Research progress and prospects of metal-dependent anaerobic methane oxidation in marine sediments
-
摘要: 海洋沉积物中大部分甲烷会通过甲烷厌氧氧化作用(anaerobic oxidation of methane, AOM)而被消耗。早期研究表明,AOM可与硫酸盐、硝酸盐和亚硝酸盐的还原作用相耦合,从而有效减少甲烷向大气的排放。最近,金属依赖型AOM(metal-AOM,活性金属氧化物还原反应驱动的AOM)被证实存在于自然界沉积物和富集培养的样品中。但是,目前仍未从自然海洋环境中分离获得能够介导metal-AOM的微生物。对海洋沉积物中metal-AOM的研究大多聚焦于热液或冷泉等海洋特殊生境,一系列研究表明地质流体在这些海底化能自养生态系统的维持和演化方面起到了重要作用,并深刻影响全球地球化学循环,因此,该科学问题研究吸引了越来越多的注意力。本文讨论了可能参与海洋沉积物中metal-AOM的微生物类群及其地球化学证据,并在前人工作基础上,以冲绳海槽冷泉-热液共生区为例,提出一种新的metal-AOM作用机制。认为在全球冷泉-热液系统相互作用地区的调查有助于更好地探讨metal-AOM的发生机制及微生物在深海生境中分布的连通性问题。
-
关键词:
- 海洋沉积物 /
- 金属依赖型甲烷厌氧氧化 /
- 冷泉-热液共生区 /
- 冲绳海槽
Abstract: A large fraction of methane is consumed by anaerobic oxidation (AOM) in marine sediments. Previous researches suggested that AOM is coupled to the reduction of sulfate, nitrate and nitrite, which may effectively reduce methane emission into the atmosphere. Recently, metal-dependent AOM (metal-AOM, AOM driven by active metal oxides reduction reaction) was demonstrated to occur in both the sediments in nature and enriched cultures. But the elusive microorganisms mediating metal-AOM process have not yet been isolated from natural marine environments, and most researches on metal-AOM in marine sediments focus on special marine habitats such as hydrothermal vents or cold seeps. However, a series of investigation shows that geological fluids play an important role in the maintenance and evolution of these submarine chemolithoautotrophy ecosystems, and profoundly affect the global geochemical cycle. Therefore, the research on this scientific problem has attracted more and more attention from marine scientists. In this review, the potential microbial communities and geochemical evidence of metal-AOM in marine sediments are summarized. On the basis of literature researches, taking the cold seeps and hydrothermal vents coexisted region, the Okinawa Trough, as an example, a new metal-AOM mechanism is proposed. The investigation in the global cold seeps and hydrothermal vents system interaction areas could be beneficial to better discuss the mechanism of metal-AOM and the connectivity of microbial distribution in deep-sea habitats. -
