Rethinking on shallow sedimentary sequence and its evolution of the Xiyang tidal channel in the Radial Sand Ridge Field, South Yellow Sea
-
摘要: 晚第四纪以来,黄河、长江都曾经江苏中部海岸注入南黄海,河海交互作用形成一系列沉积,全新世海侵后发育岸外辐射沙脊群。沙脊群西北部、由岸滩与沙脊所夹持的西洋潮流通道,位于北侧废黄河三角洲和南侧长江三角洲两大地貌单元间的过渡区,成为揭示不同大河交互作用下的海岸、陆架晚第四纪沉积层序模式的重要窗口。最近通过更多晚第四纪钻孔对比和浅层地震剖面集成研究发现:① 由于混乱的测年结果和陆相硬黏土层对比不当,造成之前基于07SR01孔和Y1孔构建的辐射沙脊群西洋潮流通道浅部沉积(标高−60 m以内)的年代框架有误,其主体应是晚更新世沉积且发育两个沉积旋回,末次冰盛期硬黏土层多被潮流侵蚀而缺失,表层全新世沉积厚度在水下沙脊处基本不足10 m,其余普遍不足5 m,甚至缺失;② 仅在西洋西北段稳定分布的浅层地震单元U3指示了MIS 3古黄河三角洲的南缘,自晚更新世以来西洋所在的江苏中部海岸可能深受古黄河物源的影响,这尚需在西洋西北段的关键位置钻取新孔,并结合已有浅层地震剖面和东南段钻孔来进一步研究证实。提出下一步工作将基于层序地层学方法,通过对已有控制性浅层地震剖面进行地震层序格架的三维可视化、提取地震单元和反射界面的空间分布特征,结合已有及新增控制性钻孔的沉积学和年代学研究,构建可靠年代框架、判识大河物源,并参考邻区钻孔资料,来探明西洋潮流通道的浅部沉积层序,反演其形成演化。Abstract: Since the Late Quaternary, both the Yellow River and Changjiang River entered into the South Yellow Sea flowing through the middle Jiangsu coast. As a result, a series of sediments have been deposited in this area controlled by the river-sea interactions. The Radial Sand Ridge Field (RSRF) off the middle Jiangsu coast has been formed after the Holocene transgression. The Xiyang tidal channel in the northwestern RSRF is constrained by the tidal flat coast and tidal ridges. It is located in the transition zone between the northern Abandoned Yellow River delta and southern modern Changjiang River delta. Therefore, it becomes the important window area to reveal the sedimentary sequence formed in the coast and continental shelf under the active interactions between different large rivers during the Late Quaternary. As to the upper strata with the depth less than 60 m below the current mean sea-level in the Xiyang tidal channel, there are still different viewpoints on its sedimentary sequence, chronology framework and evolution, while the concerned studies are still pretty limited. Recently, the results of further Late Quaternary stratigraphic correlations and synthesis study on shallow seismic profiles showed that, (1) Due to disordered dating results and improper correlation of terrigenous stiff mud layers, the chronology framework of Xiyang upper strata built previously based on core 07SR01 and Y1 is incorrect, the main part of the upper strata including two sedimentary cycles are the Late Pleistocene deposits and the stiff mud layer of the Last Glacial Maximum is often missing due to the tidal scouring, the thickness of surficial Holocene sediments are generally less than 10 m in the submerged sand ridges, and extensively less than 5 m in other places, or even zero in some places; (2) The shallow seismic unit 3 (U3) only steadily located in the northwestern part of the Xiyang tidal channel indicates the southern margin of the old Yellow River delta developed during MIS 3, and the middle Jiangsu coast in which the Xiyang tidal channel is located was probably influenced deeply by the old Yellow River sediments since the Late Pleistocene, however it is still necessary to recover a new sedimentary core in the key position of northwestern part, plus further study