地球化学组成对浑善达克沙地与科尔沁沙地风化和沉积循环特征及其物源的指示

刘璐, 谢远云, 迟云平, 康春国, 吴鹏, 魏振宇, 张月馨, 张曼

刘璐, 谢远云, 迟云平, 康春国, 吴鹏, 魏振宇, 张月馨, 张曼. 地球化学组成对浑善达克沙地与科尔沁沙地风化和沉积循环特征及其物源的指示[J]. 海洋地质与第四纪地质, 2021, 41(4): 192-206. DOI: 10.16562/j.cnki.0256-1492.2020123102
引用本文: 刘璐, 谢远云, 迟云平, 康春国, 吴鹏, 魏振宇, 张月馨, 张曼. 地球化学组成对浑善达克沙地与科尔沁沙地风化和沉积循环特征及其物源的指示[J]. 海洋地质与第四纪地质, 2021, 41(4): 192-206. DOI: 10.16562/j.cnki.0256-1492.2020123102
LIU Lu, XIE Yuanyun, CHI Yunping, KANG Chunguo, WU Peng, WEI Zhenyu, ZHANG Yuexin, ZHANG Man. Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 192-206. DOI: 10.16562/j.cnki.0256-1492.2020123102
Citation: LIU Lu, XIE Yuanyun, CHI Yunping, KANG Chunguo, WU Peng, WEI Zhenyu, ZHANG Yuexin, ZHANG Man. Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 192-206. DOI: 10.16562/j.cnki.0256-1492.2020123102

地球化学组成对浑善达克沙地与科尔沁沙地风化和沉积循环特征及其物源的指示

基金项目: 国家自然科学基金“钻井岩芯记录的松嫩平原松花江第四纪水系演化:对构造—地貌—气候变化的响应”(41871013);黑龙江省自然科学基金“松嫩平原第四纪沉积记录对松花江水系演化及区域干旱化进程的响应”(LH2020D009)
详细信息
    作者简介:

    刘璐(1995—),女,硕士,主要研究方向为第四纪地质与环境变化,E-mail:513596087@qq.com

    通讯作者:

    谢远云(1971—),男,博士,教授,主要从事第四纪地质研究,E-mail:xyy0451@hrbnu.edu.cn

  • 中图分类号: P531

Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance

  • 摘要: 对浑善达克沙地与科尔沁沙地河流砂和风成砂的细颗粒组分(<10 μm和<63 μm)进行了地球化学元素(常量、微量和稀土元素)和Sr-Nd同位素分析,评估了浑善达克沙地与科尔沁沙地的化学风化、沉积再循环特征和物质源区,探讨了西拉沐沦河对两个沙地物质交换的贡献。浑善达克沙地与科尔沁沙地沉积物的地球化学分析(低的CIA值、PIA值和CIW值,高的WIP和ICV值,低的Zr/Sc比值以及A-CN-K和MFW图解等)表明这些沉积物处于化学风化初期阶段,成熟度低,仅经历了简单的沉积再循环过程。物源判别图解表明浑善达克沙地与科尔沁沙地的母岩以中酸性花岗岩石为主,并且具有一个混合源区,华北克拉通北部的燕山褶皱带和中亚造山带东部的大兴安岭山脉分别为它们提供了物质来源。此外,两个沙地的细颗粒物质(特别是<10 μm组分)在地球化学组成上具有很强的相似性,我们认为西拉沐沦河起到关键的桥梁作用,浑善达克沙地的细颗粒物质通过西拉沐沦河的搬运输送至科尔沁沙地,同时,地表盛行风的搬运也起到一定作用。
    Abstract: Sand and fine sand fractions (<10 μm and<63 μm) collected from the Onqin Daga Sand Land and the Horqin Sandy Land are analyzed for geochemical elements including major elements, trace elements, rare earth elements and Sr-Nd isotopes, in order to evaluate the chemical weathering, sedimentary characteristics, source areas, and the contribution of the Xar Moron River to the mass exchange between the two sands. The sediments are characterized by such features as low CIA, PIA and CIW values, high WIP and ICV values, low Zr/Sc ratio, A-CN-K and MFW diagram suggesting that the sediments are in the early stage of chemical weathering and low in maturity, and only experienced a simple process of sedimentary recycling. The provenance discrimination diagram shows that the parent rocks of Onqin Daga Sand and Horqin Sandy Land are dominated by intermediate-acid granitic rocks and have a mixed source from the western part of the Great Hinggan Mountains and the northern part of the North China Craton. In addition, the fine components, especially the component<10 μm, are very similar in geochemical composition for the two sandy areas, and it is believed that fine grain matters may have been transported from the Onqin Daga Sand Land to the Horqin Sand Land taking the Xar Moron River as a bridge. At the same time, atmospheric dust transport under prevailing winds may also play a certain role in fine sediment transportation.
  • 近海沉积物的物源研究是海岸带陆海相互作用的重要内容,而矿物则是沉积物物源判别的重要指标[1-2]。前人利用黏土矿物以及碎屑矿物在中国近海开展了大量富有成效的矿物分区和物源识别研究,取得了丰富的成果,基本上区分了长江物源、黄河物源的基本特征以及在中国东部陆架的扩散范围[1, 3-5]。前人研究表明,长江口及东海内陆架沉积物主要来自长江,浙闽沿岸的中小型河流亦有贡献;南部可能还混入了台湾物质[6]。长江口和东海内陆架毗邻苏北沿岸,来自废黄河三角洲的侵蚀再悬浮物质是否跨过长江冲淡水团进而进入长江水下三角洲以及内陆架尚存在争论,大部分学者认为废黄河物质没有进入该区[7-9],少数学者认为来自苏北的黄河源沉积物至少进入到长江水下三角洲之中[10]

    通常认为沉积物中的黏土矿物包括蒙皂石族、伊利石族、高岭石族和绿泥石族4大类,又包括多个矿物种,前人主要开展了黏土矿物族的定性鉴定和含量估算,并据此进行物源探讨[11-14],缺乏对黏土矿物种的鉴定和物源识别;沉积物中的碎屑矿物鉴定和物源识别则主要针对砂粒级中的轻、重矿物[7-8, 15],而针对黏土粒级中的碎屑矿物研究较少。为此,本研究利用采自长江口及东海内陆架的表层沉积物,通过改进黏土矿物X射线衍射分析(XRD)的样品预处理方法,尝试对黏土矿物种的鉴定,结合黏土粒级中碎屑矿物的分析,阐明黏土矿物及黏土粒级碎屑矿物的组成和空间分布,探讨长江口和东海内陆架沉积物物源。

