亚北极鄂霍次克海晚第四纪冰海沉积作用与水团变化历史

叶圣彬, 王汝建, 肖文申, 孙烨忱, 武力

叶圣彬, 王汝建, 肖文申, 孙烨忱, 武力. 亚北极鄂霍次克海晚第四纪冰海沉积作用与水团变化历史[J]. 海洋地质与第四纪地质, 2021, 41(3): 124-140. DOI: 10.16562/j.cnki.0256-1492.2021031601
引用本文: 叶圣彬, 王汝建, 肖文申, 孙烨忱, 武力. 亚北极鄂霍次克海晚第四纪冰海沉积作用与水团变化历史[J]. 海洋地质与第四纪地质, 2021, 41(3): 124-140. DOI: 10.16562/j.cnki.0256-1492.2021031601
YE Shengbin, WANG Rujian, XIAO Wenshen, SUN Yechen, WU Li. Changing histories of glaciomarine deposition and water masses in the subarctic Okhotsk Sea of Late Quaternary[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 124-140. DOI: 10.16562/j.cnki.0256-1492.2021031601
Citation: YE Shengbin, WANG Rujian, XIAO Wenshen, SUN Yechen, WU Li. Changing histories of glaciomarine deposition and water masses in the subarctic Okhotsk Sea of Late Quaternary[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 124-140. DOI: 10.16562/j.cnki.0256-1492.2021031601

亚北极鄂霍次克海晚第四纪冰海沉积作用与水团变化历史

基金项目: 国家自然科学基金项目“重建晚第四纪冰期-间冰期西北冰洋筏冰输运和表层洋流演变历史”(41776187);国家海洋局极地考察办公室极地科学协同创新平台项目“极地海洋沉积特征及分布研究”(CXPT2020008)
详细信息
    作者简介:

    叶圣彬(1993—),男,硕士研究生,海洋地质学与古环境研究,E-mail:sebastianye@tongji.edu.cn

    通讯作者:

    王汝建(1959—),男,教授,博导,从事古海洋与古气候研究,E-mail:rjwang@tongji.edu.cn

  • 中图分类号: P736.2

Changing histories of glaciomarine deposition and water masses in the subarctic Okhotsk Sea of Late Quaternary

  • 摘要: 亚北极鄂霍次克海是全球重要的碳汇之一,也是北太平洋中层水的主要源区,研究晚第四纪鄂霍次克海古环境变化及其影响因素对于理解亚极地海洋对气候变化的响应有重要意义。本文对鄂霍次克海南部科学院海隆ARC2-T00岩芯进行了粗组分、坠石、有孔虫丰度和CaCO3含量的统计与分析、底栖有孔虫Uvigerina spp.氧碳同位素测试等,并基于其底栖有孔虫Uvigerina spp.-δ18O和深海氧同位素曲线LR04-δ18O与相邻站位OS03-1 Uvigerina spp.-δ18O的对比,建立了该岩芯的地层年代框架。该研究表明,在MIS 6—MIS 2的大部分时期,鄂霍次克海南部主要沉积动力为西风、洋流及海冰;风尘堆积速率的变化指示西风带在冰期增强,间冰期减弱;海冰沉积堆积速率的变化表明,在冰期或冰段,海冰沉积受当时季节性海冰沉积中心带所处位置的影响较大;海冰和水团指标变化显示,鄂霍次克海南部此时为季节性海冰覆盖,鄂霍次克海中层水上部生成增强,中层水下部的盐度变化可能与宗谷暖流前伸体的输入、海冰形成析出的卤水下沉和太平洋深层水的侵入有关。
    Abstract: The subarctic Okhotsk Sea is one of the most important carbon sinks in the world and the main source areas of ​​North Pacific Intermediate Water (NPIW). The study of Late Quaternary paleoenvironmental changes of the ​​Okhotsk Sea and their effect factors are of great significance for understanding the responses of subpolar oceans to global climate change. Coarse fraction, drop stone, foraminiferal abundance, CaCO3 content, benthic foraminifera Uvigerina spp. oxygen and carbon isotopes in the core ARC2-T00 collected from the Academy of Sciences on Rise of Southern Okhotsk Sea are tested, counted or analyzed by the authors and then the stratigraphic chronology of the core is established based on the comparison of the benthic foraminifera Uvigerina spp.-δ18O, the global deep-sea oxygen isotope stacks LR04-δ18O and the adjacent site OS03-1 Uvigerina spp.-δ18O. The results indicate that, in the most intervals of MIS 6—2, the sedimentary dynamic mechanisms in the Southern ​​Okhotsk Sea are dominated by westerlies, ocean currents and sea ice. Changes in the accumulation rate of eolian dust indicate that the westerlies strengthened and weakened during the glacials and the interglacials, respectively. The variation in the accumulation rate of sea ice sediments illustrates that during the glacials, sea ice deposition was severely influenced by the location of the seasonal sea ice depositional center at that time. Meanwhile, as indicated by proxies of sea ice and water masses, the southern ​​Okhotsk Sea was covered by seasonal sea ice and the upper Okhotsk Sea Intermediate Water (uOSIW) production was strengthened. Salinity variation in lower Okhotsk Sea Intermediate Water (lOSIW) may be related to inflow of the Forerunner of Soya Warm Current Water (FSCW), brine rejection due to sea ice formation and intrusion of the Pacific Deep Water (PDW).
  • 图  1   鄂霍次克海ARC2-T00[2]、OS03-1[24]、LV28-41-4、LV28-42-4及LV28-44-3[19]、HS09、HS13[25]、MD01-2414[26]位置图以及鄂霍次克海洋流[16]、海冰分布范围[19](a)与鄂霍次克海150°E断面及49.5°N断面1955—2010年海水年平均温度[27]、盐度[28]、溶解氧[29]剖面图(b)