and verification based on the new core and other acquired shallow seismic profiles and cores in the southeastern part should be done. Thus, this paper proposed the further study plan as follows, based on the 3D visualization of the seismic sequence framework, the spatial characteristics of the seismic units and main reflection interfaces would be extracted. Furthermore, combined with the sedimentology and chronology studies of the existing and designed cores, the reliable chronology framework would be set up expectedly, and the provenance from large rivers would be identified. Applying the sequence stratigraphy method, referencing the adjacent published core data, it is targeted to ascertain the shallow sedimentary sequence in the Xiyang tidal channel, and to reveal its evolution.
-
泥底辟和泥火山具有相同的形成机制和相似的发育演化特征,都是由低密度、高塑性的泥页岩在浮力作用下向上运移而形成的地质构造,是深层超压流体释放的结果。泥底辟为深部富含甲烷流体向上运移提供了良好的通道,流体沿泥底辟或与泥底辟相连的断裂和裂隙向上运移,泥火山常位于泥底辟之上,是深层泥底辟发展到最终阶段的表现。大多数泥底辟和泥火山出现在以挤压构造背景为主的增生楔地区,如地中海[1-3]、巴巴多斯[4]、加的斯湾[2,5]、中国南海东北部[5]、马克兰增生楔[6]等,也有一些发生在伸展构造背景地区,如黑海[7],中国南海琼东南盆地、珠江口盆地等地区[8-10]。
海底泥底辟和泥火山具有重要的研究意义,泥底辟和泥火山活动伴生以甲烷为主的烃类流体,是岩石圈甲烷通量的重要来源[11],对理解海底深部的地球化学过程和全球碳循环具有重要的意义。已发现大量与泥底辟和泥火山相伴生的油气和天然气水合物资源,是海底资源勘查的重要标志[12]。海底泥火山和泥底辟活动可能会影响钻井作业、环网安装和管道路线等[13-14]。泥火山与活动断层和地震密切相关[15-16],是新构造运动的标志[17]。
冲绳海槽位于中国东海大陆架边缘(图1),具有非常独特的地质背景,是一个初期阶段的弧后伸展盆地。虽然冲绳海槽泥底辟和泥火山已有零星报道[19-21],但由于缺少详细的地球物理数据,对于冲绳海槽泥底辟和泥火山的系统性研究相对较少。近年来,在冲绳海槽西部陆坡进行了多道地震、海底浅剖、多波束和浅钻取样等地质调查,为深入研究该区泥底辟和泥火山的特征及分布规律提供了重要的数据基础。
1. 地质背景
冲绳海槽位于欧亚板块和太平洋板块的汇聚边缘,自中新世以来,由于太平洋板块向西俯冲,欧亚板块向东蠕散,琉球弧后开始扩张而形成,是一个边缘盆地,介于主动边缘和被动边缘之间,处于大陆裂谷作用的初始阶段[22]。冲绳海槽的西部陆坡与东海大陆架相连,紧邻东海大陆架外缘,呈NE-SW向弧形条带状分布,地形由大陆架向海槽骤然变陡,是大陆架向冲绳海槽的过渡带。由于新生代以来构造变动比较强烈,海底地形复杂,地貌类型多样,陆坡上发育一系列特殊的地质构造,如海底峡谷、滑塌体、断块隆基、泥火山等类型。冲绳海槽主要发育大陆坡和槽底平原两个地貌单元,局部发育龙王隆起构造带。大陆坡和槽底平原之间张性正断裂活动发育,在海底形成阶梯状地貌,海底地形坡度大,水深变化快,呈断块下沉,大陆坡水深约150 m,槽底平原水深超过2 000 m。
冲绳海槽发育两条重要的NW向走滑断裂,即吐嘎喇断裂和宫古断裂,将海槽划分为北、中、南3段,不同部位的构造活动存在差异,表现出不同的构造特征。北段和中段张裂作用开始于中中新世,表现为一系列雁列式地堑和半地堑,而南部弧后张裂始于早更新世[23],呈现出几乎对称的断裂系统。冲绳海槽主要发育NEE-NE、NNE-NS和NW向3组断裂。NEE-NE向断裂占据主导地位,与海槽现代张裂活动有关,控制着整体沉积和构造格架。NNE-NS向断裂表现为右行张扭,使冲绳海槽的轴部地堑发生进一步拉伸裂陷。NW向断裂横切构造走向,由中国东部大陆发育的NW向断裂向东扩展而形成,切割或限制NE向断裂[24],属于水平走滑断裂,大部分具有左旋性质[25-26]。
冲绳海槽沉积了巨厚的第四纪沉积层(图2),主要发育新近系地层,划分为全新统、更新统和上新统,以第四纪沉积为主。全新统为半深海软泥沉积物,厚度约几米至几十米,在海槽中心的张裂地堑内,厚度明显增大,在海槽中部的伊平屋地堑和南部的八重山地堑厚度可达30 m,并显示出浊流沉积特征。第四系在海槽轴部厚度最大,向两侧槽坡处减薄。上更新统为浊流沉积与半深海软泥沉积,地震反射以平行反射结构为主,在陆坡上部发育三角洲前积层。中更新统沉积层为以陆屑为主的海相沉积,厚度较大,地震反射呈亚平行或波状起伏的内部反射结构,厚度变化较大,几米至上千米,最厚可达1 500 m,一般北部厚度比南部大,并且由中心向两侧减薄。下更新统沉积层呈水平分布,与上覆地层呈斜交接触,厚度约1 000~2 000 m。上新统沉积层主要为浅海相泥岩,局部发育,主要发育在海槽两坡,其厚度在海槽两坡大,向海槽中心减薄直至消失[28-30]。冲绳海槽沉积中有机质含量高,碳含量为0.75%~1.25%。冲绳海槽长期以来一直是中国大陆风化剥蚀产物经搬运入海后的一个主要汇聚盆地,沉积物主要是陆源和生物源成分,富含有机物的沉积物快速堆积下来,大量的有机物得以保存,经细菌作用转变为大量的甲烷。具有较高的沉积速率,据估计,平均沉积速率为3~4 m/ka,短期内局部可达8 m/ka,较快的沉积速率容易形成沉积物欠压实区,构筑了良好的流体输导体系[31]。
2. 数据与方法
