Tropical rainfall variations and human activities of last 1 000 years recorded by lake deposits on the Dongdao Island, Xisha Islands
-
摘要: 近1000年来区域气候变化模式的研究,是在人类活动与自然变率双重影响因素之下,正确预测和评估未来气候变化趋势的基石。众多的气候载体和代用指标, 揭示了热带海洋和季风变化等对中国不同地区气候的影响,但是关于热带区域的降雨特征与季风活动的关系仍然未有清晰的答案。本文选择西沙群岛东岛的牛塘湖泊,以湖泊沉积物的粒度组分含量和环境磁学参数为替代指标,探讨公元1000—1700年热带区域降雨变化规律及岛礁上记载的人类活动历史。结果表明,东岛的降雨受ENSO活动和热带辐合带移动的双重影响,ENSO的频繁活动和热带辐合带向南回撤均会促使热带区域降雨的增多,这一变化与季风气候呈现反向模式。岛上人类活动强盛时期发生在南宋和明代晚期,该时期区域降雨较多,气候湿润。同时,公元1000—1200年和1450—1600年在中国北方发生的两次强沙尘暴事件,在西沙群岛也有相应的记录,反映了北方粉尘物质在空气中长距离运移和沉降的模式。Abstract: A series of paleoclimate researches have been made in the South China Sea for the past 1000 years, that provided the insights to the understanding of regional climate change pattern and served as the basis to predict and evaluate the future trends of climate change under the joint actions of the human and the nature. Numerous natural archives and proxies are adopted to reveal the climate changes in different regions of China influenced by monsoon and tropical ocean processes. However, due to the lack of high-resolution climate records, our knowledge about the link between precipitation patterns and monsoon variability remains incomplete, particularly in the tropical region. In order to study the rainfall patterns and the history of anthropogenic activities in tropical zones during the time of AD 1000—1700, we studied such proxies as grain-size distribution and magnetic parameters collected from the sediments of the Cattle Pond on the Dongdao Island of the Xisha Islands. The results show that the precipitation on the Dongdao Island is mainly influenced by ENSO activities and the movements of the Intertropical Convergence Zone. Both of the factors will increase rainfall in the study area, which is opposed to the pattern of the Monsoon system. Human activities on the island were vigorous during the Southern Song Dynasty and the Late Ming Dynasty when the climate is humid and rich in rainfall. There are two periods characterized by sandstorms occurred in northern China during the time of AD 1000—1200 and AD 1450—1600 respectively in the Xisha Islands, reflecting the long-distance migration and precipitation of dust by air.
-
Keywords:
- tropical rainfall /
- human activity /
- dust record /
- Dongdao lake
-
-
图 1 西沙群岛、采样钻孔及公海湖位置
a. 西沙群岛以及公海湖的位置(黑色方框为西沙群岛的位置,红色圆点为公海湖的位置); b. 东岛的位置(黄色方框为牛塘湖泊的位置); c. 钻孔位置(黄色虚线为牛塘湖泊大体边界,红色方块为钻孔位置)。
Figure 1. Map of Xisha Islands and Gonghai Lake showing the location of the boreholes
a. The location of Xisha Islands and Gonghai Lake (the black box is the location of Xisha Islands and the red dot is the location of Gonghai Lake); b. The location of the Dongdao Island (the yellow box is the location of Cattle Pond); c. Borehole location (the yellow dotted line is the boundary of Cattle Pond, the red square is the drilling location).
图 2 3条钻孔岩性和磁化率对比
绿色数字为异常年龄点,红色数字为正常测定年龄;红色虚线代表3条钻孔对应的沉积层位。
Figure 2. Comparison of lithology and magnetic susceptibility of core DD-1, DD-2 and DD
The red numbers represent the normal ages while the green numbers represent the uncertain ages; The red dotted lines show the correlation depositional horizons among three boreholes.
图 3 牛塘湖泊沉积DD-1柱状样年龄-深度模型
实线代表平均年龄,左侧虚线代表最小年龄,右侧虚线代表最大年龄,三角形点代表校正后的测量数据,三角形点所在的线代表年龄误差。
Figure 3. Age-Depth model of borehole in Cattle Pond
The solid line represents the mean age; The left and right dotted lines represent the minimum and the maximum age respectively; The triangle symbols represent the calibrated AMS14C ages, and the line on the triangle represents the age error.
