海底冷泉原位观测装置研究回顾与展望

张云山, 贾永刚, 尉建功

张云山,贾永刚,尉建功. 海底冷泉原位观测装置研究回顾与展望[J]. 海洋地质与第四纪地质,2022,42(2): 200-213. DOI: 10.16562/j.cnki.0256-1492.2021052002
引用本文: 张云山,贾永刚,尉建功. 海底冷泉原位观测装置研究回顾与展望[J]. 海洋地质与第四纪地质,2022,42(2): 200-213. DOI: 10.16562/j.cnki.0256-1492.2021052002
ZHANG Yunshan,JIA Yonggang,WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology,2022,42(2):200-213. DOI: 10.16562/j.cnki.0256-1492.2021052002
Citation: ZHANG Yunshan,JIA Yonggang,WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology,2022,42(2):200-213. DOI: 10.16562/j.cnki.0256-1492.2021052002

海底冷泉原位观测装置研究回顾与展望

基金项目: 国家重点研发计划项目“海底沉积物力学特性的原位测试装置”(SQ2018YFC030044);国家自然科学基金重点项目“内孤立波对南海水合物试采区海底面稳定性影响研究”(41831280)
详细信息
    作者简介:

    张云山(1999—),男,硕士研究生,主要从事天然气水合物勘探及开发方面的研究,E-mail:zhang894126621@163.com

    通讯作者:

    贾永刚(1965—),男,教授,主要从事海洋地质工程方面的研究,E-mail:yonggang@ouc.edu.cn

    尉建功(1984—),男,高级工程师,主要从事天然气水合物勘查与开发方面的研究,E-mail:weijiangong007@163.com

  • 中图分类号: P744.4

A review and prospect of in-situ observation equipment for cold seep

  • 摘要: 海底冷泉多由海底天然气渗漏形成,是以水、碳氢化合物、硫化氢或二氧化碳为主要成分的流体。它既是海底天然气水合物存在的标志,又与温室效应、海洋生态环境、冷泉生物群落等问题密切相关,对海底冷泉的流体渗漏通量和化学组成进行测定,对认识上述问题有重大意义。与实验室化学分析和数值模拟相比,原位观测可保证数据的可靠性和真实性,作为冷泉原位观测的主要手段,冷泉原位观测装置在近20年发展迅速。本文根据观测目标和观测原理将海底冷泉原位观测装置分为3类,即冷泉渗漏气体通量原位观测装置、冷泉渗漏液体通量原位观测装置以及冷泉渗漏流体化学组分原位观测装置,并从设计意义、工作原理以及解决的科学问题等方面梳理了国内外海底冷泉原位观测装置的发展,分析了各个装置的优势、局限性以及适用范围,最后展望了海底冷泉原位观测装置未来的发展方向。
    Abstract: Marine cold seep, mainly formed by the seepage of natural gas hydrate, is a fluid composed mainly of water, hydrocarbons, hydrogen sulfide and or carbon dioxide. It is not only a sign of the existence of seabed gas hydrate, but also a substance closely related to greenhouse effect, marine ecological environment, cold seep biological community and other issues. The measurement of the fluid leakage flux and chemical composition of cold seep is of great significance for understanding the issues mentioned above. Compared with laboratory chemical analysis and numerical simulation, in-situ observation can ensure the reliability and authenticity of data. As a main mean, in-situ observation equipment of cold seep has developed rapidly in the past two decades. In this paper, according to its objectives and principles, the in-situ observation equipment of the cold seep is divided into three types: the in-situ observation equipment for the leakage gas flux of the cold seep, the in-situ observation equipment for the leakage liquid flux of the cold seep and the in-situ observation equipment for the chemical composition of the seepage fluid of the cold seep. The development of in-situ observation equipment for cold seep at home and abroad is summarized in this paper from the aspects of design significance and working principle. And the advantages, limitations and application range of the equipment are discussed. In the end, the future development direction of the in-situ observation equipment for the cold seep is prospected.
  • 红河三角洲位于越南北部(图1),面积约为17 000 km2[1],受波浪、潮流、河流共同控制[2]。红河一共有8条支流,年均径流量达120 km3[3],其中大型的河口主要有白藤(Bach Dang)河口、太平(Thai Binh)河口、巴拉特(Balat)河口、宁科(Ninh Co)河口、天(Day)河口,其中巴拉特河口的径流量约占总量的65%[4]。红河年均入海泥沙量约8.2×107 m3[5],其中90%在雨季输送[6],主要沉积在北部湾西南近海区域[7]

    图  1  1987—2015年红河三角洲海岸线
    背景为2005年遥感影像图;a. 红河三角洲地理位置,b. 红河三角洲岸线,c. 巴拉特河口岸线。
    Figure  1.  Red River Delta coastline changes from 1987 to 2015
    The background map is from the remote sensing image of 2005; a. Geographical location of the Red River Delta, b. Red River Delta coastline, c. Balat estuary coastline.