黄海是位于中国大陆与朝鲜半岛之间的一个半封闭陆架浅海,承接了来自长江、黄河等周围河流的大量陆源物质[1]。这些巨量的陆源物质在复杂海洋动力条件下的输运和沉降过程是中国东部陆架海区源汇沉积体系的重要研究内容[2-3]。南黄海中部海区发育有典型的泥质沉积体,作为陆架海区细颗粒沉积物的聚集区和重要的碳汇,南黄海泥质沉积体的形成过程和动力机制是近年来黄海沉积学研究的热点[4-5]。前人研究表明黄海沉积物的沉积过程具有“夏储冬输”的季节性输运格局[6-7],来自黄河的陆源物质可以在沿岸流的作用下进入南黄海中部[8-11],声学剖面观测也表明细颗粒沉积体可以延伸到南黄海中部80 m深的区域[12],而山东半岛沿岸流冬强夏弱的特征也使得冬季成为物质输运的主要季节[13-14]。作为冬季南黄海海区唯一一支向北的流系,黄海暖流也被认为可以将悬浮体从南向北输入到南黄海中部[15-16]。夏季,黄海冷水团主导的“弱潮低能”的动力环境具有捕获悬浮物质的能力[17-18],冷水团分布区与底部泥质沉积的位置对应关系指示了两者之间的密切联系。部分学者认为冷水团主导的环流体系,尤其是上升流对细颗粒的分选作用是泥质区形成的主要控制因素[19-20]。董礼先等则认为冷水团区较弱的潮动力对研究区的泥沙输运与沉积起主导作用[21-22]。然而这些理论缺乏现代沉积过程实测资料的支持,因此对南黄海中部泥质沉积区的形成过程尚存在争议。
泥质沉积体是细颗粒沉积物的聚集区,不同粒度悬浮颗粒行为的研究对于厘清泥质沉积的形成过程具有重要意义。传统的悬浮体研究方法以抽滤法为主,这种方法将不同粒级的悬浮颗粒看作一个整体,破坏了颗粒的粒度结构和物质组成[23],难以获得悬浮体的原位粒度分布数据。原位激光粒度仪(Laser In-Situ Scattering and Transmissometry, LISST)利用激光散射原理,可以同时测得32个粒级(2.5~500 μm)的悬浮体的体积浓度(Volume Concentration, VC),使得无损、快捷、分粒级地观测悬浮体的分布成为可能[24-25]。
本文利用2012年夏季在南黄海调查获取的水文环境资料和悬浮体现场粒度观测数据,对悬浮体的粒度分布特征及其影响因素进行了研究,并对南黄海中部泥质沉积区的形成机制进行了探讨,揭示了悬浮体粒度分布对研究陆架海区现代沉积过程的重要意义。
1. 数据与方法
“科学三号”考察船于2012年夏季(7月24日至8月7日)在南黄海海区进行水体综合调查(图1),在调查站位利用SBE9/11plus型CTD及其附带传感器获取水体温度、盐度和荧光叶绿素a (chl a)浓度剖面数据。利用SBE Data Processing软件对采集数据进行处理,得到垂向分辨率为1 m 的剖面数据。同时,将LISST-100X(C型)固定于CTD上部,随采集系统一起下放,同步获取垂向分辨率为1 m 的32个粒级的体积浓度数据。
图 1 研究区地形及站位分布黑色菱形代表调查站位,蓝色箭头代表沿岸流,灰色实线代表等深线;Ⅰ江苏外海浅水区;Ⅱ长江口东北部区域;Ⅲ海州湾区;Ⅳ南黄海冷水团区。Figure 1. Topography and sampling stations of the study areaThe black rhombuses indicate the sample stations; the blue arrows indicate the coastal currents; the gray solid lines indicate the water depth; Ⅰ shallow water area off the Jiangsu coast; Ⅱ northeast of Changjiang River; Ⅲ Haizhou Bay; Ⅳ South Yellow Sea Cold Water Mass.在各调查站位利用CTD附属采水器在表层、5、10、20、30、50 m、底层(距海底2~5 m)采集海水样品,并立即在船载实验室中用预先称重的混合纤维素酯滤膜(0.45 μm)对水样进行过滤。过滤完成后用蒸馏水润洗滤膜以去除盐分,冷冻保存。在陆地实验室对滤膜烘干、称重,获得悬浮体质量浓度数据(Mass Concentration, MC)。
2. 结果
2.1 水文环境
夏季,研究区表层海水温度高于20 ℃,空间差异较小。沿A03-B04-C05站位存在一条表层冷水带(图2a)。底层海水温度从近岸向远岸逐渐降低,高温水体位于水深较浅的江苏外海,南黄海中部海水温度低于10 ℃,两者之间形成较强的温度锋面(图2b)。前人研究中多把10 ℃作为冷水团的边界[26],因此这种底层冷水是典型的黄海冷水团水体。表层盐度在出现冷水条带的站位也出现了高盐特征,而底层盐度由近岸向南黄海中部逐渐升高,盐度等值线分布特征与温度相似(图2c和d)。
在垂向上,温度和盐度分布表现出近岸混合、远岸层化的分布特征(图3)。在水深小于20 m的近岸区域,垂向温盐差异较小。在>20 m的深水区,温度(盐度)从表层向底层逐渐降低(升高),且表现出三层水文结构:上部浅水混合层、中部温度和盐度跃层,深度在10~30 m左右,底层为低温高盐的冷水团水体。在冷水团与近岸浅水区的边界,即各断面坡度较陡的区域,等温线和等盐线表现出上凸的特征,指示了底层冷水上涌现象。
2.2 悬浮体分布
南黄海海区的悬浮体质量浓度表现出近岸高远岸低、底层高表层低的分布特征(图4 a1—d1)。从A断面到D断面,质量浓度逐渐降低,浓度最高值出现在B断面近岸浅水区域,高于100 mg/L。在远岸深水区,上层浓度值较低,底层均存在一个相对高浓度的雾状层。荧光叶绿素a浓度也呈层化分布特征,在温盐跃层存在的区域,存在一个次表层叶绿素最大值层,其深度与跃层深度相似,上部混合层及冷水团内部叶绿素浓度均较低(图4 a1—d2)。