    东海内陆架位于中国浙闽沿岸海域,发育一套末次冰期高海平面以来形成的泥质沉积体,东海内陆架泥质沉积体自长江水下三角洲向南,沿浙闽近岸一直延伸到台湾海峡中部[10, 16],并且根据泥质区的堆积位置和成因将近岸泥质区划分为长江口泥质区和浙闽沿岸泥质区[17-18]。浙闽泥质区的平均厚度为0~40 m,局部厚达40~80 m [19-20]。该海域的沉积物主要由长江、钱塘江等浙闽沿岸河流汇入[21],其中长江是该海域最主要的沉积物供给者[20, 22-23],浙闽沿岸的中小河流也提供了少量沉积物[24-25],研究表明,部分来自废黄河三角洲侵蚀物质随着苏北沿岸流进入长江口及东海内陆架[26-30]。该海域发育浙闽沿岸流、台湾暖流、长江冲淡水等流系和水团;海洋风浪冬季强、夏季弱;夏季入海沉积物多,主要沉积于河口附近,在冬季时节再悬浮并随着沿岸流向南搬运和沉积,最终形成了沿闽沿岸分布的狭长泥质带[31-33]

    共采集了长江口到东海内陆架南部共10个表层沉积物样品。其中,长江入海口样品(站位:03-11)为“东方红 2号” 综合调查船在2003年6月执行“ 973 计划”时所采集,其他9个表层沉积物均为“向阳红18号”科考船执行2020国家自然科学基金委秋季东海共享航次时采集,具体站位分布见图1

    图  1  表层沉积物站位分布图
    底图来源于秦蕴珊等[34], Qiao等[35]
    Figure  1.  The study areas and sampling sites of surface sediments
    Base map was modified after Qin et al [34] and Qiao et al [35].

    黏土矿物XRD分析的质量在很大程度上依赖于黏土矿物的提取和样品制备[36]。本文依据Stokes沉降定律的传统沉降法提取足量的黏土,并制作成方形样品块供XRD分析使用。取各站位表层沉积物样品150 g,依据Stokes沉降定律的传统沉降法多次提取黏土,并将提取的黏土搅拌至粘稠,缓慢滴入1.2 cm×1.2 cm×1.2 cm的立方体亚克力盒子中,制作成方形样品,样品的各个面都可以供XRD分析使用(图2)。随后将制作完成的黏土样片晾干制成自然片,供XRD分析使用;后送入60 ℃的烘箱中用乙二醇饱和制成饱和片,供XRD分析使用。

    图  2  制作完成的XRD分析试样
    Figure  2.  Prepared specimen for XRD analysis

    使用中国科学院能源科学与技术研究中心公共实验室的Bruker D8 ADVANCE型衍射仪进行XRD分析。XRD分析条件为:铜靶,管电压40 kV,管电流100 mA,测角仪步进长度0.02°(2θ)、扫描速度2 °/min、扫描范围3°~65°。在对黏土矿物试样进行X射线衍射分析时,分别对同一个样品的顶面、侧面同一位置进行自然片和饱和片的4次衍射,衍射位置见图3

    图  3  黏土矿物样品XRD测试位置
    Figure  3.  The XRD testing positiobns of clay mineral specimens

    最后,使用MDI Jade软件进行衍射数据的校正和处理,经过测角仪误差校正、扣除背景、标定衍射峰等处理过程,依据PDF卡片库中的黏土矿物数据并结合《矿物X射线粉晶鉴定手册》进行详细的黏土矿物和黏土粒级碎屑矿物的鉴定[18, 37],黏土矿物相对含量估算依据Biscaye方法计算[38]

    在对黏土矿物进行XRD衍射分析时,各站位的饱和片的底侧面衍射数据对比见图4,侧面衍射强度和顶底面的衍射强度基本相同,结合顶侧面衍射结果可以有效地对黏土矿物信息进行提取识别。

    图  4  研究区各站位黏土矿物乙二醇饱和片底面和侧面衍射图谱
    Figure  4.  XRD graphs at bottom and side directions of the ethylene glycol saturated specimens

    通过分析对比各站位饱和片样品的侧面和顶底面衍射结果,共鉴定出黏土矿物种5种,即伊利石(2M1型和2M2型)、高岭石、珍珠陶土、斜绿泥石和弹性绿泥石。而蒙皂石因其含量低,未能确定种类。

    伊利石族矿物鉴定特征:仅出现了伊利石矿物,包含伊利石2M1((K, H3O)Al2Si3 AlO10 (OH)2)、伊利石2M2((K, H3O) (Al, Mg, Fe)2 (Si, Al)4O10 [(OH)2, (H2O)])两个多型,且以伊利石2M1为主。伊利石2M1成分较为单一,除了Si-O四面体中少量Si被Al替代外,在Al-OH八面体中未发生类质同像替代,层间域中充填了K+、H2O等,是硅酸盐矿物风化较为彻底的次生产物,在XRD图谱上该多型以出现一系列平行底面明显的(00n)的衍射峰为特点,包括10 Å、5 Å、3.34 Å以及2.00 Å的衍射峰(图5)。伊利石2M2成分较为复杂,除了Si-O四面体内发生Al的类质同像替代外,Al-OH八面体中也发生了类质同像替代,层间被K+、H2O等充填,它具有向蒙皂石过渡的特点,其XRD图谱上10 Å、5 Å峰向低角度方向偏移,4.48 Å、2.58 Å峰明显(图5)。自然界中,伊利石具有1Md、1M、2M以及3T等多型,遵循着1Md→1M→2M1的演化途径[39],而2M1是最稳定的伊利石多型。长江口及东海内陆架伊利石以2M1占主导地位,反映了该海域伊利石来源区母岩经历了较为充分风化作用,形成了稳定的2M1型伊利石矿物。

    图  5  伊利石族黏土矿物种的XRD衍射图谱
    Figure  5.  XRD diffraction patterns of illite group minerals