    红河三角洲所位于的北部湾海域以全日潮为主,平均潮差2.5~3.5 m;波浪在旱季为东—东北方向,在雨季为东—东南方向,平均和最大波高分别为0.7~1.3 m和3.5~4.5 m[8]。根据前人研究,北部湾1990—2010年海岸线的总长度在持续减小,20年间减小了118.50 km,其中后10年减小幅度明显大于前10年[9],且岸线趋向于平直化[10]。北部湾岸线的变迁主要和人类活动有关[11-12],海岸线被大量开发为港口、码头、养殖区等[13]。砂质、淤泥和基岩岸线的占比逐渐减小[14],到1998年人工堤坝已占北部湾岸线总长度的39.46%[15]。除人类活动影响外,河口岸线变化也较大[16-17]

    关于红河三角洲岸线,前人主要分析了岸线变化特征以及河口沙坝、上游大坝等对其的影响:红河三角洲岸线在1999年之后的10年总体上向陆迁移[5],岸线变化频繁剧烈,受多种因素共同影响。关于河口沙坝的影响,Do Minh Duc等发现,河流输送的泥沙主要聚集在河口,使海岸线快速淤积(可达100 m/a),而其他岸段因缺少泥沙供应,导致侵蚀[4, 18-19]。关于上游大坝的影响,Tran Duc Thanh等发现,和平大坝建立之后,大坝下游河水中泥沙含量减少,宁科(Ninh Co)河口附近岸线的年平均后退速率从1965—1990年的0.41 m/a提高到了1990—1998年的14.5 m/a[20],但对主要河口巴拉特的岸线变化速率在大坝建立前后的变化缺少研究。另外,入海泥沙量变化导致的河口演变[18]、波浪斜向入射[21]、潮流和波浪流[22]都会对海岸侵蚀产生重要影响。近年来岸线趋于平直,各种人工建筑物也会影响波浪和潮汐的动力作用,从而影响岸线侵蚀[13, 23]。虽然红树林能很好地应对海岸侵蚀[24],但由于人类的砍伐,红树林也受到了很大程度的破坏。加剧的岸线侵蚀将导致建筑物不稳定等各种灾害发生,三角洲生态服务功能也会逐渐减弱[25-27]

    前人对红河三角洲岸线演变进行了定性描述,但缺少定量化分析,而且研究年份仅截止于2001年,对人类活动频繁的近20年的海岸变化相关报道较少。近年来,由于全球变暖,海平面上升,台风发生频率增加[28],海洋动力发生了重要变化,对岸线变化产生了重要影响。在岸线变化机制上,前人的研究分析了海洋动力和河流入海泥沙对岸线变化的影响,但是对于北部湾海域每年夏季高频次的台风作用分析较少。前人已在山东威海海滩观测发现,台风梅花(1109号)过境后,天鹅湖沙滩后退了3.6 m[29],热带气旋对岸线变化产生了剧烈影响。因此,本文基于1987—2015年Landsat遥感数据,收集1935—1985年历史数据、红河多年径流量与输沙量,以及该海域多年热带气旋数量等数据,对红河三角洲变化最频繁剧烈的巴拉特河口的岸线演变开展研究,从而为岸线防护以及海岸带经济发展提供科学支撑。

    本文采用的基础数据来自Landsat系列卫星的影像数据,从美国地质勘探局官网(网址:https://earthexplorer.usgs.gov/)下载,影像分辨率为30 m。为保证影像精度及多年研究中的可对比性,选取云量小于10%、高潮时的遥感影像进行对比分析。基于ENVI软件,进行辐射校正、拼接、大气校正、研究区裁剪、几何精校正等预处理[30]。预处理之后,根据“我国近海海洋综合调查与评价项目(908专项)”海岸带遥感调查和前人岸线解译经验[31-32],在MapInfo软件中提取大潮高潮线作为岸线,共提取了1987、1990、1995、2000、2005、2010、2015近30年共7张红河三角洲的岸线,结果如图1所示。

    根据收集的资料[8],前人已对1930—1985年巴拉特地区岸线变化进行了研究(图2),可以看出在巴拉特河口地区前进与后退剧烈,在靠近河口部位发生明显前进,而远离河口部位发生明显后退。

    图  2  1930—1985年巴拉特河口岸线变化[8]
    Figure  2.  Changes of the Balat estuary shoreline in 1930-1985[8]

    1987—1990年,红河三角洲南部岸线有多处明显前进,而北部出现多处后退,中部变化不大(图1),主要是巴拉特地区变化明显。通过计算得到如图3所示的巴拉特地区主岸线沿岸平均年变化率,可以看出巴拉特地区沿岸大部分岸线以后退为主。河口位置发生明显后退,从遥感图像上对比发现,该岸线后退可能与入海泥沙量减少和沙坝侵蚀有关。定量对比发现,1987—1990年巴拉特地区年平均前进速率为39.19 m/a,年平均后退速率为30.68 m/a。

    图  3  1987—1990巴拉特河口岸线变化
    a. 岸线,b. 主岸线年均变化率。
    Figure  3.  Changes of the Balat estuary from 1987 to 1990
    a. Shoreline; b. Average annual change rate of the main shore line.

    1990—1995年,红河三角洲除河口岸线以前进为主外,河口的南部和北部岸线均出现了多处明显后退(图1)。巴拉特地区变化明显,通过计算得到如图4所示的巴拉特地区主岸线沿岸平均年变化率,可以看出巴拉特地区沿岸大部分岸线以前进为主,而河口位置发生明显后退,从遥感图像上对比发现,在这一时期,由于波浪等导致沙坝侵蚀或者由于海平面上升,主岸线与沙坝之间的人工养殖池长时间被水淹没,主岸线发生明显后退。1990—1995年巴拉特地区年平均前进速率为28.26 m/a,年平均后退速率为87.25 m/a。

    图  4  1990—1995巴拉特河口岸线变化
    a. 岸线,b. 主岸线年均变化率。
    Figure  4.  Changes of the Balat estuary from 1990 to 1995
    a. Shoreline; b. Average annual change rate of the main shore line.