图 7 西沙群岛东岛牛塘湖泊表示的热带降雨与季风气候对比
a. 牛塘湖泊沉积物粒度,b. 牛塘湖泊介形虫壳体氧同位素[22],c. 海南岛双池岭玛珥湖沉积物粒度[32],d. 泰国Klang洞石笋氧同位素记录[33], e. 中国万象洞石笋氧同位素记录[30], f. 东太平洋加拉帕戈斯群岛El Junco湖砂记录[31]。年龄范围由4个全岩有机碳样品碳十四年龄测定限定。
Figure 7. Correlation of tropical rainfall and monsoon climate in Cattle Pond, Dongdao Island, Xisha Islands
a. Grain size of sediments in Cattle Pond, b. Oxygen isotope of Ostracoda shells in Cattle Pond[22], c. Grain-size of sediments in Maar Lake, Shuangchiling, Hainan Island[32], d. Oxygen isotope records of stalagmite in Kiang Cave, Thailand[33], e. Oxygen isotope records of stalagmites from the Wanxiang Cave, China[30], f. El Junco sand record, Gala´pagos Islands, eastern tropical Pacific[31].The age range was restricted by AMS14C of four bulk sediment samples.
图 8 西沙东岛牛塘湖泊记录的两次北方沙尘暴事件
a 牛塘湖泊沉积物粒度,b 公海湖泊沙尘暴记录[20],c 东岛粉尘记录指标(HIRM/SIRM)。灰色阴影表示两次沙尘暴发生的时期。
Figure 8. Two dust storm events recorded in the lake deposits on Xisha Islands
a. Grain size of sediments in Cattle Pond, b. Dust storm record of Gonghai Lake[20],c. Dust record proxy of Dongdao Island (HIRM/SIRM). Gray bars represent the periods during which the two dust storms occurred.
表 1 DD-1、DD-2和DD钻孔样品AMS 14C年龄测定结果
Table 1 AMS 14C dating results of core DD-1, DD-2 and DD
钻孔 样品编号 实验室编号 深度/cm 材料 常规年龄/aBP 校正年龄/(2σ,cal aAD) DD-1 DD-1018 521063 10 有孔虫 300± 30 1490—1602 DD-1039 513103 21.5 有孔虫 900 ± 30 1115—1210 DD-1072 513104 36 贝壳 720 ± 30 1246—1302 DD-1074 546086 40.5 有孔虫 900 ± 30 1115—1210 DD-1080 546088 43.5 有孔虫 880 ± 30 1117—1221 DD-1086 521064 46.5 有孔虫 960 ± 30 1063—1154 DD-1086 546089 46.5 有孔虫 970 ± 30 1063—1154 DD-1093 546090 50 有孔虫 700 ± 30 1262—1308 DD-1114 513105 57 贝壳 980 ± 30 1075—1154 DD-1117 513106 62 有孔虫 990 ± 30 989—1052 DD-1120 517595 63.5 有孔虫 990 ± 30 989—1052 DD-2 DD-286.5 546096 36.5 有孔虫 940 ± 30 1026—1158 DD-260.5 546095 49 种子 720 ± 30 1246—1302 DD-221-2 546094 69 有孔虫 1450 ± 30 561—651 DD-221 546093 69 种子 960 ± 30 1063—1154 DD-24.5 546092 77.5 种子 1130 ± 30 860—998 DD DD 121 513108 5 有孔虫 340 ± 30 1470—1639 DD 61.5 546098 34.75 种子 690 ± 30 1226—1312 DD 37 546097 47 种子 880 ± 30 1117—1221 DD 017 513107 57 有孔虫 1600 ± 30 400—538 -
[1] Oppo D W, Rosenthal Y, Linsley B K. 2, 000-year-long temperature and hydrology reconstructions from the indo-pacific warm pool [J]. Nature, 2009, 460(7259): 1113-1116. doi: 10.1038/nature08233
[2] Mann M E, Zhang Z H, Rutherford S, et al. Global signatures and dynamical origins of the little ice age and medieval climate anomaly [J]. Science, 2009, 326(5957): 1256-1260. doi: 10.1126/science.1177303
[3] Yan H, Sun L G, Wang Y H, et al. A record of the southern oscillation index for the past 2, 000 years from precipitation proxies [J]. Nature Geoscience, 2011, 4(9): 611-614. doi: 10.1038/ngeo1231
[4] Yan H, Wei W, Soon W, et al. Dynamics of the intertropical convergence zone over the western pacific during the little ice age [J]. Nature Geoscience, 2015, 8(4): 315-320. doi: 10.1038/ngeo2375
[5] Wang Y J, Cheng H, Edwards R L, et al. The holocene asian monsoon: links to solar changes and north atlantic climate [J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296
[6] Gu Y S, Liu H Y, Traoré D D, et al. ENSO-related droughts and ISM variations during the last millennium in tropical southwest China [J]. Climate Dynamics, 2020, 54(1): 649-659.