    高岭石族矿物鉴定特征:鉴定出了高岭石、珍珠陶土两种矿物。在XRD图谱上,高岭石(001,7.16 Å)、(002,3.58 Å)的衍射峰强,其他峰弱,且(001)衍射峰偏向低角度方向,与绿泥石的(002)衍射峰偏差明显,两者共同存在使得该峰对称性变差(图6)。珍珠陶土的(001,7.12 Å)、(002,3.56 Å)、(110)衍射峰明显,特别是(001)衍射峰相对较弱、偏向高角度方向,且与绿泥石的(002)衍射峰偏离小,它们共同存在时使得该峰对称性变好。高岭石、珍珠陶土两种矿物的成分都为Al4[Si4O10](OH)8,区别为单位层在C轴上排列方向不同,而在结构上珍珠陶土更加紧密,且是高岭石族中最为稳定的矿物种。这两种矿物长江口及东海内陆架均存在,其中珍珠陶土略微偏多,反映了其来源区经历了较为强烈的化学风化作用。

    图  6  高岭石族黏土矿物种的XRD衍射图谱
    Figure  6.  XRD diffraction patterns of kaolinite group minerals

    绿泥石族矿物鉴定特征:研究区出现的绿泥石基本上都为斜绿泥石,个别站位检出了弹性绿泥石。在XRD图谱上,斜绿泥石的(001,14 Å)、(002,7 Å)、(004,3.52 Å)清晰,而弹性绿泥石的(001)衍射峰几乎没有,但是(002)峰明显,且(004)峰清晰可见(图7)。绿泥石成因复杂,外动力地质作用的风化作用、沉积成岩作用以及变质作用都可以形成绿泥石,长江口及东海内陆架沉积物中绿泥石较为单一,以斜绿泥石为主,推测主要来自母岩区的风化作用;个别的富含铁的绿泥石,可能与来源区的母岩类型有关,是母岩机械破碎后的产物。

    图  7  绿泥石族黏土矿物种的XRD衍射图谱
    Figure  7.  XRD diffraction patterns of chlorite group minerals

    长江口及内陆架表层沉积物中的黏土矿物仍然包括蒙皂石族、伊利石族、高岭石族、绿泥石族四个族的黏土矿物,其中由于蒙皂石族相对含量较低(均<0.5%),未能鉴定矿物种。

    各个站位出现的黏土矿物基本一致,仅在个别矿物及相对含量上略有不同(表1)。弹性绿泥石仅出现在S01-1、S04-1、S05-1三个站位之中,其他黏土矿物则见于所有站位之中。各个站位高岭石、珍珠陶土的相对含量有所差异,S00-1站靠近苏北沿岸,代表受到废黄河三角洲物质的影响,其高岭石相对含量大于珍珠陶土;03-11站采自长江河道,代表长江来源物质,其珍珠陶土相对含量高于高岭石。从长江河口到浙闽沿岸北部的SF-1、S01-1、SF-3、S03-1等站位高岭石和珍珠陶土的相对含量相当,而浙闽沿岸南部的S04-1、SF-4和S05-1三个站位以珍珠陶土为主,高岭石含量较少。

    表  1  各站位饱和片中黏土矿物种的统计结果
    Table  1.  Statistics of clay mineral species in ethylene glycol saturated specimens of each station
    黏土矿物 站位
    S00-1 03-11 SF-1 SF-2 S01-1 SF-3 S03-1 S04-1 SF-4 S05-1
    蒙皂石族
    伊利石族2M2伊利石较多较多较多较多较多较多较多较多较多较多
    2M1伊利石
    高岭石族高岭石较多较多较多较多较多
    珍珠陶土较多较多较多较多较多较多较多较多较多
    绿泥石族斜绿泥石较多较多较多较多较多较多较多较多较多较多
    弹性绿泥石      
    下载: 导出CSV 
    | 显示表格

    黏土矿物相对含量分布见图8,从图8可以看出,沿长江口-内陆架断面各站位黏土矿物相对含量总体上与前人的研究相近[3, 40-41]。其中,SF-1、SF-2站位与03-11站位的黏土矿物相对含量较为一致,其与S00-1站位相近,但S00-1站位蒙皂石族含量略高;S03-1、SF-4站位的黏土矿物族的相对含量相对于泥质区北部发生了变化,在S03-1、SF-4站位高岭石族、绿泥石族的相对含量增加,高岭石族的相对含量增加明显。

    图  8  黏土矿物相对含量空间分布图
    Figure  8.  Spatial distribution of relative content of clay minerals

    通过分析对比各站位样品自然片和饱和片衍射结果,可识别出本文选用的样品中共含有黏土粒级非黏土的碎屑矿物共7种,包括硬石膏、石英、钾长石、斜长石、方解石、铁白云石及白云石。各站位所识别出的黏土粒级碎屑矿物的统计结果见表2所示。其中,石英、钾长石、斜长石、方解石见于所有站位,硬石膏出现于紧靠苏北的S00-1站以及浙闽沿岸SF-3以北的站位,而白云石、铁白云石则出现于长江河道、长江口以及浙闽沿岸站位。

    表  2  各站位黏土粒级非黏土矿物统计
    Table  2.  Statistics of other minerals in clay fraction at each station %
    矿物S00-103-11SF-1SF-2S01-1SF-3S03-1S04-1SF-4S05-1
    硬石膏21.80.00.010.29.912.00.00.00.00.0
    石英5.82.37.62.12.62.82.25.43.72.8
    钾长石12.81.32.51.24.01.72.22.64.00.0
    斜长石13.93.85.93.17.16.23.310.910.96.0
    方解石8.42.411.07.79.48.97.515.313.910.8
    铁白云石0.00.02.50.00.00.02.32.27.54.2
    白云石0.01.82.61.72.10.02.53.24.50.0
    下载: 导出CSV 
    | 显示表格