    1995—2000年,红河三角洲岸线变化不大,南部出现了几处明显前进,北部也出现几处明显前进,中部变化不大(图1)。对于巴拉特地区,岸线的后退与前进交替出现,在河口位置发生了一处明显前进(图5),从遥感图像上对比发现,该岸线前进与人工养殖池有关。1995—2000年巴拉特地区年平均前进速率为23.63 m/a,年平均后退速率为11.57 m/a。

    图  5  1995—2000巴拉特河口岸线变化
    a. 岸线,b. 主岸线年均变化率。
    Figure  5.  Changes of the Balat estuary from 1995 to 2000
    a. Shoreline; b. Average annual change rate of the main shore line.

    2000—2005年,红河三角洲南部岸线发生一处明显前进,而北部出现几处后退,中部变化不大(图1)。巴拉特地区岸线的后退与前进交替出现,变化不剧烈(图6)。2000—2005年巴拉特地区年平均前进速率为5.93 m/a,年平均后退速率为5.06 m/a。

    图  6  2000—2005巴拉特河口岸线变化
    a. 岸线,b. 主岸线年均变化率。
    Figure  6.  Changes of the Balat estuary from 2000 to 2005
    a. Shoreline; b. Average annual change rate of the main shore line.

    2005—2010年,红河三角洲南部岸线有多处明显前进,而北部出现多处明显后退,中部出现多处前进(图1)。巴拉特地区沿岸岸线以后退为主(图7),从遥感图像上(图8)对比发现,该岸线后退可能与2009年宣光(Tuyen Quang)大坝和2010年桑拉(Sonla)大坝建成导致入海泥沙量减少有关,因此沙坝侵蚀,人工养殖池被水淹没,主岸线发生明显后退。2005—2010年巴拉特地区年平均前进速率为20.87 m/a,年平均后退速率为56.19 m/a。

    图  7  2005—2010巴拉特河口岸线变化
    a. 岸线,b. 主岸线年均变化率。
    Figure  7.  Changes of the Balat estuary from 2005 to 2010
    a. Shoreline; b. Average annual change rate of the main shore line.
    图  8  2005年和2010年巴拉特河口遥感图像
    Figure  8.  Remote sensing images of the Balat estuary in 2005 and 2010

    2010—2015年,红河三角洲南部岸线以明显前进为主,北部也以明显前进为主,但出现几处后退,中部以前进为主(图1)。巴拉特地区沿岸岸线以前进为主,后退仅限于河口东北部(图9),从遥感图像上对比发现,该岸线后退可能与入海泥沙量减少,沙坝侵蚀有关。2010—2015年巴拉特地区年平均前进速率为22.13 m/a,年平均后退速率为89.72 m/a。

    图  9  2010—2015巴拉特河口岸线变化
    a. 岸线,b. 主岸线年均变化率。
    Figure  9.  Changes of the Balat estuary from 2010 to 2015
    a. Shoreline; b. Average annual change rate of the main shore line.

    观察多年岸线变化图(图1),可以看出沿岸地区变化不一致,部分岸段前进与后退交替变化特征明显,在巴拉特河口地区淤进与蚀退频繁,变化剧烈,河口北部岸线后退明显,主要受沙坝侵蚀影响。计算得到1987—2015年巴拉特地区主岸线年平均前进速率为3.94 m/a,年平均后退速率为29.43 m/a。前人计算得到长江口河口岸线1974年到2015年的平均变化速率为34 m/a[20],与其对比,发现巴拉特地区主岸线年平均变化速率大小与其类似(图10)。

    图  10  1987—2015年巴拉特地区主岸线沿岸平均年变化率
    Figure  10.  Average annual change rate of the main shoreline in Balat region from 1987 to 2015

    通过调查资料,发现红河三角洲海岸线演变受热带气旋以及河流上游水坝等多种因素共同影响。

    海岸线的向海推进与沙坝的形成和扩大密切相关。大量入海沉积物在河口前形成沙坝,沙坝的快速增长降低了波浪的破坏作用,为海岸线和沙坝之间的河道中沉积物沉降提供了良好的环境[9]。河口沙坝在红河三角洲的巴拉特地区作用非常明显。当沙坝被侵蚀时,沙坝与主岸线之间的人工养殖池也被水淹没,因此,主岸线明显后退,如1990—1995年和2005—2010年。

    红河入海径流量和输沙量受堤坝建设影响明显(图11),进而会对岸线前进与后退速率产生影响[20]。前人在1972年第一个大坝塔婆建立之后,在山西站(Son Tay,图11e)观测到的年输沙量下降[33]。根据前人对1965—1990年宁科(Ninh Co)地区岸线变化的研究结果,可以发现在和平大坝建立之后,宁科河口岸线的年平均后退速率从1965—1990年的0.41 m/a提高到了1990—1998年的14.5 m/a[21]。而前人对1930—1985年巴拉特地区岸线变化的研究结果表明,在塔婆大坝建立之后巴拉特河口前进速率相应发生了降低[3]。本文对比发现,在2009年宣光(Tuyen Quang)大坝和2010年桑拉(Sonla)大坝建成之后,沉积物供应减少,2005—2015年巴拉特河口岸线后退速率有所提高。