    其中,HS09、HS13为海水采样,其余为沉积物岩芯取样;黑色实线为现代1月份海冰界线,黑色虚线为现代3月份海冰最大覆盖范围的界线;浅蓝色为黑龙江淡水输入;蓝色、红色路径为表层洋流,蓝色为寒流,红色为暖流,灰色为中层洋流。ESC:东萨哈林流,NOC:北鄂霍次克流,WKC:西堪察加流,CKC:堪察加补偿流,SC:宗谷暖流,FSCW:宗谷暖流前伸体,OC:亲潮,DSW:高密度陆架水,WSAW: 西部亚北极水,OSIW:鄂霍次克海中层水,OG:鄂霍次克涡流。A—A’:150°E断面;B—B’:49.5°N断面。本图采用Ocean Data View 5.3.0版本绘制[30]

    Figure  1.   Location of Core ARC2-T00[2], OS03-1[24], LV28-41-4、LV28-42-4 & LV28-44-3[19], HS09 & HS13[25], MD01-2414[26],ocean currents[16], sea ice coverage[19]in Okhotsk Sea(a) and annual average temperature[27], salinity[28]and dissolved oxygen[29]of sea water of section 150°E and section 49.5°N of Okhotsk Sea(b)

    HS09, HS13 are hydrocast stations, others are sediment cores. Black line shows modern sea ice boundary in January. Black dotted line shows modern sea ice boundary maximum in March. Light blue lines are fresh water input from Amur River. Red and blue lines represent surface currents. Red lines are warm currents, while blue lines are cold currents. Grey lines are intermediate currents. ESC: East Sakhalin Current, NOC: North Okhotsk Current, WKC: West Kamchatka Current, CKC: Compensation Kamchatka Current, SC: Soya Current, FSCW: the Forerunner of Soya Warm Current Water, OC: Oyashio Current, DSW: Dense shelf Water, WSAW: Western Subarctic Water, OSIW: Okhotsk Sea Intermediate Water, OG: Okhotsk Gyre. A-A': section 150°E, B-B': section 49.5°N drawn with Ocean Data View 5.3.0[30]

    图  2   鄂霍次克海ARC2-T00岩芯底栖有孔虫δ18O与LR04-δ18O标准曲线[56]和OS03-1岩芯底栖有孔虫δ18O曲线[24]的对比(a),根据底栖有孔虫δ18O对比选取的11个年龄控制点建立ARC2-T00岩芯的深度-年龄模式及该岩芯的沉积速率(b)

