特提斯构造域海底流体逃逸活动特征及其控制因素

赵文宇, 童思友, 陈江欣, 刘斌, 杨睿, 杨力, 段旻良, 陈珊珊

赵文宇, 童思友, 陈江欣, 刘斌, 杨睿, 杨力, 段旻良, 陈珊珊. 特提斯构造域海底流体逃逸活动特征及其控制因素[J]. 海洋地质与第四纪地质, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602
引用本文: 赵文宇, 童思友, 陈江欣, 刘斌, 杨睿, 杨力, 段旻良, 陈珊珊. 特提斯构造域海底流体逃逸活动特征及其控制因素[J]. 海洋地质与第四纪地质, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602
ZHAO Wenyu, TONG Siyou, CHEN Jiangxin, LIU Bin, YANG Rui, YANG Li, DUAN Minliang, CHEN Shanshan. Characteristics and controlling factors of submarine fluid escape in Tethys tectonic domain[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602
Citation: ZHAO Wenyu, TONG Siyou, CHEN Jiangxin, LIU Bin, YANG Rui, YANG Li, DUAN Minliang, CHEN Shanshan. Characteristics and controlling factors of submarine fluid escape in Tethys tectonic domain[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 27-41. DOI: 10.16562/j.cnki.0256-1492.2021031602

特提斯构造域海底流体逃逸活动特征及其控制因素

基金项目: 国家自然科学基金“冷泉流体活动地貌产生机制及其活动性——以中建南盆地为例”(41606077);泰山学者工程专项经费资助“海底地球流体地质与地球物理学”;青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室开放基金资助项目“海底流体逃逸活动的综合地球物理研究”(MMRKF201810)
详细信息
    作者简介:

    赵文宇(1995—),男,硕士,主要从事海洋地球物理学研究,E-mail:wenyu_zhao1@sina.com

    通讯作者:

    陈江欣(1987—),男,副研究员,主要从事海洋地球物理与地震海洋学研究,E-mail:jiangxin_chen@sina.com

  • 中图分类号: P736.1

Characteristics and controlling factors of submarine fluid escape in Tethys tectonic domain

  • 摘要: 海底流体逃逸活动会显著地改变海底地形地貌,产生麻坑、泥火山等地貌和冷泉羽状流现象。特提斯构造域是世界上油气最集中的构造域,流体逃逸活动广泛发育,形成的复杂流体逸出结构,对海洋油气勘探、全球气候变化研究等方面具有较好指示作用。本文选取特提斯构造域主要海域,系统总结其海底流体逃逸活动特征,发现特提斯构造域海底流体逃逸活动多分布在被动大陆边缘和弧后裂谷盆地等地质背景中,其中地中海、黑海和南海广泛发育海底冷泉、麻坑和泥火山等流体逃逸特征,而波斯湾和澳大利亚西北部近海大量发育碳酸盐岩。海底流体逃逸活动主要受控于活动断裂、沉积物超压、地震活动、海平面变化、潮汐活动和海底滑坡等海洋与地质因素。在不同海域,流体来源也不尽相同(热成因、生物成因以及天然气水合物分解),大多数通过断层、泥火山和气烟囱等通道运移。建议重视对特提斯构造域海底流体逃逸活动发育区的调查和探测,深入分析与之相关的海底流体逃逸地貌发育机制,以及其特殊海域背景下的海洋与地质因素控制作用,总结建立其海底流体逃逸活动模式及相关理论。
    Abstract: Seabed fluid escape may significantly change the seafloor topography, resulting in some geomorphic features such as pockmarks, mud volcanoes and cold seep plumes. The Tethys tectonic domain, the most hydrocarbon-rich domain in the world, hosts substantial fluid escape-related structures that can act as good indicators for offshore hydrocarbon exploration and global climate changes. Based on previous researches of major sea areas in the Tethys tectonic domain, this paper systematically summarized the characteristics of the seabed fluid flow, which shows that the seabed fluid escape activities of the Tethys tectonic area are mostly distributed in passive continental margins and back-arc rift basins. Seafloor manifestations of fluid escape including submarine cold seeps, pockmarks and mud volcanoes, are widely distributed in the Mediterranean Sea, the Black Sea and the South China Sea, however, massive carbonate-related structures are the prominent seabed fluid escape features in the Persian Gulf and the northwestern shelf of Australia. Seabed fluid flow is a dynamic process in the Tethys tectonic domain. The main marine and geological factors controlling fluid escape include active faults, sediment overpressure, seismic activities, sea-level changes, tidal activities and seabed landslides. Fluids are sourced from different intervals (thermal, biogenesis, and natural gas hydrate decomposition) in different sea areas, and the migration of fluids is mostly through fault planes, mud volcanoes and gas chimneys to the seafloor. To summarize and establish the model and theory of seabed fluid escape, it is suggested that more attention should be paid to the investigation and detection of the development areas of the seabed fluid escape activities in the Tethys tectonic domain. Moreover, the further analysis of the mechanism of the fluid escape-related geomorphic features, as well as the marine and geological controls in the special oceanic regions will provide basic support for the subsequent research.
  • 海底流体逃逸活动在大陆边缘海域普遍发育[1-2]。以往以油气勘探为主的大多数地震数据主要聚焦于海底中深部目的层,而且浅地层成像的分辨率不高,导致海底聚集型流体逃逸活动研究相对较少[3]。近些年来,海底流体逃逸现象的研究表明,逃逸流体多通过断层、管道、气烟囱等通道运移,进而在海底渗漏逸散,形成海底泥丘、麻坑、泥火山和碳酸盐堆积等地形地貌和活动冷泉羽状流现象[1-2, 4-7]。海底流体逃逸活动的深入研究一方面可用于指示从储层到海底的流体逃逸运移体系[8];另一方面则对海底斜坡稳定性、海洋生态系统研究、全球碳循环和天然气水合物的勘探和开发等具有重要意义[1, 5, 9-12]

    特提斯构造域具有特殊的地质背景以及油气成藏条件,围绕其油气勘探一直是研究热点[13]。特提斯构造域的油气资源特别丰富,世界上常规油气约三分之二分布在特提斯构造域内[14]。在黑海、地中海和南海等特提斯构造域的主要海域,广泛发育麻坑、泥火山、海底活动羽状流、自生碳酸盐岩、冷泉生物群落等流体逃逸活动特征,可以很好地指示过去和现在的海底流体逃逸活动,是海洋油气与天然气水合物等能源勘探的重要指示标志[15-20]。尽管对特提斯构造域主要海域的流体逃逸活动研究越来越多[21-25],但缺乏整体的分析与认识,对其控制因素和演化过程的理解仍然不够透彻。

    本文在调研国内外特提斯构造域现有研究成果的基础上,选取相关典型海域,总结特提斯构造域不同地质背景下的海底流体活动特征,并从流体来源、运移通道及地质构造等方面来分析流体逃逸活动的控制因素,进一步探讨海底流体逃逸活动与油气及天然气水合物的关系以及存在的科学问题,为后续特提斯域海底流体活动、海洋常规油气、天然气水合物等非常规油气勘探以及全球气候变化等科学研究提供参考。

    特提斯构造域是欧亚大陆和冈瓦纳大陆板块之间相互作用的结果,记录了特提斯洋的形成、发展和消亡的整个过程[26]。特提斯构造域近东西走向,现如今的展布范围,东起澳大利亚东北部,经东南亚、中亚、中东直到南欧(图1),不但包括造山带,而且也包含相关海域和沉积盆地,如地中海、黑海、波斯湾、中国南海、澳大利亚西北部近海等。特提斯深水盆地群发育在非洲板块、欧亚板块和澳大利亚板块之间的区域,其盆地发展演化过程的早期处于被动大陆边缘的伸展背景,后期受到碰撞造山影响而处于挤压背景[27]。特提斯构造域具有特定的构造和沉积环境,在地史时期位于冈瓦纳大陆和欧亚大陆两个被动大陆边缘之间的赤道热带、亚热带洋区,生物繁盛,沉积有机质特别发育,泥质岩是主要的烃源岩,而且在浅海沉积形成了大量的碳酸盐岩和盐岩,形成优质的盐岩圈闭和碳酸盐岩储层[14, 28],因而蕴藏丰富的油气资源。

    图  1  特提斯构造域展布范围
    据http://tethys.ac.cn。
    Figure  1.  The distribution of Tethyan tectonic domain
    From http://tethys.ac.cn.

