特提斯构造域海底流体逃逸活动特征及其控制因素

赵文宇, 童思友, 陈江欣, 刘斌, 杨睿, 杨力, 段旻良, 陈珊珊

赵文宇, 童思友, 陈江欣, 刘斌, 杨睿, 杨力, 段旻良, 陈珊珊. 特提斯构造域海底流体逃逸活动特征及其控制因素[J]. 海洋地质与第四纪地质, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602
引用本文: 赵文宇, 童思友, 陈江欣, 刘斌, 杨睿, 杨力, 段旻良, 陈珊珊. 特提斯构造域海底流体逃逸活动特征及其控制因素[J]. 海洋地质与第四纪地质, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602
ZHAO Wenyu, TONG Siyou, CHEN Jiangxin, LIU Bin, YANG Rui, YANG Li, DUAN Minliang, CHEN Shanshan. Characteristics and controlling factors of submarine fluid escape in Tethys tectonic domain[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602
Citation: ZHAO Wenyu, TONG Siyou, CHEN Jiangxin, LIU Bin, YANG Rui, YANG Li, DUAN Minliang, CHEN Shanshan. Characteristics and controlling factors of submarine fluid escape in Tethys tectonic domain[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602

特提斯构造域海底流体逃逸活动特征及其控制因素

基金项目: 国家自然科学基金“冷泉流体活动地貌产生机制及其活动性——以中建南盆地为例”(41606077);泰山学者工程专项经费资助“海底地球流体地质与地球物理学”;青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室开放基金资助项目“海底流体逃逸活动的综合地球物理研究”(MMRKF201810)
详细信息
    作者简介:

    赵文宇(1995—),男,硕士,主要从事海洋地球物理学研究,E-mail:wenyu_zhao1@sina.com

    通讯作者:

    陈江欣(1987—),男,副研究员,主要从事海洋地球物理与地震海洋学研究,E-mail:jiangxin_chen@sina.com

  • 中图分类号: P736.1

Characteristics and controlling factors of submarine fluid escape in Tethys tectonic domain

  • 摘要: 海底流体逃逸活动会显著地改变海底地形地貌,产生麻坑、泥火山等地貌和冷泉羽状流现象。特提斯构造域是世界上油气最集中的构造域,流体逃逸活动广泛发育,形成的复杂流体逸出结构,对海洋油气勘探、全球气候变化研究等方面具有较好指示作用。本文选取特提斯构造域主要海域,系统总结其海底流体逃逸活动特征,发现特提斯构造域海底流体逃逸活动多分布在被动大陆边缘和弧后裂谷盆地等地质背景中,其中地中海、黑海和南海广泛发育海底冷泉、麻坑和泥火山等流体逃逸特征,而波斯湾和澳大利亚西北部近海大量发育碳酸盐岩。海底流体逃逸活动主要受控于活动断裂、沉积物超压、地震活动、海平面变化、潮汐活动和海底滑坡等海洋与地质因素。在不同海域,流体来源也不尽相同(热成因、生物成因以及天然气水合物分解),大多数通过断层、泥火山和气烟囱等通道运移。建议重视对特提斯构造域海底流体逃逸活动发育区的调查和探测,深入分析与之相关的海底流体逃逸地貌发育机制,以及其特殊海域背景下的海洋与地质因素控制作用,总结建立其海底流体逃逸活动模式及相关理论。
    Abstract: Seabed fluid escape may significantly change the seafloor topography, resulting in some geomorphic features such as pockmarks, mud volcanoes and cold seep plumes. The Tethys tectonic domain, the most hydrocarbon-rich domain in the world, hosts substantial fluid escape-related structures that can act as good indicators for offshore hydrocarbon exploration and global climate changes. Based on previous researches of major sea areas in the Tethys tectonic domain, this paper systematically summarized the characteristics of the seabed fluid flow, which shows that the seabed fluid escape activities of the Tethys tectonic area are mostly distributed in passive continental margins and back-arc rift basins. Seafloor manifestations of fluid escape including submarine cold seeps, pockmarks and mud volcanoes, are widely distributed in the Mediterranean Sea, the Black Sea and the South China Sea, however, massive carbonate-related structures are the prominent seabed fluid escape features in the Persian Gulf and the northwestern shelf of Australia. Seabed fluid flow is a dynamic process in the Tethys tectonic domain. The main marine and geological factors controlling fluid escape include active faults, sediment overpressure, seismic activities, sea-level changes, tidal activities and seabed landslides. Fluids are sourced from different intervals (thermal, biogenesis, and natural gas hydrate decomposition) in different sea areas, and the migration of fluids is mostly through fault planes, mud volcanoes and gas chimneys to the seafloor. To summarize and establish the model and theory of seabed fluid escape, it is suggested that more attention should be paid to the investigation and detection of the development areas of the seabed fluid escape activities in the Tethys tectonic domain. Moreover, the further analysis of the mechanism of the fluid escape-related geomorphic features, as well as the marine and geological controls in the special oceanic regions will provide basic support for the subsequent research.
  • 重金属元素广泛存在于自然界各种环境介质中[1]。重金属元素具有高隐蔽性、易富集性以及强生物毒性等特点,可通过食物链迁移并富集,会对动植物、人类健康以及生态系统多样性等造成严重危害[2-3],因而受到广泛关注。例如,Ding等[4]研究表明,在水稻生长过程中Cd和Cr会在果实中累积,食用受污染的大米后会对人类健康造成威胁。

    黄河三角洲湿地地处山东半岛东北部,是我国形成最晚、最广阔、保存最完整的暖温带河口湿地生态系统[5-6],具有稳定海岸线、净化环境、水源涵养和保护生物多样性等多重生态系统服务功能[7]。近年来,随着社会经济的快速发展、工业生产规模不断扩大、人口快速增长等,大量污染物通过河流进入海洋,导致黄河三角洲出现不同程度的重金属污染[5,8]。例如,杨清香等[8]以黄河三角洲实验区表层沉积物为研究对象,运用地累积指数法和潜在生态风险指数评价法研究表明,Cd和Hg相较于其他元素污染较严重,且为主要的潜在生态风险因子。Yang等[9]对现代黄河三角洲表层土壤中Cr、Pb、Ni、Cd的分布及评价研究表明,该地区存在Cd中度污染和Pb轻度—中度污染,具有较强的生态危害性。

    前人已对黄河三角洲地区进行了多方面的基础调查研究[10-13],尤其是对黄河南北两岸以及黄河入海口的重金属元素研究较为深入[2-3,6,8]。尽管以往诸多学术成果为黄河三角洲湿地环境保护和生态建设等方面提供了翔实的史料,但是重点针对该地区北部湿地沉积物重金属元素污染风险评价和来源等方面的研究却屈指可数。因此,本文以黄河三角洲北部湿地为研究区,测定其表层沉积物中铜、铅、锌、铬、镍、镉、砷、汞的含量,分析这8种重金属的空间分布特征;进行重金属生态风险和污染程度评价,分析表层沉积物中重金属污染来源,阐明各环境因子对潜在生态危害指数RI值的解释程度,以期为黄河三角洲北部湿地重金属污染防治提供科学依据。

    研究区坐落于山东省东营市,位于黄河三角洲北部湿地(37°57′~38°5′N、118°37′~118°44′E)(图1),黄河故道西侧,地处渤海湾南岸。黄河三角洲湿地地处中纬度地区,属于暖温带季风气候类型,雨热同季,气候宜人,年平均气温为11.7~12.6℃,年平均日照时数为25902830 h,年均降水量为530~630 mm,平均蒸散量为750~2400 mm。

    图  1  黄河三角洲北部湿地采样点分布图
    Figure  1.  Distributionof wetland sampling points in the northern Yellow River Delta

    2021年6月在黄河三角洲北部湿地开展外业调查,综合考虑当地实际地理情况以及土地利用方式,设置了39个采样点。用Garmin62SC手持GPS确定采样点经纬度,用木铲获取表层(0~5 cm)沉积物,并将样品装在聚乙烯样品袋中密封,外业调查结束后运回实验室。采样过程中用采集记录表记录采样点具体信息,用相机记录采样点周围环境。

    沉积物样品室温风干,去除贝壳、草根等杂物,全部通过10目孔径试样筛处理,随后将样品用玛瑙球磨机研磨后过200目孔径试样筛。利用MS2000型激光粒度分析仪测定沉积物样品粒径,并按照砂、粉砂、黏土进行分级。样品用HF-HNO3-HCIO4混合溶液分解处理后,应用电感耦合等离子体质谱法(ICP–MS)测定Cu、Ni、Cd元素含量;样品采用粉末压片法制样后,应用X射线荧光光谱法(XRF)直接测定Cr、Pb、Zn元素含量;样品被王水分解后,应用氢化物-原子荧光光谱法(HG-AFS)测定As元素含量,应用冷原子-原子荧光光谱法(CV-AFS)测定Hg元素含量。

