Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—An example from the L area of Lingshui Sag in Qiongdongnan Basin
-
摘要: 通过对琼东南盆地陵水凹陷陆坡区高分辨率三维地震资料的精细解释,在研究区发现广泛发育的块体搬运沉积体系(MTDs),表现为:① 弱振幅、低连续、杂乱或空白的地震反射特征且具有明显的侵蚀作用;② 在研究区体部和趾部区域发现大量侵蚀擦痕、逆冲推覆构造和挤压脊等内部结构;③ 块体搬运沉积由于内部结构变形发育为逆冲推覆构造等,其表面形态往往呈连续的凸起与凹陷。研究区识别出两期MTDs(MTDs1和MTDs2)和一套浊流沉积,MTDs1所形成的长10~15 km、宽2~3 km的脊,改变了海底形态,阻碍了后期浊流沉积的流向,并影响了浊流沉积的位置。Abstract: Through the fine interpretation of high-resolution 3D seismic data collected from the slope area of the Lingshui Sag in the Qiongdongnan Basin, extensively developed mass transport deposits (MTDs) have been discovered with the characteristics as follows: (1) The mass transport deposits usually show weak amplitude, low continuity, chaotic or blank seismic reflection with obvious erosion; (2) A large number of internal structures such as erosional scratches, thrust nappe structures, and squeezed ridges are observed in the body and toe parts of the deposits; (3) Mass transport induced thrust nappe structures caused by internal structural deformation are common and the surface morphology of the deformation is always characterized by continuous protrusions and depressions. Two stages of MTDs, i.e. MTDs1 and MTDs2, are found in the study area together with associated turbidites. The ridges 10~15 km long and 2~3 km wide formed by the MTDs1may change the morphology of seafloor, block the way of later turbidity currents and change the location of turbidites.
-
在海洋浪、潮、流等水动力作用下,波脊线垂直于主水流方向的一种韵律形的海床地貌形态称为海底沙波[1-2],由现代河流入海沉积或原地和邻近海底较老沉积物形成。我国南海北部[3-4]、东海北部[5]和渤海东部[6]等近岸和浅海发育有大量海底沙波。海底沙波快速迁移可能造成航道淤积、海底管道的悬空或掩埋,更严重可能导致海底管道和光缆断裂、海上平台倾斜,给经济和环境带来巨大损失[7-8]。此外,海底沙波与古气候、古环境、古岸线的重建与反演密切相关[9-11]。因此,研究沙波具有重要的应用价值和科学意义。国内外学者对海底沙波的形态特征[12-16]、稳定性[17]、迁移速率[18-20]和发育与形成条件[21]等进行了研究。受测量方法综合性、资料分辨率、测量精度等不足所限,专门针对海底活动沙波地球物理特征的分析较少。本文利用多波束测深、侧扫声呐、浅地层剖面及单道地震资料对研究区海底沙波的分布、微地貌、外部形态和内部结构等进行了综合分析,揭示其迁移方向、活动性及形态演变特征,为快速判定海底沙波迁移方向及其活动性强弱提供参考和借鉴意义。
1. 区域背景