    随着海洋勘探程度逐年上升,以及海洋油气勘探开发技术的迅速发展,特提斯构造域相关海域的海洋油气资源逐渐引起各国重视,相继发现了很多大型油气田,其储量和产量所占比重逐年加大[29]。目前,除了在波斯湾发现大量大型油气田外,在黑海也有发现[30-32]。一直以来,地中海海域油气资源的勘探和开发都集中于地中海东部[33]。近年来,东地中海的尼罗河三角洲盆地和黎凡特盆地成为天然气勘探开发的热点地区[34-37]。澳大利亚西北部近海最近也有重大发现,油气资源开采潜力巨大,“富气贫油”是其最鲜明的特点[38]。而我国海洋油气资源开发还处于早期阶段,深水油气资源主要分布在南海北部地区,目前在珠江口盆地和琼东南盆地已实现深水油气勘探开发[39]

    特提斯构造域除了蕴藏着丰富的常规油气资源外,也储存大量天然气水合物等非常规资源[40-42]。近年来,海域天然气水合物勘探和开发逐渐受到重视,在南海、黑海等海域进行了大量与天然气水合物相关的科学研究[16, 43-45]。研究发现,冷泉羽状流、麻坑和泥火山等海底流体逃逸特征广泛发育在天然气水合物发育区[19-20, 40, 46-47],证明海底流体逃逸活动与海域深部油气及天然气水合物分布之间密切相关,水合物储层和逃逸气体均是富甲烷流体在异常孔隙高压地层释放和储存过程中的产物。

    近些年随着海洋探测技术的深入发展,与海底流体逃逸活动特征相关的报道逐渐丰富起来。海底流体逃逸活动不仅会显著改变海底地形地貌[2],形成泥火山、麻坑等,而且会对海底附近的生物化学过程产生一定的影响,产生自生碳酸盐岩、生物群落等,剧烈的流体逃逸还会在上覆水体中形成羽状流[48]

    泥火山是由剧烈的泥浆排放不断堆积形成的隆起微地貌[6]图2a),通常伴随着深部地下沉积单元的流体和气体排放[49-50],若深部泥质上涌未刺穿海底则形成泥底辟。泥火山在世界范围内分布广泛,主要在俯冲带和造山带附近发现[50]。各国对海底泥火山的研究始于海洋油气资源和海域天然气水合物勘探和开发工作[51],近年来在地中海[52-54]、黑海[55-56]、南海[57-58]以及巴伦支海[59]等海域发现了大量的海底泥火山。

    图  2  海底流体逃逸特征
    a.海底泥火山[6],b.麻坑[6],c.碳酸盐岩[47],d.海底泥丘[83],e.生物群落[7],f.海底冷泉羽状流[59]
    Figure  2.  Fluid escape features on seabed
    a.submarine mud volcanoes[6], b. pockmarks[6], c. carbonate[47], d. submarine mounds[83], e. biotic community[7], f. submarine cold seep plume[59].

    活跃的泥火山通常扎根于成熟的油气系统,喷发出的气体主要是甲烷,在其周围经常发现天然气水合物的富集[53],可以与其他烃类渗漏一起指示潜在的深部丰富油气资源[60-61],具有重要指示意义和研究价值。目前关于海底泥火山的形成机制已经进行了深入的讨论,一般认为主要有3种成因机制:①被动大陆边缘和深海平原的沉积物沉积速率极快,如地中海沿岸[62-63]、挪威海[64];②主动大陆边缘区域的横向构造挤压[49];③天然气水合物分解,如贝加尔湖[65]。此外,不同时期海平面变化也可能影响泥火山的形成,如黑海[66]

    麻坑一般被描述为下伏地层活动流体在海底渗漏逸散形成的侵蚀结构[6]图2b),呈圆形、椭圆形、长条形、彗星型、新月形以及不规则形态,直径最大可达几千米,深度可达几百米[2, 6, 67]。它们单独或随机成簇出现,有些沿着断层走向排列[68]。麻坑可能会保持活跃状态,长时间有气体从中缓慢逸出,或者在间歇性喷发之间处于休眠状态[69]。在世界上的许多地区,如地中海[70-71]、南海[24, 72]、非洲下刚果盆地[12]等都发现了海底麻坑。自从King和MacLean[73]发现海底麻坑以来,麻坑的形成一直被归因于逃逸流体的侵蚀作用,通常与海底流体渗漏或赋存在海洋沉积物中的天然气水合物发生分解有关[2, 48]。然而也有学者分析认为,生物活动也可能是麻坑形成的一种机制,如在澳大利亚西北大陆架南部发现的麻坑[74]。海底麻坑对于海洋油气和天然气水合物资源勘探开发以及海底地质灾害研究具有重要指导作用,因为其指示了大量气体从沉积物到海洋甚至可能进入大气的潜在途径[69, 75-76]。在富烃盆地中形成麻坑的流体来源可能是生物成因,也可能是热成因[2, 77]。一些研究表明,在地震发生前,海水温度升高,麻坑仍有气体逃逸,因此,麻坑可能是地震的先兆[78]。尤其是在一些大型麻坑发育区,地质构造活动活跃,可能会对海底基础设施造成危害[72]

    海底冷泉是由水、碳氢化合物(天然气和石油)等,受地下压力梯度影响从沉积体中运移和排出形成的具有一定流速的流体[79-81],且其周围温度通常无明显变化[82]。在冷泉发育区,除麻坑、泥火山等流体逃逸地貌和甲烷气体羽状流现象外,还伴生有自生碳酸盐岩和海底生物群落等相关特征[7, 47, 59, 83]图2c-f)。

    冷泉活动已在世界许多地区发现并研究,例如南海[84]、墨西哥湾[85]、地中海[86]、黑海[87]、北海[88]、巴伦支海[59]、新西兰Hikurangi陆缘[89]、水合物脊[90]等。以甲烷为主要成分的气体通过断层、泥火山等运移通道进入海水后,形成海底冷泉羽状流[91],是活动冷泉的重要指示标志,而部分冷泉区通常与天然气水合物的分解密切相关,所以海底冷泉羽状流可以间接指示海底沉积层中可能有天然气水合物赋存[92-93]。地球化学数据可以指示甲烷气体的成因,包括不同的形成环境和成因背景。热成因气体主要是由于地下深部富甲烷流体在流体超压作用下通过运移通道到达海底形成的,且多与深部油气藏相关,而生物成因气是由富含有机质沉积物中的微生物活动产生,水合物气藏与其关系密切。

    在活动冷泉区,富甲烷流体会支持化学合成群落的发育和自生碳酸盐岩的形成。甲烷厌氧氧化(AOM)产生碳酸氢盐,从而导致自生碳酸盐沉淀,包括孤立的板状、层状、结壳状和结核状等,部分表面胶结大量贻贝等生物[94]。海底碳酸盐岩是海底冷泉流体活动和成岩演化过程的证据,同时也是海底冷泉生物和天然气水合物可能存在的重要指示标志[41, 95]。在海底冷泉喷口,通常存在致密而多样的微生物和动物群落,排放的含气流体使其衍生成独特的生态系统[82, 96],所以海底生物群落也可以指示其周围存在活跃的流体逃逸活动。

    海底流体逃逸活动在特提斯构造域相关海域强烈且广泛,这些海域中油气资源和非常规能源(如天然气水合物)储量丰富,迄今已发现大量大型或超大型油气田,一直以来是许多国际学者研究海底流体逃逸活动的重点区域。

    地中海位于非洲、欧亚和阿拉伯板块之间的相互作用带(图3),主要受非洲和欧亚板块之间的碰撞以及相关俯冲作用的影响[3]。泥火山、麻坑和冷泉羽状流等海底流体逃逸活动广泛分布于地中海边缘[53, 71]图3ab),尤其在地中海东部[52-53, 69, 86, 97]

    图  3  地中海及周边地区的构造背景和海底流体逃逸特征分布[52, 69-70, 103, 107]
    a. Zannone巨型麻坑[71],b. 喀山泥火山[53]
    Figure  3.  The tectonic setting and distribution of fluid escape-related features in the Mediterranean Sea and surrounding areas[52, 69-70, 103, 107]
    a. Zannone giant pockmark[71], b. Kazan mud volcano[53].

    20世纪70年代后期,Cita等[98]在地中海东部首次发现泥火山。此后的数十年内,地中海东部陆续发现大量泥火山,成为世界上泥火山发育最丰富的地区之一(超过200个)[50]。Camerlenghi和Pini[99]记录了多个地中海泥火山,包括在地中海东部海脊[61]、Anaximander山脉[53]、阿尔沃兰海[100]、西西里岛近海[101]、尼罗河三角洲[97]和爱奥尼亚海等地发现的泥火山[102]。东地中海的大多数泥火山发育受海底天然气水合物分解和构造运动引起的天然气超压控制,非洲板块推动欧亚板块,导致气体和部分泥火山的压实[103]。其中,Anaximander山脉自中新世以来,其泥火山分布和活动显著受控于走滑断裂和张应力作用[7, 104]。在地中海东部的麻坑多发育在活跃的泥火山、断层、大型海扇、增生楔体和海底塌陷等地质环境中,例如Anaximander山脉、Cobblestone地区、Florence隆起、Olimpi泥火山区域、United Nation隆起、Herodotus深海平原、Sirte深海平原、Eratosthenes海山、尼罗河深海扇等[69-70]。近年来,在地中海中部浅水区发现的巨型麻坑(如Zannone Giant Pockmark)喷发剧烈且持续性渗漏,证明地中海中部也存在较为活跃的流体逃逸活动[71]。研究分析认为麻坑可能受到边坡失稳(滑坡)、沉积物超压、高沉积速率、挤压构造以及孔隙压力升高等因素影响[69, 78, 97, 105]。在泥火山、麻坑和活动冷泉区通常发育大量碳酸盐岩,且与甲烷气体逸出有关[52, 86, 96, 106]。总体看来,在地中海,断层和泥火山是海底流体逃逸的主要运移通道[22, 78],而在尼罗河三角洲上坡,气烟囱是重要的运移通道[97]。此外,Bertoni等[3]认为墨西尼蒸发岩抑制了正常压实孔隙流体的释放,其分布和变形可能会影响流体运移通道。

    黑海起源于白垩纪,由被黑海中部高地隔开的东西子盆地组成,是世界上最大的缺氧海盆,在阿拉伯板块向北运动,安纳托利亚板块向西运动的作用下,目前正在经历挤压变形[108-112]图4)。黑海地区在浅水至深水环境中广泛发育泥火山、麻坑以及活动羽状流等海底流体逃逸活动特征[56, 87, 110]图4a-c),且被认为约有68%的区域适合天然气水合物的形成[23]

    图  4  黑海及周边地区的构造背景和海底流体逃逸特征分布[42, 66, 116]
    a. 泥火山[110],b. 海底逃逸的气体[56],c. 麻坑[87]
    Figure  4.  The tectonic setting and distribution of fluid escape-related features in the Black Sea and surrounding areas[42, 66, 116]
    a. mud volcano[110], b. the gas bubble escape from the gas vent[56], c. pockmark[87].