    为保证测试的准确度和精密度,对样品进行5%的重复抽样,选用12个国家一级标准物质(水系沉积物GSD24、GSD25、GSD26、GSD27、GSD28、GSD31、GSD32,土壤GSS29、GSS31、GSS32、GSS34、GSS35)进行分析方法检验和质量控制,各项技术指标(检出限、报出率、准确度、精密度、检查分析合格率)均达到了《DZ/T 0130.5-2006 地质矿产实验室测试质量管理规范第5部分:多目标地球化学调查(1∶250000)土壤样品化学成分分析》及《DZ/T 0258-2014多目标区域地球化学调查规范》的要求,表明分析数据准确可靠。

    前人主要从沉积学角度对土壤重金属污染提出了诸多风险评价方法,主要包括潜在生态危害指数法、地累积指数法、单因子污染指数法、富集因子法等[14-15]。各评价方法优缺点不同,适用情况不同,本次研究主要应用地累积指数法和潜在生态危害指数法评价研究区表层沉积物中重金属的污染程度及其带来的生态风险。

    地累积指数(Igeo)又常被称为“Mull指数”,是一种应用环境介质中某元素实际含量及其对应地球化学背景值定量计算研究样品中重金属污染程度的方法[16-17],计算公式如下:

    $$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}}={\mathrm{l}\mathrm{o}\mathrm{g}}_{2}\left[{C}_{i}/\left(K\times {B}_{i}\right)\right] $$ (1)

    公式中,K为修正系数,是指土壤层的沉积特征、岩石差异及其他影响所导致的背景值变化而设定的修正常数,一般取值1.5;Bi表示重金属元素i在沉积物中的背景参考值(mg·kg−1),滕彦国等[18]的研究表明,应用地累积指数法评价沉积物中重金属元素污染,选择与沉积物有直接联系的地球化学背景值得出的污染状况最为真实,故本文选择山东省东营市土壤环境背景值。地累积指数法一般分为7个级别,地累积指数法分级标准见表1[8,19]

    表  1  地累积指数法(Igeo)分级标准
    Table  1.  Scaling of the land accumulation index (Igeo)
    地累积指数Igeo等级污染程度
    Igeo<00无污染
    0≤Igeo<11轻度—中度污染
    1≤Igeo<22中度污染
    2≤Igeo<33中度—重度污染
    3≤Igeo<44重度污染
    4≤Igeo<55重度—极度污染
    5≤Igeo6极严重污染
    下载: 导出CSV 
    | 显示表格

    潜在生态风险指数是瑞典科学家Hakanson于1980年提出的一种基于环境学、生态学和生物毒理学的重金属污染评价方法,能够准确定量描述重金属的潜在危险程度,是目前研究评价沉积物重金属污染对生态环境影响常用的方法之一[8,17],计算公式如下:

    $$ {\rm{RI}}={\sum _{i=1}^{n}}{E}_{\rm r}^{i}={\sum _{i=1}^{n}}{T}_{\rm r}^{i}{C}_{\rm r}^{i}={\sum _{i=1}^{n}}{T}_{\rm r}^{i}\cdot{C}^{i}/{C}_{n}^{i} $$ (2)

    公式中,Eir表示所采样品中重金属元素i的潜在生态危害指数;Tir表示所采样品中重金属元素i的生物毒性响应因子;Cin为样品中重金属元素i的背景参考值(mg·kg−1),本文采用山东省土壤元素背景值,重金属元素Hg、Cd、As、Pb、Cu、Ni、Cr、Zn的生物毒性响应因子分别为40、30、10、5、5、5、2、1,重金属潜在生态危害指数分级标准见表2[8,20]

    表  2  潜在生态危害指数法分级标准
    Table  2.  Scaling of the potential ecological hazard index
    潜在生态危害单项系数Eir 单个污染物潜在生态风险程度 潜在生态危害指数RI 综合潜在生态风险程度
    Eir<40 轻微生态危害 RI<150 轻微生态危害
    40≤Eir<80 中等生态危害 150≤RI<300 中等生态危害
    80≤Eir<160 强生态危害 300≤RI<600 强生态危害
    160≤Eir<320 很强生态危害 600≤RI<1200 很强生态危害
    Eir≥320 极强生态危害 RI≥1200 极强生态危害
    下载: 导出CSV 
    | 显示表格

    地理探测器由分异及因子探测、交互作用探测、生态探测、风险区探测4个探测器共同组成,是探测并解译空间分层异质性影响机制的一系列统计学方法 [21]。此次研究主要应用分异及因子探测器分析影响因子对重金属元素潜在生态危害指数RI值的解释程度,应用交互作用探测器分析两影响因子在交互作用下对重金属元素潜在生态危害指数RI值的解释程度。分异及因子探测用q值度量,公式如下:

    $$ q=1-\frac{{\sum }_{i=1}^{n}{m}_{i}{\sigma }_{i}^{2}}{m{\sigma }^{2}} $$ (3)

    式中,q为因子对潜在生态危害指数RI值的解释力;n为变量Y或因子X的分层; mii层的单元数;σi2i层的变量Y的方差;m为全区的单元数;σ2是全区的变量Y的方差。q∈[0,1],q值越接近1表明变量Y的空间分层异质性越强,反之则越弱。

    基于分异及因子探测器的交互作用探测器,分析两因子共同作用时q值的变化,以对应两因子共同作用增强或减弱对变量Y的解释力,亦或这些因子对变量Y的作用是互不影响的。因子协同作用类型可划分为非线性增强、独立、双因子增强、单因子非线性减弱以及非线性减弱。本文共选取黏土含量、TOC、含水率、距河距离、盐度、植被类型、距公路距离、距海距离等 8个环境因子。

    本文使用ArcGIS10.8软件绘制重金属空间分布特征图,使用IBM SPSS Statistics 27软件进行数据处理和分析,利用地理探测器分析各环境因子对潜在生态危害指数RI值的解释程度。

    黄河三角洲北部湿地表层沉积物重金属元素含量测定与统计结果如表3所示。由表3可知,研究区表层沉积物重金属平均含量由高到低顺序为:Cr>Zn>Ni>Pb>Cu>As>Cd>Hg,且本文重金属元素平均含量与贾少宁等[6]的研究结果相当,略低于Cheng等[22]的研究结果。重金属元素变异程度表现为:Cd>Cu>Hg>As>Pb>Zn>Ni>Cr(其中Zn变异系数为0.153,Ni变异系数为0.152)。据表3可知,研究区表层沉积物中重金属元素平均含量均低于国家土壤环境质量标准的一级标准[23]。与国内其他学者在不同区域的研究结果相比,元素Cu、Pb、Zn、Cr、Cd、As平均含量均低于珠江流域[24];除As元素外,其他7种重金属元素含量平均值均低于长江三角洲[25];除Zn元素含量略高于莱州湾,其他6种重金属元素含量平均值均略低于莱州湾[26]。研究区表层沉积物中重金属元素含量最大值均超过山东省土壤背景值[27],其中只有As的平均值大于山东省土壤背景值。As的平均含量是山东省土壤背景值的1.06倍,表明研究区内出现了As富集现象,其变异系数属于中度变异(CV=0.21,中度变异范围为0.16~0.36[29]),由此看出,重金属元素As在研究区的分布具有分异性,表明砷污染与采样点周围环境密不可分。其中Cu、Pb、Cd、Hg只有极少部分采样点超出山东省土壤背景值,且变异系数为中度变异(CV范围为 0. 16~0. 31),表明这些重金属元素的主要来源可能是成土母质或采样点周边环境[6]。其中重金属元素Zn、Cr、Ni变异系数分别为0.15、0.10、0.15,属于低度变异(CV<1.6),表明这3种重金属元素相对于其他元素受外界影响较小。

    表  3  黄河三角洲北部湿地沉积物重金属含量
    Table  3.  Contents of heavy metals in surface sediments of wetlands in northern Yellow River Delta
    项目 Cu Pb Zn Cr Ni Cd As Hg
    最小值 7.70 13.20 43.50 45.50 18.00 0.06 5.66 0.01
    最大值 28.60 26.80 81.80 75.70 35.00 0.20 14.70 0.03
    平均值 17.60 17.70 58.20 59.00 23.40 0.09 9.07 0.02
    中值 17.10 18.09 58.17 60.32 24.04 0.11 9.09 0.02
    变异系数/% 0.29 0.16 0.15 0.10 0.15 0.31 0.21 0.28
    国家一级标准值[23] 35.00 35.00 100.00 90.00 40.00 0.20 15.00 0.15
    珠江流域[24] 48.72 63.97 186.60 67.44 2.76 49.29
    长江三角洲[25] 29.94 31.95 86.17 75.39 30.85 0.18 8.30 0.15
    莱州湾[26] 19.06 20.30 55.98 60.10 0.11 11.72 0.04
    山东省背景值[27] 22.60 23.60 63.30 62.00 27.10 0.13 8.60 0.03
    东营市背景值[28] 21.00 19.40 62.20 65.50 27.50 0.13 10.30 0.02
    注:表中除变异系数外,其他单位均为mg/kg。
    下载: 导出CSV 
    | 显示表格

