Geochemical records of biological carriers on deepsea hydrothermal vent and methane seep fields
-
摘要: 海底冷泉-热液极端环境是岩石圈与外部圈层进行物质交换和能量流动的主要窗口,其独特的地质条件和营养模式孕育了繁茂的生物群落和生态系统。由于多种因素的叠加控制,海底极端环境的理化性质通常变化频繁且剧烈。大量研究表明,这种变化或波动又能不同程度地被环境中生存的生物记录下来,因此,生物所保留下来的某些地球化学信息具有恢复重建其生存环境变化的潜在能力,这对人类目前尚难自由出入的深海极端环境的探索尤为重要。本文从海底极端环境生物种类和空间分布、生物壳体的地球化学信息、生物元素和同位素地球化学指标以及生物有机生标等几方面出发,探讨当前科学家关注的典型地球化学指标对沉积环境的记录应用,并展望了未来需要进一步加强研究的几个方面,希望借此能引起广大研究者对该领域的兴趣和重视,以加深加快对海底极端环境内运行规律和影响的认识。Abstract: The environments of cold seep and hydrothermal vent are the main windows for material exchange and energy flow between lithosphere and outer spheres, and their unique geological conditions and nutrient patterns give birth to the lush biological communities and ecosystems. The change of physical and chemical properties of extreme environment will affect the geochemical information carried by the organisms living in extreme environment, so the extreme environment organisms could be used as a effective proxy for environmental recovery. In this paper, attempt is made to address the concerned geochemical information with emphases on biological species, spatial distribution pattern, mineral geochemistry of biocarrier rocks, geochemical indicators of biological elements and isotopes, and lipid biomarker in paleoenvironmental reconstruction. The application of the information to the restoration of sedimentary environments is discussed, in addition to future research directions. We hope that the introduction may raise interests and attentions from researchers.
-
Keywords:
- hydrothermal vent /
- cold seeps /
- biological carriers /
- geochemical records /
- isotopic records /
- organic biomarkers
-
