的识别以外,该数据还可用于海底断裂构造的高精度解译。通过对激光雷达测深渲染图像的解译,发现工作区海底地貌由沙嘴、海岬、海湾、古波切台、岸坡、断陷洼地、峡谷、平原和断块残丘组成;海底发育走向NW、NNW、NNE和NEE的 4组主要断裂,环绕海岛的岸线和水下地貌受多组断裂的控制;海底断裂系统在地表的延伸部分得到了CZMIL Nova Ⅱ系统数字相机同步拍摄的陆地高分辨率图像的验证。本项研究将陆地构造的遥感解译方法拓展到高程渲染图像的水下断裂解译,在清澈水域的海岸带调查工作中具有很大的应用潜力。
    Abstract: The airborne lidar bathymetry (ALB) is a new equipment for efficient survey of offshore seabed topography with high precision, high accuracy, high efficiency and wide operation area. By study of the high-resolution submarine topography data collected by the CZMIL Nova Ⅱ ALB system from an island in the South China Sea, it is found that the data can be used for efficient identification of geomorphic types and precise interpretation of submarine fractures, and the principles and methods adopted are very similar to the remote sensing interpretation for land structures. Through the detailed interpretation of the images acquired by lidar sounding, many seabed geomorphic types are found in the study area, for examples, the sand spit, headland, bay, ancient wave-cut platform, bank slope, fault depression, valley, submarine plain and residual fault block. The submarine landform and coastline surrounding the island are mainly controlled by fractures. Four groups of faults in NW, NNW, NNE and NEE directions are found on the seafloor, basically in consistent with the regional tectonic patterns. The extension of submarine rift system on land surface is proved by the high-resolution images acquired synchronously by the digital camera of CZMIL Nova Ⅱ system. Our experience in this survey proves that to extend the technique of remote sensing interpretation for land structures to the underwater fault interpretation offshore is a good solution to the precise detection of fault structures in coastal shallow waters.
  • 图  1   数据处理及遥感解译流程图

    Figure  1.   Flowchart of data processing and remote sensing interpretation

    图  2   以激光雷达高程渲染图像为背景的地貌、主要断裂及剖面位置图

    Figure  2.   Map of geomorphology, with major faults and profile locations map based on lidar elevation rendering images

    图  3   局部放大的1号断陷洼地(a)及菱形残丘(b)激光雷达测高渲染图像

    Figure  3.   Locally enlarged fault depression No. 1 (a) and rhombic monadnock (b) lidar sounding rendered images

    图  4   断裂系统在陆域超高分辨率图像和海域激光雷达图像上的影像特征

    a. NW向断裂由水下延伸到陆地; b. NEE向断裂控制了岸线的走向,水下NW向断裂控制陆地直角海岬。

    Figure  4.   Image characteristics of the fracture system on ultra-high resolution images of land area and marine lidar images

    a. The NW strike faults extended from seafloor to land, b. The extension direction of the shoreline was controlled by NEE strike faults , while seabed NW faults controlled the right-angle land promontory.

    图  5   利用激光雷达渲染图像解译的海底断裂及局部放大图的空间位置示意

    Figure  5.   Submarine faults interpreted by lidar rendering image, partly enlarged

    图  6   控制西南岸线的断裂带激光雷达和陆域超高分辨率影像

    Figure  6.   Lidar and ultra-high resolution images of the fault zone along the southwest shoreline

    图  7   倾向NE、NEE和NW的断层崖陆域超高分辨率图像

    Figure  7.   Ultra-high resolution image of fault scarps tending in NE,NEE and NW directions

    图  8   NW走向断裂的不同运动学特征

    a. 右行走滑断层,b. 左行走滑断层。

    Figure  8.   Kinematic characteristics of NW strike fractures

    a. Right-lateral faults,b. left-lateral faults .

    表  1   研究区激光测深精度统计

    Table  1   Statistics of the depth measurement accuracy in the study area

    深度/m平均误差/m标准差/mRMSE/m系统标称精度/mIHO 1a级要求/m
    30−0.3040.2110.3690.4920.634
    下载: 导出CSV