为研究南黄海海区悬浮体的总体粒度分布特征,我们对研究区所有站位所有层位的32个粒级的悬浮体体积浓度进行平均,并且将所有站位所有层位的质量浓度与32个粒级的体积浓度值分别进行了相关性分析(图5)。结果表明夏季南黄海海区悬浮体的平均体积浓度随粒径增大而逐渐增大,以128 μm粒级为界,细颗粒体积浓度增加速度较缓,粗颗粒的体积浓度迅速增大。相关性分析也表明小于128 μm的细颗粒与质量浓度表现出较好的相关性,而对大于128 μm的粗颗粒,其与质量浓度之间的相关性迅速降低(图5)。质量浓度是对悬浮体样品进行抽滤的结果,含水量较高的浮游生物及其分泌物在抽滤过程中极易被破坏。因此,在无机矿物颗粒含量较高的陆架海区,质量浓度数据反映的主要是无机颗粒的含量[23]。夏季北黄海冷水团区的粒度对比实验也表明,现场颗粒中大颗粒主要由黏性有机聚集体和单体浮游生物组成[27]。悬浮体质量浓度与各粒级体积浓度的相关性分析指示了不同粒级颗粒与无机颗粒的关系,高相关性表明悬浮颗粒以无机颗粒为主,反之则证明有机物质占有不可忽略的比重。因此本文的讨论中我们将≤128 μm的细颗粒定义为无机颗粒,而>128 μm的粗颗粒则归类为有机颗粒。
悬浮体总体积浓度高值出现在近岸浅水区以及远岸的次表层10~30 m左右水层(图6 a1—d1)。分粒级体积浓度垂向分布特征表明,有机颗粒与无机颗粒对总体积浓度的贡献具有空间差异性,近岸浅水区以及远岸深水区底层的高浓度主要是由无机颗粒导致,而次表层体积浓度最大值则是由有机颗粒造成的。另外,在断面坡度较陡的A和B断面,出现无机颗粒浓度锋面;从B断面到D断面,在等温线上凸的区域,表层无机颗粒体积浓度高于次表层,表明无机颗粒具有从表层向外海扩散的趋势(图6 b2—d2)。
图 6 夏季分粒级悬浮体体积浓度垂向分布特征a1—d1代表所有粒级的总体积浓度;a2—d2代表≤128 μm粒级颗粒的总体积浓度;a3—d3代表>128 μm粒级颗粒的总体积浓度;黄色箭头指示底层冷水上涌现象。Figure 6. Vertical distribution of total VCs (a1—d1) inorganic (a2—d2) and organic (a3—d3) VCs of the study area during summer seasona1—d1 indicate the total VCs; a2—d2 indicate the total VCs finer than 128 μm; a3—d3 indicate the total VCs coaster than 128 μm, the yellow arrows indicate the upwelling of bottom cold water.2.3 典型站位悬浮体粒度特征
根据水文特征和悬浮体粒度分布特征,夏季南黄海海区可以划分为四种典型区域:Ⅰ江苏外海浅水区;Ⅱ长江口东北部区域(A断面远岸区);Ⅲ海州湾区;Ⅳ南黄海冷水团区。不同研究区的站位具有不同的悬浮体粒度分布特征(图7)。B01站位代表区域Ⅰ,从表层到底层其粒度特征具有一致性,呈三峰分布,在细颗粒和粗颗粒端均存在上升尾,中间峰值位于16~32 μm左右。B04站位代表江苏外海浅水区与冷水团区之间的锋面区域,其粒度分布从表层到底层也具有一致性,体积浓度随粒径增大而增大。A04站位代表区域Ⅱ,粒度分布主要分为两种类型:浅水层(<10 m)表现为双峰分布,峰值粒径在6和391 μm左右,而16~128 μm左右的颗粒浓度较低,部分层位为0;深水层表现为单峰分布,峰值粒径在64 μm左右。C03站位代表区域Ⅲ,粒度分布特征分为两种类型:浅水层位(<8 m)表现为双峰分布,在6 μm左右存在一个峰值,体积浓度为0.1 μL/L左右,在粗颗粒端存在一个上升尾且峰值大于100 μL/L;深水层也具有双峰分布特征,但峰值粒径在6和391 μm左右,在256 μm左右存在一个小的峰值,而16~128 μm左右的颗粒基本缺失。C05代表C断面的温度锋区域,其粒度分布与C03站位相似,从表层到底层均具有双峰分布特征,但底层16~128 μm粒级的颗粒浓度高于C03站位。D08站位代表区域Ⅳ,其粒度分布特征分为四种类型:18 m以浅水层呈三峰分布,粗、细颗粒端各存在一个上升尾,另外在256 μm左右存在一个小的峰值;18~45 m水层颗粒集中在大于128粒级,粒度分布较乱,无明显峰值粒级;45~62 m层位颗粒呈V字形分布,且16~128 μm粒级浓度随水深增大而增大,在10、256以及391 μm左右存在3个峰值;62~74 m水层16~128 μm粒级浓度较高,在32~64 μm左右存在一个较弱的峰值。
3. 讨论
悬浮体的粒度特征由物质来源和水动力条件共同决定,物源决定其粒度特征的基本分布格局,水动力条件影响了其在基本格局下的波动[28]。因此本文从物源和水文动力两个方面探讨夏季南黄海海区悬浮体粒度分布特征的影响机制。
3.1 悬浮体来源
南黄海海底沉积物类型较复杂[29],砂质沉积物主要分布在长江口外部海域、辐射沙脊区以及废黄河三角洲外侧部分区域;在废黄河三角洲及南黄海中部分布有大片黏土质粉砂,粉砂质黏土分布于南黄海中部的黏土质粉砂中;在近岸与南黄海中部之间的过渡区域和海州湾区发育有粉砂质砂,而苏北外海分布着砂质粉砂(图8)。由于相对较强的再悬浮作用(见4.2)以及较细的表层沉积物[30-31],江苏外海及长江口东北部从底层到表层具有相对较高的无机颗粒百分比(图9a—c)。前人研究也表明,海底沉积物的再悬浮是苏北近岸悬沙最主要的来源,形成了近岸高浓度区[32-33]。而长江口北支北侧断面向北进入江苏海域的悬沙通量约为0.35~0.36亿t/a[34],悬浮颗粒的中值粒径为8~120 μm,平均为38 μm[35],也是江苏外海细颗粒悬浮体的重要来源。尽管处于水深小于40 m的近岸区,但海州湾区的砂质沉积导致了较低的无机颗粒比重(图9d—e)。在南黄海中部,由于水深较深,底层细颗粒沉积物的再悬浮作用较弱,只在近底层出现了无机颗粒高百分比区(图9f)。因此,海底表层沉积物是夏季南黄海海区无机颗粒的主要来源。