随着海洋强国战略的不断推进,海底地貌的研究逐渐得到重视,其在国家建设、资源利用、生态保护、维护海洋权益等方面具有重要意义。一个多世纪以来,国内外学者对海底地形地貌的成因和分类等开展了深入的调查研究,20世纪20—50年代,国际上出版了一系列采用大量篇幅论述了海底地貌的形态和成因的专著[1]。20世纪50—60年代,中国就已经开展了海岸地貌的调查研究工作,并对黄海与东海重要海域的海底地貌类型与成因,以及东海、南海海底沉积物进行了研究,为中国开展海底地貌研究打下了良好基础[2]。在20世纪60—80年代的海洋地质调查中,系统地采用板块构造地貌分类方法,编制了1∶50万~1∶100万海底地貌图。随着测量技术的不断更新,中国海底地貌研究是由宏观向微观、大地貌到微地貌、形态特征到地貌过程,同时人类活动对地貌的响应研究等将会不断深入[3]。
合理划分海底地貌类型是海洋地貌研究的重要部分,对海洋地质工作开展大有裨益。与陆地地貌内、外营力相互作用的形成方式不同[4],海底地貌的形成更多源于地壳大规模的构造运动,故对海底地貌的分类方法也应与陆地不尽相同[5]。海底地貌分类有以外营力、内营力、板块构造为基础进行分类的三种观点,其中以外营力作用为基础的分类,在地貌学界有广泛的应用,其小范围、大比例编图对海洋工程、海岸带及近海的开发和利用具有重要的使用价值;内营力为基础的分类能清晰地反映构造对地貌的控制作用,适用于大范围、小比例尺的地貌分类和制图;而以板块构造为基础的分类则为地貌的成因机制和分布规律提出了崭新的解释。从分类依据出发,现有的分类方法可以分为成因分类、形态分类、形态成因分类和多指标综合分类4种[3]。国际海底地名命名分委会(SCUFN)作为国际海底地名惟一官方组织,其界定评判海底地理实体类型的主要手段依赖于多波束数据反演的海底三维地形,对于构造地质、海底沉积物等因素则考虑较少[6]。单纯的基于表面形态进行分类容易产生误判,以形态和成因相结合的方式逐渐成为海底地形地貌划分的主要依据。因此,以板块构造为基础,形态、成因相结合,内营力、外营力相结合的方式对海底地形地貌进行分类是一种比较合理的分类方式。目前,对于海底地貌的分类大多按照3个等级进行划分,划分类别不够细致,考虑的因素不够全面,四级地貌划分缺少量化标准,不利于对海底地貌单元进行研究。本次研究主要针对以上不足,提出了基于DEM数据的菲律宾海典型区四级地貌定量化划分标准和方案,并进行了地貌类型划分。
菲律宾海位于欧亚板块、太平洋板块和印度-澳大利亚板块三联点海域,周围几乎全部被俯冲带所环绕,构造作用活跃,地形地貌复杂多变,发育着地球上最年轻的、最壮观的“海沟-岛弧-弧后盆地”体系。由于其特殊的地理位置和现有技术手段的限制,针对菲律宾海地形地貌分类方面的研究内容较少,分类标准大多采用三级标准,即使采用四级标准进行划分,由于用途、制图比例尺等因素的不同,在分类和分级方面也存在较大差异。四级地貌分类可以根据板块环境、板块构造要素、中型构造地貌或地貌组合、内外营力来进行地貌划分[7];也可以根据板块构造环境和形态、区域构造和水深、内外营力、形态的方式来进行划分[8]。这些分类标准不仅相差较大,而且大多仅给出分类结果,没有提供细致的分类依据,无法很好地对海底地貌进行深度分析。采用四级地貌定量化划分标准对海底地貌进行分类,并按形态特征、地貌规模大小及主从关系,依次逐级划分,可以更好地细化海底地貌。
本文通过对前人海底地貌研究成果的总结,提出了既具有普适性,又有针对于研究区四级地貌量化的划分标准和方案。利用ArcGIS空间分析等技术手段对DEM(数字高程模型,Digital Elevation Model)数据进行深度处理分析,提取了研究区微观、宏观地貌因子,进行了四级地貌类型定量化划分。研究成果能够丰富海底地貌类型划分和成因研究领域,为今后相关标准规范的制定奠定基础。
1. 研究区概况
菲律宾海盆地南北跨越0°~35°N,东西横跨124°~147°E,面积约为5.4×106 km2,海底地形十分复杂,发育有海沟、岛弧、海脊、海山、海盆、裂谷等地形,是一个海岭与海盆并列、具有洋壳基底的大型边缘海(图1)。海盆整体位于菲律宾海板块之上,周边环绕岛弧与深海沟俯冲带,水深范围为3000~6000 m,平均水深约为4500 m,整体表现为“西部深、东部浅”的特点[9]。
基于已有调查研究成果,可以将菲律宾海盆分为不同的地貌单元:以菲律宾海盆中央南北走向的九州-帕劳海岭为界,西部是西菲律宾海盆,东部有四国海盆和帕里西维拉海盆等。其中,西菲律宾海盆形成时间最早,以中央断裂为界可分为三部分:北部的西北次海盆、南部的南次海盆以及中间的中央裂谷盆地[10]。