在冲绳海槽西部陆坡进行了高分辨率多道地震、浅地层剖面和多波束等地球物理调查。使用多道地震和浅地层剖面,可以发挥各自的优势,在穿透性和分辨率方面互补。本文高分辨率多道地震采用20 kJ电火花震源,48道采集,道间距6.25 m,炮间距12.5 m,电火花震源沉放深度2 m,电缆沉放深度2 m,最大炮检距331.25 m,采样间隔为0.5 ms。电火花震源主频较高,约200 Hz,频带宽(70~400 Hz),因此,具有更高的垂向与横向勘探分辨率,垂向分辨率可达1~3 m[32-33]。浅地层剖面所用的采集设备为船载TOPAS PS18参量声源浅地层剖面仪,该浅地层剖面仪基于水柱中的两个高强度声束在较高频率下(约18 kHz中心对称)的非线性相互作用而产生的低频声波,产生的信号具有较高的相对带宽(约80%),窄波束剖面(接近所发射的高频信号)没有旁瓣,适用于高分辨率浅地层剖面和水下目标探测,工作水深为20 m到全海深,其穿透能力较好,且分辨率非常高[34]。采用Chirp波作为发射信号,激发频率2~6 kHz,Chirp波是介于Ricker波和Bursts波之间的一种波形,兼顾了一定的分辨率与穿透能力,适用于水深1 000~2 500 m的海域。多波束数据采用船载EM122多波束系统,使用Qimera处理软件,原始数据经过船只吃水改正、声线折射改正、数据滤清、数据恢复等处理步骤,有效消除了异常点,保留了海底的各种地貌特征。
3. 泥底辟和泥火山的地球物理识别及特征
3.1 泥底辟特征
冲绳海槽西部陆坡泥底辟构造发育,大多数泥底辟在地震剖面中主要表现为横向同相轴的突然中断,内部呈不连续的杂乱或空白反射,围岩与其分界明显,但与火山相比,泥底辟与围岩之间没有明显的波阻抗界面。冲绳海槽西部陆坡发育多种类型的泥底辟,根据泥底辟的形态,可将其分为锥状(图3a)和蘑菇状(图3b)。由于泥底辟活动时上侵挤入底辟的垂向上拱作用力强,底辟拱起幅度高,其底辟能量达到两侧地层的破坏力,使围岩具有清晰的上翘牵引特征,如图3b。当流体充注沉积层,导致地震波速度降低,从而引起反射同相轴下拉,通常表现为水平反射层向下倾斜或弯曲(图3)。 根据泥底辟的规模、活动能量及侵入高度,可将泥底辟分为浅埋型和深埋型[35],深埋型泥底辟的特点是拱起的幅度较低,仅刺穿深度地层,被上覆巨厚的沉积层所覆盖,在地震剖面中呈低幅度背斜(图4a)。浅埋型泥底辟的活动能量相对较强,拱起幅度较高,但尚未完全刺穿上覆地层达到海底(图4b)。
3.2 泥火山特征
多波束资料显示,冲绳海槽西部陆坡泥火山发育,主要位于900~1 000 m水深处,泥火山规模各不相同,与世界其他地区的泥火山相比相对较小,高度从高于海底数米至几十米不等,一般不超过100 m,直径约100~600 m,坡度约1°~16°。根据泥火山的形态特征,可分为3种类型:第1种泥火山口较为平缓,高度和坡度较小(图5),该泥火山仅高出海底约2~4 m,坡度1°~2°,直径约250 m,内部呈空白反射,两翼地层没有明显的上拱(图5b)。第2类泥火山的顶部呈复杂形状,尺寸相对较大(图6),该泥火山口呈不规则形状,直径约300~600 m,高出海底之上约20 m。第3类泥火山呈圆锥状,高度和坡度相对较大(图7),该泥火山高度约为海底之上400 m,坡度约15°(图7a),通道内部呈空白反射,两翼地层存在明显上拱(图7b)。
图 5 第1种类型泥火山多波束地形图和浅地层剖面a. 多波束地形图;b. 过泥火山的浅地层剖面,测线位置如图5a所示。Figure 5. Multi-beam bathymetry map and sub-bottom profile of the first type of mud volcanoa. multi-beam bathymetry map; b. the sub-bottom profile crossing the mud volcano, see Fig. 5a for location.图 6 不规则状泥火山口多波束地形图和浅地层剖面a. 多波束地形图;b. 过泥火山的为浅地层剖面,测线位置如图6a所示。Figure 6. Multi-beam bathymetry map and sub-bottom profile of the irregular mud volcano summit calderaa. multi-beam bathymetry map; b. the sub-bottom profile crossing the mud volcano. See Fig.6a for location.图 7 圆锥状泥火山多波束地形图和浅地层剖面a. 多波束地形图;b. 过泥火山的浅地层剖面,测线位置如图7a所示。Figure 7. Multi-beam bathymetry map of conical mud volcanoesa. multi-beam bathymetry map; b. the sub-bottom profile crossing the mud volcano. See Fig.7a for location.3.3 泥底辟和泥火山与甲烷流体活动
孔隙水地球化学特征是研究甲烷渗漏的重要手段,对冲绳海槽西部陆坡泥火山发育区重力柱取样获得的沉积物进行了孔隙水研究,研究成果揭示了泥火山发育区的沉积物中富含甲烷流体,甲烷气源为热解成因或以热解成因为主的混合成因气体[36-38]。
泥底辟和泥火山构造具有较强的气体渗漏作用[39],因此,通常在其顶部或两侧存在明显的“亮点”强振幅异常反射 (图8)。气烟囱是底辟作用发展至强刺穿—塌陷阶段的结果,常伴随泥底辟出现,位于泥底辟之上。图8剖面发育规模较大的泥底辟,形成于早更新世以前,仅刺穿早更新世地层。该泥底辟呈圆锥状,顶部存在强振幅异常和气烟囱通道,气烟囱内部呈杂乱弱振幅反射,具有明显的“下拉”特征。随着泥底辟的活动和甲烷流体的运移及喷发使海底在气烟囱上部形成麻坑,进一步证明了甲烷流体活动的存在。
泥火山为甲烷流体向海底运移提供了良好的通道,图9为浅地层剖面,该剖面中发育3处泥火山,泥火山内部表现为宽度与泥火山直径相近的垂直空白带,泥火山内部和两翼围岩可见明显的“上拉”特征,泥火山顶部可见抛物线状绕射波,高约20 ms,推测为气体运移到水体中所形成的羽状流,浅层沉积物的流动和甲烷流体的喷发在泥火山周边形成环形凹陷(图10)。
图11所示泥火山是冲绳海槽西部陆坡横向规模最大的泥火山,该泥火山位于水深约930 m处,发育于泥底辟之上,底辟顶部发育多个规模较小的正断层或裂隙,整个泥火山通道内部均可见断裂或裂隙,但未达海底。泥火山左侧存在一些延伸至海底的正断层,规模相对较大,方向大致与冲绳海槽的走向平行,这些断层或裂隙为流体运移提供了良好的通道。由瞬时频率剖面显示,泥火山和泥底辟内部呈低频特征,推测为气体的存在导致了高频的快速衰减。在泥火山周围可观察到一些气烟囱,表现为低频特征,地震波呈“上拉”或“下拉”特征,泥火山通道两侧存在“亮点”强振幅异常反射(图12),以上证据表明泥火山周边存在甲烷流体活动。
图 11 研究区最大的泥火山a. 和b分别为过泥火山的多道地震剖面和浅地层剖面,位置如图11c所示;c. 多波束地形图;d. 瞬时频率属性剖面。Figure 11. The largest mud volcano in the studied areaa. and b. are multi-channel seismic section and sub-bottom profile crossing the mud volcano, See Fig.11c for location.; c. multi-beam bathymetry map; d. instantaneous frequency profile.4. 讨论