海南岛西南近岸海域海底沙脊与海底沙波等地貌十分发育。沙脊分布范围为近岸到岸坡边缘水深35 m的区域,多数呈狭长条状,走向以NW-SE为主,少数近岸沙脊呈不规则条状,呈NE-SW走向(图1a)。沙波是分布最广泛的地貌类型,与沙脊普遍存在共生关系。研究区(图1a所示红色框)是海南岛西南近岸海域典型的海底沙脊与沙波发育区域(图1b),位于东方岸外海域,距离感恩角约20 km,面积3.5 km×6 km,属于浅海半封闭性的陆架海,附近有罗带河、感恩河等小型河流入海。钻孔资料显示海底沙脊上全新统厚度具有明显的空间差异性,从几米到几十米不等;沙脊槽部遭受潮流、波浪的冲刷侵蚀,全新统厚度薄,甚至直接出露更新统。附近两口钻孔显示MIS1期沉积速率分别为16.7和35.4 cm/ka。研究区地质构造上属于莺歌海盆地东缘。研究表明20~50 m水深的沙脊区在第四纪海侵前为陆地,海平面快速上升期间沿岸沉积被没入海水中接受改造[22]。海底表层沉积物多是河流输入、海流运输及近岸侵蚀的混合沉积物[23]。近岸潮流主要为近南北向往复流,流向与岸线基本平行,近岸涨、落潮流分别为北向和南向[12]。研究区实测大潮涨潮最大底层流速68 cm/s,平均流速42 cm/s;落潮最大底层流速69 cm/s,平均流速40 cm/s。西北太平洋及南海生成的热带气旋或台风引起的风暴潮、台风浪,对海岸形态及海底底形也产生较大影响。
2. 数据与方法
广州海洋地质调查局2019年利用“奋斗四号”船在海南岛西南海域进行了大范围的浅地层剖面、单道地震、侧扫声呐调查(图1a)。2020年又利用“奋斗五号”在选定区域(图1b)进行了高精度多波束测深调查。声速值使用1520 m/s,导航定位使用SF3050 DGPS接收机,定位误差小于0.5 m,多波束及浅剖使用Octans进行姿态校正,船只保持4~5 kn匀速直线行驶,使用的调查设备及采集参数见表1。多波束测深、侧扫声呐、浅地层剖面、单道地震数据处理分别使用Caris 11.2、SonarWiz 5.0、ISE 2.9.5及Geosuite Allworks 2.6软件,图表制作使用CorelDRAW X7、ArcMap10.5软件。
表 1 主要调查设备及数据采集参数Table 1. Main parameters of the surveying systems参数 多波束测深 侧扫声呐 浅地层剖面 单道地震 设备型号 EM710S EdgeTech4200 SES2000Medium SIG 2Mille震源Geo-sense 48电缆 中心频率/kHz 120 110 6 0.6~1 量程/m 通常为水深的3~4倍 单侧100 60 海底以下100 声源发射率/Hz 大于5 约为7 约为12 1 观测系统 船底安装 拖曳于船尾后约120 m,近底观测 船底安装 沉放约0.5 m,拖曳于右船尾后约45 m 3. 结果
地球物理数据综合揭示了研究区沙波分布、大小、迁移方向、微地貌、外部形态和内部结构等特征。
3.1 多波束测深
多波束测深数据揭示研究区沙波分布、规模、形态及迁移方向具有显著的空间差异性。按照波高不同,波高7.5~40 cm为小型沙波,40~75 cm为中型沙波,75~500 cm为大型沙波,波高大于500 cm的沙波称巨型沙波[24]。
研究区在近南北走向的海底沙脊上(水深10~25 m)主要发育大中型沙波,巨型沙波也有出现(图2a-S1、S2、S5),波高0.8~13.2 m,平均4.9 m,整体高于全区沙波平均值。沙波脊线弯曲,呈韵律的条带状;剖面呈“脊尖槽缓”的波状排列,成群出现。沙脊侧翼部发育小型沙波(图2a-S3)。研究区西南部沙波不发育,地形较平坦(图2a-S4和图2b)。在海底沙脊东侧沙波总体为向南(略偏西)迁移,西侧总体为往北(略偏东)迁移(图2b)。研究区北部海底坑槽(水深30~45 m)发育近对称沙波,其迁移方向不明显(图2a-S6和图2b)。
表2为海南西南海域沙波形态参数的文献对比统计,其中第一列为研究区202个主要沙波形态参数的统计结果,沙波脊线展布见图2b。研究区沙波最大波高13.2 m,最大陡坡倾角25°,最大对称指数12.8,与前人研究结果相比数值偏大,表现出强活动性的特征。
表 2 海南岛西南近岸海域海底沙波形态参数统计Table 2. Morphological parameters of submarine sand waves in the southwestern offshore area of Hainan形态参数 研究区 海南岛西部VI区[7] 东方岸外东区[12] 海南岛西南海域[25] 海南岛东方海域[26] 水深/m 9~46,平均25 19.3~21.3 20~50 30~40 平均15 波长/m 7.1~329,平均93.3 41~148 − 5.8~91.8 41.5~719.7 波高/m 0.3~13.2,平均4.7 1.7~5.9 2~10 0.1~4.3 0.84~9.9 垂直形态参数 5.5~54,平均22 16~29 18~44 − 14.5~196.2 缓坡倾角/(°) 3.2~13,平均5 2.7~5.1 − − 0.34~8.05 陡坡倾角/(°) 3.2~25,平均10.7 10.4~16.8 10~20 − 2.0~13.3 对称指数 1.0~12.8,平均4.5 3.1~4.6 7~12.6 0.32~6.52 0.67~9.63 注:缓坡水平距离(a),陡坡水平距离(b),波长(L=a+b),波高(H),垂直形态参数(L/H),对称指数(a/b)。 3.2 侧扫声呐