    迄今已探明的黑海泥火山约有60个,主要分布在黑海的中西部盆地和索罗金海槽,几乎所有泥火山都处于活跃状态[55]。Xing和Spiess[66]对黑海中部的6个泥火山调查研究发现,泥火山活动可能与不同时期的海平面下降有关,而这似乎是黑海中部泥火山爆发的主要原因之一。冷泉在黑海分布广泛,大多数发育在小于725 m(即高于天然气水合物稳定带(GHSZ))的水深中[87],且不是随机分布,而是集中在某一特定区域,主要包括第聂伯河古扇、索罗金海槽、多瑙河深海扇、巴统渗透区、刻赤渗透区、俄罗斯和土耳其陆架等海域[42]。地球化学研究表明,黑海活动冷泉区的甲烷气体主要来源于富含有机物的厚沉积层(尤其是在陆架边缘三角洲的沉积物)中的微生物降解[42],部分与天然气水合物失稳发生分解有关[113],目前缺乏充足的证据表明存在热成因气体[16]。黑海活动冷泉主要受断层的影响[56, 87],且天然气水合物稳定带或海底滑坡也会控制气体/流体的运移[16, 23],如在Vodianitskiy泥火山调查取得的回波图显示,羽状流在水体中上升超过1 300 m,主要原因是天然气水合物稳定带内的羽状流气泡在上升过程中形成了“水合物外衣”[114]。麻坑主要与甲烷气体渗漏活动有关,例如黑海西北部的第聂伯河古三角洲存在的2 778个气体逃逸活动较为活跃的渗漏点都是麻坑[87]。也有研究分析认为,在黑海东部土耳其陆架上发现的麻坑是由于地震活动引起的超压周期性变化产生的[115]。除断层、泥火山等流体运移通道外,气烟囱在黑海也很发育,与局部天然气供应的增加有关[23]

    波斯湾是NW-SE走向的狭长形海湾,介于伊朗高原和阿拉伯半岛之间,受扎格罗斯褶皱冲断带的影响[28, 117-118]图5)。波斯湾发育大量的碎屑岩、碳酸盐岩和盐类[117, 119]。与硅质碎屑岩储层不同,碳酸盐岩由于沉积环境和随后成岩作用的多样性而具有复杂的多尺度孔隙结构[120],因而在波斯湾发现的大型、特大型油气田主要分布储层是碳酸盐岩,例如,南帕尔斯气田发现于1990年,是世界上最大的气田,其气藏是上二叠统达兰和下三叠统康安碳酸盐岩[30]。在地质历史上,波斯湾处于气候温暖的浅海环境,动植物丰富,构造稳定,沉积发育,因而油气资源丰富[28]。虽然它是世界上碳氢化合物储量最丰富的地区之一,但其麻坑、气体渗漏等逃逸特征在现在海底并不特别发育[121]图5ab)。目前研究发现,逃逸的气体主要是热成因,但是也存在混合成因的可能[30]。距今最近的构造运动,包括与霍尔木兹盐塑性流动有关的垂直运动,继续使波斯湾的沉积体系复杂化[122]

    图  5  波斯湾及周边地区的构造背景和海底流体逃逸特征分布[118]
    a.气体逸出[121],b.麻坑[121]
    Figure  5.  The tectonic setting and distribution of fluid escape-related features in the Persian Gulf and surrounding areas[118]
    a. the gas bubble escape from the seabed[121], b. pockmark[121].

    南海位于欧亚板块、太平洋板块和印度—澳大利亚板块交界处, 是特提斯与太平洋构造域之间相互作用的关键区域[123],具有张裂、走滑与汇聚增生楔等不同陆缘地质背景(图6)。它是西太平洋面积最大的边缘海,最深处超过5 000 m[46]。南海海底流体逃逸活动广泛且活跃,海底冷泉、麻坑和泥火山等典型逃逸特征广泛发育[72, 124-125]图6a-c)。逃逸流体主要通过泥火山、泥底辟、断层和气烟囱等通道运移[41, 43],在海底形成大量流体逃逸特征地貌,指示潜在的油气和相关天然气水合物资源富集[126-127]。近些年来在台西南、东沙、神狐、西沙海槽、琼东南和南沙南部等海域都有发现冷泉活动[47]。其中,2015年在琼东南盆地发现的“海马冷泉”,其下伏地层赋存大量天然气水合物[45, 128]。由于不同性质陆缘构造地质背景,泥火山(底辟)和麻坑等海底流体逃逸地貌在南海不同区域,分布和规模也有所不同。陈江欣等[6]对南海北部和西部陆缘的泥火山、麻坑分布特征分析发现,麻坑、泥火山等流体逃逸地貌主要分布在构造活动较为活跃、沉积作用较为薄弱的近坡折带和大陆坡区域。在南海北部张裂大陆边缘,泥火山自东向西数量和规模逐渐变小,且主要集中在台西南盆地。而南海西部为走滑大陆边缘,构造活动活跃,流体逃逸特征分布较广,规模较大。中建南盆地的泥火山(底辟)的分布和类型与莺歌海盆地有明显不同,莺歌海盆地内部新近纪沉积层较厚,发育有大量的大型泥底辟[129],而中建南盆地新生代沉积层较薄,经历晚白垩世或古近纪—渐新世裂谷向新近纪—第四纪裂陷后热沉降的构造演化[57], 泥火山活动可能与周边区域地震有关[58]。中建南盆地也是世界上最大的巨型麻坑分布区,连片分布的麻坑形态各异,部分麻坑受到地层内部气烟囱、倾斜断层和沉积边界的显著影响[72],部分也受到深部底辟活动和南海西边界流底流的控制[125]。近期在南沙海域Andu海山附近发现大量巨型麻坑发育,推测其形成和演化与以活动断裂作为通道的流体逃逸活动有关[67]

    图  6  南海及周边地区的构造背景和海底流体逃逸特征分布[6, 47, 67, 130]
    据南海地质地球物理图系-地貌图。a. 海底生物和逃逸的气泡[124],b. 麻坑[72],c. 海底泥火山[125]
    Figure  6.  The tectonic setting and distribution of fluid escape-related features in the South China Sea and surrounding areas[6, 47, 67, 130]
    From the geomorphological map of the atlas of geology and geophysics of the South China Sea.a. the gas bubble and benthic organism[124], b. pockmark[72], c. submarine mud volcano[125].

    澳大利亚西北部近海位于被动大陆边缘[131],其区域应力状态受复杂构造活动影响[132]图7)。赤道边缘水温高于20 °C时,有机生产力较高,在澳大利亚西北大陆架海底流体逃逸活动集中的区域发育大量形成于新生代的碳酸盐岩[21, 133]。在这些碳酸盐岩台地上,流体逃逸特征通常与潜在的烃类聚集或深层油气藏的渗漏有关[134]图7bc),这会导致甲烷自生碳酸盐岩的沉积,促进碳酸盐建造的增长[135-136]。几十年来,在西北大陆架进行了多次渗漏调查,但仅在大陆架北部(Yampi陆架)发现了较为活跃的烃渗漏点,其受新近纪碳酸盐岩层序沉积和中新世晚期构造活动控制形成[74, 135, 137]。与在硅质碎屑或深水环境中观察到的渗流特征相比,Yampi陆架上的流体逃逸活动受碳酸盐沉积速率低和潮汐活动的影响,不利于泥火山、大型麻坑的形成[135]。同时自中新世以来,澳大利亚西北大陆架南部的碳酸盐台地上,陆源沉积物输入和沉积速率低,因而有学者分析认为南部麻坑的形成难以用海底流体逃逸活动解释,更可能与生物活动有关[74]。逃逸气体主要是热成因,但是Rollet等[134]对阿拉法拉海浅层天然气和流体运移的研究表明,其逃逸气体存在混合成因的可能。通常断层控制着地下单元碳氢化合物的运移[21, 137],但在部分地区,海平面变化是其沉积演化的主要控制因素,断层构造仅在局部影响中新世碳酸盐岩的堆积[138],除此之外还发现盐底辟会导致海底流体逃逸活动的集中发生[21]

    图  7  澳大利亚西北近海及周边地区的构造背景和海底流体逃逸特征分布[139-142]
    a. 研究参考区域,b. 泥丘[134],c. 麻坑[134]
    Figure  7.  The tectonic setting and distribution of fluid escape-related features in the offshore northwest Australia and surrounding areas[139-142]
    a. the reference region of research, b. mound[134], c. pockmark[134].