    Pb和As在研究区内均有分布且空间分布特征较为相似,其呈现从西北向东南逐渐增加、从中间区域分别向西南和东北逐渐降低的空间分布特征,高值区出现在研究区东南部。Cu和Zn在研究区内均有分布且空间分布特征较为相似, 高值区出现在研究区东南部,低值区出现在研究区西南部。Cr、Ni、Cd、Hg在研究区内均有分布,Cr、Ni、Cd高值区均出现在研究区东南部,Cr、Ni低值区出现在研究区东北部,且Cr呈现从西北向东南逐渐增加的空间分布特征;Hg呈现从中间区域分别向西北和东南逐渐增加的空间分布特征,高值区出现在研究区西北部和东南部,低值区出现在研究区西南部(图2)。

    图  2  黄河三角洲北部湿地沉积物重金属分布示意图
    Figure  2.  Distribution of heavy metals in surface sediments of wetlands in northern Yellow River Delta

    由Pearson相关系数矩阵(表4)可知,黏土含量与8种重金属元素含量均呈显著正相关,表明黏土对重金属元素吸附能力较强。由图3可知,32个采样点为砂质粉砂,4个采样点落于粉砂区、3个采样点落于粉砂质砂区。研究表明,在沉积物粒径为0.2~0.63 μm时,沉积物中重金属元素的分布与含量受到沉积物粒度影响,沉积物颗粒越细,比表面积越大,表面吸附能力越强,重金属元素含量越高[30-31]。故而研究区内8种重金属元素空间分布特征相似,可能是因为受到研究区内“粒度效应”影响。

    表  4  黄河三角洲北部湿地沉积物中8种重金属含量及其与粒径相关性
    Table  4.  The contents of 8 heavy metals in wetland sediments in the northern Yellow River Delta and their correlation with particle size
    Cu Pb Zn Cr Ni Cd As Hg 粉砂 黏土
    Cu 1
    Pb 0.74** 1
    Zn 0.93** 0.83** 1
    Cr 0.50** 0.70** 0.68** 1
    Ni 0.42** 0.39* 0.45** 0.26 1
    Cd 0.36* 0.52** 0.47** 0.28 0.79** 1
    As 0.86** 0.73** 0.88** 0.69** 0.36* 0.28 1
    Hg 0.87** 0.85** 0.93** 0.66** 0.50** 0.58** 0.81** 1
    –0.67** –0.46** –0.67** –0.29 –0.19 –0.15 –0.62** –0.58** 1
    粉砂 0.50** 0.24 0.49** 0.09 0.08 0.02 0.43** 0.40* –0.95** 1
    黏土 0.79** 0.76** 0.82** 0.60** 0.37* 0.37* 0.80** 0.77** –0.74** 0.50** 1
    注:**表示在p<0.01水平,相关性显著;*表示在p<0.05水平,相关性显著。
    下载: 导出CSV 
    | 显示表格
    图  3  黄河三角洲北部湿地沉积物粒度三角图
    Figure  3.  Grain size triangle diagram for surface sediments nomenclature in northern Yellow River Delta wetland

    地积累指数评价结果显示(表5),8种重金属元素的Igeo平均值均小于0,重金属元素Cu、Pb、Zn、Cr、Ni、As在黄河三角洲北部湿地各采样点的污染等级均为无污染,重金属元素Cd、Hg在黄河三角洲北部湿地采样点中各有一个采样点的污染等级为轻度—中度污染,占比3%,其他采样点的污染等级均为无污染,占比97%,由此可知,重金属元素Cd、Hg为黄河三角洲北部湿地表层沉积物中的主要污染物。

    表  5  黄河三角洲北部湿地沉积物重金属地累积指数评价结果
    Table  5.  Evaluation results of heavy metal land accumulation index in wetland sediments in northern Yellow River Delta
    Cu Pb Zn Cr Ni Cd As Hg
    最小值 –2.03 –1.14 –1.10 –1.11 –1.20 –1.63 –1.45 –1.72
    最大值 –0.14 –0.12 –0.19 –0.38 –0.24 0.04 –0.07 0.00
    平均值 –0.94 –0.70 –0.70 –0.71 –0.79 –0.95 –0.80 –0.84
    标准偏差 0.44 0.22 0.21 0.15 0.21 0.41 0.30 0.39
    无污染比例/% 100 100 100 100 100 97 100 97
    轻度—中度污染比例/% 0 0 0 0 0 3 0 3
    下载: 导出CSV 
    | 显示表格

    重金属潜在生态环境风险分析显示,Cu、Pb、Zn、Cr、Ni、Cd、As、Hg 重金属元素的Eir值排序为Cd>Hg>As>Ni>Pb>Cu>Cr>Zn(表6)。研究区内,虽然Hg和 Cd呈现轻微生态危害等级,采样点占比分别为97%、95%,但是Cd呈现中等生态危害等级的采样点占比5%,比同一等级的Hg的占比(3%)要高,因此Cd的潜在生态风险高于Hg;重金属元素Cu、Pb、Zn、Cr、Ni和As的潜在生态危害指数均小于40,属于轻微生态危害等级。研究区表层沉积物重金属元素的RI值为47.15~119.36,平均值为72.86(表6),潜在生态风险等级均为轻微生态危害等级。

    表  6  黄河三角洲北部湿地沉积物重金属潜在生态危害指数评价结果
    Table  6.  Evaluation results of potential ecological risk index of heavy metals in surface sediments of wetlands in northern Yellow River Delta
    Eir RI
    Cu Pb Zn Cr Ni Cd As Hg
    最小值 1.70 2.80 0.69 1.47 3.32 14.54 6.58 12.13 47.15
    最大值 6.33 5.68 1.29 2.44 6.46 46.15 17.09 40.00 119.36
    平均值 3.78 3.83 0.92 1.95 4.44 24.26 10.57 23.11 72.86
    轻微生态危害比例/% 100 100 100 100 100 95 100 97 100
    中等生态危害比例/% 5 3
    下载: 导出CSV 
    | 显示表格

    8种重金属元素对黄河三角洲北部湿地表层沉积物RI值的贡献比例和整体潜在生态危害指数与Cd、Hg的单项潜在生态危害指数之间的关系显示,在黄河三角洲北部湿地表层沉积物中,Cd对潜在生态危害指数RI值的贡献率最高,高达33.30%,其单项潜在生态危害指数Eir值部分达到中等生态危害比例。Hg对潜在生态危害指数RI值的贡献率也较高,高达31.73%,其单项潜在生态危害指数Eir值也部分达到中等生态危害比例。As、Ni、Pb、Cu、Cr、Zn对潜在生态危害指数RI值的贡献率分别为14.50%、6.09%、5.26%、5.19%、2.67%、1.26%,明显低于Cd和Hg,潜在生态风险等级仅达到轻微生态危害等级。由图4b可以看出,RI值与Cd、Hg的Eir值变化走向较为相似,再次证明Cd、Hg是黄河三角洲北部湿地表层沉积物重金属污染的主要生态危害因子。大量研究表明,Cd、Hg是由喷洒农药以及施有机肥等农业活动、工业生产、大气沉降、交通运输、污水灌溉等污染输入[20,32],对滨海湿地具有一定的影响[8,17,19,26]

    图  4  8种重金属元素对黄河三角洲北部湿地沉积物RI值的贡献比例(a)和整体潜在生态危害指数与Cd、Hg的单项潜在生态危害指数之间的关系图(b)
    Figure  4.  The contribution ratio of 8 heavy metal elements to the RI value of wetland sediments in the northern Yellow River Delta (a); and the relationship between the overall potential ecological hazard index and the single potential ecological hazard index of Cd and Hg (b)

    利用地累积指数法得出的污染程度排序为Cd<Cu<Hg<As<Ni<Cr<Pb<Zn,重金属元素Cd、Hg为主要污染物,利用潜在生态危害指数法得出的潜在生态危害程度排序为Zn<Cr<Cu<Pb<Ni<As<Hg<Cd,重金属元素Cd、Hg为主要生态危害因子。可见,两种分析方法既存在一定的一致性,又存在明显的差异性。首先,可能是因为参考背景值不同,地累积指数法采用山东省东营市土壤环境背景值为参考值,潜在生态危害指数法采用山东省土壤元素背景值为参考值。其次,可能是因为潜在生态危害指数法不仅采用了重金属元素的实测含量,而且采用了重金属元素的生物毒性响应因子。

    为了分析黄河三角洲北部湿地表层沉积物中元素来源的相似性,使用IBM SPSS Statistics 27软件对表层沉积物中8种重金属元素进行相关性分析,结果见表4

    土壤中重金属元素的赋存主要受自然和人为因素的影响,其来源或地球化学过程的相似性可能导致不同元素之间存在一定的相关性,因此分析重金属元素之间的相关性是推断重金属来源的重要依据[33-34]。由表4可知,Cu、Pb、Zn、Cr、As、Hg之间具有极显著的正相关关系(P<0.01),相关系数为0.50~0.93,说明在黄河三角洲北部湿地表层沉积物中Cu、Pb、Zn、Cr、As、Hg具有相似的地球化学行为[17]。Ni和Cd之间呈现极显著正相关(P<0.01),相关系数为0.79,说明在黄河三角洲北部湿地表层沉积物中Ni和Cd可能具有同源性或有相似的地球化学行为[33]。研究表明,Ni是植物生长必需的微量元素之一,磷肥中含有矿质成分Ni,磷肥生产原料磷矿石的加工过程也会引入 Cd[3,6,35],故而Ni和Cd的污染源可能是磷肥的使用。