    沉积速率以浅灰色阴影表示,虚线代表按照沉积速率线性外推的年龄。

    Figure  2.   Stratigraphic assignments of core ARC2-T00 in Okhotsk Sea, correlated with global benthic LR04-δ18O stacks[56]and core OS03-1 δ18O records[24](a),the depth-age model of ARC2-T00, based on 11 age control-points by correlation, and the sedimentation rate(b)

    Sedimentation rates are represented by the shaded area. Dash black line extrapolated with the last two age control-points.

    图  3   鄂霍次克海南部ARC2-T00岩芯底栖有孔虫Uvigerina spp.- δ18O和- δ13C及生源组分含量变化

    其中的蛋白石百分含量、碳酸钙百分含量、总有机碳百分含量、C/N值、放射虫冷水种Cycladophora davisiana百分含量引自参考文献[2];一般认为C/N在8~12为混合源[58];为满足对数函数对于底数值非零的要求,作图时浮游有孔虫丰度+1;图中斜虚线代表MIS 3中后期与MIS 5d,为浮游、底栖有孔虫丰度均为零或几乎为零的时期。

    Figure  3.   Benthic foraminifera Uvigerina spp.- δ18O & - δ13C curves and variations of biogenic fraction contents of Core ARC2-T00 in southern Okhotsk Sea

    Opal content,carbonate(CaCO3)content,total organic carbon(TOC)content,C/N,content of Cycladophora davisiana, the cold water radiolarian data from ref.[2];C/N values between 8 and 12 considered as mix-derived[58];For ensuring base numbers of logarithm function are not 0, pelagic and benthic foraminifera abundance +1; oblique dashed lines represent mid-late MIS 3 and MIS 5d, when the abundances of planktonic and benthic foraminifera were 0 or nearly 0.

    图  4   鄂霍次克海南部ARC2-T00粗组分含量、坠石个数和粒度组分含量变化

    根据粒度分析结果得出的平均粒径及黏土(0~4 μm)、粉砂(4~63 μm)、砂(>63 μm)的百分含量引自参考文献[2]。

    Figure  4.   Coarse fraction contents, drop stone counts and grain size variations of Core ARC2-T00 in southern Okhotsk Sea

    Mean grain size, clay(0~4 μm)content,silt(4~63 μm)content,sand(>63 μm)content,according to grain size analysis from reference [2].

    图  5   鄂霍次克海南部ARC2-T00粒度的端元分析结果

    a. 总体粒度频率分布曲线,b. 不同端元数目的各粒级决定系数,c. 平均决定系数,d. 三端元粒度频率分布。

    Figure  5.   End member modeling analysis results of the grain size distribution from Core ARC2-T00 in southern Okhotsk Sea

    a. Total grain size frequencies, b. Determination coefficients of grain size fractions of different end member numbers, c. Average of determination coefficients, d. Frequencies of three end-members.

    图  6   鄂霍次克海南部ARC2-T00粒度组成及各端元组分含量变化特征

    图中虚线表示各组分平均值。

    Figure  6.   Relative abundances of three end-members and grain size composition of Core ARC2-T00 in southern Okhotsk Sea

    Dash lines in each figure show the average values.

    图  7   鄂霍次克海南部ARC2-T00岩芯3个沉积物粒度端元堆积速率的变化与ODP882风尘堆积速率[44]、LR04-δ18O标准曲线[56]的对比(a),冰筏碎屑堆积速率变化与LV28-41-4、LV28-42-4、LV28-44-3[19]的对比(b)、季节性海冰沉积中心带的西北—东南向转移(c、d)

    Figure  7.   Comparison of AREMi of ARC2-T00、ARdust of ODP882[44]& global benthic LR04-δ18O stacks[56](a), Comparison of ARIRD of ARC2-T00、LV28-41-4、LV28-42-4 & LV28-44-3[19](b)、shift of seasonal sea ice deposition belt(c、d)

