西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义

刘佳辉, 曲扬, 李伟强, 魏广祎, 孙倩元, 凌洪飞, 陈天宇

刘佳辉,曲扬,李伟强,等. 西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义[J]. 海洋地质与第四纪地质,2022,42(2): 36-45. DOI: 10.16562/j.cnki.0256-1492.2021052701
引用本文: 刘佳辉,曲扬,李伟强,等. 西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义[J]. 海洋地质与第四纪地质,2022,42(2): 36-45. DOI: 10.16562/j.cnki.0256-1492.2021052701
LIU Jiahui,QU Yang,LI Weiqiang,et al. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications[J]. Marine Geology & Quaternary Geology,2022,42(2):36-45. DOI: 10.16562/j.cnki.0256-1492.2021052701
Citation: LIU Jiahui,QU Yang,LI Weiqiang,et al. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications[J]. Marine Geology & Quaternary Geology,2022,42(2):36-45. DOI: 10.16562/j.cnki.0256-1492.2021052701

西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义

基金项目: 西太平洋地球系统多圈层相互作用重大计划培育项目“上新世以来西太平洋沉积铁同位素演化研究”(91858105)
详细信息
    作者简介:

    刘佳辉(1995—),男,硕士研究生,研究方向为海洋地球化学,E-mail:mg1829033@smail.nju.edu.cn

    通讯作者:

    陈天宇(1986—),男,教授,主要从事深海地球化学和古海洋研究,E-mail:tianyuchen@nju.edu.cn

  • 中图分类号: P744.3

Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications

  • 摘要: 太平洋铁锰结壳在中新世以前大多经历了磷酸盐化,一般认为其形成代表了高生产力时期富磷组分对先期已形成结壳的交代作用,即磷酸盐化事件的产物。然而,前人对铁锰结壳磷酸盐化的机制研究多基于点-线分析元素或同位素,对铁锰结壳生长结构及二维元素分布特征研究较少。本研究以西太平洋水成铁锰结壳MDD53为研究对象,利用电子探针(EPMA)进行高分辨率元素定量分析,并结合微区X射线荧光光谱(μXRF)面扫得到结壳元素二维分布图。电子探针和μXRF结果揭示了该结壳中下部发生了磷酸盐化。μXRF结果显示该结壳存在两种不同类型的磷酸盐富集特征:第一类是结壳顶部中出现零星的Ca、P富集,同时伴随着强烈的后期改造特征,如结壳呈破碎状结构,Fe丢失、Mn相对富集。电子探针数据进一步表明,在成岩改造中,Co、Ni等微量元素发生了相对富集,而Pb则发生了丢失,这一现象反映了这些元素与Fe、Mn不同的亲和力,与大量有机质在结壳海水界面分解导致的成岩扰动特征相符。第二类是结壳底部连续出现的纹层状Ca、P富集特征,且无后期扰动现象,暗示 MDD53结壳底部磷酸盐是同沉积/早成岩作用的产物,而不是反映后期磷酸盐化事件成岩改造的影响。这类未报道过的同沉积磷酸盐可能表明结壳形成早期,其水深相对较浅时,海水中大量磷酸盐与铁锰氧化物胶体共沉淀而产生的磷酸盐富集现象,因而为重建晚白垩世-早新生代高时间分辨率古海洋演化提供了可靠载体。
    Abstract: Most of the Pacific ferromanganese crusts have experienced phosphatization before Miocene, presumably by impregnation of phosphorus-rich component into the old crust section during the period of high productivity, that is called the product of phosphatization events. Most of the previous studies on phosphatization were based on point/line analysis of element contents or isotopes, while few studies have been devoted to the growth structure and 2-dimentional element distribution. In this study, a hydrogenetic ferromanganese crust (MDD53) sampled from the western Pacific Ocean was analyzed by electron probe X-ray microanalysis (EPMA) and micro–X-ray fluorescence scanning (μXRF), generating high resolution quantitative data on element concentrations and 2-dimensional element maps, respectively. The results of EPMA and μXRF reveal that the middle to lower part of the crust was phosphatized. The μXRF map shows that there are two types of phosphates. The first type shows sporadic enrichment of Ca and P in the top part of the crust, accompanied by strong post-depositional alterations, such as broken structure, Fe loss, and relatively Mn enrichment. The EPMA data further shows that trace element enrichment of Co and Ni as well as depletion of Pb in the phosphatized area. This observation reflects different affinity of these elements with Fe and Mn oxides, which is consistent with the hypothetic phosphatization mechanism of organic matter degradation at the crust-seawater interface and the resulting alteration of the preformed crust. The second type of phosphate is characterized by an unreported structure of continuous Ca and P enriched laminae located at the bottom of the crust. The lack of post-depositional alteration of the growth structure suggests that this type of phosphate is of syn-depositional or early diagenetic in origin, which is distinctly different from post-diagenetic alteration. The syn-depositional phosphate may indicate an early stage coprecipitation of phosphate and ferromanganese oxide colloids in a relatively shallow water depth, making it a reliable paleoceanographic indicator for high temporal resolution studies of the Late Cretaceous-Early Cenozoic period.
  • 图  1   西太平洋铁锰结壳MDD53位置和该区域内主要洋流[22]