侧扫声呐是基于声学反向散射原理的二维成像,可对小高差的微地貌单元(如小沙波、沙纹等)进行定量化的观测(图3a )。测线A-A’(位置见图1b)经过海底沙波发育区,沙波脊槽相间,槽部有明显小起伏,翼部较为平坦(图3a)。图3b海底线呈“竹节状”变化同样指示沙波脊槽相间的地形变化特征;沙波脊部对声波的屏蔽导致脊线两侧回波强度差异大,甚至形成声影区;槽部和翼部密集发育小沙波与沙纹。图3c为图3b的局部视图,进一步揭示沙波上叠置的小沙波和沙纹的形态和分布特征。叠置小沙波和沙纹表现为尺寸细小、排列紧密,呈直线形或分叉状,与其下伏沙波走向一致。从分布特征上看,沙纹似乎多在两翼发育,而小沙波则在槽部发育。
3.3 浅地层剖面
浅地层剖面B-B’(测线位置见图1b)显示沙波呈波形不对称的波状排列。沙波缓坡面海底线连续清晰,浅部有一层厚约2 m的透明层;陡坡面反射散乱,下伏亚平行状的迁移底界面(图4a),指示沉积物从缓坡被侵蚀并在陡坡面堆积,沙波沿底床不断前移。
浅地层剖面C-C’(测线位置见图1b)经过研究区北部坑槽区,同样可见陡坡海底界面呈模糊反射,剖面中段近对称沙波发育,其两侧沙波迁移方向相反(图4b)。
3.4 单道地震
单道地震揭示了海底沙波的外部及内部形态结构。测线XCL8单道剖面(图5a)经过沙脊区(测线位置见图1b),可见沙波呈波形不对称波状排列,成群出现,波脊尖锐。图5b为图5a的局部视图,缓坡面表层反射为连续强振幅,陡坡面反射模糊,沙波内部可见呈断续丘状弱振幅反射的斜交前积结构(黑线),表明该处沉积物从缓坡侵蚀,并向陡坡不断堆积迁移。下伏地层呈连续中振幅亚平行反射(蓝色和绿色虚线),其中最上层与沙波槽部相切,为沙波迁移的底界面(蓝线)。未见埋藏(消亡)的多期次沙波或沙脊结构。
测线XCL7单道剖面(图6a)经过研究区北部的坑槽区(测线位置见图1b),剖面北段显示为平坦地形,沙波不发育,中段坑槽区的对称沙波发育,南段发育呈北向迁移沙波群。图6b为图6a的局部视图,左侧与右侧的沙波对比,其内部斜交前积结构以及反射模糊的陡坡面,朝向皆相反,指示底流在此处达到平衡或方向发生转换。越靠近对称沙波区,沙波波高越高。表层强振幅、下部连续中振幅亚平行反射,与图5b所显示的类似,分别表征了未压实的沉积物和迁移底界面。
4. 讨论
4.1 沙波分布特征和迁移机制
海南岛东方岸外沙波的形成和发育主要受潮流场控制,热带风暴对其有改造作用[7]。研究区海底沙波分布广泛,大中型沙波主要发育于沙脊上以及沙脊两侧,沙脊西南部沙波不发育,坑槽发育近对称沙波(图2a),不同部位沙波规模和形态具有明显空间差异。这种差异与沙波受水动力、地形、可供沉积物多少的控制有关。
在潮控陆架上,利用沙波波形不对称可判断沉积物的迁移方向。研究区沙波形态参数统计结果(表2)表明,研究区沙波对称指数为1.0~12.8,平均为4.5,具有明显的不对称性。利用这种不对称性识别了研究区沙波迁移方向(图2b)。如前所述,研究区海底沙脊西侧沙波主要呈向北(略偏东),东侧沙波主要呈向南(略偏西)两个方向迁移(图2b)。研究区潮流为正规全日潮型的往复流,涨潮时潮流主体向北运动,在科氏力影响下流动向右偏转,水体能量在沙脊西侧相对聚集,使得沙脊西侧的沉积物向北(略偏东)迁移;退潮时潮流主体向南运动,在科氏力影响下水流向右偏转,水体能量在沙脊的东侧相对聚集,使得沙脊东侧的沉积物向南(略偏西)迁移。因此,研究区沙脊两侧沙波的迁移特征是潮流与科氏力综合作用的结果。
受控于地形这一主要因素,研究区北部坑槽区发育近对称性沙波(图2a-S6)。朝向相反的陡坡面及斜交前积结构(图4b和图6b )一方面反映了沉积物从坑槽外向坑槽内汇聚,另一方面反映了涨、落潮流在此达到平衡,其迁移可能停止或方向发生改变。
4.2 沙波活动性特征
在现代水动力条件下形成的沙波大多是活动的,其形态随水动力条件变化而改变[27]。陆架水下沙波的稳定性标志表现在海底状况、外部形态、粒度结构、水动力和迁移速率等方面[17]。前人统计不同沙波发育区的水动力大小,认为20~100 cm/s的底流速度是形成陆架沙波的动力条件,底流速度大于50 cm/s是强活动沙波形成的特征标志之一[17, 21]。研究区实测大潮期涨、落潮最大底流速度分别为68 和69 cm/s,这一结果满足强活动沙波形成的底流条件。虽然仅凭沙波的形态特征和参数尚难以定量计算沙波迁移速率,但可定性地评估沙波活动性强弱及迁移方向。
研究区海底沙波“脊尖槽缓”波状排列(图2),波高、陡坡倾角、对称指数等形态参数数值较大(表2),沙波上叠加发育与其迁移方向相同的小沙波、沙纹微地貌单元(图3c),表征了沙波具有较强的活动性。沙波的活动性与浅地层剖面特征密切相关[12-13]。单道地震剖面缓坡表层的强振幅反射(浅地层剖面表现为一层透明层)指示尚未被压实的沉积物。陡坡呈反射模糊特征(图4、图5),以及表现为断续丘状弱振幅反射的斜交前积内部结构(图5b、图6b),反映从缓坡侵蚀的沉积物在陡坡处堆积,并不断向前迁移。沙波陡坡越陡则其活动性越强,迁移速度越快。坑槽区的对称沙波对称指数小,反映涨、落潮流流速相近,沙波比较稳定。对活动沙波的水深、形态结构、微地貌分布、剖面反射特征等综合分析(图2—6),其特征归纳见表3。