    为了进一步分析非黏土矿物在空间上的差异,分别选取钾长石(d=3.18)、斜长石(d=3.24)、方解石(d=3.02)、白云石(d=2.88)4种常见的非黏土矿物最强衍射峰强度与石英(d=4.25)的衍射峰强度进行比较,反映它们相对含量的空间变化情况,结果见图9。可以发现,方解石/石英比值在靠近苏北海岸的S00-1站最高,反映该站沉积物方解石较多、受到废黄河物质的影响;在长江河道的03-11站最低,说明长江来源沉积物方解石含量少;从长江水下三角洲向浙闽沿岸,该比值较高,反映了该区沉积物一方面受到来自苏北废黄河高方解石含量物质加入的影响,另一方面有海洋钙质生物碎屑的加入。钾长石/石英、斜长石/石英、白云石/石英变化不明显,但斜长石/石英、白云石/石英两个比值从长江口向浙闽沿岸方向呈现轻微的增加趋势,且S04-1站向南波动更加明显,在以长江为主导的物源背景下,该比值增加指示黏土粒级中的斜长石和白云石较石英搬运和扩散距离更长,而S04-1以南部分则可能受到小型河流物质的影响。

    图  9  各站位黏土粒级非黏土矿物典型衍射峰比值
    Figure  9.  Typical XRD peak ratios of non-clay minerals in clay fraction at each station

    黏土矿物以及黏土粒级碎屑矿物分析表明,苏北沿岸区域(S00-1站)沉积物中蒙皂石、高岭石族矿物相对含量偏高,高岭石较珍珠陶土明显偏多,方解石含量较高,且出现硬石膏,具有黄河来源沉积物的特征[2,4,15],可能受来自苏北废黄河物质的影响;长江河道(03-11站)沉积物以高岭石族中珍珠陶土含量明显多于高岭石、白云石含量较高为特点;浙闽沿岸泥质带沉积物零星出现的弹性绿泥石、铁白云石则可能受小型河流物源的影响。

    沉积物中黏土矿物以及黏土粒级碎屑矿物空间分布反映了苏北废黄河物质信号和长江物源信号的强弱变化。综合分析发现,来自苏北废黄河物源信号为高岭石多,硬石膏、方解石等影响最远可到达S03-1站;长江物源信号包括高岭石族中的珍珠陶土为主并出现了白云石等,几乎涵盖了长江河口和浙闽沿岸所有站位,说明长江是本海域的主导物源;而铁白云石、弹性绿泥石则主要局限于浙闽沿岸南部站位。为此,可以S03-1为界,该站位以北包括长江水下三角洲、浙闽泥质区北部出现了长江物源、苏北物源两类信号,是长江物质主导受黄河物源影响的区域;该站以南,包括浙闽沿岸泥质区南部,主要是长江物源为主,但是出现了小型河流物源信号,属于长江物源和中小河流共同影响的区域(图10)。

    图  10  长江口及内陆架沉积物源汇过程示意图
    Figure  10.  The sources to sinks in the study areas

    长江入海沉积物一部分沉积在水下三角洲,另一部分则随着浙闽沿岸流向南搬运和沉积,构成长江三角洲和浙闽泥质带的主要物质来源,这已被前人研究所证实[6, 15-16]。然而,关于苏北废黄河沉积物是否能跨过长江冲淡水团进入长江水下三角洲以及浙闽沿岸尚存在争议,表层沉积物中的矿物组合未发现明显的黄河源信号[7-8];对采自浙闽泥质区中部的岩芯记录研究没有发现黄河源信号[9],但是在采自长江水下三角洲的沉积物岩芯中显示了540 aBP以来黄河物质影响到该区[10]。本次研究表明来自苏北废黄河的再悬浮物质可以通过苏北沿岸流进入长江口,并继续向南影响到浙闽沿岸泥质区北部。

    (1)长江口及内陆架海域黏土矿物由蒙皂石族、伊利石族、高岭石族和绿泥石族组成。其中,伊利石族仅出现伊利石,包含2M1、2M2两个多型,以2M1型伊利石为主;高岭石族出现高岭石、珍珠陶土2种,长江来源的沉积物珍珠陶土含量相对偏多;绿泥石族包括斜绿泥石、弹性绿泥石2种,斜绿泥石占绝对优势。

    (2)黏土粒级中碎屑矿物种类丰富,主要有石英、钾长石、斜长石、白云石、铁白云石、方解石以及硬石膏等。

    (3)依据黏土矿物、黏土粒级非黏土空间分布差异,把长江口及东海内陆架划分为2个物源区:长江口及内陆架北部物源区、内陆架南部物源区,除受长江物质影响外,前者受废黄河物质影响,后者受浙闽中小河流物质影响。

  • 图  1   浑善达克沙地、科尔沁沙地以及西拉沐沦河位置图

    Figure  1.   Location map of the Onqin Daga Sand Land, the Horqin Sandy Land and the Xar Moron River

    图  2   科尔沁沙地(a)与浑善达克沙地(b)的常量元素组成

    Figure  2.   The composition of major elements for the Horqin Sand Land (a) and the Onqin Daga Sandy Land (b)

    图  3   科尔沁沙地(a)与浑善达克沙地(b)的微量元素组成

    Figure  3.   The composition of trace elements for the Horqin Sand Land (a) and the Onqin Daga Sandy Land (b)

    图  4   科尔沁沙地(a)与浑善达克沙地(b)的稀土元素分布模式

    Figure  4.   Distribution patterns of rare earth elements in the Sand of Horqin (a) and Onqin Daga (b)

    图  5   科尔沁沙地(a)与浑善达克沙地(b)的Sr-Nd同位素组成对比

    Figure  5.   Sr-Nd isotope compositions of the Horqin Daga Sand Land (a) and the Onqin Sandy Land (b)

    图  6   科尔沁沙地和浑善达克沙地的A-CN-K三角图(a)和CIA-WIP图解(b)

    Figure  6.   A-CN-K triangle diagram (a) and CIA-WIP diagram (b) of the Horqin Sand Land and the Onqin Daga Sandy Land

    图  7   首次循环和再循环沉积物的MFW(a)与Th/Sc-Zr/Sc图解(b)

    岩浆岩的平均组成参考文献[27],UCC和PASS值参考文献[28],大兴安岭东部花岗质岩石的平均组成参考文献[29]。

    Figure  7.   MFW (a) and Th/Sc-Zr/Sc (b) of the first-cycle and recycled sediments with chemical weathering indices

    图  8   陆源碎屑物源判别图解

    a. La/Sc-Th/Co图解,b. La-Th-Sc三角图解。

    Figure  8.   Identification diagram of terrigenous clastic source

    a. La/ Sc-Th/Co diagram, b. La-Th-Sc triangle diagram.