    LCDW:南极下层绕极深层水。

    Figure  1.   Location of ferromanganese crusts MDD53 in the Western Pacific and the schematically major currents in this area[22]

    LCDW: Lower Circumpolar Deep Water.

    图  2   MDD53顶部和底部的微区XRF元素含量分布图

    亮色代表含量相对高而暗色代表含量相对低;下图为Si、P、Ca元素局部区域放大图,图中白色方框对应放大位置。

    Figure  2.   Micro–X-ray fluorescence images of the top to bottom section of MDD53

    Light colors represent relatively high content and dark colors represent relatively low content. The bottom of figure are enlarged the parts of Si, P, Ca Micro-X-ray fluorescence images, the white box in the figure corresponds to the zoom in position.

    图  3   铁锰结壳MDD53电子探针元素分布

    Figure  3.   Element composition of MDD53 analyzed by electron probe

    图  4   MDD53 EPMA分析元素(a) P和Ca、(b) Co和Mn、(c) Ni和Mn、(d) Pb和Mn、(e) Si和Fe、(f) Pb和Fe相关图

    Figure  4.   Relation between (a) P and Ca、(b) Co and Mn、(c) Ni and Mn、(d) Pb and Mn、(e) Si and Fe、(f) Pb and Fe in MDD53 analysed by EPMA

    图  5   MDD53磷酸盐化部分与未磷酸盐化部分之间的元素平均值相对差异

    a. 结壳底部元素均一化结果,b. 结壳顶部2元素均一化结果,c. 结壳底部1元素均一化结果,d. 结壳底部2元素均一化结果。

    Figure  5.   Relative differences in average elemental composition of phosphatized parts to the non-phosphatized parts of MDD53

    a. The normalized result of the bottom of the crust, b. the normalized result of top part 2, c. the normalized result of bottom part 1, d. the normalized result of bottom part 2.

    表  1   MDD53各部分电子探针元素分布的均值

    Table  1   The average elemental composition of different parts of MDD53 analyzed by electron probe

    %  
    取样位置/mmCoSrPbFeMnNiSiAlPCa
    顶部(0~63)0.690.080.1317.242.70.653.370.820.453.79
    底部(63~119)0.270.080.2120.832.40.263.371.034.1810.8
    顶部1( 0~7)0.450.110.1626.529.00.287.831.410.792.99
    顶部2 (7~63)0.710.080.1316.044.30.692.830.750.413.89
    底部1 (63~93)0.300.080.2220.634.00.293.391.003.409.27
    底部2 (93~119)0.230.080.1920.130.40.223.331.065.2212.8
    下载: 导出CSV
  • [1]

    Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2

    [2]

    De Carlo E H, Fraley C M. Chemistry and mineralogy of ferromanganese deposits from the equatorial pacific ocean[M]// Keating B H, Bolton B R. Geology and Offshore Mineral Resources of the Central Pacific Basin. Springer, New York, NY. 1992: 225-245.

    [3]

    Hein J R, Schwab W C, Davis A. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands [J]. Marine Geology, 1988, 78(3-4): 255-283. doi: 10.1016/0025-3227(88)90113-2

    [4]

    Sutherland K M, Wankel S D, Hein J R, et al. Spectroscopic insights into ferromanganese crust formation and diagenesis [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11): e2020GC009074.

    [5]

    Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan S D. Handbook of Marine Mineral Deposits. Florida: CRC Press, 2000: 239-279.