    为更加准确地识别黄河三角洲北部湿地表层沉积物中重金属元素来源,使用因子分析和聚类分析对重金属元素进行分析(表7图5)。

    表  7  黄河三角洲北部湿地沉积物中重金属元素因子分析
    Table  7.  Factor analysis of heavy metal elements in wetland sediments in the northern Yellow River Delta
    元素因子1因子2
    As0.9210.117
    Zn0.9180.305
    Cu0.8740.248
    Hg0.8500.431
    Pb0.8290.364
    Cr0.7630.094
    Cd0.1970.940
    Ni0.1840.879
    黏土0.8590.208
    TOC0.5210.447
    特征值5.5292.394
    方差百分比/%55.29323.937
    累积方差百分比/%55.29379.230
    注:旋转方法采用凯撒正态化最大方差法。
    下载: 导出CSV 
    | 显示表格
    图  5  黄河三角洲北部湿地沉积物中重金属元素聚类分析
    Figure  5.  Cluster analysis of heavy metal elements in surface sediments of wetlands in northern Yellow River Delta

    在因子分析中KMO检验值为0.85,Bartlett球形检验值显著性水平P<0.001,表明其适合进行因子分析。因子分析结果如表7所示,存在两个结果特征值大于1,共可以提取出2个因子,这两个因子可以解释总变量方差的55.293%和23.937%,旋转后累计方差贡献率达到79.230%,反映了数据的大部分信息。其中As、Zn、Cu、Hg、Pb、Cr、黏土、TOC在因子1中具有较高的载荷,表明As、Zn、Cu、Hg、Pb、Cr具有相似的来源,且受到TOC和黏土的影响。相关研究表明,有机碳是重金属元素迁移的重要载体[36],前文亦已证明重金属元素受“粒度效应”影响;Cd、Ni在因子2中具有较高的载荷,分别为0.940、0.879。该因子分析结果与上述相关性分析结果一致。研究区周边有油田建设,存在工业生产、农业活动以及水产养殖等,且有研究表明,Cd是农业活动的标识元素,Cu、Ni是油田开采的标识元素[37],结合相关性分析和重金属含量特征可知,因子1代表来源可能是成土母质、工业活动以及油田开采,因子2代表来源可能是农业活动、水产养殖以及油田开采。

    为了验证并深入研究因子分析的结果,识别出黄河三角洲北部湿地表层沉积物中重金属元素更详细的来源划分,对黄河三角洲北部湿地表层沉积物重金属元素含量进行了聚类分析(图5),聚类分析将8种重金属元素分为与因子分析相同的Zn、As、Cu、Hg、Pb、Cr与Cd、Ni两大类,同时可以将其划分的更加细微,将Zn、As、Cu、Hg、Pb、Cr一大类中的Cr单独分为一类,共分为3类:① Zn、As、Cu、Hg、Pb,② Cr,③ Cd、Ni,分为一类的重金属元素可能有更相似的来源、性质或地球化学行为。

    利用因子探测器探测8个因子对黄河三角洲北部湿地表层沉积物重金属元素潜在生态危害指数RI值的影响程度(图6),结果表明不同影响因子对潜在生态危害指数RI值解释力不同,各环境因子的q值从高到低顺序为黏土含量(0.589)>TOC(0.585)>含水率(0.550)>距河距离(0.443)>盐度(0.402)>植被类型(0.387)>距公路距离(0.248)>距海距离(0.114)。黏土含量、TOC、含水率对表层沉积物重金属元素潜在生态危害指数RI值解释力较大(q值均在0.5以上),可能是因为这几种环境因子均属于自然条件因子,黏土含量、TOC、含水率等自然条件可以影响成土母质的形成、重金属元素的迁移和转化等,从多个方面影响重金属元素含量,进而影响重金属元素潜在生态危害指数RI值。综合8个因子探测结果可知,重金属元素潜在生态危害指数RI值不止受到自然过程影响,还受控于人类活动,主要影响因素是自然条件因子。

    图  6  各影响因子对RI值影响的解释力
    Figure  6.  Explanatory power of the effect of each influence factor on RI values

    沉积物中重金属元素的空间分布不只受单一因素控制,而是由人类活动、自然环境等多种影响因素共同作用的结果[38]。故而,本研究采用交互作用探测器探测8种影响因子对黄河三角洲北部湿地表层沉积物重金属元素潜在生态危害指数RI值交互作用程度。如图7所示,任意两个影响因子交互作用的解释力q均高于单个影响因子,全部为双因子增强、非线性增强,不存在减弱和独立的交互作用类型,表明复杂的环境将加剧湿地的潜在生态危害。其中,距公路距离与黏土含量、距河距离与TOC、距河距离与含水率、距河距离与盐度、距河距离与距海距离、距河距离与距公路距离、距公路距离与盐度对重金属元素潜在生态危害指数RI值交互作用较为显著;距公路距离、植被类型两个人类活动因子在交互探测中对其他自然条件因子也有着显著的增强作用,表明重金属元素潜在生态危害指数RI值受自然条件和人类活动等多种因素共同影响。

    图  7  各影响因子对RI值影响的交互作用
    Figure  7.  Interaction of the effect of each influencing factor on the RI value

    本文以黄河三角洲北部湿地39个表层沉积物样品为研究对象,基于地累积指数法、潜在生态危害指数法、相关性分析、因子分析和聚类分析等方法,对黄河三角洲北部湿地沉积物进行了重金属污染风险评价及来源分析,取得以下几点认识:

    (1)黄河三角洲北部湿地表层沉积物8种重金属元素除As外平均含量均低于山东省土壤背景值,其平均含量由高到低顺序为Cr>Zn>Ni>Pb>Cu>As>Cd>Hg。东南部均出现高值区,可能受到“粒度效应”的影响。

    (2)地累积指数法和潜在生态危害指数法表明,Cd、Hg为研究区主要污染物和重要的潜在生态危害因子。

    (3)相关性分析和因子分析表明,Cu、Pb、Zn、Cr、As、Hg可能来源于成土母质、工业活动以及油田开采, Ni、Cd可能来源于农业活动、水产养殖以及油田开采;聚类分析可进一步把Cr单独划分为一类。

    (4)因子探测分析结果显示黏土含量、TOC、含水率对潜在生态危害指数(RI值)解释力较大,表明其对RI值的影响较大;交互作用探测发现,任意两个影响因子交互作用后结果为双因子增强或非线性增强,表明复杂的环境将加剧湿地的潜在生态危害,重金属元素潜在生态危害指数RI值受自然条件和人类活动等多种因素共同影响。

  • 图  1   特提斯构造域展布范围

    据http://tethys.ac.cn。

    Figure  1.   The distribution of Tethyan tectonic domain

    From http://tethys.ac.cn.

    图  2   海底流体逃逸特征

    a.海底泥火山[6],b.麻坑[6],c.碳酸盐岩[47],d.海底泥丘[83],e.生物群落[7],f.海底冷泉羽状流[59]

    Figure  2.   Fluid escape features on seabed

    a.submarine mud volcanoes[6], b. pockmarks[6], c. carbonate[47], d. submarine mounds[83], e. biotic community[7], f. submarine cold seep plume[59].

    图  3   地中海及周边地区的构造背景和海底流体逃逸特征分布[52, 69-70, 103, 107]

    a. Zannone巨型麻坑[71],b. 喀山泥火山[53]

    Figure  3.   The tectonic setting and distribution of fluid escape-related features in the Mediterranean Sea and surrounding areas[52, 69-70, 103, 107]

    a. Zannone giant pockmark[71], b. Kazan mud volcano[53].

    图  4   黑海及周边地区的构造背景和海底流体逃逸特征分布[42, 66, 116]

    a. 泥火山[110],b. 海底逃逸的气体[56],c. 麻坑[87]

    Figure  4.   The tectonic setting and distribution of fluid escape-related features in the Black Sea and surrounding areas[42, 66, 116]

    a. mud volcano[110], b. the gas bubble escape from the gas vent[56], c. pockmark[87].

    图  5   波斯湾及周边地区的构造背景和海底流体逃逸特征分布[118]

    a.气体逸出[121],b.麻坑[121]

    Figure  5.   The tectonic setting and distribution of fluid escape-related features in the Persian Gulf and surrounding areas[118]

    a. the gas bubble escape from the seabed[121], b. pockmark[121].

    图  6   南海及周边地区的构造背景和海底流体逃逸特征分布[6, 47, 67, 130]

    据南海地质地球物理图系-地貌图。a. 海底生物和逃逸的气泡[124],b. 麻坑[72],c. 海底泥火山[125]

    Figure  6.   The tectonic setting and distribution of fluid escape-related features in the South China Sea and surrounding areas[6, 47, 67, 130]

    From the geomorphological map of the atlas of geology and geophysics of the South China Sea.a. the gas bubble and benthic organism[124], b. pockmark[72], c. submarine mud volcano[125].

    图  7   澳大利亚西北近海及周边地区的构造背景和海底流体逃逸特征分布[139-142]

    a. 研究参考区域,b. 泥丘[134],c. 麻坑[134]

    Figure  7.   The tectonic setting and distribution of fluid escape-related features in the offshore northwest Australia and surrounding areas[139-142]

    a. the reference region of research, b. mound[134], c. pockmark[134].