通常情况下,泥火山形成的主要驱动力是构造挤压作用,但是,冲绳海槽是一个高热流背景下的弧后盆地,没有明显的构造挤压作用。结合冲绳海槽区域构造特征和构造演化,分析认为,泥火山的形成动力演化的动力学过程与成因主要包括3个方面,即区域拉张作用形成的构造薄弱带,快速沉积造成的超压和浮力以及流体驱动作用。
区域拉张作用是触发泥火山形成的关键因素[40]。冲绳海槽是活动大陆边缘弧后盆地的早期演化阶段,同时又具有被动大陆边缘拉张裂离的特点[26],拉张作用形成大量的断裂和裂缝,由地震资料显示(图13),冲绳海槽西部陆坡发育大量的NE向正断层,近平行于构造走向,呈雁列状展布,大多正断层直达海底,表明这些断裂至今仍处于活动中。断裂活动造成易于遭受破坏的构造薄弱带,为深部超压的释放提供了通道,进而为泥底辟和泥火山的形成提供了驱动力。研究区发现的泥火山和泥底辟主要集中于断裂发育区,大部分泥火山沿着活动断裂分布。
快速沉积造成的超压和浮力作用是冲绳海槽泥火山形成的主要动力。冲绳海槽沉积数千米厚度的上新统—更新统地层,在冰川时期,海平面下降导致大陆架变窄,长江携带大量的陆源物质直接输送到大陆架,在冲绳海槽西部陆坡附近快速沉降[41],因此,冲绳海槽西部陆坡具有较高的沉积速率,岩心测年分析结果显示,冲绳海槽沉积速率一般为10~40 cm/ka,最高可达80 cm/ka[30]。快速沉积是超压形成的主要因素,当快速沉积导致覆岩载荷急剧增加时,孔隙流体无法排出,导致孔隙体积减小,不能达到平衡。然后,孔隙流体将承受部分载荷压力,导致动水压力大于静水压力,从而产生超压[42]。超压是泥火山形成的首要条件。当孔隙流体压力超过内力或静岩压力时,将会产生垂直的水力压裂。超压地层最初被上部地层隔离,水力压裂形成的裂隙将打破上部地层,形成流体运移通道[40]。快速的沉积作用使黏土层不断地被浅海陆源碎屑物埋藏,导致黏土层中的水也被封闭起来,随着埋深的增大,处于封闭状态孔隙中的流体受到上覆地层的负荷,压力逐渐升高,从而形成欠压实的黏土岩。同时由于高密度的陆源碎屑物堆积在泥岩层之上,形成密度倒转。密度倒转欠压实的泥岩常具有高压异常,密度较小,由密度差而产生的浮力使泥核向上生长发育,从而形成泥底辟构造。泥底辟的形成为流体运移提供了通道,而流体的排出造成浮力作用增加,从而进一步促进泥火山的形成。分析可知,泥火山和气烟囱大多发育在泥底辟上部,且流体活动对冲绳海槽研究区泥火山型构造的形成起到重要的作用。当泥底辟发育到喷发阶段,大量流体喷出,造成孔隙度增加、密度减小,导致浮力急剧增加,进而形成泥火山,而麻坑则是深部流体通过流体通道在海底强烈快速喷逸或缓慢渗漏而形成的海底地貌[8],常与泥火山相伴生。
冲绳海槽西部陆坡泥底辟和泥火山通常发育于断裂活动强烈的区域。当向上运移的流体受到不透水层的阻挡,断裂等构造薄弱带为流体的向上运移提供了良好的运移通道。首先,在浮力和不平衡压实作用下,低密度泥岩在超压带内发生塑性变形并上拱,形成泥底辟的初始阶段。早期底辟形成的背斜形态与泥岩层热流活动的增加共同作用,导致底辟核部流体压力进一步增大。当孔隙流体压力超过内力或静岩压力时,形成垂直水力压裂。水力压裂为超压力流体的向上运移提供了良好的通道,随着流体活动和水力压裂的进一步加剧而与构造断裂相连,超压流体和泥岩沿着通道进一步刺穿,从而形成泥底辟。最后,晚期泥底辟强烈刺穿围岩,形成压力急剧下降,气体溶解度降低,泥底辟内大量气体排出,造成孔隙度增加,密度下降,进一步加大了泥底辟的浮力。孔隙流体和大量气体通过泥底辟周缘输导通道大量逸散、喷发,形成气烟囱,随之在海底形成泥火山或麻坑。泥火山、麻坑的发育反映了流体渗漏强度或输导能力的差异。
5. 结论
(1)冲绳海槽西部陆坡泥底辟和泥火山发育,多发育于断裂活动强烈的区域,泥底辟和泥火山顶部或两翼存在强振幅异常,内部表现为低频特征,泥火山和气烟囱多发现于泥底辟上方,随着泥底辟的活动和甲烷流体的运移及喷发使海底在气烟囱上部的局部形成麻坑,进一步证明了泥底辟和泥火山与甲烷流体活动存在密切的联系。
(2)泥火山和气烟囱大多发育在泥底辟上部,且流体活动对冲绳海槽研究区泥火山型构造的形成起到重要的作用。当泥底辟发育到喷发阶段,大量流体喷出,造成孔隙度增加、密度减小,导致浮力急剧增加,进而形成泥火山。
(3)冲绳海槽是一个高热流背景下的弧后盆地,没有明显的构造挤压作用。结合冲绳海槽区域构造特征和构造演化分析认为,泥火山和泥底辟的形成演化的动力学过程与成因主要包括3个方面,即区域拉张作用形成的构造薄弱带、快速沉积造成的超压和浮力作用以及流体的驱动作用。
-
图 3 辐射沙脊群西洋潮流通道的浅层地震剖面测线和钻孔位置
注:因西洋及周边区域缺乏最新完整的水深实测资料,故图3的底图水深取自1979年海图,加之辐射沙脊群局部区域动力地貌调整明显,因而此图上西洋周边潮滩和沙脊形态与近期遥感影像存在一定差异。
Figure 3. Location of shallow seismic profiles and sedimentary cores in the Xiyang tidal channel, Radial Sand Ridge Filed
图 6 西洋潮流通道东南段07SR01孔与G39孔、Y1孔沉积层序对比
07SR01孔据文献[50-51]改绘,G39孔据文献[61]改绘,Y1孔据文献[53,62]改绘,海面变化曲线据文献[11]改绘。
Figure 6. Stratigraphic correlation among core 07SR01, G39 and Y1 in the southeastern part of Xiyang tidal channel
Core 07SR01 was modified after reference [50-51], Core G39 was modified after reference [61], Core Y1 was modified after reference [53,62], Curve of sea-level changes was modified after reference [11].
图 7 大丰港西北侧DFA08孔揭露的典型第二陆相沉积层及其沉积环境解释
岩心照片由江苏省有色金属华东地质勘查局提供,图上右侧数值为岩心段埋深值。
Figure 7. A typical second continental sedimentary layer revealed by core DFA08 in the northwest of Dafeng Port and its interpretation of sedimentary environments
The core photo was provided by East China Geological Exploration Bureau of Nonferrous Metals, Jiangsu Province. The value on the right of the figure is the buried depth of the core section.