图 8 南黄海沉积物类型(改自文献[29])黑色菱形代表调查站位,Ⅰ江苏外海浅水区;Ⅱ长江口东北部区域;Ⅲ海州湾区;Ⅳ冷水团区。Figure 8. The sediment types in the Southern Yellow Sea (modified from reference [29] )The black rhombuses indicate the sample stations; Ⅰ shallow water area off the Jiangsu coast area; Ⅱ northeast of Changjiang River; Ⅲ Haizhou Bay; Ⅳ South Yellow Sea Cold Water Mass.在具有层化特征的远岸深水区(如D08站位,图9f),跃层及以上层位质量浓度较低,而叶绿素浓度较高,悬浮颗粒主要以有机粗颗粒为主,总体积浓度最高值与叶绿素最大值深度的一致性指示了生物源的有机组分对粗颗粒的影响。海水中的浮游植物在生长过程中会释放大量具有黏性的胞外聚合物[36],这些低密度的有机物质在海水浮力作用下可以向上层扩散,同时也可以与密度较大的无机矿物颗粒结合形成粒径较大的絮集体而发生沉降[27, 37],因此该区域悬浮颗粒主要集中在>128 μm的粗颗粒端。
3.2 水文动力环境对悬浮体粒度分布的影响
3.2.1 潮流
潮流、季风和季节性水团特征是夏季影响南黄海海区悬浮体分布格局的主要动力因素。黄海海区的气候条件受东亚季风影响,具有较强的季节性特征,冬季风平均风速可达10 m/s,而夏季东南季风平均风速仅为1.5 m/s[38],因此较弱的夏季风对水动力条件的影响有限,潮流和水团特征是主要的影响因素[33, 39]。
南黄海海区发育典型的规则半日潮(图10),江苏外海的最大潮差可达1~2 m。潮流流速具有近岸高远岸低的分布特征,苏北老黄河口至长江口沿岸属于强潮流区,潮流流速大于1 m/s,而南黄海中部为弱潮流区,潮流流速低于0.4 m/s[38]。研究表明,废黄河三角洲及辐射沙脊区的高浓度悬沙是由强烈的水流和海岸侵蚀造成的,而潮动力是影响悬沙浓度的主要因素[33]。尽管A04站位离岸较远,其潮流流速仍可达1 m/s,底层再悬浮作用较强。因此在江苏近岸海区以及A断面跃层以下层位,悬浮体粒度分布以无机细颗粒为主(图6 a2—d2)。海州湾区的弱潮流流速以及底层沉积物性质限制了再悬浮作用,因此无机颗粒的贡献不明显(图9d—e)。南黄海中部具有“弱潮低能”的水动力环境[18, 21],现场观测结果证实悬浮体浓度随潮流变化显示出一定的周期性变化,但是变化较小,再悬浮作用只能影响到近底层一定深度范围[18],无机颗粒的贡献小于江苏外海区域(图9f)。
3.2.2 潮混合锋
研究表明,夏季近岸水体在潮、风和波浪作用下水体混合较好,而冷水团内部是稳定的低温高盐水体,两者之间存在较大的温度或者密度差异,形成了潮混合锋面[42]。任强等利用走航式剖面测量系统(MVP)测量了35°N断面离底10 m位置的水平温度梯度,温度梯度最大值位于冷水团与近岸混合水边界位置,可达0.28 ℃/km[43]。较大的密度差异在水平方向造成了较大的斜压梯度力,这种斜压梯度力会驱使远岸水体向近岸移动,在遇到坡度较陡的地形时会沿斜坡爬升,形成上升流,并在表层形成离岸流[42],表层冷水条带即是冷水上涌的结果。现场调查及卫星遥感观测也证实这种表层冷水条带是夏季南黄海海区稳定存在的水文现象[42]。潮混合锋、质量浓度锋面以及无机颗粒体积浓度锋面的一致性表明潮混合锋的存在阻挡了近岸高浓度悬浮体向远岸扩散,导致远岸区上层无机颗粒浓度较低(图7f)。而无机细颗粒的垂向分布显示在锋面附近的表层区域,悬浮体有向远岸区扩散的趋势(图6 b2—d2)。远岸深水区站位表层颗粒在小于16 μm粒级浓度大于次表层,且16~128 μm颗粒相对缺失,表明通过离岸流向南黄海中部输运的主要是小于16 μm的细颗粒(图7f),这种跨锋面输运为南黄海中部提供了细颗粒的无机颗粒。
3.2.3 密度跃层
为讨论密度对水体垂向扩散特征的影响,我们计算了各断面的浮力频率(N2)分布[44]:
$$ {N}^{2}=-\frac{\mathrm{g}}{\rho }\frac{\partial \rho }{\partial z} $$ 这里g是重力加速度,ρ是水体密度,z是深度,海水的扩散系数与浮力频率的倒数成正比,即
$ {K}_{\mathrm{V}}\propto 1/N $ 。高浮力频率值意味着低扩散系数,即相对稳定水体。浮力频率在海水密度跃层处存在高值,水体扩散作用较弱。而在上混合层,冷水团内部以及近岸浅水区,浮力频率表现为低值,水体混合较好(图9)。2012年春季,南黄海藻华事件消耗了表层营养盐[45],而大量有机物在冷水团内部的分解进一步促进了底层营养盐含量升高,形成了营养盐储库[46-47]。从春季到夏季,冷水团与上部混合层的密度跃层进一步增强,水体在跃层处的扩散作用较弱(图9 e和f),底层的营养盐难以跨过密度跃层向表层输送[48]。营养盐的缺乏和较弱的光照条件分别使得表层和冷水团内部不利于浮游植物生长,而在密度跃层处,充足的营养盐和适宜的光照条件促进了浮游植物生长,形成了次表层叶绿素最大值层(图4 a2—d2)。密度梯度最大值与chl a 最大值深度的相关性证明了这种阻挡作用的存在(图11a)。浮游植物在生长过程中会分泌大量透明胞外物质,并与无机矿物颗粒结合形成尺寸和密度较大的絮集体,因此在跃层及跃层以上层位存在较多的粗颗粒物质。总体积浓度峰值深度与chl a最大值深度的相关性证明了有机物质对大颗粒悬浮体的重要作用(图11b)。