    图  8   海平面[76]、重建的ARC2-T00站位的lOSIW盐度、底栖有孔虫氧同位素[56]C.davisiana、海冰指标EM3的变化

    Figure  8.   Changes of sea level[76],lOSIW salinity recovered from ARC2-T00,oxygen isotope of benthic foraminifera[56]C.davisiana and sea ice proxy EM3

    表  1   本文中ARC2-T00岩芯和其他岩芯信息

    Table  1   Information about ARC2-T00 and other mentioned cores in Okhotsk Sea

    站位北纬东经水深/m参考文献
    ARC2-T00 49°29.85′ 150°00.60′ 975 [2];本文
    OS03-1 49°29.85′ 150°00.60′ 975 [24]
    HS13 49°59.40′ 149°06.60′ 1100 [25]
    HS09 48°00.00′ 150°42.00′ 3370 [25]
    LV28-41-4 51°40.51′ 149°04.08′ 1082 [19]
    LV28-42-4 51°42.89′ 150°59.13′ 1041 [19]
    LV28-44-3 52°02.51′ 153°05.95′ 684 [19]
    ODP 882 50°21.8′ 167°36.0′ 3244 [44]
    MD01-2414 53°11.77′ 149°34.80′ 1123 [26]
    下载: 导出CSV

    表  2   鄂霍次克海南部ARC2-T00岩芯年龄控制点

    Table  2   Age control points of core ARC2-T00 in southern Okhotsk Sea

    深度/cm741151171195207229287309373421
    MIS2重值时2/33/44/55a/5b5b/5c5c/5d5d/5e5/66b/6c6e重值时
    年龄/ka182957718593105116130156185
    下载: 导出CSV

    表  3   鄂霍次克海南部ARC2-T00岩芯粒度端元分析的各端元主要数据

    Table  3   Key statistics of the grain-size distributions of EMMA-derived end-members of ARC2-T00 in southern Okhotsk Sea

    变量端元1 EM1端元2 EM2端元3 EM3
    分布范围/μm0.6~193.6~5115~300
    峰态中值/μm41453
    平均体积百分比/%46.832.620.6
    下载: 导出CSV
  • [1]

    Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x

    [2] 孙烨忱, 王汝建, 陈建芳, 等. 鄂霍次克海南部晚第四纪的古海洋学记录[J]. 海洋地质与第四纪地质, 2009, 29(2):83-90

    SUN Yechen, WANG Rujian, CHEN Jianfang, et al. Late Quaternary Paleoceanographic records in the southern Okhotsk Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(2): 83-90.

    [3] 石学法, 邹建军, 王昆山. 鄂霍次克海晚第四纪以来古环境演化[J]. 海洋地质与第四纪地质, 2011, 31(6):1-12

    SHI Xuefa, ZOU Jianjun, WANG Kunshan. Paleoenvironmental changes in the Okhotsk Sea since late Pleistocene and its driving force [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 1-12.

    [4]

    Tsunogai S, Ono T, Watanabe S. Increase in total carbonate in the western North Pacific water and a hypothesis on the missing sink of anthropogenic carbon [J]. Journal of Oceanography, 1993, 49(3): 305-315. doi: 10.1007/BF02269568

    [5]

    Takahashi K. The Bering and Okhotsk Seas: modern and past paleoceanographic changes and gateway impact [J]. Journal of Asian Earth Sciences, 1998, 16(1): 49-58. doi: 10.1016/S0743-9547(97)00048-2

    [6]

    Takahashi Y, Matsumoto E, Watanabe Y W. The distribution of δ13C in total dissolved inorganic carbon in the central North Pacific Ocean along 175°E and implications for anthropogenic CO2 penetration [J]. Marine Chemistry, 2000, 69(3-4): 237-251. doi: 10.1016/S0304-4203(99)00108-5

    [7]

    Otsuki A S, Watanabe S, Tsunogai S. Absorption of atmospheric CO2 and its transport to the intermediate layer in the Okhotsk sea [J]. Journal of Oceanography, 2003, 59(5): 709-717. doi: 10.1023/B:JOCE.0000009599.94380.30

    [8]

    Kashiwase H, Ohshima K I, Nihashi S. Long-term variation in sea ice production and its relation to the intermediate water in the Sea of Okhotsk [J]. Progress in Oceanography, 2014, 126: 21-32. doi: 10.1016/j.pocean.2014.05.004

    [9]

    Gorbarenko S A, Chekhovskaya M P, Souhton J R. On the paleoenvironment of the central part of the Sea of Okhotsk during the past Holocene glaciation [J]. Oceanology, 1998, 38: 277-280.