    表  1   特提斯构造域海底流体逃逸

    Table  1   Seabed fluid escape in the Tethys tectonic domain

    研究区域构造背景主要逃逸特征流体来源运移通道地质控制作用主要参考文献
    波斯湾裂谷盆地碳酸盐岩热成因断层褶皱活动[121-122]
    地中海俯冲带、被动大陆边缘泥火山、麻坑、活动冷泉热成因、生物成因、
    天然气水合物分解
    断层、泥火山、气烟囱海底滑坡、沉积物超压、高沉积速率、挤压构造、孔隙压力升高[3,86,103]
    黑海弧后裂谷盆地泥火山、麻坑、活动冷泉生物成因、天然气水
    合物分解
    断层、泥火山、气烟囱海底滑坡、海平面升降、活动断层、海底峡谷、地震活动[16,114]
    南海主动、被动与走滑大陆边缘泥火山、麻坑、活动冷泉、碳酸盐岩生物成因、热成因、
    天然气水合物分解
    断层、泥火山、气烟囱地震活动、深部底辟运动、倾斜断层和沉积边界[44,47]
    澳大利亚西北近海被动大陆边缘碳酸盐岩热成因断层断层、海平面升降、潮汐活动[21]
    下载: 导出CSV
  • [1]

    Berndt C. Focused fluid flow in passive continental margins [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1837): 2855-2871. doi: 10.1098/rsta.2005.1666

    [2]

    Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2009.

    [3]

    Bertoni C, Kirkham C, Cartwright J, et al. Seismic indicators of focused fluid flow and cross-evaporitic seepage in the Eastern Mediterranean [J]. Marine and Petroleum Geology, 2017, 88: 472-488. doi: 10.1016/j.marpetgeo.2017.08.022

    [4]

    Andresen K J, Huuse M. 'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial [J]. Marine Geology, 2011, 279(1-4): 111-127. doi: 10.1016/j.margeo.2010.10.016

    [5]

    Anka Z, Berndt C, Gay A. Hydrocarbon leakage through focused fluid flow systems in continental margins [J]. Marine Geology, 2012, 332-334: 1-3. doi: 10.1016/j.margeo.2012.10.012

    [6] 陈江欣, 关永贤, 宋海斌, 等. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义[J]. 地球物理学报, 2015, 58(3):919-938 doi: 10.6038/cjg20150319

    CHEN Jiangxin, GUAN Yongxian, SONG Haibin, et al. Distribution characteristics and geological implications of pockmarks and mud volcanoes in the northern and western continental margins of the South China Sea [J]. Chinese Journal of Geophysics, 2015, 58(3): 919-938. doi: 10.6038/cjg20150319

    [7]

    Tamborrino L, Himmler T, Elvert M, et al. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea [J]. Marine and Petroleum Geology, 2019, 107: 20-31. doi: 10.1016/j.marpetgeo.2019.05.003

    [8]

    Andresen K J. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution? [J]. Marine Geology, 2012, 332-334: 89-108. doi: 10.1016/j.margeo.2012.07.006

    [9]

    MacDonald I R, Sager W W, Peccini M B. Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico [J]. Marine Geology, 2003, 198(1-2): 133-158. doi: 10.1016/S0025-3227(03)00098-7

    [10]

    Judd A G. The global importance and context of methane escape from the seabed [J]. Geo-Marine Letters, 2003, 23(3-4): 147-154. doi: 10.1007/s00367-003-0136-z

    [11]

    Paull C K, Ussler W, Holbrook W S. Assessing methane release from the colossal Storegga submarine landslide [J]. Geophysical Research Letters, 2007, 34(4): L04601.

    [12]

    Gay A, Lopez M, Berndt C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin [J]. Marine Geology, 2007, 244(1-4): 68-92. doi: 10.1016/j.margeo.2007.06.003

    [13] 肖国林, 郑浚茂. 对南海北部陆坡至东海南部“残留特提斯”的几点认识[J]. 现代地质, 2004, 18(1):103-109 doi: 10.3969/j.issn.1000-8527.2004.01.015

    XIAO Guolin, ZHENG Junmao. New opinions about “Residual Tethys” in northern South China Sea slope and southern East China Sea [J]. Geoscience, 2004, 18(1): 103-109. doi: 10.3969/j.issn.1000-8527.2004.01.015

    [14] 殷树铮. 全球深水油气资源分布特征研究[D]. 中国石油大学(北京)硕士学位论文, 2018.

    YIN Shuzheng. The global distribution of oil and gas resources in deep waters[D]. Master Dissertation of China University of Petroleum (Beijing), 2018.

    [15]

    Stadnitskaia A, Ivanov M K, Poludetkina E N, et al. Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions [J]. Marine and Petroleum Geology, 2008, 25(10): 1040-1057. doi: 10.1016/j.marpetgeo.2007.08.001

    [16]

    Römer M, Sahling H, Pape T, et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea-the Kerch seep area [J]. Marine Geology, 2012, 319-322: 57-74. doi: 10.1016/j.margeo.2012.07.005

    [17] 罗敏, 吴庐山, 陈多福. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 2012, 28(5):33-42

    LUO Min, WU Lushan, CHEN Duofu. Research status and progress of seabed pockmarks [J]. Marine Geology Frontiers, 2012, 28(5): 33-42.

    [18] 王剑, 杜向东, 张树林, 等. 加蓬海岸盆地海底麻坑的成因机制及对油气勘探的指示[J]. 海洋地质与第四纪地质, 2015, 35(6):87-92

    WANG Jian, DU Xiangdong, ZHANG Shulin, et al. Evolution and genesis of seabed pockmarks in Gabon coastal basin [J]. Marine Geology and Quaternary Geology, 2015, 35(6): 87-92.

    [19]

    Lu Y T, Luan X W, Lyu F L, et al. Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea [J]. Marine and Petroleum Geology, 2017, 84: 274-288. doi: 10.1016/j.marpetgeo.2017.04.005

    [20] 李进, 王淑红, 颜文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质, 2017, 37(6):204-214

    LI Jin, WANG Shuhong, YAN Wen. Seabed mud volcano and its bearing on oil-gas and gas hydrate [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 204-214.

    [21]

    Howarth V, Alves T M. Fluid flow through carbonate platforms as evidence for deep-seated reservoirs in Northwest Australia [J]. Marine Geology, 2016, 380: 17-43. doi: 10.1016/j.margeo.2016.06.011

    [22]

    Spatola D, Micallef A, Sulli A, et al. The Graham Bank (Sicily Channel, central Mediterranean Sea): Seafloor signatures of volcanic and tectonic controls [J]. Geomorphology, 2018, 318: 375-389. doi: 10.1016/j.geomorph.2018.07.006

    [23]

    Hillman J I T, Klaucke I, Bialas J, et al. Gas migration pathways and slope failures in the Danube Fan, Black Sea [J]. Marine and Petroleum Geology, 2018, 92: 1069-1084. doi: 10.1016/j.marpetgeo.2018.03.025

    [24]

    Chen J X, Song H B, Guan Y X, et al. Geological and oceanographic controls on seabed fluid escape structures in the northern Zhongjiannan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 38-47. doi: 10.1016/j.jseaes.2018.04.027

    [25]

    Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001

    [26] 杨树锋, 贾承造, 陈汉林, 等. 特提斯构造带的演化和北缘盆地群形成及塔里木天然气勘探远景[J]. 科学通报, 2002, 47(S1):36-43 doi: 10.1360/csb2002-47-S1-36

    YANG Shufeng, JIA Chengzao, TAO Hanlin, et al. The evolution of the Tethyan structural belt and the formation of the northern marginal basin group and the prospects for natural gas exploration in Tarim [J]. Chinese Science Bulletin, 2002, 47(S1): 36-43. doi: 10.1360/csb2002-47-S1-36

    [27] 张功成, 米立军, 屈红军, 等. 全球深水盆地群分布格局与油气特征[J]. 石油学报, 2011, 32(3):369-378 doi: 10.7623/syxb201103001

    ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics [J]. Acta Petrolei Sinica, 2011, 32(3): 369-378. doi: 10.7623/syxb201103001

    [28]

    Baniasad A, Rabbani A R, Moallemi S A, et al. Petroleum system analysis of the northwestern part of the Persian Gulf, Iranian sector [J]. Organic Geochemistry, 2017, 107: 69-85. doi: 10.1016/j.orggeochem.2017.03.005

    [29] 牛华伟, 郑军, 曾广东. 深水油气勘探开发——进展及启示[J]. 海洋石油, 2012, 32(4):1-6 doi: 10.3969/j.issn.1008-2336.2012.04.001

    NIU Huawei, ZHENG Jun, ZENG Guangdong. Progress and enlightenment of oil & gas exploration and development in deep water [J]. Offshore Oil, 2012, 32(4): 1-6. doi: 10.3969/j.issn.1008-2336.2012.04.001

    [30]

    Aali J, Rahimpour-Bonab H, Kamali M R. Geochemistry and origin of the world’s largest gas field from Persian Gulf, Iran [J]. Journal of Petroleum Science and Engineering, 2006, 50(3-4): 161-175. doi: 10.1016/j.petrol.2005.12.004

    [31] 贾小乐, 何登发, 童晓光, 等. 全球大油气田分布特征[J]. 中国石油勘探, 2011, 16(3):1-7 doi: 10.3969/j.issn.1672-7703.2011.03.001

    JIA Xiaole, HE Dengfa, TONG Xiaoguang, et al. Distribution of Global Giant Oil and Gas Fields [J]. China Petroleum Exploration, 2011, 16(3): 1-7. doi: 10.3969/j.issn.1672-7703.2011.03.001

    [32]

    Alsharhan A S. Petroleum systems in the Middle East [J]. Geological Society, London, Special Publications, 2014, 392(1): 361-408. doi: 10.1144/SP392.19

    [33] 康洪全, 贾怀存, 李明刚, 等. 地中海油气富集规律与未来勘探方向[J]. 科技导报, 2016, 34(23):120-126

    KANG Hongquan, JIA Huaicun, LI Minggang, et al. The accumulation of hydrocarbon resources and the future explorative direction in Mediterranean [J]. Science & Technology Review, 2016, 34(23): 120-126.