3.3 悬浮体粒度分布对南黄海中部泥质区成因的指示意义
南黄海中部泥质沉积是细颗粒沉积物的聚集区。根据上述讨论,夏季无机悬浮颗粒在近岸浅水区形成了悬浮体高浓度中心,而潮混合锋阻挡了近岸高浓度悬浮体从近底层向南黄海中部扩散。数值模拟结果则表明,潮混合区存在一个次级环流:底层冷水沿海底向岸流动,上升流沿斜坡向上爬升,并在上部表层逆向流动,即形成跨锋面的离岸流[42]。无机颗粒的断面分布特征则显示,细的无机颗粒(<16 μm)可以被离岸流输运至南黄海中部(图6 b2—d2)。这种跨潮混合锋面的细颗粒离岸输运为泥质区的形成提供了物质来源。另一方面,来源于近岸跨锋面输运的细颗粒悬浮体是远岸区表层无机悬浮颗粒的主要来源,扩散系数较低的密度跃层的存在限制了这些颗粒的沉降,而絮集体的形成则极大地促进了无机细颗粒的跨跃层沉降,提高了表层到底层的无机颗粒通量。粒度对比试验结果也表明,这些粒度较大的絮集体是由单体浮游生物或黏性生物分泌物与小于32 μm的细颗粒组成[27],而絮集体的沉降速度比单体细颗粒高几个数量级[49]。这些有机物质在沉积过程中或沉降之后会发生分解,无机细颗粒的沉降则促进了底层泥质沉积的形成。因此,江苏外海的再悬浮颗粒为泥质区的形成提供了物源,跨潮混合锋面的离岸流是携带细颗粒进入南黄海中部的动力,絮集体的形成是将这些细颗粒带离表层并快速沉降到海底的主要方式。
4. 结论
(1)夏季,南黄海悬浮颗粒中≤128 μm的细颗粒主要是由无机矿物颗粒组成,而>128 μm的粗颗粒则由有机颗粒主导。无机颗粒主要分布在混合作用较强的近岸浅水区以及远岸的近底水层,有机颗粒在水体层化较强海域的密度跃层处占据主导地位。
(2)再悬浮的海底表层沉积物是研究区无机颗粒的主要来源,而潮动力是其再悬浮的主要动力。潮混合锋面阻挡了近岸高浓度无机颗粒沿近底层向远岸扩散,但跨锋面的表层离岸流可以将部分细颗粒输运至南黄海中部。密度跃层阻挡了冷水团内部营养盐向表层扩散,浮游植物在密度跃层处聚集形成叶绿素次表层最大值层,浮游生物及其分泌的黏性有机物质与无机颗粒形成的絮集体是>128 μm的粗颗粒的主要来源。絮集体的形成促进了表层无机颗粒向底层的沉降。
(3)江苏外海的再悬浮颗粒为泥质区的形成提供了物源,跨潮混合锋面的离岸流是携带细颗粒进入南黄海中部的动力,絮集体的形成是将这些细颗粒带离表层并快速沉降到海底的主要方式,促进了南黄海中部泥质区的形成。
致谢: 感谢“科学三号”考察船全体船员和航次科考队员对相关采样和观测工作提供的帮助,谨致谢忱。
-
图 1 电子受体在海洋沉积物中按序利用示意图
POM(particular aerobic oxidation of methane):甲烷有氧氧化,OMD(organic matter degradation):有机质降解;修改自文献[2]。
Figure 1. Sequential utilization of electron acceptors in marine sediments
POM :Particular aerobic oxidation of methane, OMD: Organic matter degradation; adapted from reference [2].
图 2 沉积物中metal-AOM潜在发生区模型[12]
A.位于产甲烷区以上(例:文献[23]),B. 位于产甲烷区以下(例:文献[21]),C. 位于SMTZ之中(例:文献[24]),D. 位于SMTZ以下(例:文献[37-38, 45-47, 59-60]),E. 位于SMTZ以上(本文依据冲绳海槽相关研究提出的假设);AOM(anaerobic oxidation of methane):甲烷厌氧氧化。
Figure 2. Models of metal-AOM potential zones in sediments[12]
A.metal-AOM occurs over the zone of methanogenesis(drawn based on the descriptions in reference [23]), B. metal-AOM occurs under the zone of methanogenesis(drawn based on the descriptions in reference [21]), C.metal-AOM occurs in the SMTZ(drawn based on the descriptions in reference [24]), D. metal-AOM occurs under the SMTZ(drawn based on the descriptions in reference [37-38, 45-47, 59-60])E. metal-AOM occurs above the SMTZ(drawn based on the researches of Okinawa Trough in this study); AOM(Anaerobic oxidation of methane).