    表  2   利用雷达高程渲染图像解译的主要海底断裂

    Table  2   Main submarine fractures interpreted from lidar rendering image

    断裂
    编号
    走向解译标志推测
    性质
    是否陆地
    影像验证
    F1NEE平直的长陡崖正断层否,未延伸至陆地
    F2NW平直沟槽、断陷洼地边界正断层
    F3NW平直沟槽、断陷洼地边界正断层否,未延伸至陆地
    F4NW平直沟槽、断陷洼地边界正断层否,未延伸至陆地
    F5NNW平直沟槽,断块山边界未知否,未延伸至陆地
    F6NW陡崖,断块山边界未知否,未延伸至陆地
    F7NNW陡崖、U型谷西边界正断层否,未延伸至陆地
    F8NNW陡崖、U型谷东边界正断层否,未延伸至陆地
    F9NNW陡崖、平直沟槽未知否,未延伸至陆地
    F10NW平直沟槽、线性排列陡坎正断层否,未延伸至陆地
    F11东凸弧形陡崖、断陷洼地边界正断层否,未延伸至陆地
    F12NW平直沟槽、鞍状地貌未知
    F13EW线性排列陡坎、岸坡边界未知否,未延伸至陆地
    F14NEE线性排列陡坎、岸坡边界未知否,未延伸至陆地
    F15NNW平直沟槽、陡坎未知
    F16NW平直陡崖正断层否,未延伸至陆地
    F17NNW断陷洼地边界,陡坎正断层否,未延伸至陆地
    F18SN平直沟槽未知否,未延伸至陆地
    F19NWW平直沟槽、鞍状地貌平移断层
    F20NWW陡坎未知否,未延伸至陆地
    下载: 导出CSV
  • [1] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794 doi: 10.11947/j.AGCS.2017.20170276

    ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786-1794. doi: 10.11947/j.AGCS.2017.20170276

    [2] 翟国君, 黄谟涛. 海洋测量技术研究进展与展望[J]. 测绘学报, 2017, 46(10):1752-1759 doi: 10.11947/j.AGCS.2017.20170309

    ZHAI Guojun, HUANG Motao. The review of development of marine surveying Technology [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1752-1759. doi: 10.11947/j.AGCS.2017.20170309

    [3] 马毅, 张杰, 张靖宇, 等. 浅海水深光学遥感研究进展[J]. 海洋科学进展, 2018, 36(3):331-351 doi: 10.3969/j.issn.1671-6647.2018.03.001

    MA Yi, ZHANG Jie, ZHANG Jingyu, et al. Progress in shallow water depth mapping from optical remote sensing [J]. Advances in Marine Science, 2018, 36(3): 331-351. doi: 10.3969/j.issn.1671-6647.2018.03.001

    [4] 韩孝辉, 薛玉龙, 刘刚. 海上风电场建设的前期地质调查研究方法[J]. 工程勘察, 2018, 46(3):29-34

    HAN Xiaohui, XUE Yulong, LIU Gang. Study methods for preliminary geological survey of the construction of offshore wind farms [J]. Geotechnical Investigation & Surveying, 2018, 46(3): 29-34.

    [5] 孟庆生, 楚贤峰, 郭秀军, 等. 高分辨率数据处理技术在近海工程地震勘探中的应用[J]. 地球物理学进展, 2007, 22(3):1006-1010 doi: 10.3969/j.issn.1004-2903.2007.03.053

    MENG Qingsheng, CHU Xianfeng, GUO Xiujun, et al. The application of high resolution seismic data processing technique in multi-channel shallow offshore engineering seismic surveys [J]. Progress in Geophysics, 2007, 22(3): 1006-1010. doi: 10.3969/j.issn.1004-2903.2007.03.053

    [6] 孙运宝, 赵铁虎, 潘军, 等. 表面多次波衰减技术在渤海海峡应用效果[J]. 海洋地质与第四纪地质, 2015, 35(2):179-184

    SUN Yunbao, ZHAO Tiehu, PAN Jun, et al. The application of SRME to high resolution seismic exploration in shallow sea environment [J]. Marine Geology & Quaternary Geology, 2015, 35(2): 179-184.

    [7]

    Parker H, Sinclair M. The successful application of Airborne LiDAR Bathymetry surveys using latest technology[C]//2012 Oceans-Yeosu. Yeosu, Korea (South): IEEE, 2012.

    [8]

    Feygels V, Ramnath V, Smith B, et al. Meeting the international hydrographic organization requirements for bottom feature detection using the Coastal Zone Mapping and Imaging Lidar (CZMIL)[C]//OCEANS 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016: 1-6.

    [9]

    Pastol Y. Use of airborne LiDAR bathymetry for coastal hydrographic surveying: the French experience [J]. Journal of Coastal Research, 2011, 62(10062): 6-18.

    [10]

    Wozencraft J, Millar D. Airborne lidar and integrated technologies for coastal mapping and nautical charting [J]. Marine Technology Society Journal, 2005, 39(3): 27-35. doi: 10.4031/002533205787442440

    [11]

    Legleiter C J, Overstreet B T, Glennie C L, et al. Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments [J]. Earth Surface Processes and Landforms, 2016, 41(3): 344-363. doi: 10.1002/esp.3794

    [12]

    Fernandez-Diaz J C, Glennie C L, Carter W E, et al. Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(2): 623-635. doi: 10.1109/JSTARS.2013.2265255

    [13]

    Schwarz R, Mandlburger G, Pfennigbauer M, et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 1-10. doi: 10.1016/j.isprsjprs.2019.02.002

    [14]

    Wright C W, Kranenburg C, Battista T A, et al. Depth calibration and validation of the experimental advanced airborne research Lidar, EAARL-B [J]. Journal of Coastal Research, 2016, 76(sp1): 4-17.