表 3 研究区海底活动沙波地球物理特征Table 3. Geophysical characteristics of active submarine sand waves in the study area观测方法 地球物理特征 多波束测深 平面上呈韵律的新月形条带状;剖面上呈“脊尖槽缓”的波状排列,成群出现。 侧扫声呐 海底线呈“竹节状”变化,波脊线两侧回波强度变化明显;发育叠置小沙波与沙纹。 浅地层剖面 波状排列,通常波形不对称;浅部有一层透明层;缓坡面反射连续清晰,陡坡面反射模糊;内部可见迁移活动底界面。 单道地震 波状排列,波形陡缓分明;缓坡面表层为连续强振幅反射,陡坡面表层反射模糊。沙波内部为斜交前积反射结构,下伏为亚平行的层状反射。 4.3 沙波活动性与形态演变
通常平坦宽阔的海底地形及充足的沉积物供应是海底沙波形成的主要内因,而潮汐、海浪、波浪、内波等水动力条件则是主要外因。海底沙波、沙纹以及沙脊、沙带等不同(底形)地貌单元,随着条件的改变可发生互相转化、共存和叠置。海底沙波形态特征反映海底动力、底沙丰寡、沙波尺度大小及运动的相对强弱[17]。研究区沙波活动性与其形态密切相关。主要考虑水动力条件及沉积物供应因素,将研究区沙波活动性强弱与形态特征进行耦合,分为弱运动、强运动、不运动3个主要阶段。
第一阶段沙波处于弱运动(图7a)。在平坦开阔的海底,随着潮流动力逐渐增强,对原地或邻近海底沉积物的侵蚀能力增强,但由于沉积物供应缺乏,这一阶段中小型沙波稀疏发育,波高较小,初步表现出活动性和定向迁移特征。第二阶段沙波处于强运动(图7b)。随着沉积物供应增多及潮流动力增强,侵蚀和堆积作用同时进行,且以堆积作用为主。大中型沙波密集发育,波高与坡度大,波脊尖锐,沙波活动性强,可快速迁移。第三阶段沙波变得逐渐不运动(图7c)。沉积物供应减少,潮流动力减弱或极大增强,沙波形态难以维持,波脊呈圆顶的龟背状,两坡交切圆浑,坡度较小,沙波持续退化,活动性减弱,沙波难以迁移。
5. 结论
(1)研究区沙波分布和规模具有空间差异特征,大中型沙波主要发育于沙脊上,小型沙波主要发育于沙脊两侧,西南部沙波不发育,坑槽区发育近对称沙波。受潮流场与科氏力制约,在沙脊西侧的沙波趋于向北(略偏东)迁移,东侧的沙波趋于向南(略偏西)迁移。中部坑槽区内的近对称性沙波,迁移可能停止或方向发生改变。
(2)研究区沙波的形态参数特征与地球物理特征共同表征了沙波的强活动性。沙波平均波高4.7 m,平均陡坡倾角10.7°,平均对称指数4.5,与前人研究结果相比偏大。活动特征表现为“脊尖槽缓”的波状排列,叠置发育小沙波与沙纹,浅部含透明层,迁移活动底界面清楚,内部为斜交前积结构。
(3)研究区沙波形态与其活动性密切相关,对应弱运动、强运动、不运动3个主要演变阶段。弱运动阶段沙波发育稀疏,初步表现出活动和定向迁移特征。强运动阶段沙波发育密集,波脊尖锐,活动性强,沙波可快速迁移。不运动阶段波脊浑圆,坡度较小,沙波开始退化,活动性弱。
-
-
[1] Arthur M R, Gani M R. Submarine channel and lobe hidden inside mass-transport deposits in the northern Gulf of Mexico [J]. Results in Geophysical Sciences, 2021, 5: 100013. doi: 10.1016/j.ringps.2021.100013
[2] 李磊, 王英民, 张莲美, 等. 块体搬运复合体的识别、演化及其油气勘探意义[J]. 沉积学报, 2010, 28(1):76-82 LI Lei, WANG Yingmin, ZHANG Lianmei, et al. Identification and evolution of mass transport complexes and its significance for oil and gas exploration [J]. Acta Sedimentologica Sinica, 2010, 28(1): 76-82.
[3] Nwoko J, Kane I, Huuse M. Mass transport deposit (MTD) relief as a control on post-MTD sedimentation: Insights from the Taranaki Basin, offshore New Zealand [J]. Marine and Petroleum Geology, 2020, 120: 104489. doi: 10.1016/j.marpetgeo.2020.104489