表 1 西洋潮流通道周围第一陆相层底部和上覆沉积的14C测年数据
Table 1 14C dating ages of the bottom and overlying deposits of the first continental layer around the Xiyang tidal channel
钻孔编号 地理位置 埋深/m 测年材料 14C年龄
/aBP数据来源 PY19 东台新曹 33 泥炭 36470±2000 文献[65] DF02 大丰港区陆域 20.5 软体动物壳 7040±30 文献[69] SC 东台三仓 8 软体动物壳 670±30 文献[74] 21.5 软体动物壳 5890±180 文献[75] JC-1204 东台三仓 10.86 软体动物壳 1090±30 文献[71] 14.09 软体动物壳 4040±30 YZ08 东台弶港 7.38 软体动物壳 640±30 文献[70] 8.28 软体动物壳 690±30 10.68 软体动物壳 770±30 14.18 软体动物壳 830±30 19.22 软体动物壳 1140±30 19.73 软体动物壳 1070±30 20.22 软体动物壳 1000±30 22.64 炭屑 3870±30 25.41 软体动物壳 5300±30 29.42 软体动物壳 8360±30 Y5 高泥
(西洋南侧)3.08 软体动物壳 520±30 文献[53] 5.85 植物碎屑 560±30 10.12 软体动物壳 690±30 15.24 软体动物壳 790±30 17.26 软体动物壳 880±30 19.48 软体动物壳 6180±30 -
[1] 高抒. 海岸与陆架沉积: 动力过程、全球变化影响和地层记录[J]. 第四纪研究, 2010, 30(5):856-863 doi: 10.3969/j.issn.1001-7410.2010.05.01 GAO Shu. Coastal and shelf sedimentation in association with dynamic processes, global change impacts, and stratigraphic records: an overview of the scientific problems [J]. Quaternary Sciences, 2010, 30(5): 856-863. doi: 10.3969/j.issn.1001-7410.2010.05.01
[2] 中国科学院. 中国学科发展战略: 海岸海洋科学[M]. 北京: 科学出版社, 2016: 1-6. Chinese Academy of Sciences. China Subject Development Strategy: Coastal Ocean Science[M]. Beijing: Science Press, 2016: 1-6.
[3] Gao S, Collins M B. Holocene sedimentary systems on continental shelves [J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021
[4] Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum [J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007
[5] Saito Y, Wei H L, Zhou Y Q, et al. Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China [J]. Journal of Asian Earth Sciences, 2000, 18(4): 489-497. doi: 10.1016/S1367-9120(99)00080-2
[6] Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene [J]. Geomorphology, 2001, 41(2-3): 219-231. doi: 10.1016/S0169-555X(01)00118-0
[7] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009
[8] 薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004, 26(1):48-61 XUE Chunting, ZHOU Yongqing, ZHU Xionghua. The Huanghe River course and delta from end of Late Pleistocene to the 7th century BC [J]. Acta Oceanologica Sinica, 2004, 26(1): 48-61.
[9] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008
[10] Liu J, Saito Y, Wang H, et al. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea [J]. Journal of Asian Earth Sciences, 2009, 36(4-5): 318-331. doi: 10.1016/j.jseaes.2009.06.007
[11] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003
[12] Liu J, Kong X H, Saito Y, et al. Subaqueous deltaic formation of the Old Yellow River (AD 1128-1855) on the western South Yellow Sea [J]. Marine Geology, 2013, 344: 19-33. doi: 10.1016/j.margeo.2013.07.003
[13] 夏非, 张永战, 王瑞发, 等. 苏北废黄河水下三角洲沉积范围研究述评[J]. 地理学报, 2015, 70(1):29-48 doi: 10.11821/dlxb201501003 XIA Fei, ZHANG Yongzhan, WANG Ruifa, et al. Review for the studies on sedimentation range of the Abandoned Yellow River subaqueous delta, North Jiangsu plain coast [J]. Acta Geographica Sinica, 2015, 70(1): 29-48. doi: 10.11821/dlxb201501003
[14] Xu Q M, Yang J L, Yuan G B, et al. Stratigraphic sequence and episodes of the ancient Huanghe Delta along the southwestern Bohai Bay since the LGM [J]. Marine Geology, 2015, 367: 69-82. doi: 10.1016/j.margeo.2015.05.008
[15] Xue C T, Qin Y C, Ye S Y, et al. Evolution of Holocene ebb-tidal clinoform off the Shandong Peninsula on East China Sea shelf [J]. Earth-Science Reviews, 2018, 177: 478-496. doi: 10.1016/j.earscirev.2017.12.012
[16] Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene-Holocene sea-level changes [J]. Journal of Sedimentary Research, 2002, 72(6): 884-897. doi: 10.1306/052002720884
[17] Li C X, Wang P, Sun H P, et al. Late Quaternary incised-valley fill of the Yangtze delta (China): its stratigraphic framework and evolution [J]. Sedimentary Geology, 2002, 152(1-2): 133-158. doi: 10.1016/S0037-0738(02)00066-0
[18] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
[19] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system [J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003
[20] Gao S. Holocene shelf-coastal sedimentary systems associated with the Changjiang River: An overview [J]. Acta Oceanologica Sinica, 2013, 32(12): 4-12. doi: 10.1007/s13131-013-0390-5
[21] Yang S Y, Bi L, Li C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[M]//Clift P D, Harff J, Wu J, et al. River-Dominated Shelf Sediments of East Asian Seas. Geological Society, London, Special Publications, 2016, 429: 137-152.
[22] Fan D D, Wu Y J, Zhang Y, et al. South Flank of the Yangtze Delta: Past, present, and future [J]. Marine Geology, 2017, 392: 78-93. doi: 10.1016/j.margeo.2017.08.015
[23] Wang Z H, Saito Y, Zhan Q, et al. Three-dimensional evolution of the Yangtze River mouth, China during the Holocene: impacts of sea level, climate and human activity [J]. Earth-Science Reviews, 2018, 185: 938-955. doi: 10.1016/j.earscirev.2018.08.012
[24] Xu T Y, Shi X F, Liu S F, et al. Formation processes and evolution of Holocene sediments in the Yangtze offshore area: A review and new interpretation on the response to sea-level rise and deltaic progradation [J]. Quaternary International, 2018, 490: 33-42. doi: 10.1016/j.quaint.2018.05.031
[25] Zhang X, Dalrymple R W, Lin C M. Facies and stratigraphic architecture of the late Pleistocene to early Holocene tide-dominated paleo-Changjiang (Yangtze River) delta [J]. Geological Society of America Bulletin, 2018, 130(3-4): 455-483. doi: 10.1130/B31663.1
[26] Cao C, Cai F, Zheng Y L, et al. Temporal and spatial characteristics of sediment sources on the southern Yangtze Shoal over the Holocene [J]. Scientific Reports, 2018, 8: 15577. doi: 10.1038/s41598-018-33757-5
[27] Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter [J]. Journal of Asian Earth Sciences, 2018, 151: 1-15. doi: 10.1016/j.jseaes.2017.10.017
[28] Liu S H, Feng A P, Liu C G, et al. Seismic stratigraphy and morphology of the Holocene progradational system beneath Bohai Bay, Bohai Sea: Lobate evolution of a multi-sourced subaqueous fluviodeltaic complex [J]. Marine Geology, 2019, 409: 31-47. doi: 10.1016/j.margeo.2018.12.009
[29] 王颖. 黄海陆架辐射沙脊群[M]. 北京: 中国环境科学出版社, 2002: 229-374. WANG Ying. Radiative Sandy Ridge Field on Continental Shelf of the Yellow Sea[M]. Beijing: China Environmental Science Press, 2002: 229-374.