    [10]

    Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr [J]. Paleoceanography, 2004, 19(1): PA1016.

    [11]

    Seki O, Yoshikawa C, Nakatsuka T, et al. Fluxes, source and transport of organic matter in the western Sea of Okhotsk: Stable carbon isotopic ratios of n-alkanes and total organic carbon [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(2): 253-270. doi: 10.1016/j.dsr.2005.11.004

    [12]

    Sakamoto T, Ikehara M, Uchida M, et al. Millennial-scale variations of sea-ice expansion in the southwestern part of the Okhotsk Sea during the past 120 kyr: Age model and ice-rafted debris in IMAGES Core MD01-2412 [J]. Global and Planetary Change, 2006, 53(1-2): 58-77. doi: 10.1016/j.gloplacha.2006.01.012

    [13] 吴永华, 石学法, 邹建军 等. 鄂霍次克海东南部180 ka BP以来底栖有孔虫δ13C轻值事件[J]. 科学通报, 2014, 59(24):3066-3074 doi: 10.1007/s11434-014-0222-9

    WU Yonghua, SHI Xuefa, ZOU Jianjun, et al. Benthic foraminiferal δ13C minimum events in the southeastern Okhotsk Sea over the last 180 ka [J]. Chinese Science Bulletin, 2014, 59(24): 3066-3074. doi: 10.1007/s11434-014-0222-9

    [14]

    Bubenshchikova N, Nürnberg D, Tiedemann R. Variations of Okhotsk Sea oxygen minimum zone: comparison of foraminiferal and sedimentological records for latest MIS 12-11c and latest MIS 2-1 [J]. Marine Micropaleontology, 2015, 121: 52-69. doi: 10.1016/j.marmicro.2015.09.004

    [15]

    Zou J J, Shi X F, Zhu A M, et al. Evidence of sea ice-driven terrigenous detritus accumulation and deep ventilation changes in the southern Okhotsk Sea during the last 180ka [J]. Journal of Asian Earth Sciences, 2015, 114: 541-548. doi: 10.1016/j.jseaes.2015.07.020

    [16]

    Jimenez-Espejo F J, García-Alix A, Harada N, et al. Changes in detrital input, ventilation and productivity in the central Okhotsk Sea during the marine isotope stage 5e, penultimate interglacial period [J]. Journal of Asian Earth Sciences, 2018, 156: 189-200. doi: 10.1016/j.jseaes.2018.01.032

    [17]

    Lo L, Belt S T, Lattaud J, et al. Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130, 000 years ago [J]. Earth and Planetary Science Letters, 2018, 488: 36-45. doi: 10.1016/j.jpgl.2018.02.005

    [18]

    Sakamoto T, Ikehara M, Aoki K, et al. Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100kyrs in the Okhotsk Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2275-2301. doi: 10.1016/j.dsr2.2005.08.007

    [19]

    Nürnberg D, Dethleff D, Tiedemann R, et al. Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350ka—Evidence from ice-rafted debris and planktonic δ18O [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(3-4): 191-205. doi: 10.1016/j.palaeo.2011.07.011

    [20]

    Nürnberg D, Tiedemann R. Environmental change in the Sea of Okhotsk during the last 1.1 million years [J]. Paleoceanography, 2004, 19(4): PA4011.

    [21]

    Iwasaki S, Takahashi K, Maesawa T, et al. Paleoceanography of the last 500 kyrs in the central Okhotsk Sea based on geochemistry [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 50-62. doi: 10.1016/j.dsr2.2011.03.003

    [22]

    Seki O, Sakamoto T, Sakai S, et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(10): Q10007.