    [15]

    Kotilainen A T, Kaskela A M. Comparison of airborne LiDAR and shipboard acoustic data in complex shallow water environments: Filling in the white ribbon zone [J]. Marine Geology, 2017, 385: 250-259. doi: 10.1016/j.margeo.2017.02.005

    [16] 贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8):6-16

    HE Yan, HU Shanjiang, CHEN Weibiao, et al. Research progress of domestic airborne dual-frequency technology LiDAR detection [J]. Laser & Optoelectronics Progress, 2018, 55(8): 6-16.

    [17]

    Guenther G C. Airborne lidar bathymetry digital elevation. model technologies and applications[M]//Maune M D. The DEM Users Manual. 2nd ed. Maryland: American Society for Photogrammetry and Remote Sensing, 2007: 253-320.

    [18]

    Jerlov N G. Optical Oceanography[M]. New York: Elsevier, 1968: 167-168.

    [19] 金鼎坚, 吴芳, 于坤, 等. 机载激光雷达测深系统大规模应用测试与评估: 以中国海岸带为例[J]. 红外与激光工程, 2020, 49(S2):20200317

    JIN Dingjian, WU Fang, YU Kun, et al. Large-scale application test and evaluation of an airborne lidar bathymetry system-A case study in China’s coastal zone [J]. Infrared and Laser Engineering, 2020, 49(S2): 20200317.

    [20] 周成虎, 程维眀, 钱金凯. 数字地貌遥感解析与制图[M]. 北京: 科学出版社, 2009: 42-51

    ZHOU Chenghu, CHENG Weiming, QIAN Jinkai. Digital Geomorphological Interpretation and Mapping from Remote Sensing[M]. Beijing: Science Press, 2009: 42-51

    [21] 田明中, 程捷. 第四纪地质学与地貌学[M]. 北京: 地质出版社, 2009: 157-163

    TIAN Mingzhong, CHENG Jie. Quaternary Geology and Geomorphology[M]. Beijing: Geological Publishing House, 2009: 157-163.

    [22] 曹超, 蔡锋, 郑勇玲, 等. 中国近海海底地形特征及剖面类型分析[J]. 中南大学学报(自然科学版), 2014, 45(2):483-494

    CAO Chao, CAI Feng, ZHENG Yongling, et al. Topography characteristics and profile type of China offshore submarine [J]. Journal of Central South University (Science and Technology), 2014, 45(2): 483-494.

    [23] 刘以宣, 钟建强, 詹文欢. 南海及邻域新构造运动基本特征[J]. 海洋地质与第四纪地质, 1994, 14(4):1-13

    LIU Yixuan, ZHONG Jianqiang, ZHAN Wenhuan. Basic characteristics of neotectonism in South China Sea and its adjacent regions [J]. Marine Geology & Quaternary Geology, 1994, 14(4): 1-13.

    [24] 刘瑞华, 张仲英. 海南岛的新构造运动特征[J]. 热带地理, 1989, 9(2):174-182

    LIU Ruihua, ZHANG Zhongying. Characteristics of Neotectonic Movement in Hainan Island [J]. Tropical Geography, 1989, 9(2): 174-182.

    [25] 赵国强, 苏小宁. 基于GPS获得的中国大陆现今地壳运动速度场[J]. 地震, 2014, 34(1):97-103 doi: 10.3969/j.issn.1000-3274.2014.01.011

    ZHAO Guoqiang, SU Xiaoning. Present-day crustal movement velocity field in mainland China derived from GPS observations [J]. Earthquake, 2014, 34(1): 97-103. doi: 10.3969/j.issn.1000-3274.2014.01.011

    [26] 梁光河. 海南岛的成因机制研究[J]. 中国地质, 2018, 45(4):693-705 doi: 10.12029/gc20180404

    LIANG Guanghe. A study of the genesis of Hainan Island [J]. Geology in China, 2018, 45(4): 693-705. doi: 10.12029/gc20180404

图(8)  /  表(2)
计量
  • 文章访问数:  2261
  • HTML全文浏览量:  610
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-14
  • 修回日期:  2021-09-08
  • 网络出版日期:  2021-10-18
  • 刊出日期:  2022-04-27

目录

    /

    返回文章
    返回