[4] 王大伟, 吴时国, 秦志亮, 等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质, 2009, 29(5):65-72 WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large quaternary mass transport depositions in the slope of South China Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 65-72.
[5] Le Goff J, Slootman A, Mulder T, et al. On the architecture of intra-formational Mass-Transport Deposits: Insights from the carbonate slopes of Great Bahama Bank and the Apulian Carbonate Platform [J]. Marine Geology, 2020, 427: 106205. doi: 10.1016/j.margeo.2020.106205
[6] Jablonská D, Di Celma C, Korneva I, et al. Mass-transport deposits within basinal carbonates from southern Italy [J]. Italian Journal of Geosciences, 2016, 135(1): 30-40. doi: 10.3301/IJG.2014.51
[7] 何玉林, 匡增桂, 徐梦婕. 北康盆地第四纪块体搬运沉积地震反射特征及成因机制[J]. 地质科技情报, 2018, 37(4):258-268 HE Yulin, KUANG Zenggui, XU Mengjie. Seismic reflection characteristics and triggering mechanism of mass transport deposits of Quaternary in Beikang Basin [J]. Bulletin of Geological Science and Technology, 2018, 37(4): 258-268.
[8] 秦磊, 毛金昕, 倪凤玲, 等. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6):632-642 QIN Lei, MAO Jinxin, NI Fengling, et al. A brief introduction to deep-water mass-transport complexes: structures, genetic classifications and identification methods [J]. Advances in Earth Science, 2020, 35(6): 632-642.
[9] Kneller B, Dykstra M, Fairweather L, et al. Mass-transport and slope accommodation: implications for turbidite sandstone reservoirs [J]. AAPG Bulletin, 2016, 100(2): 213-235. doi: 10.1306/09011514210
[10] 苏明, 解习农, 王振峰, 等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报, 2013, 34(3):467-478 doi: 10.7623/syxb201303007 SU Ming, XIE Xinong, WANG Zhenfeng, et al. Sedimentary evolution of the central canyon system in Qiongdongnan Basin, northern South China Sea [J]. Acta Petrolei Sinica, 2013, 34(3): 467-478. doi: 10.7623/syxb201303007
[11] 李安琪, 叶绮, 王真真, 等. 琼东南盆地陵水凹陷北部梅山组砂质碎屑流沉积特征及油气地质意义[J]. 地质科技通报, 2021, 40(1):110-118 LI Anqi, YE Qi, WANG Zhenzhen, et al. Sedimentary characteristics and significance in hydrocarbon exploration of sandy debris flow in Meishan Formation of the northern Lingshui Sag, Qiongdongnan Basin [J]. Bulletin of Geological Science and Technology, 2021, 40(1): 110-118.