    [23]

    Gorbarenko S A, Khusid T A, Basov I A, et al. Glacial Holocene environment of the southeastern Okhotsk Sea: Evidence from geochemical and palaeontological data [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 177(3-4): 237-263. doi: 10.1016/S0031-0182(01)00335-2

    [24] 司贺园, 侯雪景, 丁旋, 等. 鄂霍次克海南部OS03-1岩心MIS6期以来的沉积记录及其古环境意义[J]. 现代地质, 2011, 25(3):482-488

    SI Heyuan, HOU Xuejing, DING Xuan, et al. Sedimentary Record in Core OS03-1 from the Southern Okhotsk Sea since the Last Interglacial and the Paleoenvironmental Significance [J]. Geoscience, 2011, 25(3): 482-488.

    [25]

    Cook M S, Ravelo A C, Mix A, et al. Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126: 84-95. doi: 10.1016/j.dsr2.2016.02.006

    [26]

    Lattaud J, Lo L, Zeeden C, et al. A multiproxy study of past environmental changes in the Sea of Okhotsk during the last 1.5 Ma [J]. Organic Geochemistry, 2019, 132: 50-61. doi: 10.1016/j.orggeochem.2019.04.003

    [27]

    Locarnini R A, Mishonov A V, Baranova O K, et al. World ocean atlas 2018: volume 1: temperature[R]. Highway: NOAA, 2019.

    [28]

    Zweng M M, Reagan J R, Seidov D, et al. World ocean atlas 2018: volume 2: salinity[R]. Highway: NOAA, 2019.

    [29]

    Garcia H E, Weathers K W, Paver C R, et al. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation[R]. Highway: NOAA, 2019.

    [30]

    Schlitzer R. Data analysis and visualization with ocean data view [J]. CMOS Bulletin SCMO, 2015, 43(1): 9-13.

    [31]

    Sancetta C. Oceanographic and ecologic significance of diatoms in surface sediments of the Bering and Okhotsk seas [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(8): 789-817. doi: 10.1016/S0198-0149(81)80002-7

    [32]

    Lapko V V, Radchenko V I. Sea of okhotsk [J]. Marine Pollution Bulletin, 2000, 41(1-6): 179-187. doi: 10.1016/S0025-326X(00)00109-0

    [33]

    Talley L D. An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38 Suppl 1: S171-S190.

    [34]

    Wong C S, Matear R J, Freeland H J, et al. WOCE line P1W in the Sea of Okhotsk: 2. CFCs and the formation rate of intermediate water [J]. Journal of Geophysical Research: Oceans, 1998, 103(C8): 15625-15642. doi: 10.1029/98JC01008

    [35]

    Itoh M, Ohshima K I, Wakatsuchi M. Distribution and formation of okhotsk sea intermediate water: an analysis of isopycnal climatological data [J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3258. doi: 10.1029/2002JC001590

    [36]

    Keigwin L D, Gorbarenko S A. Sea level, surface salinity of the Japan Sea, and the Younger Dryas event in the northwestern Pacific Ocean [J]. Quaternary Research, 1992, 37(3): 346-360. doi: 10.1016/0033-5894(92)90072-Q

    [37]

    Kitamura A, Takano O, Takata H, et al. Late Pliocene–early Pleistocene paleoceanographic evolution of the Sea of Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(1-2): 81-98. doi: 10.1016/S0031-0182(01)00272-3

    [38]

    Shcherbina A Y, Talley L D, Rudnick D L. Direct observations of north pacific ventilation: brine rejection in the Okhotsk sea [J]. Science, 2003, 302(5652): 1952-1955. doi: 10.1126/science.1088692

    [39]

    You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water [J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304

    [40]

    Matul A G. The recent and quaternary distribution of the radiolarian species Cycladophora davisiana: a biostratigraphic and paleoceanographic tool [J]. Oceanology, 2011, 51(2): 335-346. doi: 10.1134/S0001437011020111

    [41]

    Nakatsuka T, Fujimune T, Yoshikawa C, et al. Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: implications for lateral material transport and biological productivity [J]. Journal of Geophysical Research: Oceans, 2004, 109(C9): C09S13.