    图  11  1960—2010年4个站位径流量和输沙量变化[33]
    Figure  11.  Variation in runoff and sediment budget at four stations from 1960 to 2010[33]

    厄尔尼诺现象可造成世界气候的变化,使局部地区降雨量过多,极大地影响岸线的变化速率。调查资料发现,红河上游的大东勇站、中游的元江站、下游的蛮耗站的年径流序列在1993年均由枯水期突变为丰水期[34],这可能与1991—1994年发生的厄尔尼诺带来的强降雨有关[4],沙坝与主岸线之间的人工养殖池被水淹没,1990—1995年巴拉特河口岸线的后退速率明显增长。同时,2006—2007年、2009—2010年均发生了厄尔尼诺现象,对应的2005—2010年巴拉特河口岸线的后退速率也有明显增长。

    海平面上升对海岸侵蚀速率的影响也很大。根据前人研究结果,1965—1995年期间,海平面上升对红河三角洲海岸侵蚀速率增加的作用约占34%,而1995—2005年为12%。

    热带气旋是越南北部地区典型的天气事件,台风数量与岸线年平均后退速率有很好相关性(图12),台风数量越多,平均后退速率越大。1990—1995年经过红河三角洲台风数量增多,年平均后退速率有明显提高;1995—2005年经过红河三角洲台风数量减少,年平均后退速率对应有明显降低;2005—2015年经过红河三角洲台风数量增多,年平均后退速率对应有明显提高。海后(Hai Hau)潮汐站曾测得当波高为4.25 m,持续时间2.4 h的情况下,岸线后退了7.1 m[8]

    图  12  1987—2015年红河三角洲年均后退速率与过境台风数量之间的关系
    Figure  12.  The relationship between the annual averaged retreat rate of the Red River Delta and the numbers of typhoons passed through the delta from 1987 to 2015

    海流和波浪是影响海岸侵蚀的重要因素[5]。前者在红河三角洲海域呈现出明显的季节性变化:冬季流向南、夏季流向北[7],并可能通过诱发增水等影响岸线变化。后者在近岸破碎并诱生沿岸流,进而引起沿岸输沙作用,造成海岸侵蚀[8]

    无论旱季或者雨季,巴拉特河口南部海域平均波高始终高于河口北部(图13a图13b),河口南部的海洋动力始终强于北部。从沉积物输运方向(图14)也可以看出:在巴拉特、拉赫(Lach)和天河口,5~10 m等深线海域,沉积物主要向东南输运,5 m等深线以浅的区域,沉积物沿岸向西南输运;在特雷(Tra Ly)河口,沉积物向东北输运;在太平河口,沉积物向东输运[35]。因此,巴拉特河口北部和南部岸线呈现不一样的变化特征;北部岸线后退与前进交替出现,总体以前进为主,可能与复杂的岸线和动力条件及河流入海物质变化有关;南部岸线持续后退,与波浪导致的沿岸南向输沙密切相关。

    图  13  冬(旱)季(a)与夏(雨)季(b)平均波高等值线[36]
    a. 冬(旱)季,b. 夏(雨季)。
    Figure  13.  Average wave height in winter/summer(dry/rain)seasons[36]
    a. winter (dry) seasons, b. summer (rain) seasons.
    图  14  红河三角洲近岸沉积物输运路径[35]
    Figure  14.  Sediment transport pathways along the coast of the Red River Delta[35]

    (1)在时间变化上,红河三角洲岸线表现为前进与后退交替变化特征。南部岸线变化趋势较为稳定,除1990—1995年、2010—2015年以前进为主外,1935—2015年其他年份均以后退为主,与波浪导致的沿岸南向输沙密切相关。红河三角洲北部岸线由于岸线复杂且为河流入海物质控制区,表现为后退与前进交替出现,总体以前进为主。

    (2)红河主要支流之一巴拉特河口地区淤进与蚀退变化剧烈,1987—2015年巴拉特河口主岸线年平均前进速率为3.94 m/a,年平均后退速率为29.43 m/a。该河口岸线的频繁变化主要与上游建坝造成入海沙量变化、台风造成的侵蚀有关。

  • 图  1   全球冷渗漏位置[6]

    Figure  1.   Schematic map showing global distribution of cold seeps[6]

    图  2   通量浮标示意图[26]

    Figure  2.   Gas-capture buoy for measuring bubbling gas flux [26]

    图  3   涡轮渗漏示意图[27]

    Figure  3.   Schematic diagram of CAT meter[27]

    图  4   海底冷泉天然气渗漏原位在线测量装置[28]

    Figure  4.   Schematic diagram of in situ on-line measuring device of gas flux at marine seeping sites[28]

    图  5   气泡捕捉装置[29]

    Figure  5.   Bubble catch device schematic[29]

    图  6   船坞实验装置[30]

    Figure  6.   Scheme of the experimental set-up in the ship dock [30]

    图  7   声学剖面仪[33]

    Figure  7.   Schematic diagram of the water column profiler [33]