    [6]

    Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1

    [7]

    Wang X L, Planavsky N J, Reinhard C T, et al. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts [J]. American Journal of Science, 2016, 316(1): 64-83. doi: 10.2475/01.2016.02

    [8]

    Ling H F, Burton K W, O'nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5

    [9]

    Chen T Y, Ling H F, Hu R, et al. Lead isotope provinciality of central North Pacific Deep Water over the Cenozoic [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1523-1537. doi: 10.1002/ggge.20114

    [10]

    Li\ng H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 345-361. doi: 10.1016/j.jpgl.2004.12.009

    [11]

    Jiang X D, Zhao X, Zhao X Y, et al. A magnetic approach to unravelling the paleoenvironmental significance of nanometer-sized Fe hydroxide in NW Pacific ferromanganese deposits [J]. Earth and Planetary Science Letters, 2021, 565: 116945. doi: 10.1016/j.jpgl.2021.116945

    [12]

    Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts [J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7

    [13]

    Hein J R, Bohrson W A, Schulz M S, et al. Variations in the fine-scale composition of a Central Pacific ferromanganese crust: paleoceanographic implications [J]. Paleoceanography, 1992, 7(1): 63-77. doi: 10.1029/91PA02936

    [14]

    Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from North-east Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122

    [15]

    Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177

    [16]

    Ji L H, Liu G S, Huang Y P, et al. The distribution of iodine and effects of phosphatization on it in the ferromanganese crusts from the Mid-Pacific Ocean [J]. Acta Oceanologica Sinica, 2015, 34(8): 13-19. doi: 10.1007/s13131-015-0704-x

    [17]

    Nishi K, Usui A, Nakasato Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts [J]. Ore Geology Reviews, 2017, 87: 62-70. doi: 10.1016/j.oregeorev.2016.09.004

    [18] 王吉中. 磷酸盐化对中太平洋海山富钴结壳物质组分的影响[D]. 北京: 中国地质大学(北京), 2005.

    WANG Jizhong. Effects of pho-sphatization on composition of Co-rich crusts on central pacific seamounts[D]. Beijing: China University of Geosciences (Beijing), 2005

    [19] 崔迎春, 石学法, 刘季花. 富钴结核粒径分形特征[J]. 海洋湖沼通报, 2008(3):67-70 doi: 10.3969/j.issn.1003-6482.2008.03.009

    CUI Yingchun, SHI Xuefa, LIU Jihua. Fractal characters of grain size of cobalt-rich nodule [J]. Transactions of Oceanology and Limnology, 2008(3): 67-70. doi: 10.3969/j.issn.1003-6482.2008.03.009

    [20] 胡镕, 陈天宇, 凌洪飞. 晚新生代北太平洋西部深水洋流演化: 来自铁锰结壳Nd同位素的证据[J]. 科学通报, 2012, 57(31):4077-1086 doi: 10.1007/s11434-012-5322-9

    HU Rong, CHEN Tianyu, LING Hongfei. Late Cenozoic history of deep water circulation in the western North Pacific: Evidence from Nd isotopes of ferromanganese crusts [J]. Chinese Science Bulletin, 2012, 57(31): 4077-1086. doi: 10.1007/s11434-012-5322-9

    [21] 周枫, 凌洪飞, 陆尊礼, 等. 中太平洋铁锰结壳铅同位素研究[J]. 海洋地质与第四纪地质, 2005, 25(1):55-62

    ZHOU Feng, LING Hongfei, LU Zunli, et al. Research of lead isotope of ferromanganese crusts from central Pacific Ocean [J]. Marine Geology & Quaternary Geology, 2005, 25(1): 55-62.

    [22]

    Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8

    [23]

    Hyeong K, Kim J, Yoo C M, et al. Cenozoic history of phosphogenesis recorded in the ferromanganese crusts of central and western Pacific seamounts: implications for deepwater circulation and phosphorus budgets [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392: 293-301. doi: 10.1016/j.palaeo.2013.09.012

    [24]

    Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [25]

    Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas [J]. Nature, 304(, 5928, ): 716-719.