表 1 甲烷厌氧氧化作用类型及其标准吉布斯自由能(△G0’)
Table 1 Standard Gibbs free energies(△G0’)of different AOMs
类型 反应式 △G0’/(kJ/ molCH4) sulfate-AOM CH4+SO42− → HS−+HCO3−+H2O −16.3[7] NO3−-AOM CH4+4NO3− → HCO3−+H−+4NO2−+H2O −517.2[7] Fe-AOM CH4+8Fe(OH)3+16H+→ CO2+8Fe2++22H2O −571.2[7] Mn-AOM CH4+4MnO2+8H+ → CO2+4Mn2++6H2O −763.2[7] Cr-AOM CH4+4/3Cr2O72−+32/3H+ → 8/3Cr3++CO2+22/3H2O −841.4[7] NO2−-AOM CH4+8/3NO2−+8/3H+ → CO2+4/3N2+10/3H2O −928.0[8] 表 2 不同生态环境中metal-AOM潜在功能群
Table 2 Potential microbial communities of metal-AOM from different ecosystems
生态系统 采样地点 沉积带 数据来源 metal-AOM潜在功能群 海洋 Chowder Hill热液喷口 表层 富集培养 ANME-1c(Fe-AOM)[19] 圣塔莫尼卡海盆冷泉 表层 富集培养 ANME-2a、ANME-2c(Fe-AOM)[39] Eel River盆地冷泉 表层 富集培养 ANME-1、拟甲烷球菌属(Methanococcoides)/ANME-3(Mn-AOM)[35] Eel River 盆地冷泉 表层 富集培养 ANME-2(Mn-AOM)[36] Helgoland Mud 深层 富集培养 ANME-2a(Fe-AOM)[38] Helgoland Mud 表层 环境样品 JS1细菌、产甲烷古菌、甲烷盐菌属/ANME-3(Fe-AOM)[37] 淡水 Kinneret湖 深层 富集培养 甲烷八叠球菌目、甲基杆菌属(Fe-AOM)[26] 金溪水库(昆士兰州) 深层 富集培养 Candidatus Methanoperedens ferrireducens(Fe-AOM)[31] 金溪水库(布里斯班) 深层 富集培养 Candidatus Methanoperedens manganicus、Candidatus Methanoperedens manganireducens(Mn-AOM)[51] 受石油污染的含水层(伯米吉) 深层 环境样品 硫还原地杆菌(Geobacter sulfurreducens)(Fe-AOM)[53] Kabuno Bay 深层 环境样品 Methanoperedens(Fe-AOM)[52] Danish Lake Ørn 表层 富集培养 ANME-2d(Fe-AOM)[32] 陆地 泥火山(台湾东部) 表层 环境样品 ANME-2a、脱硫单胞菌属/居泥杆菌属(metal-AOM)[40] 室内 实验室培养 ANME-2d、奥奈达希瓦氏菌(metal-AOM)[54] -
[1] Moran M A. The global ocean microbiome [J]. Science, 2015, 350(6266): aac8455. doi: 10.1126/science.aac8455
[2] D’Hondt S, Pockalny R, Fulfer V M, et al. Subseafloor life and its biogeochemical impacts [J]. Nature Communication, 2019, 10(1): 3519. doi: 10.1038/s41467-019-11450-z
[3] Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments [J]. Nature, 1994, 371(6496): 410-413. doi: 10.1038/371410a0
[4] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450 doi: 10.3969/J.ISSN.2095-4972.2016.03.017 SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017
[5] Hutchins D A, Fu F X. Microorganisms and ocean global change [J]. Nature Microbiology, 2017, 2: 17058. doi: 10.1038/nmicrobiol.2017.58
[6] Iversen N, Jørgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark) [J]. Limnology and Oceanography, 1985, 30(5): 944-955. doi: 10.4319/lo.1985.30.5.0944
[7] Timmers PHA, Welte CU, Koehorst JJ, et al. Reverse methanogenesis and respiration in methanotrophic archaea [J]. Archaea, 2017, 2017: 1654237.