    图  8   被动声呐实验装置[36]

    Figure  8.   Experimental set-up of passive sonar [36]

    图  9   气泡流量测量装置[38]

    Figure  9.   Schematic diagram of the bubble flow measuring device[38]

    图  10   微型气泡测量装置[41]

    Figure  10.   Schematic mini-bubble measurement system [41]

    图  11   大型气泡测量装置[42]

    Figure  11.   Schematic diagram of Large-bubble measurement system [42]

    图  12   改进后的渗流计[46]

    Figure  12.   Schematic diagram of improved seepage cylinder[46]

    图  13   海底观测桶[48]

    Figure  13.   Schematic diagram of the Benthic Barrel[48]

    图  14   海底冷泉渗漏流体化学和通量测量仪[51]

    Figure  14.   Schematic diagram of the chemical and aqueous transport meter[51]

    图  15   甲烷流体流量测量装置 [54]

    a. 渗透泵,b. 渗透取样器。

    Figure  15.   Schematic diagram of methane flow measurement device [54]

    a. Schematic diagram of an Osmo sampler, b. schematic representation of a MOSQUITO.

    图  16   光学流量计[55]

    Figure  16.   Schematic diagram of the optical tracer injection system[55]

    图  17   基于拉曼光谱的冷泉探针[62]

    Figure  17.   Schematic diagram of the probes for studying cold seep fluids[62]

    图  18   深海溶解甲烷原位长期监测仪器[63]

    a. 侧视及俯视图,b. 实物图,c. 各部件布局图。

    Figure  18.   In-situ long-term monitoring instrument for deep-sea dissolved methane[63]

    a. Side view and top view, b. physical drawing, c. layout drawing of various components.

    图  19   深海溶解甲烷探测仪器工作原理图[63]

    Figure  19.   Schematic diagram of the in-situ long-term monitoring instrument for deep-sea dissolved methane[63]

    图  20   GMM气体监测装置[70]

    Figure  20.   The gas monitoring module[70]

    图  21   Benvir海底边界层原位监测装置[72]

    Figure  21.   Benvir-in situ deep-sea observation system[72]

  • [1] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013

    CHEN Zhong, YANG Huaping, HUANG Qiyu, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013

    [2]

    Talukder A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting [J]. Terra Nova, 2012, 24(4): 255-272. doi: 10.1111/j.1365-3121.2012.01066.x

    [3]

    Cao L, Lian C, Zhang X, et al. In situ detection of the fine scale heterogeneity of active cold seep environment of the Formosa Ridge, the South China Sea [J]. Journal of Marine Systems, 2021, 218: 103530. doi: 10.1016/j.jmarsys.2021.103530

    [4]

    Ho S, Cartwright J A, Imbert P. Vertical evolution of fluid venting structures in relation to gas flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola [J]. Marine Geology, 2012, 322-334: 40-55.

    [5]

    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0

    [6]

    Suess E. Marine cold seeps: background and recent advances[M]//Wilkes H. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer, 2018: 1-21.

    [7] 席世川, 张鑫, 王冰, 等. 海底冷泉标志与主要冷泉区的分布和比较[J]. 海洋地质前沿, 2017, 33(2):7-18

    XI Shichuan, ZHANG Xin, WANG Bing, et al. The indicators of seabed cold seep and comparison among main distribution areas [J]. Marine Geology Frontiers, 2017, 33(2): 7-18.

    [8]

    Feng D, Chen D F. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity [J]. Deep Sea Research Part II Topical Studies in Oceanography, 2015, 122: 74-83. doi: 10.1016/j.dsr2.2015.02.003

    [9]

    Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001

    [10]

    Leifer I, Boles J, Luyendyk A B. Measurement of oil and gas emissions from a marine seep[C]//New Energy Development and Technology (EDT-009) Working Paper January 2007. California: University of California Energy Institute, 2007: 1-22.

    [11]

    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    [12] 阴家润, 王薇薇. 深海洋底热泉生态系和冷泉生物研究综述[J]. 地质科技情报, 1995, 14(2):31-36

    YIN Jiarun, WANG Weiwei. Hydrothermal vent ecosystem and cold seep community of deep sea [J]. Geological Science and Technology Information, 1995, 14(2): 31-36.

    [13]

    Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226(4677): 965-967. doi: 10.1126/science.226.4677.965

    [14] 耿明会, 关永贤, 宋海斌, 等. 南海北部天然气渗漏系统地球物理初探[J]. 海洋学研究, 2014, 32(2):46-52

    GENG Minghui, GUAN Yongxian, SONG Haibin, et al. Preliminary geophysical studies of the natural gas seepage systems in the northern South China Sea [J]. Journal of Marine Sciences, 2014, 32(2): 46-52.

    [15] 冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6):1047-1056, 1046

    FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056, 1046.

    [16] 程俊, 王淑红, 黄怡, 等. 天然气水合物赋存区甲烷渗漏活动的地球化学响应特征[J]. 海洋科学, 2019, 43(5):110-122 doi: 10.11759/hykx20180426001

    CHENG Jun, WANG Shuhong, HUANG Yi, et al. Geochemical response characteristics of methane seepage activities in gas hydrate zones [J]. Marine Sciences, 2019, 43(5): 110-122. doi: 10.11759/hykx20180426001

    [17] 王旭东, 黄慧文, 孙跃东, 等. 北印度洋海底冷泉流体活动研究进展[J]. 热带海洋学报, 2017, 36(6):82-89

    WANG Xudong, HUANG Huiwen, SUN Yuedong, et al. Recent progress on submarine cold seep activity of the northern Indian Ocean [J]. Journal of Tropical Oceanography, 2017, 36(6): 82-89.