    [34]

    Aal A A, El Barkooky A, Gerrits M, et al. Tectonic evolution of the eastern Mediterranean basin and its significance for hydrocarbon prospectivity in the ultradeepwater of the Nile Delta [J]. The Leading Edge, 2000, 19(10): 1086-1102. doi: 10.1190/1.1438485

    [35]

    Esestime P, Hewitt A, Hodgson N. Zohr-A newborn carbonate play in the Levantine Basin, East-Mediterranean [J]. First Break, 2016, 34(2): 87-93.

    [36] 张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10):1447-1477

    ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration [J]. Natural Gas Geoscience, 2017, 28(10): 1447-1477.

    [37] 刘小兵, 张光亚, 温志新, 等. 东地中海黎凡特盆地构造特征与油气勘探[J]. 石油勘探与开发, 2017, 44(4):540-548

    LIU Xiaobing, ZHANG Guangya, WEN Zhixin, et al. Structural characteristics and petroleum exploration of Levant Basin in East Mediterranean [J]. Petroleum Exploration and Development, 2017, 44(4): 540-548.

    [38]

    Murray A, Edwards C, Long D. Canning basin-petroleum systems analysis [J]. ASEG Extended Abstracts, 2018, 2018(1): 1-9.

    [39] 张迎朝, 徐新德, 甘军, 等. 琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J]. 地质学报, 2017, 91(7):1620-1633 doi: 10.3969/j.issn.0001-5717.2017.07.013

    ZHANG Yingzhao, XU Xinde, GAN Jun, et al. Study on the geological characteristics, accumulation model and exploration direction of the giant Deepwater gas field in the Qiongdongnan basin [J]. Acta Geologica Sinica, 2017, 91(7): 1620-1633. doi: 10.3969/j.issn.0001-5717.2017.07.013

    [40]

    Merey S, Longinos S N. Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea [J]. Journal of Petroleum Science and Engineering, 2018, 168: 81-97. doi: 10.1016/j.petrol.2018.05.014

    [41]

    Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea [J]. Marine and Petroleum Geology, 2019, 104: 29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    [42]

    Römer M, Sahling H, Ferreira C D S, et al. Methane gas emissions of the Black Sea-mapping from the Crimean continental margin to the Kerch Peninsula slope [J]. Geo-Marine Letters, 2020, 40(4): 467-480. doi: 10.1007/s00367-019-00611-0

    [43]

    Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    [44]

    Hui G G, Li S Z, Guo L L, et al. Source and accumulation of gas hydrate in the northern margin of the South China Sea [J]. Marine and Petroleum Geology, 2016, 69: 127-145. doi: 10.1016/j.marpetgeo.2015.10.009

    [45]

    Fang Y X, Wei J G, Lu H L, et al. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea [J]. Journal of Asian Earth Sciences, 2019, 182: 103924. doi: 10.1016/j.jseaes.2019.103924

    [46]

    Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003

    [47]

    Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: An overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021

    [48]

    Hovland M, Judd A G. Seabed Pockmarks and Seepages. Impact on Geology, Biology and the Marine Environment[M]. London: Graham & Trotman Ltd., 1988.

    [49]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    [50]

    Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 1005. doi: 10.1029/2000RG000093

    [51] 黄华谷, 邸鹏飞, 陈多福. 泥火山的全球分布和研究进展[J]. 矿物岩石地球化学通报, 2011, 30(2):189-197 doi: 10.3969/j.issn.1007-2802.2011.02.010

    HUANG Huagu, DI Pengfei, CHEN Duofu. Global distribution and research progress of mud volcanoes [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2): 189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010

    [52]

    Zitter T A C, Huguen C, Woodside J M. Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(3): 457-475. doi: 10.1016/j.dsr.2004.10.005

    [53]

    Lykousis V, Alexandri S, Woodside J, et al. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea) [J]. Marine and Petroleum Geology, 2009, 26(6): 854-872. doi: 10.1016/j.marpetgeo.2008.05.002

    [54]

    Zeppilli D, Mea M, Corinaldesi C, et al. Mud volcanoes in the Mediterranean Sea are hot spots of exclusive meiobenthic species [J]. Progress in Oceanography, 2011, 91(3): 260-272. doi: 10.1016/j.pocean.2011.01.001

    [55]

    Sahling H, Bohrmann G, Artemov Y G, et al. Vodyanitskii mud volcano, Sorokin trough, Black Sea: Geological characterization and quantification of gas bubble streams [J]. Marine and Petroleum Geology, 2009, 26(9): 1799-1811. doi: 10.1016/j.marpetgeo.2009.01.010

    [56]

    Wu T T, Sahling H, Feseker T, et al. Morphology and activity of the Helgoland Mud Volcano in the Sorokin Trough, Northern Black Sea [J]. Marine and Petroleum Geology, 2019, 99: 227-236. doi: 10.1016/j.marpetgeo.2018.10.017

    [57]

    Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007

    [58]

    Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea [J]. Geological Journal, 2019, 54(1): 177-189. doi: 10.1002/gj.3168

    [59]

    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth and Planetary Science Letters, 2006, 243(3-4): 354-365. doi: 10.1016/j.jpgl.2006.01.041

    [60]

    Herbin J P, Saint-Germès M, Maslakov N, et al. Oil seeps from the "Boulganack" Mud Volcano in the Kerch Peninsula (Ukraine-Crimea), study of the mud and the gas: inferences for the petroleum potential [J]. Oil & Gas Science and Technology-Revue de l'IFP, 2008, 63(5): 609-628.

    [61] 夏鹏, 印萍. 地中海海岭泥火山的构造特征及其油气意义[J]. 海洋地质动态, 2008, 24(4):1-6 doi: 10.3969/j.issn.1009-2722.2008.04.001

    XIA Peng, YIN Ping. Structural feature and oil-gas implication of mud volcanoes in the Mediterranean ridge [J]. Marine Geology Letters, 2008, 24(4): 1-6. doi: 10.3969/j.issn.1009-2722.2008.04.001

    [62]

    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0

    [63]

    Fernández-Ibáñez F, Soto J I. Pore pressure and stress regime in a thick extensional basin with active shale diapirism (western Mediterranean) [J]. AAPG Bulletin, 2017, 101(2): 233-264. doi: 10.1306/07131615228

    [64]

    Hustoft S, Dugan B, Mienert J. Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): Q06012.

    [65]

    Khlystov O M, Poort J, Mazzini A, et al. Shallow-rooted mud volcanism in Lake Baikal [J]. Marine and Petroleum Geology, 2019, 102: 580-589. doi: 10.1016/j.marpetgeo.2019.01.005

    [66]

    Xing J H, Spiess V. Shallow gas transport and reservoirs in the vicinity of deeply rooted mud volcanoes in the central Black Sea [J]. Marine Geology, 2015, 369: 67-78. doi: 10.1016/j.margeo.2015.08.005

    [67]

    Zhang K, Guan Y X, Song H B, et al. A preliminary study on morphology and genesis of giant and mega pockmarks near Andu Seamount, Nansha Region (South China Sea) [J]. Marine Geophysical Research, 2020, 41: 2. doi: 10.1007/s11001-020-09404-y

    [68]

    Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin [J]. Marine Geology, 2007, 244(1-4): 15-32. doi: 10.1016/j.margeo.2007.05.002

    [69]

    Dimitrov L, Woodside J. Deep sea pockmark environments in the eastern Mediterranean [J]. Marine Geology, 2003, 195(1-4): 263-276. doi: 10.1016/S0025-3227(02)00692-8

    [70]

    Moss J L, Cartwright J, Moore R. Evidence for fluid migration following pockmark formation: Examples from the Nile Deep Sea Fan [J]. Marine Geology, 2012, 303-306: 1-13. doi: 10.1016/j.margeo.2012.01.010

    [71]

    Ingrassia M, Martorelli E, Bosman A, et al. The Zannone Giant Pockmark: First evidence of a giant complex seeping structure in shallow-water, central Mediterranean Sea, Italy [J]. Marine Geology, 2015, 363: 38-51. doi: 10.1016/j.margeo.2015.02.005

    [72]