    图  9   科尔沁与浑善达克沙地和中国粉尘源区的Sr-Nd同位素组成对比

    NBC、OD、NMPT数据来自文献[34-35]

    Figure  9.   Sr-Nd isotope compositions of Onqin Sandy Land and Hoqin Sandy Land, in comparison to dust provenance in China

    图  10   不活动元素比值的物源辨别图解

    Figure  10.   Provenance discrimination diagrams involving immobile elements

    表  1   科尔沁沙地与浑善达克沙地的常量元素组成

    Table  1   Concentrations of major elements for the Horqin Sand Land and the Onqin Daga Sandy Land

    %  
    样品号SiO2Al2O3Fe2O3MgOCaONa2OK2OTiO2P2O5
    T2(<63 μm)72.4411.532.840.9842.572.772.740.8110.09
    T3(<63 μm)64.2611.232.731.565.992.342.610.6940.106
    T4(<63 μm)74.1511.141.890.6792.532.732.990.8440.06
    T5(<63 μm)71.411.332.130.832.982.732.890.6020.086
    T7(<63 μm)73.8911.782.110.5731.292.673.080.6560.063
    T8(<63 μm)75.1811.71.950.5261.272.813.060.710.055
    T12(<63 μm)74.8611.711.980.5611.32.843.030.5960.058
    T13(<63 μm)73.0711.822.370.651.322.643.060.7960.074
    T14(<63 μm)71.0511.762.620.7662.332.522.740.9210.066
    T15(<63 μm)73.7411.872.490.6911.42.672.840.8230.042
    T16(<63 μm)74.0611.462.090.5921.852.7630.7960.047
    HQ1(<63 μm)73.6511.342.040.7112.432.582.960.7910.056
    HQ2(<63 μm)7611.61.960.5671.352.813.080.6730.042
    HQ3(<63 μm)71.1511.444.361.012.472.712.522.60.124
    HQ5(<63 μm)73.0711.093.670.8172.352.722.661.660.087
    HQ6(<63 μm)74.8311.492.540.7191.542.732.950.9130.066
    HQ7(<63 μm)74.5812.062.410.7381.422.822.90.7010.053
    HQ8(<63 μm)74.5311.192.750.7892.022.712.680.9650.081
    HQ9(<63 μm)74.3511.33.050.7241.762.72.711.280.077
    HQ10(<63 μm)75.4511.332.420.6721.582.842.870.9680.064
    HQ12(<63 μm)75.5111.562.040.6221.382.843.030.6350.056
    HQ13(<63 μm)75.111.662.280.7151.442.792.880.7010.066
    HQ14(<63 μm)75.7611.562.010.6131.352.813.020.6460.058
    HQ15(<63 μm)75.4411.772.10.6421.342.813.020.650.06
    HQ16(<63 μm)76.5311.451.830.4871.272.813.190.6230.043
    HQ17(<63 μm)75.2811.732.080.6111.342.762.980.6110.057
    HQ18(<63 μm)75.0311.682.110.631.382.822.90.6260.061
    HQ19(<63 μm)74.0111.812.30.8112.042.682.80.8920.056
    HQ20(<63 μm)69.9212.023.021.073.492.462.770.7440.068
    HQ21(<63 μm)75.4211.272.420.6091.872.862.811.480.053
    HQ22(<63 μm)77.1511.371.610.4341.232.833.240.6140.042
    HQ23(<63 μm)75.711.452.030.561.332.82.950.680.053
    HQ1(<10 μm)69.3311.73.221.033.42.512.591.420.092
    HQ2(<10 μm)73.6911.992.850.7911.72.842.781.030.067
    HQ3(<10 μm)69.0312.294.711.212.562.942.522.430.173
    HQ5(<10 μm)67.9310.866.881.13.012.532.223.010.166
    HQ7(<10 μm)73.4312.153.140.8331.562.812.660.8280.069
    HQ8(<10 μm)71.8711.274.110.9812.422.622.41.470.119
    HQ9(<10 μm)71.8611.344.330.942.122.62.441.830.117
    HQ10(<10 μm)73.8311.473.280.8371.822.752.581.210.095
    HQ12(<10 μm)73.811.722.790.8141.652.772.670.9310.076
    HQ13(<10 μm)73.1311.723.190.8881.772.72.571.110.095
    HQ15(<10 μm)73.2211.873.240.8551.662.752.651.060.084
    HQ16(<10 μm)74.1711.512.920.691.722.782.71.240.067
    HQ17(<10 μm)73.5411.832.850.7751.62.82.670.910.074
    HQ18(<10 μm)73.4711.82.710.7621.62.792.590.890.079
    HQ19(<10 μm)70.9411.943.351.062.742.572.491.410.096
    HQ20(<10 μm)67.7912.023.591.2442.362.530.9080.091
    HQ21(<10 μm)73.6111.473.150.7872.112.892.531.80.087
    HQ22(<10 μm)74.8811.412.70.6541.682.812.791.20.064
    OD1(<63 μm)7411.453.130.7641.932.882.851.270.084
    OD2(<63 μm)7511.462.710.61.62.852.851.180.059
    OD3(<63 μm)73.9811.623.370.7311.772.812.811.450.07
    OD4(<63 μm)74.8511.452.810.6891.62.872.881.170.082
    OD6(<63 μm)66.4212.153.511.464.712.312.670.7160.121
    OD8(<63 μm)71.6811.633.830.9662.512.812.721.740.098
    OD9(<63 μm)74.411.862.940.7761.542.872.90.8820.08
    OD10(<63 μm)73.3912.13.090.6941.723.042.761.310.085
    OD11(<63 μm)73.0211.93.110.8431.532.662.761.050.095
    OD12(<63 μm)75.1311.652.550.6911.222.732.580.6990.067
    OD13(<63 μm)69.0711.335.380.9632.342.542.563.140.088
    OD14(<63 μm)70.1311.583.5211.682.672.340.9830.108
    OD15(<63 μm)68.6111.136.431.112.712.482.452.150.129
    OD16(<63 μm)71.2111.941.141.582.532.440.9840.128
    OD17(<63 μm)68.7311.465.31.22.72.42.371.40.121
    OD18(<63 μm)52.618.914.261.3514.381.911.811.120.104
    OD19(<63 μm)69.0510.532.721.864.282.272.470.7090.079
    OD20(<63 μm)64.3610.624.931.216.242.392.331.390.099
    OD1(<10 μm)71.6111.654.180.9872.222.712.561.460.135
    OD2(<10 μm)72.9311.633.710.7651.722.812.571.370.086
    OD3(<10 μm)71.5511.934.560.951.942.752.541.630.11
    OD4(<10 μm)72.9911.893.530.9341.652.792.671.180.13
    OD6(<10 μm)62.6212.234.131.785.72.032.430.7970.155
    OD8(<10 μm)69.1811.84.571.223.032.652.461.490.144
    OD9(<10 μm)73.2412.013.130.9591.622.752.660.9560.109
    OD12(<10 μm)74.6611.552.750.7611.192.642.330.7260.072
    OD15(<10 μm)70.6512.014.191.282.252.472.460.9630.142
    OD16(<10 μm)71.7312.113.461.211.512.552.340.7270.135
    OD17(<10 μm)68.1512.024.641.362.752.352.331.020.134
    OD18(<10 μm)41.927.542.651.422.481.531.440.5220.093
    OD19(<10 μm)65.5410.633.172.245.42.162.240.7430.102
    OD20(<10 μm)55.669.873.441.3912.222.031.970.7780.1
    UCC6615.252.24.23.93.40.50.5
      注:Fe2O3代表总铁含量,UCC为上陆壳。
    下载: 导出CSV