    [18] 杨艺萍, 唐灵刚, 向荣, 等. 东沙西南海域表层沉积物底栖有孔虫群落特征及其对冷泉活动的指示意义[J]. 微体古生物学报, 2017, 34(3):237-246

    YANG Yiping, TANG Linggang, XIANG Rong, et al. Benthic foraminiferal assemblage and its implications for cold seepage in the southwestern area off dongsha islands, South China sea, China [J]. Acta Micropalaeontologica Sinica, 2017, 34(3): 237-246.

    [19] 刘浩东. 南海北部陆坡冷泉和非冷泉沉积物古菌多样性研究[D]. 中国地质大学(北京), 2013.

    LIU Haodong. Study on the archaeal diversity in sediments of cold seeps and none cold seeps from northern slope of South China Sea[D]. Master Dissertation of China University of Geosciences (Beijing), 2013.

    [20]

    Lu R, Gao Z M, Li W L, et al. Asgard archaea in the haima cold seep: Spatial distribution and genomic insights [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 170: 103489. doi: 10.1016/j.dsr.2021.103489

    [21] 张福凯, 徐龙君. 甲烷对全球气候变暖的影响及减排措施[J]. 矿业安全与环保, 2004, 31(5):6-9, 38 doi: 10.3969/j.issn.1008-4495.2004.05.003

    ZHANG Fukai, XU Longjun. Effect of methane on global warming and mitigating measures [J]. Mining Safety and Environmental Protection, 2004, 31(5): 6-9, 38. doi: 10.3969/j.issn.1008-4495.2004.05.003

    [22] 陈汉宗, 周蒂. 天然气水合物与全球变化研究[J]. 地球科学进展, 1997, 12(1):38-43

    CHEN Hanzong, ZHOU Di. The study of gas hydrates and its relation with global changes [J]. Advances in Earth Science, 1997, 12(1): 38-43.

    [23] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450 doi: 10.3969/J.ISSN.2095-4972.2016.03.017

    SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017

    [24]

    Judd A G. The global importance and context of methane escape from the seabed [J]. Geo-Marine Letters, 2003, 23(3-4): 147-154. doi: 10.1007/s00367-003-0136-z

    [25]

    Wu J G, Wu T T, Deng X G, et al. Acoustic characteristics of cold-seep methane bubble behavior in the water column and its potential environmental impact [J]. Acta Oceanologica Sinica, 2020, 39(5): 133-144. doi: 10.1007/s13131-019-1489-0

    [26]

    Washburn L, Johnson C, Gotschalk C C, et al. A gas-capture buoy for measuring bubbling gas flux in oceans and lakes [J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(8): 1411-1420. doi: 10.1175/1520-0426(2001)018<1411:AGCBFM>2.0.CO;2

    [27]

    Leifer I, Boles J. Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales [J]. Journal of Geophysical Research: Oceans, 2005, 110(C1): C01006.

    [28]

    Di P F, Chen Q H, Chen D F. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study [J]. Journal of Tropical Oceanography, 2012, 31(5): 83-87.

    [29]

    Padilla A M, Loranger S, Kinnaman F S, et al. Modern assessment of natural hydrocarbon gas flux at the coal oil point seep field, Santa Barbara, California [J]. Journal of Geophysical Research: Oceans, 2019, 124(4): 2472-2484. doi: 10.1029/2018JC014573

    [30]

    Greinert J, Nützel B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps [J]. Geo-Marine Letters, 2004, 24(2): 75-85. doi: 10.1007/s00367-003-0165-7

    [31]

    Greinert J. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant [J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07048.

    [32]

    Lemon D D, Gower J F R, Clarke M R. The acoustic water column profiler: a tool for long-term monitoring of zooplankton populations[C]//MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings. Honolulu, HI, USA: IEEE, 2001: 1904-1909.

    [33]

    Salmi M S, Johnson H P, Leifer I, et al. Behavior of methane seep bubbles over a pockmark on the Cascadia continental margin [J]. Geosphere, 2011, 7(6): 1273-1283. doi: 10.1130/GES00648.1

    [34]

    Leifer I, Chernykh D, Shakhova N, et al. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea [J]. The Cryosphere, 2017, 11(3): 1333-1350. doi: 10.5194/tc-11-1333-2017

    [35] 王冰, 宋永东, 杜增丰, 等. 基于“发现”号ROV的近海底综合声学调查系统及其在台西南冷泉调查中的应用[J]. 海洋与湖沼, 2020, 51(4):889-898 doi: 10.11693/hyhz20200100026

    WANG Bing, SONG Yongdong, DU Zengfeng, et al. An integrated underwater acoustic survey system and its application in the investigation of the cold seep site off southwestern taiwan [J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 889-898. doi: 10.11693/hyhz20200100026

    [36]

    Nikolovska A, Waldmann C. Passive acoustic quantification of underwater gas seepage[C]//OCEANS 2006. Boston, MA, USA: IEEE, 2006: 1-6.