九州-帕劳海岭西侧的西菲律宾海盆区,海底地形复杂,有海岭、海台、陡崖、裂谷等地貌形态,平均水深在5000 m以上,局部地区(中央海盆裂谷轴部)可达7900 m。九州-帕劳海岭以东,海底地形自西向东由四国-帕里西维拉海盆地形过渡为伊豆-小笠原弧,四国-帕里西维拉海盆平均水深为4500~5500 m。
菲律宾海主要受太平洋板块的构造运动控制,自约61 Ma以中央断裂带为扩张中心开始南北向扩张[2]。在约43 MaBP,太平洋板块运动方向发生变化,由NNW向(相对于热点运动方向)变为NWW向,由于俯冲板块方向的变化,使得太平洋板块西缘的走滑带被转变成了俯冲带,并伴随着强烈的弧后岩浆活动,形成了老的伊豆-小笠原岛弧[11-12]。约29 MaBP,菲律宾海板块开始向西北运动(3.5 cm/a),并发生顺时针旋转,旋转角度为50°[13-15],四国-帕里西维拉海盆开始扩张,九州-帕劳海岭与老的伊豆-小笠原-马里亚纳弧裂离[16-18]。菲律宾海板块经历多次旋转、扩张后于约15 Ma基本不再转动,其后经历了小规模的运动、俯冲,最终形成了现今的构造格局。
研究区位于西太平洋海域第一岛链和第二岛链之间,地处菲律宾海盆,东西长375 km,南北长108 km(图1),横跨西菲律宾海盆、九州-帕劳海岭和帕里西维拉海盆三大地貌单元,构造作用复杂,地貌类型丰富,是研究的理想区域。
2. 研究区深海地貌定量划分
2.1 地貌类型划分方法
建立DEM模型,提取典型地貌因子(图2),结合深远海地貌类型划分标准,确定研究区海底地形地貌类型,绘制研究区地貌分布简图,显示不同地貌类型分布概况。
2.2 数据来源和计算方法
2.2.1 数据来源
本次研究选择DEM数据进行分析研究。DEM即数字高程模型,是通过有限的地形高程数据实现对地面地形的数字化模拟,用一组有序数值阵列形式表示地面高程的一种实体地面模型。目前国际上常用的开放DEM数据主要有SRTM、ASTER等,这些数据对全球陆地表面覆盖率较高,但是缺乏海床数据,不利于对海底微地貌单元进行研究[19-20]。本文基于开放数据,建立研究区DEM,利用ArcGIS平台的“Spatial Analyst”、“3D Analyst Tools”、“Create TIN”等工具建立海底DEM模型、计算地貌因子等。
2.2.2 地貌因子计算
地貌因子是分析地貌的重要指标,从宏观和微观两个角度对研究区地貌因子进行提取,有利于对海底地貌进行深入研究。本文将高程、坡度、坡度变率和地形起伏度等作为典型地貌因子(表1),其中坡度、坡度变化率的计算选取3×3窗口。
表 1 典型地貌因子概念及算法Table 1. The concept and algorithm of typical terrain factors地貌因子 概念 公式 高程(水深) 海底到大地水准面的垂直距离 H 坡度 反映曲面的倾斜程度,用垂直高差和水平距离的比值表示 Si=arctan(H/L) 坡度变化率 以坡度为基础,对其再做一次坡度运算即可取得坡度变率 坡度之坡度 地形起伏度 特定分析区域内,高程值与相对高程基准面之差 RFi=H-Hrelative 2.2.3 相对高程基准面
相对高程基准面是计算相对高差、判别地貌类型的基础条件。相对高程基准面即是海底地形、地物相对高程的统一起算面。一般选取海底平原、山间台地等地形平缓(海底坡度小于5°)区域(不包括海山、海丘、海岭、深海峡谷等凹凸地)的平均水深为海底相对高程基准面。本文选取研究区坡度小于5°的地形平缓区域的平均水深为本次工作的海底相对高程基准面,为确定地貌类型和绘制地貌分布简图提供计算依据,具体数值如下:
西菲律宾海盆:该区域最大水深6713 m,最小水深3033 m,平均水深4953 m。基准面选取范围为水深5000~5999 m,根据计算平均深度为5443 m,作为相对高程基准面。
九州-帕劳海岭:该区域最大水深5334 m,最小水深1692 m,平均水深4131 m。基准面选取范围为水深5334~4400 m,根据计算平均深度为4808 m,作为相对高程基准面。