    表  2   科尔沁沙地与浑善达克沙地CIA、CIW、PIA、WIP值

    Table  2   CIA,CIW,PIA,WIP values of the Horqin Daga Sand Land and the Onqin Sandy Land

    样品名CIACIWPIAWIP样品名CIACIWPIAWIP
    T2(<63 μm)49.0156.1048.6757.84HQ3(<10 μm)50.9757.5051.2657.86
    T3(<63 μm)51.6059.3352.1753.50HQ5(<10 μm)50.2956.6150.3851.10
    T4(<63 μm)47.7355.4346.8558.75HQ7(<10 μm)54.4062.4755.9354.60
    T5(<63 μm)48.3255.7847.7058.35HQ8(<10 μm)50.5257.2050.6853.07
    T7(<63 μm)54.2564.1256.1455.49HQ9(<10 μm)51.9159.0752.5252.36
    T8(<63 μm)53.6163.2355.1956.46HQ10(<10 μm)52.4260.1153.2553.95
    T12(<63 μm)53.4762.9254.9656.64HQ12(<10 μm)53.2861.3654.4554.47
    T13(<63 μm)54.4464.2756.4055.30HQ13(<10 μm)53.4061.1754.5653.42
    T14(<63 μm)51.2158.8251.6354.40HQ15(<10 μm)53.7361.7755.0454.23
    T15(<63 μm)54.4763.4456.2354.13HQ16(<10 μm)52.3560.4053.2154.68
    T16(<63 μm)50.9059.5151.2757.18HQ17(<10 μm)53.6061.7054.8854.52
    HQ1(<63 μm)49.2257.1948.9156.89HQ18(<10 μm)53.8261.7355.1353.69
    HQ2(<63 μm)52.9162.4354.1956.99HQ19(<10 μm)51.6958.5452.2153.74
    HQ3(<63 μm)50.1056.9150.1355.11HQ20(<10 μm)53.3560.7554.4352.17
    HQ5(<63 μm)49.2456.4848.9855.68HQ21(<10 μm)50.7457.7650.9855.44
    HQ6(<63 μm)52.6461.6853.7355.97HQ22(<10 μm)51.9460.2452.6855.53
    HQ7(<63 μm)54.0762.9555.6756.17OD1(<63 μm)50.6858.7150.9357.56
    HQ8(<63 μm)50.7758.4851.0454.86OD2(<63 μm)52.0660.5752.8656.07
    HQ9(<63 μm)52.0660.2252.8354.19OD3(<63 μm)51.9960.2152.7456.12
    HQ10(<63 μm)51.8760.5052.6256.28OD4(<63 μm)52.0160.6252.8156.68
    HQ12(<63 μm)52.7962.1153.9857.02OD6(<63 μm)53.6561.5254.9053.39
    HQ13(<63 μm)53.3962.3054.7555.66OD8(<63 μm)49.4056.4849.2057.81
    HQ14(<63 μm)53.0862.4854.4056.55OD9(<63 μm)53.0861.7954.2956.95
    HQ15(<63 μm)53.5862.9855.1056.60OD10(<63 μm)52.5560.4153.4557.54
    HQ16(<63 μm)52.6662.6353.9057.50OD11(<63 μm)54.5163.1856.2253.93
    HQ17(<63 μm)53.7963.1555.3855.72OD12(<63 μm)55.4764.0057.4651.93
    HQ18(<63 μm)53.5062.5054.9155.74OD13(<63 μm)50.7257.9250.9653.55
    HQ19(<63 μm)51.7159.6452.3355.80OD14(<63 μm)54.3361.6855.6951.22
    HQ20(<63 μm)51.9959.7652.6954.89OD15(<63 μm)50.7157.7050.9452.51
    HQ21(<63 μm)50.5358.5350.7356.56OD16(<63 μm)55.9263.8657.8850.85
    HQ22(<63 μm)52.4462.5953.6157.86OD17(<63 μm)52.2659.2052.9551.15
    HQ23(<63 μm)53.1262.3954.4455.68OD18(<63 μm)51.9358.6452.5041.16
    HQ1(<10 μm)51.3958.6251.8453.82OD19(<63 μm)50.9258.5051.2452.34
    HQ2(<10 μm)53.0261.1854.1256.14OD20(<63 μm)50.5457.4650.7150.73
    OD1(<10 μm)51.5358.7552.0354.72OD12(<10 μm)56.5764.5758.7349.07
    OD2(<10 μm)52.9460.6453.9454.00OD15(<10 μm)53.3860.5654.4352.52
    OD3(<10 μm)53.0760.4854.0654.18OD16(<10 μm)56.9364.6559.1050.18
    OD4(<10 μm)53.8762.0155.2554.81OD17(<10 μm)53.9560.8555.1150.68
    OD6(<10 μm)56.7664.6858.9549.01OD18(<10 μm)53.3459.9654.2833.77
    OD8(<10 μm)50.8957.5151.1554.86OD19(<10 μm)52.7159.9353.5750.17
    OD9(<10 μm)54.3262.4755.8454.41OD20(<10 μm)52.8259.6453.6544.01
    下载: 导出CSV
  • [1]