    [26] 赵建如, 初凤友, 杨克红, 等. 中太平洋C海山富钴结壳铁锰矿物的组成、成分特征及其成因意义[J]. 海洋学研究, 2009, 27(1):15-21 doi: 10.3969/j.issn.1001-909X.2009.01.003

    ZHAO Jianru, CHU Fengyou, YANG Kehong, et al. Manganese mineral components, compositional characteristics and their implication for genesis of cobalt-rich crust from C seamount in Central Pacific [J]. Journal of Marine Sciences, 2009, 27(1): 15-21. doi: 10.3969/j.issn.1001-909X.2009.01.003

    [27]

    Frank M, O’nions R K, Hein J R, et al. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1689-1708. doi: 10.1016/S0016-7037(99)00079-4

    [28]

    Friedrich G, Schmitz-Wiechowski A. Mineralogy and chemistry of a ferromanganese crust from a deep-sea hill, central Pacific, "Valdivia" cruise VA 132 [J]. Marine Geology, 1980, 37(1-2): 71-90. doi: 10.1016/0025-3227(80)90012-2

    [29]

    Segl M, Mangini A, Beer J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events [J]. Paleoceanography, 1989, 4(5): 511-530. doi: 10.1029/PA004i005p00511

    [30]

    Manceau A, Gorshkov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy [J]. American Mineralogist, 1992, 77(11-12): 1133-1143.

    [31]

    Manceau A, Gorshkov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction [J]. American Mineralogist, 1992, 77(11-12): 1144-1157.

    [32]

    Liu R L, Wang M Y, Li W Q, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the late Quaternary [J]. Geophysical Research Letters, 2020, 47(11): e2019GL085995.

    [33] 胡镕, 陈天宇, 凌洪飞. 晚第四纪中北太平洋铁锰结壳Fe/Mn变化: 对古气候变化的响应[J]. 高校地质学报, 2012, 18(4):751-758 doi: 10.3969/j.issn.1006-7493.2012.04.016

    HU Rong, CHEN Tianyu, LING Hongfei. Fe/Mn variations of late Quaternary ferromanganese crusts from the central North Pacific: implications for the paleoenvironment change [J]. Geological Journal of China Universities, 2012, 18(4): 751-758. doi: 10.3969/j.issn.1006-7493.2012.04.016

    [34] 姜学钧. 海洋铁锰氧化物沉积物中常、微量元素的地球化学特征[D]. 青岛: 中国海洋大学, 2007.

    JIANG Xuejun. Geochemistry of major and minor elements in marine ferromanganese oxide deposits[D]. Qingdao: Ocean University of China, 2007

    [35] 武光海, 周怀阳, 张海生, 等. 海山铁锰结壳中反映环境氧化程度的新指标[J]. 中国科学 D辑:地球科学, 2007, 50(3):371-384 doi: 10.1007/s11430-007-2011-7

    WU Guanghai, ZHOU Huaiyang, ZHANG Haisheng, et al. New index of ferromanganese crusts reflecting oceanic environmental oxidation [J]. Science in China Series D:Earth Sciences, 2007, 50(3): 371-384. doi: 10.1007/s11430-007-2011-7

    [36]

    Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the Central Pacific Ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3

    [37]

    Hein J R, Yeh H W, Gunn S H, et al. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific Seamount deposits [J]. Paleoceanography, 1993, 8(2): 293-311. doi: 10.1029/93PA00320

    [38]

    Thibault N, Harlou R, Schovsbo N H, et al. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea [J]. Climate of the Past, 2016, 12(2): 429-438. doi: 10.5194/cp-12-429-2016

    [39]

    Batenburg S J, Voigt S, Friedrich O, et al. Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth [J]. Nature Communications, 2018, 9(1): 4954. doi: 10.1038/s41467-018-07457-7

    [40]

    Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion [J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B4): 6829-6848. doi: 10.1029/90JB02015

    [41]

    Salamy K A, Zachos J C. Latest eocene-early oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 145(1-3): 61-77. doi: 10.1016/S0031-0182(98)00093-5

    [42]

    Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific Seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9

    [43]

    Halbach P E, Sattler C D, Teichmann F, et al. Cobalt-rich and platinum-bearing manganese crust deposits on seamounts: nature, formation, and metal potential [J]. Marine Mining, 1989, 8(1): 23-39.

    [44]

    Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite [J]. Science, 2000, 287(5451): 269-272. doi: 10.1126/science.287.5451.269

    [45]

    Josso P, Van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts [J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651

图(5)  /  表(1)
计量
  • 文章访问数:  16200
  • HTML全文浏览量:  1090
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 修回日期:  2021-07-29
  • 网络出版日期:  2021-09-13
  • 刊出日期:  2022-04-27

目录

    /

    返回文章
    返回