[30] 王颖. 南黄海辐射沙脊群环境与资源[M]. 北京: 海洋出版社, 2014: 1-293. WANG Ying. Environment and Resource of the Radial Sand Ridge Field in the South Yellow Sea[M]. Beijing: China Ocean Press, 2014: 1-293.
[31] 刘振夏, 夏东兴. 中国近海潮流沉积沙体[M]. 北京: 海洋出版社, 2004: 156-175. LIU Zhenxia, XIA Dongxing. Tidal Sands in the China Seas[M]. Beijing: China Ocean Press, 2004: 156-175.
[32] Wang Y, Zhang Y Z, Zou X Q, et al. The sand ridge field of the South Yellow Sea: Origin by river-sea interaction [J]. Marine Geology, 2012, 291-294: 132-146. doi: 10.1016/j.margeo.2011.01.001
[33] 李成治, 李本川. 苏北沿海暗沙成因的研究[J]. 海洋与湖沼, 1981, 12(4):321-331 LI Chengzhi, LI Benchuan. Studies on the formation of Subei Sand Cays [J]. Oceanologia et Limnologia Sinica, 1981, 12(4): 321-331.
[34] 周长振, 孙家淞. 试论苏北岸外浅滩的成因[J]. 海洋地质研究, 1981, 1(1):83-91 ZHOU Changzhen, SUN Jiasong. On the genesis of the shoal off North Jiangsu [J]. Marine Geological Research, 1981, 1(1): 83-91.
[35] 杨长恕. 弶港辐射沙脊成因探讨[J]. 海洋地质与第四纪地质, 1985, 5(3):35-44 YANG Changshu. On the origin of Jianggang Radial Sand Ridges in Yellow Sea [J]. Marine Geology & Quaternary Geology, 1985, 5(3): 35-44.
[36] Zhu Y R, Chen Q Q. On the origin of the radial sand ridges in the Southern Yellow Sea: Results from the modeling of the paleoradial tidal current fields off the paleo-Yangtze River estuary and Northern Jiangsu coast [J]. Journal of Coastal Research, 2005, 21(6): 1245-1256.
[37] 杜家笔, 汪亚平. 南黄海辐射沙脊群地貌演变的模拟研究[J]. 南京大学学报: 自然科学, 2014, 50(5):636-645 DU Jiabi, WANG Yaping. Evolution simulation of radial sand ridges in the southern Yellow Sea [J]. Journal of Nanjing University: Natural Sciences, 2014, 50(5): 636-645.
[38] Chen K F, Zheng J H, Zhang C, et al. The evolution characteristics of main waterways and their control mechanism in the radial sand ridges of the southern Yellow Sea [J]. Acta Oceanologica Sinica, 2017, 36(3): 91-98. doi: 10.1007/s13131-017-1042-y
[39] 傅命佐, 朱大奎. 江苏岸外海底沙脊群的物质来源[J]. 南京大学学报: 自然科学, 1986, 22(3):536-544 FU Mingzuo, ZHU Dakui. The sediment sources of the offshore submarine sand ridge field of the coast of Jiangsu province [J]. Journal of Nanjing University: Natural Sciences Edition, 1986, 22(3): 536-544.
[40] 张忍顺, 陈才俊. 江苏岸外沙洲演变与条子泥并陆前景研究[M]. 北京: 海洋出版社, 1992: 93-100. ZHANG Renshun, CHEN Caijun. Evolution of Jiangsu Offshore Banks (Radial Offshore Tidal Sands) and Probability of Tiaozini Sands Merged into Mainland[M]. Beijing: China Ocean Press, 1992: 93-100.
[41] 王建, 沙润, 汪永进, 等. 江苏中部粉砂淤泥质滩岸大剖面所揭示的滩岸发育过程与环境演变[J]. 沉积学报, 1997, 15(S1):51-56 WANG Jian, SHA Run, WANG Yongjin, et al. Coastal development and environmental evolution in central part of Jiangsu Province derived from a long drilling section [J]. Acta Sedimentologica Sinica, 1997, 15(S1): 51-56.
[42] Li C X, Zhang J Q, Fan D D, et al. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China [J]. Marine Geology, 2001, 173(1-4): 97-120. doi: 10.1016/S0025-3227(00)00169-9
[43] 殷勇, 邹欣庆, 朱大奎, 等. 南黄海辐射沙洲西太阳沙海域钻孔沉积环境分析[J]. 第四纪研究, 2007, 27(5):724-734 doi: 10.3321/j.issn:1001-7410.2007.05.014 YIN Yong, ZOU Xinqing, ZHU Dakui, et al. Core-recorded sedimentary environment of radial tidal sand ridge at Jiangsu offshore, South Yellow Sea, East China [J]. Quaternary Sciences, 2007, 27(5): 724-734. doi: 10.3321/j.issn:1001-7410.2007.05.014
[44] 李清, 殷勇. 南黄海辐射沙脊群里磕脚11DT02孔沉积相分析及环境演化[J]. 地理研究, 2013, 32(10):1843-1855 LI Qing, YIN Yong. Sedimentary facies and evolution of the Likejiao sandy ridge, in the South Yellow Sea offshore area, eastern China [J]. Geographical Research, 2013, 32(10): 1843-1855.
[45] 王羽涵, 殷勇, 夏非, 等. 南黄海辐射沙脊群苦水洋海域沉积地层特征及其环境演变[J]. 南京大学学报: 自然科学, 2014, 50(5):564-575 WANG Yuhan, YIN Yong, XIA Fei, et al. Characteristics of sedimentary strata and environmental changes of Kushuiyang tidal channel in the radial tidal ridge field, southern Yellow Sea [J]. Journal of Nanjing University: Natural Sciences, 2014, 50(5): 564-575.
[46] 季云, 殷勇, 李清, 等. 南黄海辐射沙脊群苦水洋海域晚更新世以来沉积特征及环境演化[J]. 南京大学学报: 自然科学, 2015, 51(3):641-657 JI Yun, YIN Yong, LI Qing, et al. The core-recorded strata and environmental changes since the Late Pleistocene in Kushuiyang area of the radial tidal sandy ridge system, Jiangsu offshore, southern Yellow Sea [J]. Journal of Nanjing University: Natural Sciences, 2015, 51(3): 641-657.