    [37]

    Wiggins S M, Leifer I, Linke P, et al. Long-term acoustic monitoring at North Sea well site 22/4b [J]. Marine and Petroleum Geology, 2015, 68: 776-788. doi: 10.1016/j.marpetgeo.2015.02.011

    [38] 龙建军, 黄为, 邹大鹏, 等. 海底天然气渗漏流量声学测量方法及初步实验研究[J]. 热带海洋学报, 2012, 31(5):100-105 doi: 10.3969/j.issn.1009-5470.2012.05.015

    LONG Jianjun, HUANG Wei, ZOU Dapeng, et al. Method of measuring bubble flow from cool seeps on seafloor using acoustic transmission and preliminary experiments [J]. Journal of Tropical Oceanography, 2012, 31(5): 100-105. doi: 10.3969/j.issn.1009-5470.2012.05.015

    [39] 胡柳. 冷泉渗漏声波测量装置主体研制与气泡-水声学特性的实验研究[D]. 广东工业大学, 2014.

    HU Liu. Development of seepage acoustic measuring device and experimental study on bubble-water acoustic properties[D]. Master Dissertation of Guangdong University of Technology, 2014.

    [40] 张浩. 海底冷泉渗漏气体流量声波测量仪的研究与开发[D]. 广东工业大学, 2015.

    ZHANG Hao. Research and experimental study on acoustic measuring instrument of gas seeping on seafloor[D]. Master Dissertation of Guangdong University of Technology, 2015.

    [41]

    Leifer I, Leeuw G D, Cohen L H. Optical measurement of bubbles: system design and application [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(9): 1317-1332. doi: 10.1175/1520-0426(2003)020<1317:OMOBSD>2.0.CO;2

    [42]

    Leifer I. Characteristics and scaling of bubble plumes from marine hydrocarbon seepage in the Coal Oil Point seep field [J]. Journal of Geophysical Research: Oceans, 2010, 115(C11): C11014. doi: 10.1029/2009JC005844

    [43]

    Leifer I. Seabed bubble flux estimation by calibrated video survey for a large blowout seep in the North Sea [J]. Marine and Petroleum Geology, 2015, 68: 743-752. doi: 10.1016/j.marpetgeo.2015.08.032

    [44]

    Wang B B, Socolofsky S A, Breier J A, et al. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging [J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2203-2230. doi: 10.1002/2015JC011452

    [45]

    Di P F, Feng D, Tao J, et al. Using time-series videos to quantify methane bubbles flux from natural cold seeps in the South China Sea [J]. Minerals, 2020, 10(3): 216. doi: 10.3390/min10030216

    [46]

    Cable J E, Burnett W C, Chanton J P, et al. Field evaluation of seepage meters in the coastal marine environment [J]. Estuarine, Coastal and Shelf Science, 1997, 45(3): 367-375. doi: 10.1006/ecss.1996.0191

    [47]

    Lee D R. A device for measuring seepage flux in lakes and estuaries [J]. Limnology and Oceanography, 1977, 22(1): 140-147. doi: 10.4319/lo.1977.22.1.0140

    [48]

    Linke P, Suess E, Torres M, et al. In situ measurement of fluid flow from cold seeps at active continental margins [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(4): 721-739. doi: 10.1016/0967-0637(94)90051-5

    [49]

    Labarbera M, Vogel S. An inexpensive thermistor flowmeter for aquatic biology [J]. Limnology and Oceanography, 1976, 21(5): 750-756. doi: 10.4319/lo.1976.21.5.0750

    [50]

    Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge [J]. Global Biogeochemical Cycles, 2006, 20(2): GB2019.

    [51]

    Tryon M, Brown K, Dorman L, et al. A new benthic aqueous flux meter for very low to moderate discharge rates [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(9): 2121-2146. doi: 10.1016/S0967-0637(01)00002-4

    [52]

    Jannasch H W, Wheat C G, Plant J N, et al. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications [J]. Limnology and Oceanography: Methods, 2004, 2(4): 102-113. doi: 10.4319/lom.2004.2.102

    [53]

    Kastner M, Jannasch H, Weinstein Y, et al. A new sampler for monitoring fluid and chemical fluxes in hydrologically active submarine environments[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings. Providence, RI, USA: IEEE, 2000: 109-112.

    [54]

    Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 95-105. doi: 10.1016/j.jpgl.2008.03.024

    [55]

    Labonte A L, Brown K M, Tryon M D. Monitoring periodic and episodic flow events at Monterey Bay seeps using a new optical flow meter [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B2): B02105.

    [56] 田国辉, 陈亚杰, 冯清茂. 拉曼光谱的发展及应用[J]. 化学工程师, 2008, 22(1):34-36 doi: 10.3969/j.issn.1002-1124.2008.01.013

    TIAN Guohui, CHEN Yajie, FENG Qingmao. Development and application of Raman technology [J]. Chemical Engineer, 2008, 22(1): 34-36. doi: 10.3969/j.issn.1002-1124.2008.01.013

    [57] 伍林, 欧阳兆辉, 曹淑超, 等. 拉曼光谱技术的应用及研究进展[J]. 光散射学报, 2005, 17(2):180-186 doi: 10.3969/j.issn.1004-5929.2005.02.013

    WU Lin, OUYANG Zhaohui, CAO Shucao, et al. Research development and application of Raman scattering technology [J]. Chinese Journal of Light Scattering, 2005, 17(2): 180-186. doi: 10.3969/j.issn.1004-5929.2005.02.013

    [58] 杜增丰. 基于 DOCARS 和 LCOF-Raman 的酸根离子探测和沉积物孔隙水的光谱分析[D]. 中国海洋大学, 2015.