[12] 罗进华, 朱培民. 琼东南盆地陆坡区重力流沉积体系超高精度解析[J]. 地质科技情报, 2019, 38(6):42-50 LUO Jinhua, ZHU Peimin. Gravity induced deposits in the continental slope of Qiongdongnan Basin Based on ultrahigh resolution AUV data [J]. Bulletin of Geological Science and Technology, 2019, 38(6): 42-50.
[13] 李伟, 吴时国, 王秀娟, 等. 琼东南盆地中央峡谷上新统块体搬运沉积体系地震特征及其分布[J]. 海洋地质与第四纪地质, 2013, 33(2):9-15 LI Wei, WU Guoshi, WANG Xiujuan, et al. Seismic characteristics and distribution of pliocene mass transport deposits in central canyon of Qiongdongnan Basin [J]. Marine Geology & Quaternary Geology, 2013, 33(2): 9-15.
[14] 杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39(1):88-111 YANG Tian, CAO Yingchang, TIAN Jingchun. Discussion on research of Deep-water gravity flow deposition in lacustrine basin [J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.
[15] 秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1):140-152 doi: 10.11743/ogg20180114 QIN Yanqun, WAN Lunkun, JI Zhifeng, et al. Progress of research on deep-water mass-transport deposits [J]. Oil & Gas Geology, 2018, 39(1): 140-152. doi: 10.11743/ogg20180114
[16] 李磊, 李彬, 王英民, 等. 块体搬运沉积体系地震地貌及沉积构型: 以珠江口盆地和尼日尔三角洲盆地为例[J]. 中南大学学报:自然科学版, 2013, 44(6):2410-2416 LI Lei, LI Bin, WANG Yingmin, et al. Seismic geomorphology and sedimentary architectures of mass transport deposits: Cases from Pearl River Mouth Basin and Niger Delta Basin [J]. Journal of Central South University:Science and Technology, 2013, 44(6): 2410-2416.
[17] 孙国桐. 深水重力流沉积研究进展[J]. 地质科技情报, 2015, 34(3):30-36 SUN Guotong. A review of deep-water gravity-flow deposition research [J]. Geological Science and Technology Information, 2015, 34(3): 30-36.
[18] 冯湘子, 朱友生. 南海北部陵水陆坡重力流沉积调查与分析[J]. 海洋地质与第四纪地质, 2020, 40(5):25-35 FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35.
[19] 李磊, 王英民, 徐强, 等. 南海北部白云凹陷21Ma深水重力流沉积体系[J]. 石油学报, 2012, 33(5):798-806 doi: 10.7623/syxb201205008 LI Lei, WANG Yingmin, XU Qiang, et al. 21Ma deepwater gravity flow depositional system in Baiyun sag, northern South China Sea [J]. Acta Petrolei Sinica, 2012, 33(5): 798-806. doi: 10.7623/syxb201205008
[20] Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data [J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011
[21] Nwoko J, Kane I, Huuse M. Megaclasts within mass-transport deposits: their origin, characteristics and effect on substrates and succeeding flows [J]. Geological Society, London, Special Publications, 2020, 500(1): 515-530. doi: 10.1144/SP500-2019-146
[22] Bull S, Browne G H, Arnot M J, et al. Influence of Mass Transport Deposit (MTD) surface topography on deep-water deposition: an example from a predominantly fine-grained continental margin, New Zealand [J]. Geological Society, London, Special Publications, 2020, 500(1): 147-171. doi: 10.1144/SP500-2019-192
-
期刊类型引用(2)
1. 柯旭栋,李磊,颉宇凡,薛国庆,王文杰,杨怡飞. 琼东南盆地L区块体搬运沉积三维地震构型表征及其成因. 海洋石油. 2025(01): 13-20 . 百度学术
2. 葛家旺,唐小龙,赵晓明,朱筱敏,齐昆. 南海琼东南盆地西区晚更新世陆架边缘层序结构及差异机制. 地球科学进展. 2024(07): 737-751 . 百度学术
其他类型引用(0)