    基于对特提斯构造域主要海域研究结果的分析,对其海底流体逃逸活动特征、流体来源、运移通道及其地质控制作用总结如表1所示。总体上,特提斯构造域各海域海底流体逃逸活动广泛发育,但是活动机制复杂,难以用统一的地质模式进行解释,其一般规律和存在的科学问题,分析如下:

    表  1  特提斯构造域海底流体逃逸
    Table  1.  Seabed fluid escape in the Tethys tectonic domain
    研究区域构造背景主要逃逸特征流体来源运移通道地质控制作用主要参考文献
    波斯湾裂谷盆地碳酸盐岩热成因断层褶皱活动[121-122]
    地中海俯冲带、被动大陆边缘泥火山、麻坑、活动冷泉热成因、生物成因、
    天然气水合物分解
    断层、泥火山、气烟囱海底滑坡、沉积物超压、高沉积速率、挤压构造、孔隙压力升高[3,86,103]
    黑海弧后裂谷盆地泥火山、麻坑、活动冷泉生物成因、天然气水
    合物分解
    断层、泥火山、气烟囱海底滑坡、海平面升降、活动断层、海底峡谷、地震活动[16,114]
    南海主动、被动与走滑大陆边缘泥火山、麻坑、活动冷泉、碳酸盐岩生物成因、热成因、
    天然气水合物分解
    断层、泥火山、气烟囱地震活动、深部底辟运动、倾斜断层和沉积边界[44,47]
    澳大利亚西北近海被动大陆边缘碳酸盐岩热成因断层断层、海平面升降、潮汐活动[21]
    下载: 导出CSV 
    | 显示表格

    (1)即使在相同陆缘地质背景下,不同海域的流体逃逸活动特征仍然差异较大。在地中海边缘及相关弧后盆地发育大量冷泉羽状流、泥火山、麻坑以及冷泉碳酸盐岩等[7, 86, 104, 143]。黑海为弧后裂谷盆地,富含有机物的沉积物在陆架边缘以及三角洲沉积[42],广泛分布麻坑、泥火山和活动冷泉等海底流体逃逸地貌。南海具有多种陆缘地质背景,发育大量与冷泉流体活动相关的地貌特征(如麻坑、泥火山等)[6, 24, 41, 57]。与上述海域不同的是,澳大利亚西北部近海和波斯湾的泥火山、麻坑和冷泉活动特征不明显、不活跃[117, 121, 135],主要是碳酸盐岩发育。

    (2)海底流体逃逸活动需要充足气源,热成因、生物成因、混合成因或天然气水合物的分解均能提供充足的气源条件。在波斯湾和澳大利亚西北大陆架碳酸盐岩发育的地区,其气体主要是热成因气[30, 134]。而黑海的甲烷气体主要是由于含有机物的沉积物(尤其是在陆架边缘三角洲的沉积物)的快速沉积,以及随后的微生物降解产生[42]。地中海和南海甲烷气体来源广泛,包括生物成因、热成因与混合成因。天然气水合物失稳会导致流体渗漏,在南海、地中海及黑海已发现了大量与水合物生成和分解有关的流体逃逸活动,因而水合物分解也是逃逸气体的重要来源之一。

    (3)海底流体逃逸活动受构造变形、海底滑坡、地震活动和海平面变化等多种海洋与地质因素主导或控制,并主要发育在地中海、黑海和南海等快速沉积、构造活动显著活跃的海域,通过运移通道(如断层、泥火山和气烟囱等)向海底渗漏逸散。地中海具有复杂地质条件和独特构造背景,天然气水合物分解与活动构造导致大量流体逃逸特征的发育[78, 103]。黑海的流体逃逸活动主要受到活动断层、海平面升降、海底峡谷和海底滑坡等的控制[55, 66, 87, 109],部分地区也受地震活动的影响[115]。此外由于黑海为内海,故不同时期海平面变化会显著影响流体逃逸活动[66]。在南海发现的冷泉活动及与之相关的海底流体逃逸过程,与地震活动、深部底辟运动、活动断裂、倾斜断层和沉积边界等密切相关[58, 67, 72]。波斯湾沉积速率高,且受到扎格罗斯褶皱冲断带的影响[118],沉积层变形明显。断层被认为是澳大利亚西北部碳酸盐岩生长的关键控制因素[21, 137, 144],同时海平面变化、盐底辟构造或潮汐活动也会影响其形成和演化过程[21, 135, 138]

    (1)在特提斯构造域,各海域流体逃逸活动分布特征及活动特征差异较大。地中海、黑海和南海广泛发育活动冷泉及与之相关的麻坑、泥火山等逃逸地貌,而澳大利亚西北近海和波斯湾主要是碳酸盐岩发育。在不同海域,流体来源也不尽相同,大部分是热成因和生物成因,还有可能来源于天然气水合物的分解。

    (2)特提斯构造域海底流体逃逸活动是一个复杂的动态过程,取决于多种控制因素,主要包括活动断层、沉积物超压、边坡失稳、地震活动等地质因素,同时潮汐活动、海平面变化等海洋过程也会影响或部分控制海底流体逃逸活动的形成。

    (3)从研究和指示看,一方面特提斯构造域海底流体逃逸活动特征发育可能与油气田和天然气水合物分布密切,是油气及天然气水合物勘探研究的重要参考;另一方面流体逃逸活动释放的甲烷等温室气体,对全球气候变化的研究及资源与环境服务有重大意义。

    建议重视对特提斯构造域海底流体逃逸活动发育区的调查和探测,综合利用地球物理数据(尤其是多波束)、水体资料和地震海洋学资料,全面了解其流体逃逸特征发育位置和规模,探讨其特殊海域背景下的海洋与地质因素控制作用,总结建立其海底流体逃逸活动模式及相关理论,为后续海域天然气水合物和油气资源的精准勘探开发、全球气候变化、海底灾害等研究提供重要参考。

    致谢:感谢李昂博士、刘欣欣博士及李清高级工程师对本文提供的修改建议。

  • 图  1   特提斯构造域展布范围

    据http://tethys.ac.cn。

    Figure  1.   The distribution of Tethyan tectonic domain

    From http://tethys.ac.cn.

    图  2   海底流体逃逸特征

    a.海底泥火山[6],b.麻坑[6],c.碳酸盐岩[47],d.海底泥丘[83],e.生物群落[7],f.海底冷泉羽状流[59]

    Figure  2.   Fluid escape features on seabed

    a.submarine mud volcanoes[6], b. pockmarks[6], c. carbonate[47], d. submarine mounds[83], e. biotic community[7], f. submarine cold seep plume[59].

    图  3   地中海及周边地区的构造背景和海底流体逃逸特征分布[52, 69-70, 103, 107]

    a. Zannone巨型麻坑[71],b. 喀山泥火山[53]

    Figure  3.   The tectonic setting and distribution of fluid escape-related features in the Mediterranean Sea and surrounding areas[52, 69-70, 103, 107]

    a. Zannone giant pockmark[71], b. Kazan mud volcano[53].

    图  4   黑海及周边地区的构造背景和海底流体逃逸特征分布[42, 66, 116]

    a. 泥火山[110],b. 海底逃逸的气体[56],c. 麻坑[87]

    Figure  4.   The tectonic setting and distribution of fluid escape-related features in the Black Sea and surrounding areas[42, 66, 116]

    a. mud volcano[110], b. the gas bubble escape from the gas vent[56], c. pockmark[87].

    图  5   波斯湾及周边地区的构造背景和海底流体逃逸特征分布[118]

    a.气体逸出[121],b.麻坑[121]

    Figure  5.   The tectonic setting and distribution of fluid escape-related features in the Persian Gulf and surrounding areas[118]

    a. the gas bubble escape from the seabed[121], b. pockmark[121].

    图  6   南海及周边地区的构造背景和海底流体逃逸特征分布[6, 47, 67, 130]

    据南海地质地球物理图系-地貌图。a. 海底生物和逃逸的气泡[124],b. 麻坑[72],c. 海底泥火山[125]

    Figure  6.   The tectonic setting and distribution of fluid escape-related features in the South China Sea and surrounding areas[6, 47, 67, 130]

    From the geomorphological map of the atlas of geology and geophysics of the South China Sea.a. the gas bubble and benthic organism[124], b. pockmark[72], c. submarine mud volcano[125].

    图  7   澳大利亚西北近海及周边地区的构造背景和海底流体逃逸特征分布[139-142]

    a. 研究参考区域,b. 泥丘[134],c. 麻坑[134]

    Figure  7.   The tectonic setting and distribution of fluid escape-related features in the offshore northwest Australia and surrounding areas[139-142]

    a. the reference region of research, b. mound[134], c. pockmark[134].