[7] Tan L C, Cai Y J, Cheng H, et al. High resolution monsoon precipitation changes on southeastern tibetan plateau over the past 2300 years [J]. Quaternary Science Reviews, 2018, 195: 122-132. doi: 10.1016/j.quascirev.2018.07.021
[8] Yamoah K A, Chabangborn A, Chawchai S, et al. A 2000-year leaf wax-based hydrogen isotope record from southeast asia suggests low frequency ENSO-like teleconnections on a centennial timescale [J]. Quaternary Science Reviews, 2016, 148: 44-53. doi: 10.1016/j.quascirev.2016.07.002
[9] 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32):3023-3035 doi: 10.1360/csb2015-60-32-3023 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the tibetan plateau [J]. Chinese Science Bulletin, 2015, 60(32): 3023-3035. doi: 10.1360/csb2015-60-32-3023
[10] Roxy M K, Ritika K, Terray P, et al. Drying of Indian subcontinent by rapid Indian ocean warming and a weakening land-sea thermal gradient [J]. Nature Communications, 2015, 6: 7423. doi: 10.1038/ncomms8423
[11] Kumar K K, Rajagopalan B, Hoerling M, et al. Unraveling the mystery of Indian monsoon failure during el niño [J]. Science, 2006, 314(5796): 115-119. doi: 10.1126/science.1131152
[12] Zhang J P, Lu H Y, Jia J W, et al. Seasonal drought events in tropical east asia over the last 60, 000 y [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49): 30988-30992. doi: 10.1073/pnas.2013802117
[13] Weiss H, Courty M A, Wetterstrom W, et al. The genesis and collapse of third millennium north mesopotamian civilization [J]. Science, 1993, 261(5124): 995-1004. doi: 10.1126/science.261.5124.995
[14] Kidder T R, Henry E R, Arco L J. Rapid climate Change-induced collapse of hunter-gatherer societies in the lower mississippi river valley between ca. 3300 and 2780 cal yr BP [J]. Science China Earth Sciences, 2017, 61(2): 178-189.
[15] Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the tibetan plateau after 3600 B.P [J]. Science, 2015, 347(6219): 248-250. doi: 10.1126/science.1259172
[16] Young K R. Biogeography of the anthropocene: domestication [J]. Progress in Physical Geography: Earth and Environment, 2016, 40(1): 161-174. doi: 10.1177/0309133315598724
[17] Heitkamp F, Sylvester S P, Kessler M, et al. Inaccessible andean sites reveal human-induced weathering in grazed soils [J]. Progress in Physical Geography: Earth and Environment, 2014, 38(5): 576-601. doi: 10.1177/0309133314544918
[18] Vannière B, Blarquez O, Rius D, et al. 7000-year human legacy of elevation-dependent european fire regimes [J]. Quaternary Science Reviews, 2016, 132: 206-212. doi: 10.1016/j.quascirev.2015.11.012
[19] Yasuda Y, Kitagawa H, Nakagawa T. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study [J]. Quaternary International, 2000, 73-74: 127-136. doi: 10.1016/S1040-6182(00)00069-0
[20] Chen F H, Chen S Q, Zhang X, et al. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP [J]. Nature Communications, 2020, 11: 992. doi: 10.1038/s41467-020-14765-4
[21] 赵三平. 南海西沙群岛海鸟生态环境演变[D]. 中国科学技术大学硕士学位论文, 2006:1-117. ZHAO Sanping. Evolution of seabird eco-environment on Xisha Islands of South China Sea[D]. Master Dissertation of University of Science and Technology of China, 2006:1-117.
[22] Yan H, Sun L G, Oppo D W, et al. South China Sea hydrological changes and Pacific Walker Circulation variations over the last millennium [J]. Nature Communications, 2011, 2: 293. doi: 10.1038/ncomms1297
[23] Blaauw M, Christen J A. Bacon Manual-v2.3.3[Z]. 2013: 1-15.
[24] Thompson R, Oldfield F. Environmental Magnetism[M]. London, Boston: Allen & Unwin, 1986:1-237.
[25] Liu Q S, Roberts A P, Torrent J, et al. What do the HIRM and S‐ratio really measure in environmental magnetism? [J]. Geochemistry, Geophysics, Geosystems, 2007, 80(9): Q09011.
[26] Evans M E, Heller F. Environmental Magnetism: principles and applications of enviromagnetics[M]. Amsterdam: Academic Press, 2003:1-299.