    Che X D, Li G J. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon [J]. Quaternary Research, 2013, 80(3): 545-551. doi: 10.1016/j.yqres.2013.05.007

    [2]

    Zhang H Z, Lu H Y, Xu X S, et al. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns [J]. Journal of Geophysical Research: Earth Surface, 2016, 121(11): 2085-2099. doi: 10.1002/2016JF003936

    [3]

    Sun J M. Source regions and formation of the loess sediments on the high mountain regions of northwestern China [J]. Quaternary Research, 2002, 58(3): 341-351. doi: 10.1006/qres.2002.2381

    [4]

    Shi Z G, Liu X D. Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective [J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(5): 959-970. doi: 10.1111/j.1600-0889.2011.00561.x

    [5]

    Chen Z, Li G J. Evolving sources of eolian detritus on the Chinese Loess Plateau since early Miocene: tectonic and climatic controls [J]. Earth and Planetary Science Letters, 2013, 371-372: 220-225. doi: 10.1016/j.jpgl.2013.03.044

    [6]

    Nie J S, Peng W B, Möller A, et al. Provenance of the upper Miocene-Pliocene red clay deposits of the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 2014, 407: 35-47. doi: 10.1016/j.jpgl.2014.09.026

    [7]

    Nie J S, Peng W B. Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau [J]. Aeolian Research, 2014, 13: 71-75. doi: 10.1016/j.aeolia.2014.03.005

    [8] 陈骏, 李高军. 亚洲风尘系统地球化学示踪研究[J]. 中国科学: 地球科学, 2011, 54(9):1279-1301 doi: 10.1007/s11430-011-4269-z

    CHEN Jun, LI Gaojun. Geochemical studies on the source region of Asian dust [J]. Science China Earth Sciences, 2011, 54(9): 1279-1301. doi: 10.1007/s11430-011-4269-z

    [9] 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学(D辑), 2001, 44(5):403-413 doi: 10.1007/BF02909779

    CHEN Jun, AN Zhisheng, LIU Lianwen, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland [J]. Science in China Series D: Earth Sciences, 2001, 44(5): 403-413. doi: 10.1007/BF02909779

    [10] 杨杰东, 陈骏, 饶文波, 等. 中国沙漠的同位素分区特征[J]. 地球化学, 2007, 36(5):516-524 doi: 10.3321/j.issn:0379-1726.2007.05.010

    YANG Jiedong, CHEN Jun, RAO Wenbo, et al. Isotopic partition characteristics of Chinese deserts [J]. Geochimica, 2007, 36(5): 516-524. doi: 10.3321/j.issn:0379-1726.2007.05.010

    [11] 谢静, 吴福元, 丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报, 2007, 23(2):523-528 doi: 10.3969/j.issn.1000-0569.2007.02.028

    XIE Jing, WU Fuyuan, DING Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance [J]. Acta Petrologica Sinica, 2007, 23(2): 523-528. doi: 10.3969/j.issn.1000-0569.2007.02.028

    [12] 朱迎新. 章古台沙地樟子松人工林固沙效果探究[J]. 理论界, 2014(5):62-64 doi: 10.3969/j.issn.1003-6547.2014.05.017

    ZHU Yingxin. Study on the effect of pinus sylva plantation on sand fixation in Zhanggu sandy land [J]. Theory Horizon, 2014(5): 62-64. doi: 10.3969/j.issn.1003-6547.2014.05.017

    [13] 杨艳, 程捷, 田明中, 等. 近50年来哈尔滨市沙尘暴发生规律及气象特征研究[J]. 干旱区资源与环境, 2012, 26(11):54-60

    YANG Yan, CHENG Jie, TIAN Mingzhong, et al. The spatial and temporal distribution of dust-storm and its meteorological in Harbin [J]. Journal of Arid Land Resources and Environment, 2012, 26(11): 54-60.

    [14] 谢远云, 孙磊, 康春国, 等. 松嫩沙地Sr-Nd同位素组成特征[J]. 沉积学报, 2020, 38(4):771-780

    XIE Yuanyun, SUN Lei, KANG Chunguo, et al. Sr-Nd isotopic partition characteristics of the Songnen sandy land [J]. Acta Sedimentologica Sinica, 2020, 38(4): 771-780.

    [15]

    Xie Y Y, Kang C G, Chi Y P, et al. The loess deposits in Northeast China: the linkage of loess accumulation and geomorphic-climatic features at the easternmost edge of the Eurasian loess belt [J]. Journal of Asian Earth Sciences, 2019, 181: 103914. doi: 10.1016/j.jseaes.2019.103914

    [16]

    Xie Y Y, Liu L, Kang C G, et al. Sr-Nd isotopic characteristics of the Northeast Sandy Land, China and their implications for tracing sources of regional dust [J]. Catena, 2020, 184: 104303. doi: 10.1016/j.catena.2019.104303

    [17] 张晓娟, 季宏兵, 冯晓静, 等. 岩溶盆地红土风化剖面的元素地球化学研究[J]. 地理科学, 2017, 37(6):944-951

    ZHANG Xiaojuan, JI Hongbing, FENG Xiaojing, et al. Element geochemistry characteristic of the red soil weathering profiles in the Karst Basin [J]. Scientia Geographica Sinica, 2017, 37(6): 944-951.

    [18]

    Mclennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303. doi: 10.1086/648222

    [19]

    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0

    [20]

    Harnois L. The CIW index: A new chemical index of weathering [J]. Sedimentary Geology, 1988, 55(3-4): 319-322. doi: 10.1016/0037-0738(88)90137-6

    [21]

    Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    [22]

    Parker A. An index of weathering for silicate rocks [J]. Geological Magazine, 1970, 107(6): 501-504. doi: 10.1017/S0016756800058581

    [23]

    Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    [24]

    Cullers R L, Podkovyrov V N. Geochemistry of the mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling [J]. Precambrian Research, 2000, 104(1-2): 77-93. doi: 10.1016/S0301-9268(00)00090-5

    [25]

    Garzanti E, Padoan M, Andò S, et al. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift [J]. The Journal of Geology, 2013, 121(6): 547-580. doi: 10.1086/673259

    [26]

    Ohta T, Arai H. Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering [J]. Chemical Geology, 2007, 240(3-4): 280-297. doi: 10.1016/j.chemgeo.2007.02.017

    [27]

    Condie K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales [J]. Chemical Geology, 1993, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E

    [28]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell Scientific, 1985.