    DU Zengfeng. Detection of acid radical ions with DOCARS and LCOF-Raman system and spectral analysis of sediment pore water[D]. Doctor Dissertation of Ocean University of China, 2015.

    [59] 张鑫. 深海环境及深海沉积物拉曼光谱原位定量探测技术研究[D]. 中国海洋大学, 2009.

    ZHANG Xin. Quantitative applications of Raman technique for deep-sea environment and sediment detection new technique for deep-sea sediment pore water and methane hydrates in situ detection[D]. Doctor Dissertation of Ocean University of China, 2009.

    [60] 杜增丰, 张鑫, 郑荣儿. 拉曼光谱技术在深海原位探测中的研究进展[J]. 大气与环境光学学报, 2020, 15(1):2-12

    DU Zengfeng, ZHANG Xin, ZHENG Ronger. Research progress and prospect of laser Raman spectroscopy for in-situ detection in deep ocean [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 2-12.

    [61] 赵永柱. 光纤内共振拉曼光谱法探测水中痕量生物分子[D]. 吉林大学, 2004.

    ZHAO Yongzhu. Trace analysis of biological molecules in water by means of the resonance raman spectra in liquid-core optical fiber[D]. Master Dissertation of Jilin University, 2004.

    [62]

    Zhang X, Du Z F, Zheng R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123: 1-12. doi: 10.1016/j.dsr.2017.02.005

    [63] 申正伟. 深海溶解甲烷原位长期探测技术研发及应用研究[D]. 中国地质大学(北京), 2018.

    SHEN Zhengwei. Research and development of in-situ long-term detection technology for deep-sea dissolved methane and its application[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2018.

    [64] 申正伟, 孙春岩, 贺会策, 等. 深海原位溶解甲烷传感器(METS)的原理及应用研究[J]. 海洋技术学报, 2015, 34(5):19-25

    SHEN Zhengwei, SUN Chunyan, HE Huice, et al. The Principle and Applied Research of In-situ METS for Dissolved Methane Measurement in Deep Sea [J]. Journal of Ocean Technology, 2015, 34(5): 19-25.

    [65] 于新生, 李丽娜, 胡亚丽, 等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10):1030-1037

    YU Xinsheng, LI Lina, HU Yali, et al. The development of in situ sensors for dissolved methane measurement in the sea [J]. Advances in Earth Sciences, 2011, 26(10): 1030-1037.

    [66] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    [67]

    Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials [J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128

    [68] 邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites [J]. Progress in Geophysics, 2008, 23(5): 1592-1602.

    [69]

    Beranzoli L, De Santis A, Etiope A G, et al. GEOSTAR: a geophysical and oceanographic station for abyssal research [J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 175-183. doi: 10.1016/S0031-9201(98)00094-6

    [70]

    Marinaro G, Etiope G, Gasparoni F, et al. GMM—a gas monitoring module for long-term detection of methane leakage from the seafloor [J]. Environmental Geology, 2004, 46(8): 1053-1058. doi: 10.1007/s00254-004-1092-2

    [71]

    Pfannkuche O, Linke P. GEOMAR landers as long-term deep-sea observatories: applications and developments of lander technology in operational oceanography [J]. Sea Technology, 2003, 44(9): 50-55.

    [72] 赵广涛, 于新生, 李欣, 等. Benvir: 一个深海海底边界层原位监测装置[J]. 高技术通讯, 2015, 25(1):54-60 doi: 10.3772/j.issn.1002-0470.2015.01.008

    ZHAO Guangtao, YU Xinsheng, LI Xin, et al. Benvir: A in situ Deep-sea observation system for Benthic environmental monitoring [J]. Chinese High Technology Letters, 2015, 25(1): 54-60. doi: 10.3772/j.issn.1002-0470.2015.01.008

    [73] 徐翠玲. 南海冷泉区甲烷渗漏过程的原位观测研究[D]. 中国海洋大学, 2013.

    XU Cuiling. In situ observation of methane seepage in the South China Sea[D]. Master Dissertation of Ocean University of China, 2013.

  • 期刊类型引用(2)

    1. 胡广,黄建宇,杨胜雄,李沅衡,田冬梅,曹荆亚,周军明,邓雨恬. 琼东南海域冷泉微地震响应特征初探——以“海马”冷泉为例. 海洋地质与第四纪地质. 2024(06): 12-24 . 本站查看
    2. 田兆阳,贾永刚,朱超祁,卢龙玉,郭煦,冯学志,王慧,王宏威,何满潮,彭建兵. 海床流体迁移致灾机理与风险防控研究现状及展望. 中国工程科学. 2023(03): 131-140 . 百度学术

    其他类型引用(1)

图(21)
计量
  • 文章访问数:  2586
  • HTML全文浏览量:  672
  • PDF下载量:  85
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-09-05
  • 刊出日期:  2022-04-27

目录

/

返回文章
返回