[47] Sun Z Y, Li G, Yin Y. The Yangtze River deposition in southern Yellow Sea during Marine Oxygen Isotope Stage 3 and its implications for sea-level changes [J]. Quaternary Research, 2015, 83(1): 204-215. doi: 10.1016/j.yqres.2014.08.008
[48] Wang L S, Hu S Y, Yu G, et al. Paleoenvironmental reconstruction of the radial sand ridge field in the South Yellow Sea (east China) since 45 ka using the sediment magnetic properties and granulomety [J]. Journal of Applied Geophysics, 2015, 122: 1-10. doi: 10.1016/j.jappgeo.2015.08.002
[49] 王颖, 朱大奎, 周旅复, 等. 南黄海辐射沙脊群沉积特点及其演变[J]. 中国科学: D辑, 1998, 28(5):385-393 WANG Ying, ZHU Dakui, ZHOU Lvfu, et al. Evolution of radiative sand ridge field of the South Yellow Sea and its sedimentary characteristics [J]. Science in China: Series D, 1998, 28(5): 385-393.
[50] 夏非, 殷勇, 王强, 等. MIS 3晚期以来江苏中部海岸的层序地层[J]. 地质学报, 2012, 86(10):1696-1712 doi: 10.3969/j.issn.0001-5717.2012.10.009 XIA Fei, YIN Yong, WANG Qiang, et al. Sequence stratigraphy of the central part of North Jiangsu coasts since late MIS 3, Eastern China [J]. Acta Geologica Sinica, 2012, 86(10): 1696-1712. doi: 10.3969/j.issn.0001-5717.2012.10.009
[51] Xia F, Zhang Y Z, Wang Q, et al. Evolution of sedimentary environments of the middle Jiangsu coast, South Yellow Sea since late MIS 3 [J]. Journal of Geographical Sciences, 2013, 23(5): 883-914. doi: 10.1007/s11442-013-1051-5
[52] 夏非. 辐射沙脊群西洋潮流通道的浅部层序地层与沉积环境演化[D]. 南京大学博士学位论文, 2016: 1-187. XIA Fei. Shallow sequence stratigraphy and sedimentary evolution of the Xiyang tidal channel in the Radial Sand Ridge Field[D]. Doctor Dissertation of Nanjing University, 2016: 1-187.
[53] Yin Y, Jia P H, Li Q. Sedimentary facies and Late Pleistocene-Holocene evolution of the northern Jiangsu coast and radial tidal ridge field, South Yellow Sea, China[M]//Tessier B, Reynaud J Y. Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference. Chichester: John Wiley & Sons, Ltd., 2016: 293-312.
[54] 刘阿成, 陆琦, 吴巍. 南黄海太阳沙西侧海域晚第四系地震层序和沉积环境演变[J]. 海洋学研究, 2017, 35(2):11-22 doi: 10.3969/j.issn.1001-909X.2017.02.002 LIU A-cheng, LU Qi, WU Wei. Seismic sequences and sedimentary environment evolution of Late Quaternary west of Taiyangsha Ridge in the South Yellow Sea [J]. Journal of Marine Sciences, 2017, 35(2): 11-22. doi: 10.3969/j.issn.1001-909X.2017.02.002
[55] 王辉, 夏非, 张永战, 等. 江苏中部海岸西洋潮流通道区域晚更新世古地貌与沉积体系研究[J]. 海洋学报, 2019, 41(3):134-142 WANG Hui, XIA Fei, ZHANG Yongzhan, et al. Paleo-geomorphology and sedimentary systems of the Xiyang tidal channel on the central Jiangsu coast at the late Pleistocene [J]. Haiyang Xuebao, 2019, 41(3): 134-142.
[56] 杨子赓. 南黄海陆架晚更新世以来的沉积及环境[J]. 海洋地质与第四纪地质, 1985, 5(4):1-19 YANG Zigeng. Sedimentology and environment in South Huanghai Sea shelf since late Pleistocene [J]. Marine Geology & Quaternary Geology, 1985, 5(4): 1-19.
[57] 任美锷. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986: 1-134. REN Mei’e. Report for Comprehensive Investigation on Recourses of Coastal Zones and Tidal Flats in Jiangsu Province[M]. Beijing: China Ocean Press, 1986: 1-134.
[58] 殷勇, 张宁. 南黄海辐射沙脊群西洋潮道晚更新世晚期以来沉积环境[J]. 古地理学报, 2010, 12(5):618-628 doi: 10.7605/gdlxb.2010.05.011 YIN Yong, ZHANG Ning. Sedimentary environments of Xiyang tidal channel of radial tidal sand ridge system since the late period of Late Pleistocene in South Yellow Sea [J]. Journal of Palaeogeography, 2010, 12(5): 618-628. doi: 10.7605/gdlxb.2010.05.011
[59] 王强, 吕金福. 海面变化与海岸变迁[M]//李汉鼎, 吕金福, 王强, 等. 中国北方沿海泥炭与环境. 北京: 海洋出版社, 1995: 109-128. WANG Qiang, LV Jinfu. Eustacy and coastal movement[M]//LI Handing, LV Jinfu, WANG Qiang, et al. Peat and Environment on Coastal Area of the North China. Beijing: China Ocean Press, 1995: 109-128.
[60] 王强, 李从先. 中国东部沿海平原第四系层序类型[J]. 海洋地质与第四纪地质, 2009, 29(4):39-51 WANG Qiang, LI Congxian. The type of Quaternary sequence in the east China coastal plain [J]. Marine Geology & Quaternary Geology, 2009, 29(4): 39-51.
[61] 南京师范大学地理系海岸与第四纪研究中心. 江苏省大丰港5000吨级码头浅部地层分层特征、成因、时代研究报告[R]. 1995. Research Center of Coast and Quaternary Sciences, Department of Geography, Nanjing Normal University. Research Report for the Sedimentary Characteristics, Origins, and Ages of the Shallow Stratigraphy of Wharfs for 5000-Tonnage Ships in Dafeng Port, Jiangsu Province[R]. 1995.
[62] 南京大学海岸与海岛开发教育部重点实验室. 海洋公益性行业科研专项经费项目“南黄海辐射沙脊群空间开发利用及生态环境评价技术”技术报告[R]. 2014. The Key Laboratory of Coast and Island Development of Ministry of Education, Nanjing University. Special Fund for Marine Scientific Research in the Public Interest: Technical Report for the Space Utilization and Ecological Environment Evaluation Technology in the Radial Sand Ridge Filed, South Yellow Sea[R]. 2014.