[8] Norði K Á, Thamdrup B. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment [J]. Geochimica et Cosmochimica Acta, 2014, 132: 141-150. doi: 10.1016/j.gca.2014.01.032
[9] Shen L D, Hu B L, Liu S, et al. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments [J]. Applied Microbiology and Biotechnology, 2016, 100(16): 7171-7180. doi: 10.1007/s00253-016-7627-0
[10] Zehnder A J B, Brock T D. Anaerobic methane oxidation: occurrence and ecology [J]. Applied and Environmental Microbiology, 1980, 39(1): 194-204. doi: 10.1128/AEM.39.1.194-204.1980
[11] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
[12] He Z F, Zhang Q Y, Feng Y D, et al. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane [J]. Science of the Total Environment, 2018, 610-611: 759-768. doi: 10.1016/j.scitotenv.2017.08.140
[13] Kvenvolden K A, Rogers B W. Gaia’s breath—global methane exhalations [J]. Marine and Petroleum Geology, 2005, 22(4): 579-590. doi: 10.1016/j.marpetgeo.2004.08.004
[14] Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium [J]. Global Biogeochemical Cycles, 1994, 8(4): 451-463. doi: 10.1029/94GB01800
[15] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments [J]. Nature, 1999, 398(6730): 802-805. doi: 10.1038/19751
[16] Knittel K, Lösekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps [J]. Applied and Environmental Microbiology, 2005, 71(1): 467-479. doi: 10.1128/AEM.71.1.467-479.2005
[17] Brazelton W J, Schrenk M O, Kelley D S, et al. Methane- and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem [J]. Applied and Environmental Microbiology, 2006, 72(9): 6257-6270. doi: 10.1128/AEM.00574-06
[18] D'Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments [J]. Science, 2002, 295(5562): 2067-2070. doi: 10.1126/science.1064878
[19] Bowles M W, Samarkin V A, Bowles K M, et al. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 500-519. doi: 10.1016/j.gca.2010.09.043
[20] Wankel S D, Adams M M, Johnston D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction [J]. Environmental Microbiology, 2012, 14(10): 2726-2740. doi: 10.1111/j.1462-2920.2012.02825.x
[21] Sivan O, Adler M, Pearson A, et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane [J]. Limnology and Oceanography, 2011, 56(4): 1536-1544. doi: 10.4319/lo.2011.56.4.1536
[22] Ettwig K F, Butler M K, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883
[23] Crowe S A, Katsev S, Leslie K, et al. The methane cycle in ferruginous Lake Matano [J]. Geobiology, 2011, 9(1): 61-78. doi: 10.1111/j.1472-4669.2010.00257.x
[24] Norði K Á, Thamdrup B, Schubert C J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment [J]. Limnology and Oceanography, 2013, 58(2): 546-554. doi: 10.4319/lo.2013.58.2.0546
[25] Riedinger N, Formolo M J, Lyons T W, et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments [J]. Geobiology, 2014, 12(2): 172-181. doi: 10.1111/gbi.12077
[26] Raghoebarsing A A, Pol A, Van De Pas-Schoonen K, et al. A microbial consortium couples anaerobic methane oxidation to denitrification [J]. Nature, 2006, 440(7086): 918-921. doi: 10.1038/nature04617
[27] Bar-Or I, Elvert M, Eckert W, et al. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly reactive minerals [J]. Environmental Science & Technology, 2017, 51(21): 12293-12301.
[28] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311-334. doi: 10.1146/annurev.micro.61.080706.093130
[29] Haroon M F, Hu S H, Shi Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage [J]. Nature, 2013, 500(7464): 567-570. doi: 10.1038/nature12375
[30] Hu S H, Zeng R J, Burow L C, et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms [J]. Environmental Microbiology Reports, 2009, 1(5): 377-384. doi: 10.1111/j.1758-2229.2009.00083.x
[31] Ettwig K F, Zhu B L, Speth D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12792-12796. doi: 10.1073/pnas.1609534113
[32] Cai C, Leu A O, Xie G J, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction [J]. The ISME Journal, 2018, 12(8): 1929-1939. doi: 10.1038/s41396-018-0109-x
[33] Weber H S, Habicht K S, Thamdrup B. Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment [J]. Frontiers in Microbiology, 2017, 8: 619.
[34] Niu M Y, Fan X B, Zhuang G C, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea [J]. FEMS Microbiology Ecology, 2017, 93(9): fix101.
[35] Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984
[36] House C H, Beal E J, Orphan V J. The apparent involvement of ANMEs in mineral dependent methane oxidation, as an analog for possible martian methanotrophy [J]. Life, 2011, 1(1): 19-33. doi: 10.3390/life1010019
[37] Oni O, Miyatake T, Kasten S, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea [J]. Frontiers in Microbiology, 2015, 6: 365.
[38] Aromokeye D A, Kulkarni A C, Elvert M, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments [J]. Frontiers in Microbiology, 2020, 10: 3041. doi: 10.3389/fmicb.2019.03041
[39] Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351(6274): 703-707. doi: 10.1126/science.aad7154
[40] Chang Y H, Cheng T W, Lai W J, et al. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan [J]. Environmental Microbiology, 2012, 14(4): 895-908. doi: 10.1111/j.1462-2920.2011.02658.x
[41] Kato S, Hirai M, Ohkuma M, et al. Microbial metabolisms in an abyssal ferromanganese crust from the Takuyo-Daigo seamount as revealed by metagenomics [J]. PLoS One, 2019, 14(11): e0224888. doi: 10.1371/journal.pone.0224888