    Sun Q L, Wu S G, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea [J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156. doi: 10.1016/j.marpetgeo.2011.03.003

    [73]

    King L H, Maclean B. Pockmarks on the Scotian shelf [J]. GSA Bulletin, 1970, 81(10): 3141-3148. doi: 10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2

    [74]

    Mueller R J. Evidence for the biotic origin of seabed pockmarks on the Australian continental shelf [J]. Marine and Petroleum Geology, 2015, 64: 276-293. doi: 10.1016/j.marpetgeo.2014.12.016

    [75]

    Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing [J]. Marine Geology, 2005, 218(1-4): 191-206. doi: 10.1016/j.margeo.2005.04.005

    [76]

    Gay A, Lopez M, Cochonat P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin [J]. Marine Geology, 2006, 226(1-2): 25-40. doi: 10.1016/j.margeo.2005.09.018

    [77]

    Andreassen K, Nilssen E G, Ødegaard C M. Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data [J]. Geo-Marine Letters, 2007, 27(2-4): 155-171. doi: 10.1007/s00367-007-0071-5

    [78]

    Pennino V, Sulli A, Caracausi A, et al. Fluid escape structures in the north Sicily continental margin [J]. Marine and Petroleum Geology, 2014, 55: 202-213. doi: 10.1016/j.marpetgeo.2014.02.007

    [79] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40 doi: 10.3969/j.issn.1000-0550.2002.01.007

    CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007

    [80] 陈林, 宋海斌. 海底天然气渗漏的地球物理特征及识别方法[J]. 地球物理学进展, 2005, 20(4):1067-1073 doi: 10.3969/j.issn.1004-2903.2005.04.030

    CHEN Lin, SONG Haibin. Geophysical features and identification of natural gas seepage in marine environment [J]. Progress in Geophysics, 2005, 20(4): 1067-1073. doi: 10.3969/j.issn.1004-2903.2005.04.030

    [81] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013

    CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013

    [82]

    Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes [J]. Oceanography and Marine Biology, 2005, 43: 1-46.

    [83]

    Bayon G, Loncke L, Dupré S, et al. Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan [J]. Marine Geology, 2009, 261(1-4): 92-104. doi: 10.1016/j.margeo.2008.10.008

    [84]

    Huang B J, Xiao X M, Li X S, et al. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yinggehai Basin, offshore South China Sea [J]. Marine and Petroleum Geology, 2009, 26(6): 928-935. doi: 10.1016/j.marpetgeo.2008.04.009

    [85]

    Smith A J, Flemings P B, Fulton P M. Hydrocarbon flux from natural deepwater Gulf of Mexico vents [J]. Earth and Planetary Science Letters, 2014, 395: 241-253. doi: 10.1016/j.jpgl.2014.03.055

    [86]

    Römer M, Sahling H, Pape T, et al. Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea [J]. Marine Geology, 2014, 347: 27-42. doi: 10.1016/j.margeo.2013.10.011

    [87]

    Naudts L, Greinert J, Artemov Y, et al. Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea [J]. Marine Geology, 2006, 227(3-4): 177-199. doi: 10.1016/j.margeo.2005.10.005

    [88]

    Von Deimling J S, Rehder G, Greinert J, et al. Quantification of seep-related methane gas emissions at Tommeliten, North Sea [J]. Continental Shelf Research, 2011, 31(7-8): 867-878. doi: 10.1016/j.csr.2011.02.012

    [89]

    Naudts L, Greinert J, Poort J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane [J]. Marine Geology, 2010, 272(1-4): 233-250. doi: 10.1016/j.margeo.2009.08.002

    [90]

    Torres M E, McManus J, Hammond D E, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces [J]. Earth and Planetary Science Letters, 2002, 201(3-4): 525-540. doi: 10.1016/S0012-821X(02)00733-1

    [91] 樊栓狮, 关进安, 梁德青, 等. 天然气水合物动态成藏理论[J]. 天然气地球科学, 2007, 18(6):819-826 doi: 10.3969/j.issn.1672-1926.2007.06.009

    FAN Shuanshi, GUAN Jinan, LIANG Deqing, et al. A dynamic theory on natural gas hydrate reservoir formation [J]. Natural Gas Geoscience, 2007, 18(6): 819-826. doi: 10.3969/j.issn.1672-1926.2007.06.009

    [92] 李灿苹, 刘学伟, 赵罗臣. 天然气水合物冷泉和气泡羽状流研究进展[J]. 地球物理学进展, 2013, 28(2):1048-1056 doi: 10.6038/pg20130259

    LI Canping, LIU Xuewei, ZHAO Luochen. Progress on cold seeps and bubble plumes produced by gas hydrate [J]. Progress in Geophysics, 2013, 28(2): 1048-1056. doi: 10.6038/pg20130259

    [93] 李灿苹, 尤加春, 朱文娟. 气泡羽状流的识别及其与资源环境相关性分析[J]. 地球物理学进展, 2016, 31(6):2747-2755 doi: 10.6038/pg20160653

    LI Canping, YOU Jiachun, ZHU Wenjuan. Identification of bubble plumes and analysis of its correlation with resource environment [J]. Progress in Geophysics, 2016, 31(6): 2747-2755. doi: 10.6038/pg20160653

    [94] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    [95] 陈忠, 杨华平, 黄奇瑜, 等. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3):382-389 doi: 10.3969/j.issn.1000-8527.2008.03.006

    CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Diagenetic Environment and implication of seep carbonate precipitations from the southwestern Dongsha area, South China Sea [J]. Geoscience, 2008, 22(3): 382-389. doi: 10.3969/j.issn.1000-8527.2008.03.006

    [96]

    Omoregie E O, Niemann H, Mastalerz V, et al. Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea [J]. Marine Geology, 2009, 261(1-4): 114-127. doi: 10.1016/j.margeo.2009.02.001

    [97]

    Loncke L, Mascle J, Parties F S. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences [J]. Marine and Petroleum Geology, 2004, 21(6): 669-689. doi: 10.1016/j.marpetgeo.2004.02.004

    [98]

    Cita M B, Ryan W B F, Paggi L. Prometheus mud-breccia: an example of shale diapirism in the western Mediterranean ridge [J]. Annales Geologiques des Pays Helleniques, 1981, 30: 543-570.

    [99]

    Camerlenghi A, Pini G A. Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region [J]. Sedimentology, 2009, 56(1): 319-365. doi: 10.1111/j.1365-3091.2008.01016.x

    [100]

    Sautkin A, Talukder A R, Comas M C, et al. Mud volcanoes in the Alboran Sea: Evidence from micropaleontological and geophysical data [J]. Marine Geology, 2003, 195(1-4): 237-261. doi: 10.1016/S0025-3227(02)00691-6

    [101]

    Holland C W, Etiope G, Milkov A V, et al. Mud volcanoes discovered offshore Sicily [J]. Marine Geology, 2003, 199(1-2): 1-6. doi: 10.1016/S0025-3227(03)00125-7

    [102]

    Savini A, Malinverno E, Etiope G, et al. Shallow seep-related seafloor features along the Malta plateau (Sicily channel-Mediterranean Sea): Morphologies and geo-environmental control of their distribution [J]. Marine and Petroleum Geology, 2009, 26(9): 1831-1848. doi: 10.1016/j.marpetgeo.2009.04.003

    [103]

    Merey Ş, Longinos S N. Does the Mediterranean Sea have potential for producing gas hydrates? [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 113-134. doi: 10.1016/j.jngse.2018.04.029

    [104]

    Werne J P, Haese R R, Zitter T, et al. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea [J]. Chemical Geology, 2004, 205(3-4): 367-390. doi: 10.1016/j.chemgeo.2003.12.031

    [105]

    Eruteya O E, Reshef M, Ben-Avraham Z, et al. Gas escape along the Palmachim disturbance in the Levant Basin, offshore Israel [J]. Marine and Petroleum Geology, 2018, 92: 868-879. doi: 10.1016/j.marpetgeo.2018.01.007

    [106]

    Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea) [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1292-1311. doi: 10.1016/j.dsr2.2007.04.007

    [107]

    Jolivet L, Faccenna C, Piromallo C. From mantle to crust: Stretching the Mediterranean [J]. Earth and Planetary Science Letters, 2009, 285(1-2): 198-209. doi: 10.1016/j.jpgl.2009.06.017

    [108]

    Tari E, Sahin M, Barka A, et al. Active tectonics of the Black Sea with GPS [J]. Earth, Planets and Space, 2000, 52(10): 747-751. doi: 10.1186/BF03352276

    [109]

    Klaucke I, Sahling H, Weinrebe W, et al. Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea [J]. Marine Geology, 2006, 231(1-4): 51-67. doi: 10.1016/j.margeo.2006.05.011

    [110]

    Krastel S, Spiess V, Ivanov M, et al. Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea [J]. Geo-Marine Letters, 2003, 23(3-4): 230-238. doi: 10.1007/s00367-003-0143-0

    [111]

    Rangin C, Bader A G, Pascal G, et al. Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise) [J]. Marine Geology, 2002, 182(3-4): 265-278. doi: 10.1016/S0025-3227(01)00236-5

    [112]