    [42]

    Hays J D, Morley J J. The sea of Okhotsk: a window on the ice age ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(4): 593-618. doi: 10.1016/j.dsr.2004.02.001

    [43] 张占海. 中国第二次北极科学考察报告[M]. 北京: 海洋出版社, 2004: 127.

    ZHANG Zhanhai. The Report of 2003 Chinese Arctic Research Expedition[M]. Beijing: China Ocean Press, 2004: 127.

    [44]

    Serno S, Winckler G, Anderson R F, et al. Change in dust seasonality as the primary driver for orbital‐scale dust storm variability in East Asia [J]. Geophysical Research Letters, 2017, 44(8): 3796-3805. doi: 10.1002/2016GL072345

    [45]

    VAN Andel T H, Heath G R, Moore T C Jr. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data[M]//Van Andel T H, Heath G R, Moore T C Jr. Cenozoic History and Paleoceanography of the Central Equatorial Pacific Ocean. Tulsa, Okla: Geological Society of America, 1975, 143: 1-134.

    [46]

    Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem [J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085

    [47]

    Seidel M, Hlawitschka M. An R-based function for modeling of end member compositions [J]. Mathematical Geosciences, 2015, 47(8): 995-1007. doi: 10.1007/s11004-015-9609-7

    [48]

    Wu L, Wang R J, Xiao W S, et al. Late quaternary deep stratification‐climate coupling in the southern ocean: implications for changes in abyssal carbon storage [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 379-395. doi: 10.1002/2017GC007250

    [49]

    Stuut J B W, Prins M A, Schneider R R, et al. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic [J]. Marine Geology, 2002, 180(1-4): 221-233. doi: 10.1016/S0025-3227(01)00215-8

    [50]

    Prins M A, Postma G, Weltje G J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope [J]. Marine Geology, 2000, 169(3-4): 351-371. doi: 10.1016/S0025-3227(00)00087-6

    [51]

    Holz C, Stuut J B W, Henrich R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain‐size analysis of seabed sediments [J]. Sedimentology, 2004, 51(5): 1145-1154. doi: 10.1111/j.1365-3091.2004.00665.x

    [52] 田军, 汪品先, 成鑫荣. 南海ODP1143站底栖有孔虫CibicidoidesUvigerina稳定氧碳同位素值的均衡试验[J]. 地球科学—中国地质大学学报, 2004, 29(1):1-6

    TIAN Jun, WANG Pinxian, CHENG Xinrong. Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerina at ODP site 1143, Southern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(1): 1-6.

    [53]

    Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial [J]. Colloques Internationaux, 1974, 219: 203-209.

    [54]

    Coplen T B. Normalization of oxygen and hydrogen isotope data [J]. Chemical Geology: Isotope Geoscience Section, 1988, 72(4): 293-297. doi: 10.1016/0168-9622(88)90042-5

    [55]

    Folk R L, Ward W C. Brazos river bar: a study in the significance of grain size parameters [J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    [56]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003. doi: 10.1029/2004PA001071

    [57]

    Railsback L B, Gibbard P L, Head M J, et al. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages [J]. Quaternary Science Reviews, 2015, 111: 94-106. doi: 10.1016/j.quascirev.2015.01.012

    [58]

    Milliman J D, Xie Q C, Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean [J]. American Journal of Science, 1984, 284(7): 824-834. doi: 10.2475/ajs.284.7.824

    [59]

    Gorbarenko S A, Southon J R, Keigwin L D, et al. Late Pleistocene–Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209(1-4): 281-301. doi: 10.1016/j.palaeo.2004.02.013

    [60]

    Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific [J]. Earth and Planetary Science Letters, 2014, 387: 252-263. doi: 10.1016/j.jpgl.2013.11.008

    [61] 王昆山, 石学法, 吴永华 等. 鄂霍次克海东南部OS03-1岩心重矿物分布特征及物质来源[J]. 海洋学报, 2014, 36(5):177-185

    WANG Kunshan, SHI Xuefa, WU Yonghua, et al. Characteristics and provenance implications of heavy mineral in core OS03-1 from the east-southern Okhotsk Sea [J]. Acta Oceanologica Sinica, 2014, 36(5): 177-185.