[42] Lipp J S, Morono Y, Inagaki F, et al. Significant contribution of Archaea to extant biomass in marine subsurface sediments [J]. Nature, 2008, 454(7207): 991-994. doi: 10.1038/nature07174
[43] D’Hondt S, Jørgensen B B, Miller D J, et al. Distributions of microbial activities in deep subseafloor sediments [J]. Science, 2004, 306(5705): 2216-2221. doi: 10.1126/science.1101155
[44] Vargas M, Kashefi K, Blunt-Harris E, et al. Microbiological evidence for Fe (III) reduction on early Earth [J]. Nature, 1998, 395(6697): 65-67. doi: 10.1038/25720
[45] Peng X T, Guo Z X, Chen S, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply [J]. Geochimica et Cosmochimica Acta, 2017, 205: 1-13. doi: 10.1016/j.gca.2017.02.010
[46] Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005
[47] Xie R, Wu D D, Liu J, et al. Geochemical evidence of metal-driven anaerobic oxidation of methane in the Shenhu area, the South China Sea [J]. International Journal of Environmental Research and Public Health, 2019, 16(19): 3559. doi: 10.3390/ijerph16193559
[48] Liang L W, Wang Y Z, Sivan O, et al. Metal-dependent anaerobic methane oxidation in marine sediment: insights from marine settings and other systems [J]. Science China Life Sciences, 2019, 62(10): 1287-1295. doi: 10.1007/s11427-018-9554-5
[49] Canfield D E. Reactive iron in marine sediments [J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632. doi: 10.1016/0016-7037(89)90005-7
[50] Canfield D E, Raiswell R, Bottrell S H. The reactivity of sedimentary iron minerals toward sulfide [J]. American Journal of Science, 1992, 292(9): 659-683. doi: 10.2475/ajs.292.9.659
[51] Vigderovich H, Liang L W, Herut B, et al. Evidence for microbial iron reduction in the methanogenic sediments of the oligotrophic SE Mediterranean continental shelf [J]. Biogeosciences Discuss, 2019, 16: 1-25. doi: 10.5194/bg-16-1-2019
[52] Leu A O, Cai C, McIlroy S J, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae [J]. The ISME Journal, 2020, 14(4): 1030-1041. doi: 10.1038/s41396-020-0590-x
[53] Amos R T, Bekins B A, Cozzarelli I M, et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer [J]. Geobiology, 2012, 10(6): 506-517. doi: 10.1111/j.1472-4669.2012.00341.x
[54] Fu L, Li S W, Ding Z W, et al. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe (II) [J]. Water Research, 2016, 88: 808-815. doi: 10.1016/j.watres.2015.11.011
[55] McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia [J]. Nature, 2015, 526(7574): 531-535. doi: 10.1038/nature15512
[56] Kletzin A, Heimerl T, Flechsler J, et al. Cytochromes c in archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis [J]. Frontiers in Microbiology, 2015, 6: 439.
[57] Roland F A E, Borges A V, Darchambeau F, et al. The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue [J]. Scientific Reports, 2021, 11(1): 1597. doi: 10.1038/s41598-021-81210-x
[58] Sivan O, Antler G, Turchyn A V, et al. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): E4139-E4147. doi: 10.1073/pnas.1412269111
[59] Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments [J]. Geochimica et Cosmochimica Acta, 2017, 207: 256-276. doi: 10.1016/j.gca.2017.03.019
[60] Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments [J]. Environmental Science & Technology, 2015, 49(1): 277-283.
[61] Luo M, Torres M E, Hong W L, et al. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin [J]. Earth and Planetary Science Letters, 2020, 541: 116288. doi: 10.1016/j.jpgl.2020.116288
[62] Tagliabue A, Bopp L, Dutay J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory [J]. Nature Geoscience, 2010, 3(4): 252-256. doi: 10.1038/ngeo818
[63] McCollom T M, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems [J]. Geochimica et Cosmochimica Acta, 1997, 61(20): 4375-4391. doi: 10.1016/S0016-7037(97)00241-X
[64] Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: An example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025
[65] 吴能友, 孙治雷, 卢建国, 等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5):23-35 WU Nengyou, SUN Zhilei, LU Jianguo, et al. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35.
[66] McCollom T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(1): 85-101. doi: 10.1016/S0967-0637(99)00048-5
[67] Ruff S E, Bidle J F, Teske A P, et al. Global dispersion and local diversification of the methane seep microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 4015-4020. doi: 10.1073/pnas.1421865112
[68] Hubert C, Loy A, Nickel M, et al. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed [J]. Science, 2009, 325(5947): 1541-1544. doi: 10.1126/science.1174012
[69] Schauer R, Bienhold C, Ramette A, et al. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean [J]. The ISME Journal, 2010, 4(2): 159-170. doi: 10.1038/ismej.2009.106
-
期刊类型引用(6)
1. 陈亦洋,王奥博,唐建辉. 南黄海水体中溴代阻燃剂的时空分布与生态风险评估. 地球化学. 2024(06): 801-814 . 百度学术
2. 卢鹏飞,岳英洁,朱龙海,胡日军,尹砚军,冷星. 南黄海西部日照近海悬浮泥沙分布、输运及控制因素. 海洋地质与第四纪地质. 2022(03): 36-49 . 本站查看
3. 边佳琪,时美楠,吴怀春,汪卫国. 俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素. 海洋地质与第四纪地质. 2022(05): 94-102 . 本站查看
4. 龙小志,王珍岩. 台风“灿鸿”对长江口外海域悬浮体分布的影响. 海洋与湖沼. 2022(06): 1322-1337 . 百度学术
5. 密蓓蓓,张勇,梅西,王忠蕾,窦衍光. 南黄海表层沉积物稀土元素分布特征及其物源指示意义. 海洋地质与第四纪地质. 2022(06): 93-103 . 本站查看
6. 沈小雄,杨敏妮,余志,胡旭跃. 螺旋桨射流对底泥起悬及铅在底泥-水界面处迁移规律的研究. 长沙理工大学学报(自然科学版). 2021(04): 24-31+43 . 百度学术
其他类型引用(3)