    Dondurur D, Küçük H M, Çifçi G. Quaternary mass wasting on the western Black Sea margin, offshore of Amasra [J]. Global and Planetary Change, 2013, 103: 248-260. doi: 10.1016/j.gloplacha.2012.05.009

    [113]

    Bahr A, Pape T, Abegg F, et al. Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics-Results from the combination of CT imaging with mineralogical and stable isotope analyses [J]. Marine and Petroleum Geology, 2010, 27(9): 1819-1829. doi: 10.1016/j.marpetgeo.2010.08.005

    [114]

    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 1-15. doi: 10.1016/j.jpgl.2006.02.011

    [115]

    Çifçi G, Dondurur D, Ergün M. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea [J]. Geo-Marine Letters, 2003, 23(3-4): 311-322. doi: 10.1007/s00367-003-0138-x

    [116]

    Meisner A, Krylov O, Nemčok M. Development and structural architecture of the Eastern Black Sea [J]. The Leading Edge, 2009, 28(9): 1046-1055. doi: 10.1190/1.3236374

    [117]

    Mashhadi Z S, Rabbani A R, Kamali M R. Geochemical characteristics and hydrocarbon generation modeling of the Kazhdumi (Early Cretaceous), Gurpi (Late Cretaceous) and Pabdeh (Paleogene) formations, Iranian sector of the Persian Gulf [J]. Marine and Petroleum Geology, 2015, 66: 978-997. doi: 10.1016/j.marpetgeo.2015.08.008

    [118]

    Kordi M. Sedimentary basin analysis of the Neo-Tethys and its hydrocarbon systems in the Southern Zagros fold-thrust belt and foreland basin [J]. Earth-Science Reviews, 2019, 191: 1-11. doi: 10.1016/j.earscirev.2019.02.005

    [119]

    Al-Husseini M I. Origin of the arabian plate structures: amar collision and najd rift [J]. Geoarabia-Manama, 2000, 5(4): 527-542.

    [120]

    Gundogar A S, Ross C M, Akin S, et al. Multiscale pore structure characterization of middle east carbonates [J]. Journal of Petroleum Science and Engineering, 2016, 146: 570-583. doi: 10.1016/j.petrol.2016.07.018

    [121]

    Hosseinyar G, Moussavi-Harami R, Behbahani R. Shallow gas accumulations and seepage in the sediments of the Northeast Persian Gulf [J]. Acta Geophysica, 2014, 62(6): 1373-1386. doi: 10.2478/s11600-014-0236-3

    [122]

    Uchupi E, Swift S A, Ross D A. Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf [J]. Marine Geology, 1996, 129(3-4): 237-269. doi: 10.1016/0025-3227(96)83347-0

    [123]

    Wang P C, Li S Z, Suo Y H, et al. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea [J]. Geoscience Frontiers, 2020, 11(4): 1231-1251. doi: 10.1016/j.gsf.2019.10.009

    [124]

    Di P F, Feng D, Chen D F. In-situ and on-line measurement of gas flux at a hydrocarbon seep from the northern South China Sea [J]. Continental Shelf Research, 2014, 81: 80-87. doi: 10.1016/j.csr.2014.04.001

    [125]

    Sun Q L, Wu S G, Cartwright J, et al. Focused fluid flow systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea [J]. Basin Research, 2013, 25(1): 97-111. doi: 10.1111/j.1365-2117.2012.00551.x

    [126] 张功成, 谢晓军, 王万银, 等. 中国南海含油气盆地构造类型及勘探潜力[J]. 石油学报, 2013, 34(4):611-627 doi: 10.7623/syxb201304001

    ZHANG Gongcheng, XIE Xiaojun, WANG Wanyin, et al. Tectonic types of petroliferous basins and its exploration potential in the South China Sea [J]. Acta Petrolei Sinica, 2013, 34(4): 611-627. doi: 10.7623/syxb201304001

    [127] 何家雄, 张伟, 卢振权, 等. 南海北部大陆边缘主要盆地含油气系统及油气有利勘探方向[J]. 天然气地球科学, 2016, 27(6):943-959 doi: 10.11764/j.issn.1672-1926.2016.06.0943

    HE Jiaxiong, ZHANG Wei, LU Zhenquan, et al. Petroleum system and favorable exploration directions of the main marginal basins in the northern South China Sea [J]. Natural Gas Geoscience, 2016, 27(6): 943-959. doi: 10.11764/j.issn.1672-1926.2016.06.0943

    [128] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914 doi: 10.6038/cjg2018L0374

    YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea [J]. Chinese Journal of Geophysics, 2018, 61(7): 2905-2914. doi: 10.6038/cjg2018L0374

    [129]

    He J X, Zhang W, Lu Z Q. Seepage system of oil-gas and its exploration in Yinggehai Basin located at northwest of South China Sea [J]. Journal of Natural Gas Geoscience, 2017, 2(1): 29-41. doi: 10.1016/j.jnggs.2017.01.001

    [130]

    Zheng H, Sun X M, Wang P J, et al. Mesozoic tectonic evolution of the Proto-South China Sea: A perspective from radiolarian paleobiogeography [J]. Journal of Asian Earth Sciences, 2019, 179: 37-55. doi: 10.1016/j.jseaes.2019.04.009

    [131]

    Paganoni M, King J J, Foschi M, et al. A natural gas hydrate system on the Exmouth Plateau (NW shelf of Australia) sourced by thermogenic hydrocarbon leakage [J]. Marine and Petroleum Geology, 2019, 99: 370-392. doi: 10.1016/j.marpetgeo.2018.10.029

    [132]

    Hillis R R, Sandiford M, Reynolds S D, et al. Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australia’s ‘passive’ margins: intraplate deformation controlled by plate boundary forces [J]. Geological Society, London, Special Publications, 2008, 306(1): 71-90. doi: 10.1144/SP306.3

    [133]

    Wilson M E J. Equatorial carbonates: an earth systems approach [J]. Sedimentology, 2012, 59(1): 1-31. doi: 10.1111/j.1365-3091.2011.01293.x

    [134]

    Rollet N, Logan G A, Ryan G, et al. Shallow gas and fluid migration in the northern Arafura Sea (offshore Northern Australia) [J]. Marine and Petroleum Geology, 2009, 26(1): 129-147. doi: 10.1016/j.marpetgeo.2007.07.010

    [135]

    Rollet N, Logan G A, Kennard J M, et al. Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: An example from the tropical, carbonate Yampi Shelf, Northwest Australia [J]. Marine and Petroleum Geology, 2006, 23(2): 145-164. doi: 10.1016/j.marpetgeo.2005.10.002

    [136]

    Wenau S, Spiess V, Pape T, et al. Cold seeps at the salt front in the Lower Congo Basin II: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage [J]. Marine and Petroleum Geology, 2015, 67: 880-893. doi: 10.1016/j.marpetgeo.2014.09.021

    [137]

    Logan G A, Jones A T, Kennard J M, et al. Australian offshore natural hydrocarbon seepage studies, a review and re-evaluation [J]. Marine and Petroleum Geology, 2010, 27(1): 26-45. doi: 10.1016/j.marpetgeo.2009.07.002

    [138]

    Van Tuyl J, Alves T M, Cherns L. Geometric and depositional responses of carbonate build-ups to Miocene sea level and regional tectonics offshore northwest Australia [J]. Marine and Petroleum Geology, 2018, 94: 144-165. doi: 10.1016/j.marpetgeo.2018.02.034

    [139]

    Londoño J, Lorenzo J M. Geodynamics of continental plate collision during late tertiary foreland basin evolution in the Timor Sea: constraints from foreland sequences, elastic flexure and normal faulting [J]. Tectonophysics, 2004, 392(1-4): 37-54. doi: 10.1016/j.tecto.2004.04.007

    [140]

    Keep M, Harrowfield M. Elastic flexure and distributed deformation along Australia's North West Shelf: Neogene tectonics of the Bonaparte and Browse basins [J]. Geological Society, London, Special Publications, 2008, 306(1): 185-200. doi: 10.1144/SP306.9

    [141]

    Seebeck H, Tenthorey E, Consoli C, et al. Polygonal faulting and seal integrity in the Bonaparte Basin, Australia [J]. Marine and Petroleum Geology, 2015, 60: 120-135. doi: 10.1016/j.marpetgeo.2014.10.012

    [142] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1):1-34 doi: 10.7623/syxb201901001

    ZHANG Gongcheng, QU Hongjun, ZHANG Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment [J]. Acta Petrolei Sinica, 2019, 40(1): 1-34. doi: 10.7623/syxb201901001

    [143]

    Roy K O L, Sibuet M, Fiala-Médioni A, et al. Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(12): 1915-1936. doi: 10.1016/j.dsr.2004.07.004

    [144]

    Courgeon S, Bourget J, Jorry S J. A Pliocene-Quaternary analogue for ancient epeiric carbonate settings: The Malita intrashelf basin (Bonaparte Basin, northwest Australia) [J]. AAPG Bulletin, 2016, 100(4): 565-595. doi: 10.1306/02011613196

图(7)  /  表(1)
计量
  • 文章访问数:  2805
  • HTML全文浏览量:  778
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-05-19
  • 网络出版日期:  2021-08-19
  • 刊出日期:  2021-12-27

目录

/

返回文章
返回