    表  1   特提斯构造域海底流体逃逸

    Table  1   Seabed fluid escape in the Tethys tectonic domain

    研究区域构造背景主要逃逸特征流体来源运移通道地质控制作用主要参考文献
    波斯湾裂谷盆地碳酸盐岩热成因断层褶皱活动[121-122]
    地中海俯冲带、被动大陆边缘泥火山、麻坑、活动冷泉热成因、生物成因、
    天然气水合物分解
    断层、泥火山、气烟囱海底滑坡、沉积物超压、高沉积速率、挤压构造、孔隙压力升高[3,86,103]
    黑海弧后裂谷盆地泥火山、麻坑、活动冷泉生物成因、天然气水
    合物分解
    断层、泥火山、气烟囱海底滑坡、海平面升降、活动断层、海底峡谷、地震活动[16,114]
    南海主动、被动与走滑大陆边缘泥火山、麻坑、活动冷泉、碳酸盐岩生物成因、热成因、
    天然气水合物分解
    断层、泥火山、气烟囱地震活动、深部底辟运动、倾斜断层和沉积边界[44,47]
    澳大利亚西北近海被动大陆边缘碳酸盐岩热成因断层断层、海平面升降、潮汐活动[21]
    下载: 导出CSV
  • [1]

    Berndt C. Focused fluid flow in passive continental margins [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1837): 2855-2871. doi: 10.1098/rsta.2005.1666

    [2]

    Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2009.

    [3]

    Bertoni C, Kirkham C, Cartwright J, et al. Seismic indicators of focused fluid flow and cross-evaporitic seepage in the Eastern Mediterranean [J]. Marine and Petroleum Geology, 2017, 88: 472-488. doi: 10.1016/j.marpetgeo.2017.08.022

    [4]

    Andresen K J, Huuse M. 'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial [J]. Marine Geology, 2011, 279(1-4): 111-127. doi: 10.1016/j.margeo.2010.10.016

    [5]

    Anka Z, Berndt C, Gay A. Hydrocarbon leakage through focused fluid flow systems in continental margins [J]. Marine Geology, 2012, 332-334: 1-3. doi: 10.1016/j.margeo.2012.10.012

    [6] 陈江欣, 关永贤, 宋海斌, 等. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义[J]. 地球物理学报, 2015, 58(3):919-938 doi: 10.6038/cjg20150319

    CHEN Jiangxin, GUAN Yongxian, SONG Haibin, et al. Distribution characteristics and geological implications of pockmarks and mud volcanoes in the northern and western continental margins of the South China Sea [J]. Chinese Journal of Geophysics, 2015, 58(3): 919-938. doi: 10.6038/cjg20150319

    [7]

    Tamborrino L, Himmler T, Elvert M, et al. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea [J]. Marine and Petroleum Geology, 2019, 107: 20-31. doi: 10.1016/j.marpetgeo.2019.05.003

    [8]

    Andresen K J. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution? [J]. Marine Geology, 2012, 332-334: 89-108. doi: 10.1016/j.margeo.2012.07.006

    [9]

    MacDonald I R, Sager W W, Peccini M B. Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico [J]. Marine Geology, 2003, 198(1-2): 133-158. doi: 10.1016/S0025-3227(03)00098-7

    [10]

    Judd A G. The global importance and context of methane escape from the seabed [J]. Geo-Marine Letters, 2003, 23(3-4): 147-154. doi: 10.1007/s00367-003-0136-z

    [11]

    Paull C K, Ussler W, Holbrook W S. Assessing methane release from the colossal Storegga submarine landslide [J]. Geophysical Research Letters, 2007, 34(4): L04601.

    [12]

    Gay A, Lopez M, Berndt C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin [J]. Marine Geology, 2007, 244(1-4): 68-92. doi: 10.1016/j.margeo.2007.06.003

    [13] 肖国林, 郑浚茂. 对南海北部陆坡至东海南部“残留特提斯”的几点认识[J]. 现代地质, 2004, 18(1):103-109 doi: 10.3969/j.issn.1000-8527.2004.01.015

    XIAO Guolin, ZHENG Junmao. New opinions about “Residual Tethys” in northern South China Sea slope and southern East China Sea [J]. Geoscience, 2004, 18(1): 103-109. doi: 10.3969/j.issn.1000-8527.2004.01.015

    [14] 殷树铮. 全球深水油气资源分布特征研究[D]. 中国石油大学(北京)硕士学位论文, 2018.

    YIN Shuzheng. The global distribution of oil and gas resources in deep waters[D]. Master Dissertation of China University of Petroleum (Beijing), 2018.

    [15]

    Stadnitskaia A, Ivanov M K, Poludetkina E N, et al. Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions [J]. Marine and Petroleum Geology, 2008, 25(10): 1040-1057. doi: 10.1016/j.marpetgeo.2007.08.001

    [16]

    Römer M, Sahling H, Pape T, et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea-the Kerch seep area [J]. Marine Geology, 2012, 319-322: 57-74. doi: 10.1016/j.margeo.2012.07.005

    [17] 罗敏, 吴庐山, 陈多福. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 2012, 28(5):33-42

    LUO Min, WU Lushan, CHEN Duofu. Research status and progress of seabed pockmarks [J]. Marine Geology Frontiers, 2012, 28(5): 33-42.

    [18] 王剑, 杜向东, 张树林, 等. 加蓬海岸盆地海底麻坑的成因机制及对油气勘探的指示[J]. 海洋地质与第四纪地质, 2015, 35(6):87-92

    WANG Jian, DU Xiangdong, ZHANG Shulin, et al. Evolution and genesis of seabed pockmarks in Gabon coastal basin [J]. Marine Geology and Quaternary Geology, 2015, 35(6): 87-92.

    [19]

    Lu Y T, Luan X W, Lyu F L, et al. Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea [J]. Marine and Petroleum Geology, 2017, 84: 274-288. doi: 10.1016/j.marpetgeo.2017.04.005

    [20] 李进, 王淑红, 颜文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质, 2017, 37(6):204-214

    LI Jin, WANG Shuhong, YAN Wen. Seabed mud volcano and its bearing on oil-gas and gas hydrate [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 204-214.

    [21]

    Howarth V, Alves T M. Fluid flow through carbonate platforms as evidence for deep-seated reservoirs in Northwest Australia [J]. Marine Geology, 2016, 380: 17-43. doi: 10.1016/j.margeo.2016.06.011

    [22]

    Spatola D, Micallef A, Sulli A, et al. The Graham Bank (Sicily Channel, central Mediterranean Sea): Seafloor signatures of volcanic and tectonic controls [J]. Geomorphology, 2018, 318: 375-389. doi: 10.1016/j.geomorph.2018.07.006

    [23]

    Hillman J I T, Klaucke I, Bialas J, et al. Gas migration pathways and slope failures in the Danube Fan, Black Sea [J]. Marine and Petroleum Geology, 2018, 92: 1069-1084. doi: 10.1016/j.marpetgeo.2018.03.025

    [24]

    Chen J X, Song H B, Guan Y X, et al. Geological and oceanographic controls on seabed fluid escape structures in the northern Zhongjiannan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 38-47. doi: 10.1016/j.jseaes.2018.04.027

    [25]

    Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001

    [26] 杨树锋, 贾承造, 陈汉林, 等. 特提斯构造带的演化和北缘盆地群形成及塔里木天然气勘探远景[J]. 科学通报, 2002, 47(S1):36-43 doi: 10.1360/csb2002-47-S1-36

    YANG Shufeng, JIA Chengzao, TAO Hanlin, et al. The evolution of the Tethyan structural belt and the formation of the northern marginal basin group and the prospects for natural gas exploration in Tarim [J]. Chinese Science Bulletin, 2002, 47(S1): 36-43. doi: 10.1360/csb2002-47-S1-36

    [27] 张功成, 米立军, 屈红军, 等. 全球深水盆地群分布格局与油气特征[J]. 石油学报, 2011, 32(3):369-378 doi: 10.7623/syxb201103001

    ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics [J]. Acta Petrolei Sinica, 2011, 32(3): 369-378. doi: 10.7623/syxb201103001

    [28]

    Baniasad A, Rabbani A R, Moallemi S A, et al. Petroleum system analysis of the northwestern part of the Persian Gulf, Iranian sector [J]. Organic Geochemistry, 2017, 107: 69-85. doi: 10.1016/j.orggeochem.2017.03.005

    [29] 牛华伟, 郑军, 曾广东. 深水油气勘探开发——进展及启示[J]. 海洋石油, 2012, 32(4):1-6 doi: 10.3969/j.issn.1008-2336.2012.04.001

    NIU Huawei, ZHENG Jun, ZENG Guangdong. Progress and enlightenment of oil & gas exploration and development in deep water [J]. Offshore Oil, 2012, 32(4): 1-6. doi: 10.3969/j.issn.1008-2336.2012.04.001

    [30]

    Aali J, Rahimpour-Bonab H, Kamali M R. Geochemistry and origin of the world’s largest gas field from Persian Gulf, Iran [J]. Journal of Petroleum Science and Engineering, 2006, 50(3-4): 161-175. doi: 10.1016/j.petrol.2005.12.004

    [31] 贾小乐, 何登发, 童晓光, 等. 全球大油气田分布特征[J]. 中国石油勘探, 2011, 16(3):1-7 doi: 10.3969/j.issn.1672-7703.2011.03.001

    JIA Xiaole, HE Dengfa, TONG Xiaoguang, et al. Distribution of Global Giant Oil and Gas Fields [J]. China Petroleum Exploration, 2011, 16(3): 1-7. doi: 10.3969/j.issn.1672-7703.2011.03.001

    [32]

    Alsharhan A S. Petroleum systems in the Middle East [J]. Geological Society, London, Special Publications, 2014, 392(1): 361-408. doi: 10.1144/SP392.19

    [33] 康洪全, 贾怀存, 李明刚, 等. 地中海油气富集规律与未来勘探方向[J]. 科技导报, 2016, 34(23):120-126

    KANG Hongquan, JIA Huaicun, LI Minggang, et al. The accumulation of hydrocarbon resources and the future explorative direction in Mediterranean [J]. Science & Technology Review, 2016, 34(23): 120-126.