[63] 严钦尚, 许世远. 苏北平原全新世沉积与地貌研究[M]. 上海: 上海科学技术文献出版社, 1993: 1-83. YAN Qinshang, XU Shiyuan. Holocene Deposits and Geomorphological Processes on the Northern Plain of the Jiangsu Province, China[M]. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 1993: 1-83.
[64] 李从先, 汪品先. 长江晚第四纪河口地层学研究[M]. 北京: 科学出版社, 1998: 1-222. LI Congxian, WANG Pinxian. Late Quaternary Stratigraphy of the Yangtze River Delta[M]. Beijing: Science Press, 1998: 1-222.
[65] 丛友滋, 李文勤, 徐家声, 等. 南黄海滨岸一沉积岩芯磁性地层及气候地层的分析结果[J]. 地理学报, 1984, 39(1):105-114 doi: 10.3321/j.issn:0375-5444.1984.01.012 CONG Youzi, LI Wenqin, XU Jiasheng, et al. The analytical results of polar-strata and climatic-strata for one core from inshore of southern Huang-Hai [J]. Acta Geographica Sinica, 1984, 39(1): 105-114. doi: 10.3321/j.issn:0375-5444.1984.01.012
[66] 朱大奎, 柯贤坤, 高抒. 江苏海岸潮滩沉积的研究[J]. 黄渤海海洋, 1986, 4(3):19-27 ZHU Dakui, KE Xiankun, GAO Shu. Tidal flat sedimentation of Jiangsu coast [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1986, 4(3): 19-27.
[67] 江苏省水文地质工程地质勘察院. 江苏大丰港工程地质勘察报告(初步设计阶段)[R]. 1997. Jiangsu Province Institute of Hydrogeological and Marine Geological Exploration. Engineering Geology Survey Report of Jiangsu Dafeng Port (Preliminary Design Stage)[R]. 1997.
[68] 江苏省水文地质工程地质勘察院. 大丰港石油化工码头岩土工程勘察报告(初步设计及施工图设计阶段)[R]. 2008. Jiangsu Province Institute of Hydrogeological and Marine Geological Exploration. Geotechnical Investigation Report of Petrochemical Terminal of Dafeng Port (Preliminary Design and Construction Drawing Design Stage)[R]. 2008.
[69] 江苏省有色金属华东地质勘查局. 江苏省盐城地区海岸带地质环境调查与评价成果报告[R]. 2013. East China Geological Exploration Bureau of Nonferrous Metals, Jiangsu Province. Achievement Report of Survey and Evaluation of Coastal Geological Environments in Yancheng Area, Jiangsu Province[R]. 2013.
[70] 季云. 苏北海岸带弶港钻孔沉积相及沉积环境演化[D]. 南京大学硕士学位论文, 2015: 1-71. JI Yun. The core-recorded and sedimentary facies of late Pleistocene-Holocene environment evolution, Jianggang, northern Jiangsu coast, South Yellow Sea, eastern China[D]. Master Dissertation of Nanjing University, 2015: 1-71.
[71] 肖楠. 江苏弶港海岸带地区末次冰期以来沉积演化研究[D]. 中国海洋大学硕士学位论文, 2015: 1-75. XIAO Nan. The sedimentary evolution research of coastal areas in Jianggang of Jiangsu Province since Last Glacial Epoch[D]. Master Dissertation of Ocean University of China, 2015: 1-75.
[72] 江苏省有色金属华东地质勘查局. 大丰港经济区1: 2.5万工程地质勘查项目成果报告[R]. 2016. East China Geological Exploration Bureau of Nonferrous Metals, Jiangsu Province. Achievement Report of 1: 25000 Engineering Geological Exploration Project in Dafeng Port Economic Zone[R]. 2016.
[73] 夏非, 张永战. 苏北平原龙冈LG孔晚第四纪地层与环境演化记录[J]. 地理研究, 2018, 37(2):433-446 XIA Fei, ZHANG Yongzhan. Late Quaternary strata and environmental evolution record of core LG in Longgang, north Jiangsu plain, China [J]. Geographical Research, 2018, 37(2): 433-446.
[74] Yang S Y, Li C X, Jung H S, et al. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China [J]. Marine Geology, 2002, 186(3-4): 229-241. doi: 10.1016/S0025-3227(02)00335-3
[75] 杨守业, 李从先, 张家强. 苏北滨海平原冰后期古地理演化与沉积物物源研究[J]. 古地理学报, 2000, 2(2):65-72 doi: 10.3969/j.issn.1671-1505.2000.02.008 YANG Shouye, LI Congxian, ZHANG Jiaqiang. Palaeogeographic evolution of coastal plain and provenance study of postglacial sediments in North Jiangsu Province [J]. Journal of Palaeogeography, 2000, 2(2): 65-72. doi: 10.3969/j.issn.1671-1505.2000.02.008
[76] 顾兆峰, 张志珣, 刘怀山. 南黄海西部地区浅层气地震特征[J]. 海洋地质与第四纪地质, 2006, 26(3):65-74 GU Zhaofeng, ZHANG Zhixun, LIU Huaishan. Seismic features of shallow gas in the western area of the Yellow Sea [J]. Marine Geology & Quaternary Geology, 2006, 26(3): 65-74.
[77] 李晶, 张志珣, 张维冈, 等. 南黄海浅部埋藏古地貌的特征、分布及其工程影响[J]. 海洋地质前沿, 2011, 27(8):48-52 LI Jing, ZHANG Zhixun, ZHANG Weigang, et al. Shallowly-buried paleo-geomorphological features and distribution in the South Yellow Sea and their influence on marine engineering [J]. Marine Geology Frontiers, 2011, 27(8): 48-52.
[78] 孔祥淮, 刘健, 杜远生, 等. 南黄海西部滨浅海区灾害地质因素特征及分布规律[J]. 海洋地质与第四纪地质, 2012, 32(2):43-52 KONG Xianghuai, LIU Jian, DU Yuansheng, et al. Characteristics and distribution of geo-hazard factors in the western South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(2): 43-52.
-
期刊类型引用(3)
1. 陈蕾,冀卫东,陶小三,李荣富,王海波,朱海伦. 南黄海大丰海域海洋土动剪切模量和阻尼特征研究. 林业工程学报. 2025(02): 156-164 . 百度学术
2. 夏非,张永战,王丽. 苏北射阳河口NTCJ1钻孔沉积序列与年代再认识. 海洋地质与第四纪地质. 2022(06): 59-66 . 本站查看
3. 刘德政,夏非. 江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义. 海洋地质与第四纪地质. 2021(05): 210-220 . 本站查看
其他类型引用(1)