    [62]

    Wang R, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: implications and perspectives for palaeoenvironmental reconstructions [J]. Geo-Marine Letters, 2016, 36(4): 259-270. doi: 10.1007/s00367-016-0445-7

    [63]

    Rea D K, Hovan S A. Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific [J]. Paleoceanography, 1995, 10(2): 251-258. doi: 10.1029/94PA03355

    [64]

    Uchimoto K, Mitsudera H, Ebuchi N, et al. Anticyclonic eddy caused by the Soya Warm Current in an Okhotsk OGCM [J]. Journal of Oceanography, 2007, 63(3): 379-391. doi: 10.1007/s10872-007-0036-3

    [65]

    Nicholson U, Van Der Es B, Clift P D, et al. The sedimentary and tectonic evolution of the Amur River and North Sakhalin Basin: new evidence from seismic stratigraphy and Neogene–Recent sediment budgets [J]. Basin Research, 2016, 28(2): 273-297. doi: 10.1111/bre.12110

    [66]

    Fujisaki A, Mitsudera H, Wang J, et al. How does the Amur river discharge flow over the northwestern continental shelf in the Sea of Okhotsk? [J]. Progress in Oceanography, 2014, 126: 8-20. doi: 10.1016/j.pocean.2014.04.028

    [67]

    Murray J W, Alve E. Benthic foraminifera as indicators of environmental change: marginal-marine, shelf and upper slope environments[M]//Haslett S K. Quaternary Environmental Micropalaeontology. New York: Oxford University Press, 2002: 59-90.

    [68] 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170 doi: 10.3321/j.issn:1005-2321.2005.02.018

    HUANG Yongjian, WANG Chengshan, WANG Yunliang. Progress in the study of proxies of paleocean productivity [J]. Earth Science Frontiers, 2005, 12(2): 163-170. doi: 10.3321/j.issn:1005-2321.2005.02.018

    [69]

    Abelmann A, Nimmergut A. Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2302-2331. doi: 10.1016/j.dsr2.2005.07.009

    [70]

    Okazaki Y, Seki O, Nakatsuka T, et al. Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: a key for reconstructing glacial ocean conditions [J]. Journal of Oceanography, 2006, 62(5): 639-648. doi: 10.1007/s10872-006-0082-2

    [71]

    Itaki T, Khim B K, Ikehara K. Last glacial–Holocene water structure in the southwestern Okhotsk Sea inferred from radiolarian assemblages [J]. Marine Micropaleontology, 2008, 67(3-4): 191-215. doi: 10.1016/j.marmicro.2008.01.002

    [72]

    Matul A G, Abelmann A, Gersonde R, et al. Late quaternary distribution of radiolarian Cycladophora davisiana as indication of possible ventilation of intermediate water in the subarctic pacific during the last glacial [J]. Oceanology, 2015, 55(1): 103-112.

    [73]

    Wang R J, Xiao W S, März C, et al. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean [J]. Global and Planetary Change, 2013, 108: 100-118. doi: 10.1016/j.gloplacha.2013.05.017

    [74]

    Bae S W, Lee K E, Park Y, et al. Sea surface temperature and salinity changes near the Soya Strait during the last 19 ka [J]. Quaternary International, 2014, 344: 200-210. doi: 10.1016/j.quaint.2014.06.014

    [75]

    Tanaka S, Takahashi K. Late quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16-18): 2131-2149. doi: 10.1016/j.dsr2.2005.07.002

    [76]

    Spratt R M, Lisiecki L E. A late Pleistocene sea level stack [J]. Climate of the Past, 2016, 12(4): 1079-1092. doi: 10.5194/cp-12-1079-2016

图(8)  /  表(3)
计量
  • 文章访问数:  1559
  • HTML全文浏览量:  316
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-03-30
  • 网络出版日期:  2021-06-14
  • 刊出日期:  2021-06-27

目录

    /

    返回文章
    返回