    [34]

    Aal A A, El Barkooky A, Gerrits M, et al. Tectonic evolution of the eastern Mediterranean basin and its significance for hydrocarbon prospectivity in the ultradeepwater of the Nile Delta [J]. The Leading Edge, 2000, 19(10): 1086-1102. doi: 10.1190/1.1438485

    [35]

    Esestime P, Hewitt A, Hodgson N. Zohr-A newborn carbonate play in the Levantine Basin, East-Mediterranean [J]. First Break, 2016, 34(2): 87-93.

    [36] 张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10):1447-1477

    ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration [J]. Natural Gas Geoscience, 2017, 28(10): 1447-1477.

    [37] 刘小兵, 张光亚, 温志新, 等. 东地中海黎凡特盆地构造特征与油气勘探[J]. 石油勘探与开发, 2017, 44(4):540-548

    LIU Xiaobing, ZHANG Guangya, WEN Zhixin, et al. Structural characteristics and petroleum exploration of Levant Basin in East Mediterranean [J]. Petroleum Exploration and Development, 2017, 44(4): 540-548.

    [38]

    Murray A, Edwards C, Long D. Canning basin-petroleum systems analysis [J]. ASEG Extended Abstracts, 2018, 2018(1): 1-9.

    [39] 张迎朝, 徐新德, 甘军, 等. 琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J]. 地质学报, 2017, 91(7):1620-1633 doi: 10.3969/j.issn.0001-5717.2017.07.013

    ZHANG Yingzhao, XU Xinde, GAN Jun, et al. Study on the geological characteristics, accumulation model and exploration direction of the giant Deepwater gas field in the Qiongdongnan basin [J]. Acta Geologica Sinica, 2017, 91(7): 1620-1633. doi: 10.3969/j.issn.0001-5717.2017.07.013

    [40]

    Merey S, Longinos S N. Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea [J]. Journal of Petroleum Science and Engineering, 2018, 168: 81-97. doi: 10.1016/j.petrol.2018.05.014

    [41]

    Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea [J]. Marine and Petroleum Geology, 2019, 104: 29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    [42]

    Römer M, Sahling H, Ferreira C D S, et al. Methane gas emissions of the Black Sea-mapping from the Crimean continental margin to the Kerch Peninsula slope [J]. Geo-Marine Letters, 2020, 40(4): 467-480. doi: 10.1007/s00367-019-00611-0

    [43]

    Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    [44]

    Hui G G, Li S Z, Guo L L, et al. Source and accumulation of gas hydrate in the northern margin of the South China Sea [J]. Marine and Petroleum Geology, 2016, 69: 127-145. doi: 10.1016/j.marpetgeo.2015.10.009

    [45]

    Fang Y X, Wei J G, Lu H L, et al. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea [J]. Journal of Asian Earth Sciences, 2019, 182: 103924. doi: 10.1016/j.jseaes.2019.103924

    [46]

    Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003

    [47]

    Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: An overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021

    [48]

    Hovland M, Judd A G. Seabed Pockmarks and Seepages. Impact on Geology, Biology and the Marine Environment[M]. London: Graham & Trotman Ltd., 1988.

    [49]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    [50]

    Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 1005. doi: 10.1029/2000RG000093

    [51] 黄华谷, 邸鹏飞, 陈多福. 泥火山的全球分布和研究进展[J]. 矿物岩石地球化学通报, 2011, 30(2):189-197 doi: 10.3969/j.issn.1007-2802.2011.02.010

    HUANG Huagu, DI Pengfei, CHEN Duofu. Global distribution and research progress of mud volcanoes [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2): 189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010

    [52]

    Zitter T A C, Huguen C, Woodside J M. Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(3): 457-475. doi: 10.1016/j.dsr.2004.10.005

    [53]

    Lykousis V, Alexandri S, Woodside J, et al. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea) [J]. Marine and Petroleum Geology, 2009, 26(6): 854-872. doi: 10.1016/j.marpetgeo.2008.05.002

    [54]

    Zeppilli D, Mea M, Corinaldesi C, et al. Mud volcanoes in the Mediterranean Sea are hot spots of exclusive meiobenthic species [J]. Progress in Oceanography, 2011, 91(3): 260-272. doi: 10.1016/j.pocean.2011.01.001

    [55]

    Sahling H, Bohrmann G, Artemov Y G, et al. Vodyanitskii mud volcano, Sorokin trough, Black Sea: Geological characterization and quantification of gas bubble streams [J]. Marine and Petroleum Geology, 2009, 26(9): 1799-1811. doi: 10.1016/j.marpetgeo.2009.01.010

    [56]

    Wu T T, Sahling H, Feseker T, et al. Morphology and activity of the Helgoland Mud Volcano in the Sorokin Trough, Northern Black Sea [J]. Marine and Petroleum Geology, 2019, 99: 227-236. doi: 10.1016/j.marpetgeo.2018.10.017

    [57]

    Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007

    [58]

    Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea [J]. Geological Journal, 2019, 54(1): 177-189. doi: 10.1002/gj.3168

    [59]

    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth and Planetary Science Letters, 2006, 243(3-4): 354-365. doi: 10.1016/j.jpgl.2006.01.041

    [60]

    Herbin J P, Saint-Germès M, Maslakov N, et al. Oil seeps from the "Boulganack" Mud Volcano in the Kerch Peninsula (Ukraine-Crimea), study of the mud and the gas: inferences for the petroleum potential [J]. Oil & Gas Science and Technology-Revue de l'IFP, 2008, 63(5): 609-628.

    [61] 夏鹏, 印萍. 地中海海岭泥火山的构造特征及其油气意义[J]. 海洋地质动态, 2008, 24(4):1-6 doi: 10.3969/j.issn.1009-2722.2008.04.001

    XIA Peng, YIN Ping. Structural feature and oil-gas implication of mud volcanoes in the Mediterranean ridge [J]. Marine Geology Letters, 2008, 24(4): 1-6. doi: 10.3969/j.issn.1009-2722.2008.04.001

    [62]

    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0

    [63]

    Fernández-Ibáñez F, Soto J I. Pore pressure and stress regime in a thick extensional basin with active shale diapirism (western Mediterranean) [J]. AAPG Bulletin, 2017, 101(2): 233-264. doi: 10.1306/07131615228

    [64]

    Hustoft S, Dugan B, Mienert J. Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): Q06012.

    [65]

    Khlystov O M, Poort J, Mazzini A, et al. Shallow-rooted mud volcanism in Lake Baikal [J]. Marine and Petroleum Geology, 2019, 102: 580-589. doi: 10.1016/j.marpetgeo.2019.01.005

    [66]

    Xing J H, Spiess V. Shallow gas transport and reservoirs in the vicinity of deeply rooted mud volcanoes in the central Black Sea [J]. Marine Geology, 2015, 369: 67-78. doi: 10.1016/j.margeo.2015.08.005

    [67]

    Zhang K, Guan Y X, Song H B, et al. A preliminary study on morphology and genesis of giant and mega pockmarks near Andu Seamount, Nansha Region (South China Sea) [J]. Marine Geophysical Research, 2020, 41: 2. doi: 10.1007/s11001-020-09404-y

    [68]

    Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin [J]. Marine Geology, 2007, 244(1-4): 15-32. doi: 10.1016/j.margeo.2007.05.002

    [69]

    Dimitrov L, Woodside J. Deep sea pockmark environments in the eastern Mediterranean [J]. Marine Geology, 2003, 195(1-4): 263-276. doi: 10.1016/S0025-3227(02)00692-8

    [70]

    Moss J L, Cartwright J, Moore R. Evidence for fluid migration following pockmark formation: Examples from the Nile Deep Sea Fan [J]. Marine Geology, 2012, 303-306: 1-13. doi: 10.1016/j.margeo.2012.01.010

    [71]

    Ingrassia M, Martorelli E, Bosman A, et al. The Zannone Giant Pockmark: First evidence of a giant complex seeping structure in shallow-water, central Mediterranean Sea, Italy [J]. Marine Geology, 2015, 363: 38-51. doi: 10.1016/j.margeo.2015.02.005

    [72]

    Sun Q L, Wu S G, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea [J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156. doi: 10.1016/j.marpetgeo.2011.03.003

    [73]

    King L H, Maclean B. Pockmarks on the Scotian shelf [J]. GSA Bulletin, 1970, 81(10): 3141-3148. doi: 10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2

    [74]

    Mueller R J. Evidence for the biotic origin of seabed pockmarks on the Australian continental shelf [J]. Marine and Petroleum Geology, 2015, 64: 276-293. doi: 10.1016/j.marpetgeo.2014.12.016

    [75]

    Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing [J]. Marine Geology, 2005, 218(1-4): 191-206. doi: 10.1016/j.margeo.2005.04.005

    [76]

    Gay A, Lopez M, Cochonat P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin [J]. Marine Geology, 2006, 226(1-2): 25-40. doi: 10.1016/j.margeo.2005.09.018

    [77]

    Andreassen K, Nilssen E G, Ødegaard C M. Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data [J]. Geo-Marine Letters, 2007, 27(2-4): 155-171. doi: 10.1007/s00367-007-0071-5

    [78]

    Pennino V, Sulli A, Caracausi A, et al. Fluid escape structures in the north Sicily continental margin [J]. Marine and Petroleum Geology, 2014, 55: 202-213. doi: 10.1016/j.marpetgeo.2014.02.007

    [79] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40 doi: 10.3969/j.issn.1000-0550.2002.01.007

    CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007

    [80] 陈林, 宋海斌. 海底天然气渗漏的地球物理特征及识别方法[J]. 地球物理学进展, 2005, 20(4):1067-1073 doi: 10.3969/j.issn.1004-2903.2005.04.030

    CHEN Lin, SONG Haibin. Geophysical features and identification of natural gas seepage in marine environment [J]. Progress in Geophysics, 2005, 20(4): 1067-1073. doi: 10.3969/j.issn.1004-2903.2005.04.030

    [81] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013

    CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013

    [82]

    Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes [J]. Oceanography and Marine Biology, 2005, 43: 1-46.

    [83]

    Bayon G, Loncke L, Dupré S, et al. Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan [J]. Marine Geology, 2009, 261(1-4): 92-104. doi: 10.1016/j.margeo.2008.10.008

    [84]

    Huang B J, Xiao X M, Li X S, et al. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yinggehai Basin, offshore South China Sea [J]. Marine and Petroleum Geology, 2009, 26(6): 928-935. doi: 10.1016/j.marpetgeo.2008.04.009

    [85]

    Smith A J, Flemings P B, Fulton P M. Hydrocarbon flux from natural deepwater Gulf of Mexico vents [J]. Earth and Planetary Science Letters, 2014, 395: 241-253. doi: 10.1016/j.jpgl.2014.03.055

    [86]

    Römer M, Sahling H, Pape T, et al. Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea [J]. Marine Geology, 2014, 347: 27-42. doi: 10.1016/j.margeo.2013.10.011

    [87]

    Naudts L, Greinert J, Artemov Y, et al. Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea [J]. Marine Geology, 2006, 227(3-4): 177-199. doi: 10.1016/j.margeo.2005.10.005

    [88]

    Von Deimling J S, Rehder G, Greinert J, et al. Quantification of seep-related methane gas emissions at Tommeliten, North Sea [J]. Continental Shelf Research, 2011, 31(7-8): 867-878. doi: 10.1016/j.csr.2011.02.012

    [89]

    Naudts L, Greinert J, Poort J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane [J]. Marine Geology, 2010, 272(1-4): 233-250. doi: 10.1016/j.margeo.2009.08.002

    [90]

    Torres M E, McManus J, Hammond D E, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces [J]. Earth and Planetary Science Letters, 2002, 201(3-4): 525-540. doi: 10.1016/S0012-821X(02)00733-1

    [91] 樊栓狮, 关进安, 梁德青, 等. 天然气水合物动态成藏理论[J]. 天然气地球科学, 2007, 18(6):819-826 doi: 10.3969/j.issn.1672-1926.2007.06.009

    FAN Shuanshi, GUAN Jinan, LIANG Deqing, et al. A dynamic theory on natural gas hydrate reservoir formation [J]. Natural Gas Geoscience, 2007, 18(6): 819-826. doi: 10.3969/j.issn.1672-1926.2007.06.009

    [92] 李灿苹, 刘学伟, 赵罗臣. 天然气水合物冷泉和气泡羽状流研究进展[J]. 地球物理学进展, 2013, 28(2):1048-1056 doi: 10.6038/pg20130259

    LI Canping, LIU Xuewei, ZHAO Luochen. Progress on cold seeps and bubble plumes produced by gas hydrate [J]. Progress in Geophysics, 2013, 28(2): 1048-1056. doi: 10.6038/pg20130259

    [93] 李灿苹, 尤加春, 朱文娟. 气泡羽状流的识别及其与资源环境相关性分析[J]. 地球物理学进展, 2016, 31(6):2747-2755 doi: 10.6038/pg20160653

    LI Canping, YOU Jiachun, ZHU Wenjuan. Identification of bubble plumes and analysis of its correlation with resource environment [J]. Progress in Geophysics, 2016, 31(6): 2747-2755. doi: 10.6038/pg20160653

    [94] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    [95] 陈忠, 杨华平, 黄奇瑜, 等. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3):382-389 doi: 10.3969/j.issn.1000-8527.2008.03.006

    CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Diagenetic Environment and implication of seep carbonate precipitations from the southwestern Dongsha area, South China Sea [J]. Geoscience, 2008, 22(3): 382-389. doi: 10.3969/j.issn.1000-8527.2008.03.006

    [96]

    Omoregie E O, Niemann H, Mastalerz V, et al. Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea [J]. Marine Geology, 2009, 261(1-4): 114-127. doi: 10.1016/j.margeo.2009.02.001

    [97]

    Loncke L, Mascle J, Parties F S. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences [J]. Marine and Petroleum Geology, 2004, 21(6): 669-689. doi: 10.1016/j.marpetgeo.2004.02.004

    [98]

    Cita M B, Ryan W B F, Paggi L. Prometheus mud-breccia: an example of shale diapirism in the western Mediterranean ridge [J]. Annales Geologiques des Pays Helleniques, 1981, 30: 543-570.

    [99]

    Camerlenghi A, Pini G A. Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region [J]. Sedimentology, 2009, 56(1): 319-365. doi: 10.1111/j.1365-3091.2008.01016.x

    [100]

    Sautkin A, Talukder A R, Comas M C, et al. Mud volcanoes in the Alboran Sea: Evidence from micropaleontological and geophysical data [J]. Marine Geology, 2003, 195(1-4): 237-261. doi: 10.1016/S0025-3227(02)00691-6

    [101]

    Holland C W, Etiope G, Milkov A V, et al. Mud volcanoes discovered offshore Sicily [J]. Marine Geology, 2003, 199(1-2): 1-6. doi: 10.1016/S0025-3227(03)00125-7

    [102]

    Savini A, Malinverno E, Etiope G, et al. Shallow seep-related seafloor features along the Malta plateau (Sicily channel-Mediterranean Sea): Morphologies and geo-environmental control of their distribution [J]. Marine and Petroleum Geology, 2009, 26(9): 1831-1848. doi: 10.1016/j.marpetgeo.2009.04.003

    [103]

    Merey Ş, Longinos S N. Does the Mediterranean Sea have potential for producing gas hydrates? [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 113-134. doi: 10.1016/j.jngse.2018.04.029

    [104]

    Werne J P, Haese R R, Zitter T, et al. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea [J]. Chemical Geology, 2004, 205(3-4): 367-390. doi: 10.1016/j.chemgeo.2003.12.031

    [105]

    Eruteya O E, Reshef M, Ben-Avraham Z, et al. Gas escape along the Palmachim disturbance in the Levant Basin, offshore Israel [J]. Marine and Petroleum Geology, 2018, 92: 868-879. doi: 10.1016/j.marpetgeo.2018.01.007

    [106]

    Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea) [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1292-1311. doi: 10.1016/j.dsr2.2007.04.007

    [107]

    Jolivet L, Faccenna C, Piromallo C. From mantle to crust: Stretching the Mediterranean [J]. Earth and Planetary Science Letters, 2009, 285(1-2): 198-209. doi: 10.1016/j.jpgl.2009.06.017

    [108]

    Tari E, Sahin M, Barka A, et al. Active tectonics of the Black Sea with GPS [J]. Earth, Planets and Space, 2000, 52(10): 747-751. doi: 10.1186/BF03352276

    [109]

    Klaucke I, Sahling H, Weinrebe W, et al. Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea [J]. Marine Geology, 2006, 231(1-4): 51-67. doi: 10.1016/j.margeo.2006.05.011

    [110]

    Krastel S, Spiess V, Ivanov M, et al. Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea [J]. Geo-Marine Letters, 2003, 23(3-4): 230-238. doi: 10.1007/s00367-003-0143-0

    [111]

    Rangin C, Bader A G, Pascal G, et al. Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise) [J]. Marine Geology, 2002, 182(3-4): 265-278. doi: 10.1016/S0025-3227(01)00236-5

    [112]

    Dondurur D, Küçük H M, Çifçi G. Quaternary mass wasting on the western Black Sea margin, offshore of Amasra [J]. Global and Planetary Change, 2013, 103: 248-260. doi: 10.1016/j.gloplacha.2012.05.009

    [113]

    Bahr A, Pape T, Abegg F, et al. Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics-Results from the combination of CT imaging with mineralogical and stable isotope analyses [J]. Marine and Petroleum Geology, 2010, 27(9): 1819-1829. doi: 10.1016/j.marpetgeo.2010.08.005

    [114]

    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 1-15. doi: 10.1016/j.jpgl.2006.02.011

    [115]

    Çifçi G, Dondurur D, Ergün M. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea [J]. Geo-Marine Letters, 2003, 23(3-4): 311-322. doi: 10.1007/s00367-003-0138-x

    [116]

    Meisner A, Krylov O, Nemčok M. Development and structural architecture of the Eastern Black Sea [J]. The Leading Edge, 2009, 28(9): 1046-1055. doi: 10.1190/1.3236374

    [117]

    Mashhadi Z S, Rabbani A R, Kamali M R. Geochemical characteristics and hydrocarbon generation modeling of the Kazhdumi (Early Cretaceous), Gurpi (Late Cretaceous) and Pabdeh (Paleogene) formations, Iranian sector of the Persian Gulf [J]. Marine and Petroleum Geology, 2015, 66: 978-997. doi: 10.1016/j.marpetgeo.2015.08.008

    [118]

    Kordi M. Sedimentary basin analysis of the Neo-Tethys and its hydrocarbon systems in the Southern Zagros fold-thrust belt and foreland basin [J]. Earth-Science Reviews, 2019, 191: 1-11. doi: 10.1016/j.earscirev.2019.02.005

    [119]

    Al-Husseini M I. Origin of the arabian plate structures: amar collision and najd rift [J]. Geoarabia-Manama, 2000, 5(4): 527-542.