    [29]

    Yang H, Ge W C, Yu Q, et al. Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and petrogenesis of Middle to Late Triassic I-type granitoids in the Xing’an Block, northeast China: Implications for early Mesozoic tectonic evolution of the central Great Xing’an Range [J]. Journal of Asian Earth Sciences, 2016, 119: 30-48. doi: 10.1016/j.jseaes.2016.01.012

    [30]

    McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J. Processes Controlling the Composition of Clastic Sediments. Boulder: Geological Society of America, 1993, 284: 21-40.

    [31]

    Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies [J]. Lithos, 2000, 51(3): 181-203. doi: 10.1016/S0024-4937(99)00063-8

    [32]

    Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292

    [33]

    Li G J, Pettke T, Chen J. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene [J]. Geology, 2011, 39(3): 199-202. doi: 10.1130/G31734.1

    [34]

    Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust [J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904-3914. doi: 10.1016/j.gca.2007.04.033

    [35]

    Li G J, Chen J, Ji J F, et al. Natural and anthropogenic sources of East Asian dust [J]. Geology, 2009, 37(8): 727-730. doi: 10.1130/G30031A.1

    [36] 李小妹, 严平, 钱瑶, 等. 西拉木伦河流域地表沉积物粒度、化学元素分布特征[J]. 干旱区研究, 2017, 34(1):191-199

    LI Xiaomei, YAN Ping, QIAN Yao, et al. Spatial distribution of grain size and chemical elements in surface sediments in the Xar Moron River Basin [J]. Arid Zone Research, 2017, 34(1): 191-199.

    [37]

    Condie K C. Another look at rare earth elements in shales [J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531. doi: 10.1016/0016-7037(91)90370-K

    [38]

    Xie Y Y, Chi Y P, Meng J, et al. Grain-size and Sr-Nd isotopic compositions of dry- and wet-deposited dusts during the same dust-storm event in Harbin, China: implications for source, transport-deposition modes, dynamic mechanism and formation of eolian loess [J]. Environmental Earth Sciences, 2015, 74(8): 6489-6502. doi: 10.1007/s12665-015-4747-2

    [39]

    Grousset F E, Biscaye P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes [J]. Chemical Geology, 2005, 222(3-4): 149-167. doi: 10.1016/j.chemgeo.2005.05.006

    [40]

    Rao W B, Chen J, Yang J D, et al. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: implications for their provenances [J]. Geochemical Journal, 2008, 42(3): 273-282. doi: 10.2343/geochemj.42.273

    [41] 曹建华, 刘志辉, 李俊有. 克什克腾旗“三河源”生态保护区人工增雨工程建设的必要性[J]. 内蒙古科技与经济, 2016(14):69-70 doi: 10.3969/j.issn.1007-6921.2016.14.036

    CAO Jianhua, LIU Zhihui, LI Junyou. A study on artificial precipitation in the Hexigtenqi ecological protection zone [J]. Inner Mongolia Science Technology & Economy, 2016(14): 69-70. doi: 10.3969/j.issn.1007-6921.2016.14.036

    [42] 张瀚之, 鹿化煜, 弋双文, 等. 中国北方沙漠/沙地锆石形态特征及其对物源的指示[J]. 第四纪研究, 2013, 33(2):334-344 doi: 10.3969/j.issn.1001-7410.2013.02.15

    ZHANG Hanzhi, LU Huayu, YI Shuangwen, et al. Zircon typological analyses of the major deserts/sand fields in northern China and its implication for identifying sediment source [J]. Quaternary Sciences, 2013, 33(2): 334-344. doi: 10.3969/j.issn.1001-7410.2013.02.15

    [43]

    Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications [J]. Catena, 2004, 55(3): 325-340. doi: 10.1016/S0341-8162(03)00109-7

    [44] 谢远云, 孟杰, 郭令芬, 等. 哈尔滨沙尘沉降物稀土元素地球化学特征及其物源分析[J]. 地球科学—中国地质大学学报, 2013, 38(5):923-933 doi: 10.3799/dqkx.2013.091

    XIE Yuanyun, MENG Jie, GUO Lingfen, et al. REE geochemistry for sand-dust fallouts in Harbin, Heilongjiang province and provenance analysis [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(5): 923-933. doi: 10.3799/dqkx.2013.091

  • 期刊类型引用(5)

    1. 汪烨辉,谢远云,迟云平,康春国,吴鹏,孙磊,刘若男. 科尔沁沙地粗—细组分的碎屑锆石U-Pb年龄特征:对定量物源及区域构造-岩浆演化事件的指示. 地质学报. 2024(04): 1068-1087 . 百度学术
    2. 潘美慧,李娜,龚逸夫,陈晴,赵慧敏,王金雨. 甘肃青土湖地区不同类型沙丘的表沙理化特征及其环境意义. 海洋地质与第四纪地质. 2024(02): 69-80 . 本站查看
    3. 韩晓雨,迟云平,谢远云,康春国,吴鹏,汪烨辉,孙磊,魏振宇. 科尔沁沙地风成细沙的物质组成特征及其对物源的指示. 中国沙漠. 2024(03): 231-246 . 百度学术
    4. 李俊华,霍亚飞,侯红星,任柄璋,齐力,杜欣,苏佳鑫,韩艺. 地表基质调查工作对黑土地保护利用的作用分析. 自然资源情报. 2024(11): 25-31 . 百度学术
    5. 符锦霞,谢远云,迟云平,康春国,吴鹏,魏振宇,孙磊. 呼伦贝尔沙地矿物岩石及碎屑锆石U-Pb年龄特征对物源及构造的指示. 地理研究. 2023(11): 3079-3098 . 百度学术

    其他类型引用(3)

图(10)  /  表(2)
计量
  • 文章访问数:  2096
  • HTML全文浏览量:  463
  • PDF下载量:  49
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2021-08-27

目录

/

返回文章
返回