[27] Zhang D E. Evidence for the existence of the medieval warm period in China [J]. Climatic Change, 1994, 26(2-3): 289-297. doi: 10.1007/BF01092419
[28] Chen J A, Wan G J, Zhang D D, et al. Environmental records of lacustrine sediments in different time scales: sediment grain size as an example [J]. Science in China Series D: Earth Sciences, 2004, 47(10): 954-960. doi: 10.1360/03yd0160
[29] 孙立广, 晏宏, 王玉宏. 南海西沙过去千年降雨变化及其影响因素[J]. 科学通报, 2012, 57(19):1730-1738 doi: 10.1360/972011-1842 SUN Liguang, YAN Hong, WANG Yuhong. South China Sea hydrological changes over the past millennium [J]. Chinese Science Bulletin, 2012, 57(19): 1730-1738. doi: 10.1360/972011-1842
[30] Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, Sun, and Culture relationships from an 1810-Year Chinese cave record [J]. Science, 2008, 322(5903): 940-942. doi: 10.1126/science.1163965
[31] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical pacific climate inferred from a galápagos lake sediment record [J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180. doi: 10.1016/j.quascirev.2008.02.015
[32] Yang X Q, Wei G J, Yang J, et al. Paleoenvironmental shifts and precipitation variations recorded in tropical maar lake sediments during the Holocene in southern China [J]. The Holocene, 2014, 24(10): 1216-1225. doi: 10.1177/0959683614540962
[33] Tan L C, Shen C C, Löwemark L, et al. Rainfall variations in central Indo-Pacific over the past 2, 700 y [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17201-17206. doi: 10.1073/pnas.1903167116
[34] 孟原召. 华光礁一号沉船与宋代南海贸易[J]. 博物院, 2018(2):11-26 doi: 10.3969/j.issn.2096-1715.2018.02.003 MENG Yuanzhao. Research on Huaguang reef shipwreck I and overseas trade on the maritime silk road in the song dynasty [J]. Museum, 2018(2): 11-26. doi: 10.3969/j.issn.2096-1715.2018.02.003
[35] 包春磊. 南海“华光礁Ⅰ号”沉船水下考古试析[J]. 南海学刊, 2015, 1(3):55-59 BAO Chunlei. An archaeological analysis of underwater wreck of Huaguang Reef Ⅰ in South China Sea [J]. The Journal of South China Sea Studies, 2015, 1(3): 55-59.
[36] 陈冲. 南澳Ⅰ号沉船所见景德镇民窑青花瓷的生产年代[J]. 华夏考古, 2018(4):85-96 CHEN Chong. The year of production of blue-and-white porcelain made in Civilian Kiln in Jingdezhen Discovered on the Shipwreck Nan'ao Ⅰ [J]. Huaxia Archaeology, 2018(4): 85-96.
[37] 崔勇. 广东汕头市“南澳Ⅰ号”明代沉船[J]. 考古, 2011(7):39-46 CUI Yong. The Sunken Ship "Nan'ao Ⅰ" of the Ming dynasty in Shantou City, Guangdong [J]. Archaeology, 2011(7): 39-46.
[38] 中国国家博物馆水下考古研究中心, 海南省文物局. 西沙群岛北礁19号水下遗存的考古调查[J]. 中国国家博物馆馆刊, 2011(11):47-53 Underwater Archaeology Research Centre of National Museum of China, Hainan Provincial Bureau of Cultural Relics. Archaeological survey of the Beijiao 19 underwater site in the paracel islands [J]. Journal of National Museum of Chinese History, 2011(11): 47-53.
[39] 刘晓瞳, 葛晨东, 邹欣庆, 等. 西沙群岛东岛潟湖沉积物碳、氮元素地球化学特征及其指示的环境变化[J]. 海洋学报, 2017, 39(6):43-54 LIU Xiaotong, GE Chendong, ZOU Xinqing, et al. Carbon, Nitrogen geochemical characteristics and their implications on environmental change in the lagoon sediments of the Dongdao Island of Xisha Islands in South China Sea [J]. Acta Oceanologica Sinica, 2017, 39(6): 43-54.
[40] 孙立广, 赵三平, 刘晓东, 等. 西沙群岛生态环境报告[J]. 自然杂志, 2005, 27(2):79-84 doi: 10.3969/j.issn.0253-9608.2005.02.004 SUN Liguang, ZHAO Sanping, LIU Xiaodong, et al. An eco-environmental report on xisha archipelago, South China Sea [J]. Chinese Journal of Nature, 2005, 27(2): 79-84. doi: 10.3969/j.issn.0253-9608.2005.02.004
[41] Iwasaka Y, Minoura H, Nagaya K. The transport and spacial scale of asian dust-storm clouds: a case study of the dust-storm event of april 1979 [J]. Tellus B: Chemical and Physical Meteorology, 1983, 35(3): 189-196. doi: 10.3402/tellusb.v35i3.14594
[42] Liu Y, Sun L G, Zhou X, et al. A 1400-year terrigenous dust record on a coral island in South China Sea [J]. Scientific Reports, 2014, 4: 4994.