    [120]

    Gundogar A S, Ross C M, Akin S, et al. Multiscale pore structure characterization of middle east carbonates [J]. Journal of Petroleum Science and Engineering, 2016, 146: 570-583. doi: 10.1016/j.petrol.2016.07.018

    [121]

    Hosseinyar G, Moussavi-Harami R, Behbahani R. Shallow gas accumulations and seepage in the sediments of the Northeast Persian Gulf [J]. Acta Geophysica, 2014, 62(6): 1373-1386. doi: 10.2478/s11600-014-0236-3

    [122]

    Uchupi E, Swift S A, Ross D A. Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf [J]. Marine Geology, 1996, 129(3-4): 237-269. doi: 10.1016/0025-3227(96)83347-0

    [123]

    Wang P C, Li S Z, Suo Y H, et al. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea [J]. Geoscience Frontiers, 2020, 11(4): 1231-1251. doi: 10.1016/j.gsf.2019.10.009

    [124]

    Di P F, Feng D, Chen D F. In-situ and on-line measurement of gas flux at a hydrocarbon seep from the northern South China Sea [J]. Continental Shelf Research, 2014, 81: 80-87. doi: 10.1016/j.csr.2014.04.001

    [125]

    Sun Q L, Wu S G, Cartwright J, et al. Focused fluid flow systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea [J]. Basin Research, 2013, 25(1): 97-111. doi: 10.1111/j.1365-2117.2012.00551.x

    [126] 张功成, 谢晓军, 王万银, 等. 中国南海含油气盆地构造类型及勘探潜力[J]. 石油学报, 2013, 34(4):611-627 doi: 10.7623/syxb201304001

    ZHANG Gongcheng, XIE Xiaojun, WANG Wanyin, et al. Tectonic types of petroliferous basins and its exploration potential in the South China Sea [J]. Acta Petrolei Sinica, 2013, 34(4): 611-627. doi: 10.7623/syxb201304001

    [127] 何家雄, 张伟, 卢振权, 等. 南海北部大陆边缘主要盆地含油气系统及油气有利勘探方向[J]. 天然气地球科学, 2016, 27(6):943-959 doi: 10.11764/j.issn.1672-1926.2016.06.0943

    HE Jiaxiong, ZHANG Wei, LU Zhenquan, et al. Petroleum system and favorable exploration directions of the main marginal basins in the northern South China Sea [J]. Natural Gas Geoscience, 2016, 27(6): 943-959. doi: 10.11764/j.issn.1672-1926.2016.06.0943

    [128] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914 doi: 10.6038/cjg2018L0374

    YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea [J]. Chinese Journal of Geophysics, 2018, 61(7): 2905-2914. doi: 10.6038/cjg2018L0374

    [129]

    He J X, Zhang W, Lu Z Q. Seepage system of oil-gas and its exploration in Yinggehai Basin located at northwest of South China Sea [J]. Journal of Natural Gas Geoscience, 2017, 2(1): 29-41. doi: 10.1016/j.jnggs.2017.01.001

    [130]

    Zheng H, Sun X M, Wang P J, et al. Mesozoic tectonic evolution of the Proto-South China Sea: A perspective from radiolarian paleobiogeography [J]. Journal of Asian Earth Sciences, 2019, 179: 37-55. doi: 10.1016/j.jseaes.2019.04.009

    [131]

    Paganoni M, King J J, Foschi M, et al. A natural gas hydrate system on the Exmouth Plateau (NW shelf of Australia) sourced by thermogenic hydrocarbon leakage [J]. Marine and Petroleum Geology, 2019, 99: 370-392. doi: 10.1016/j.marpetgeo.2018.10.029

    [132]

    Hillis R R, Sandiford M, Reynolds S D, et al. Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australia’s ‘passive’ margins: intraplate deformation controlled by plate boundary forces [J]. Geological Society, London, Special Publications, 2008, 306(1): 71-90. doi: 10.1144/SP306.3

    [133]

    Wilson M E J. Equatorial carbonates: an earth systems approach [J]. Sedimentology, 2012, 59(1): 1-31. doi: 10.1111/j.1365-3091.2011.01293.x

    [134]

    Rollet N, Logan G A, Ryan G, et al. Shallow gas and fluid migration in the northern Arafura Sea (offshore Northern Australia) [J]. Marine and Petroleum Geology, 2009, 26(1): 129-147. doi: 10.1016/j.marpetgeo.2007.07.010

    [135]

    Rollet N, Logan G A, Kennard J M, et al. Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: An example from the tropical, carbonate Yampi Shelf, Northwest Australia [J]. Marine and Petroleum Geology, 2006, 23(2): 145-164. doi: 10.1016/j.marpetgeo.2005.10.002

    [136]

    Wenau S, Spiess V, Pape T, et al. Cold seeps at the salt front in the Lower Congo Basin II: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage [J]. Marine and Petroleum Geology, 2015, 67: 880-893. doi: 10.1016/j.marpetgeo.2014.09.021

    [137]

    Logan G A, Jones A T, Kennard J M, et al. Australian offshore natural hydrocarbon seepage studies, a review and re-evaluation [J]. Marine and Petroleum Geology, 2010, 27(1): 26-45. doi: 10.1016/j.marpetgeo.2009.07.002

    [138]

    Van Tuyl J, Alves T M, Cherns L. Geometric and depositional responses of carbonate build-ups to Miocene sea level and regional tectonics offshore northwest Australia [J]. Marine and Petroleum Geology, 2018, 94: 144-165. doi: 10.1016/j.marpetgeo.2018.02.034

    [139]

    Londoño J, Lorenzo J M. Geodynamics of continental plate collision during late tertiary foreland basin evolution in the Timor Sea: constraints from foreland sequences, elastic flexure and normal faulting [J]. Tectonophysics, 2004, 392(1-4): 37-54. doi: 10.1016/j.tecto.2004.04.007

    [140]

    Keep M, Harrowfield M. Elastic flexure and distributed deformation along Australia's North West Shelf: Neogene tectonics of the Bonaparte and Browse basins [J]. Geological Society, London, Special Publications, 2008, 306(1): 185-200. doi: 10.1144/SP306.9

    [141]

    Seebeck H, Tenthorey E, Consoli C, et al. Polygonal faulting and seal integrity in the Bonaparte Basin, Australia [J]. Marine and Petroleum Geology, 2015, 60: 120-135. doi: 10.1016/j.marpetgeo.2014.10.012

    [142] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1):1-34 doi: 10.7623/syxb201901001

    ZHANG Gongcheng, QU Hongjun, ZHANG Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment [J]. Acta Petrolei Sinica, 2019, 40(1): 1-34. doi: 10.7623/syxb201901001

    [143]

    Roy K O L, Sibuet M, Fiala-Médioni A, et al. Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(12): 1915-1936. doi: 10.1016/j.dsr.2004.07.004

    [144]

    Courgeon S, Bourget J, Jorry S J. A Pliocene-Quaternary analogue for ancient epeiric carbonate settings: The Malita intrashelf basin (Bonaparte Basin, northwest Australia) [J]. AAPG Bulletin, 2016, 100(4): 565-595. doi: 10.1306/02011613196

  • 期刊类型引用(2)

    1. 王玉杰,姜文英,杨肖肖,胡道功. 海南岛东寨港地区3.9万年以来沉积物粒度特征及其环境意义. 第四纪研究. 2024(05): 1362-1370 . 百度学术
    2. Haizhang Yang,Wu Tang,Enze Xu,Shangfeng Zhang,Yaning Wang,Min Xu. Cyclostratigraphy and paleoclimate analysis of the Lingshui Formation in Changchang Sag, Qiongdongnan Basin, China. Energy Geoscience. 2024(01): 112-124 . 必应学术

    其他类型引用(2)

图(7)  /  表(1)
计量
  • 文章访问数:  2803
  • HTML全文浏览量:  778
  • PDF下载量:  113
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-05-19
  • 网络出版日期:  2021-08-19
  • 刊出日期:  2021-12-27

目录

/

返回文章
返回