四国-帕里西维拉海盆:该区域最大水深5669 m,最小水深3933 m,平均水深4963 m。基准面选取范围为水深5669~4700 m,根据计算平均深度为5000 m,作为相对高程基准面。
2.3 地貌类型划分依据及类型
本文主要依据中国现有的标准、规范,包括《海洋区域地质调查规范(1∶50 000)》(DD2012-07)、《海洋区域地质调查规范(1∶100 000)》(DD2012-03)、《海洋区域地质调查规范(1∶250 000)》(DD2012-03)、《地球科学大辞典基础卷》以及《海底地名命名标准》[21],对研究区进行到四级地貌的划分(表2),包括海山、海丘、海底裂谷、山间谷地、山间洼地、山间盆地,海山根据起伏度可分为小起伏山、中起伏山、大起伏山和极大起伏山(表3)。
表 2 研究区地貌类型划分Table 2. The classification of geomorphic types in the study area一级地貌 二级地貌 三级地貌 四级地貌 大洋地貌 大洋盆地(西菲律宾海盆) 盆内海岭 山间谷地
海山
海底裂谷深海海山群 中央裂谷 深海海岭(九州-帕劳海岭) 山间洼地
海山
山间盆地弧后盆地(帕里西维拉海盆) 深海海丘群 海丘
山间谷地表 3 基于海底起伏高程的海山类型Table 3. The seamount type based on sea floor relief elevation起伏高度/m 200~500 500~1000 1000~2500 >2500 相对高度/m(相较高程基准面) 1000~3500 小起伏中山 中起伏中山 大起伏中山 极大起伏中山 3500~5000 小起伏高山 中起伏高山 大起伏高山 极大起伏高山 >5000 小起伏极高山 中起伏极高山 大起伏极高山 极大起伏极高山 其中,海山指清晰可辨的、大体呈等维展布的海底高山,具有圆形或椭圆形顶面,顶部水深一般2000~2500 m,从环绕其主体周围的最深等深线算起,顶部与周围地势起伏高差(相对高度)大于1000 m,坡度大于10°。大多由海底火山构成,部分由构造作用形成。3个或3个以上海山呈线性排列者称海山链;3个以上不呈线性排列者称海山群,3个以上在海隆或洋脊上则构成海底山脉。海丘指清晰可辨的海底隆起区,形状一般不规则,从环绕其主体周围的最深等深线算起,顶部与周围地势起伏高差(相对高度)小于1000 m,坡度大于10°。海底裂谷指大洋海底两侧以高角度正断层为边界的窄长线状凹地,伸长、狭窄且边坡陡峭的海底洼地,深度大于6000 m。山间谷地指大洋海底山地间的纵长凹地,两侧为海山或者海丘,坡度较缓,低于10°。山间洼地指近似封闭比周围地面相对低洼的地形,一般低于周围海底200~500 m,坡度低于10°,其周围为海山、海丘环绕,其规模较山间盆地为小。山间盆地指由海山围限的低地,一般低于周围海山500 m,坡度低于10°,其规模较山间洼地大。
3. 典型地貌分布特征及成因分析
研究区覆盖了西菲律宾海盆、九州-帕劳海岭和帕里西维拉海盆三大地貌单元(二级地貌)。整体上水深变化较大,最浅处水深约为1692 m,最深处水深约为6713 m(图3)。海岭处水深较浅,平均水深约为3000 m。两侧水深较深,平均水深约为4500 m。
研究区九州-帕劳海岭为一系列连续分布的链状海岭,最大水深5334 m,最小水深1692 m,海岭与凹地相间分布,两侧呈明显不对称,东侧陡、西侧缓,包含海山、山间盆地、山间洼地三种不同四级地貌单元。西部与东部具有显著的构造走向差异,西部海岭呈近EW向雁式排列,东部海丘呈近NS向雁式排列;东部海丘相较于西部海岭更为狭长;西部海山规模远大于东部海山。西部西菲律宾海盆内包含海山、海底裂谷、山间谷地三种不同四级地貌单元,东部帕里西维拉海盆内包含海丘、山间谷地两种不同四级地貌单元。研究区构造作用活跃,构造运动和火山岩浆作用是多种地貌形成的主因之一。研究区典型地貌成因分析如下:
海山:海山的成因目前仍有争议,部分科学家认为大部分海山是在地幔柱的作用下形成的[22]。研究区海山主要位于九州-帕劳海岭及周边,九州-帕劳海岭是在太平洋板块俯冲和火山活动的共同作用下形成的。分析认为,研究区的海山地貌可能与该区域的板块俯冲和火山作用引起的岩浆活动有关。
海丘:海丘多由海底构造、岩浆作用形成,不同构造、岩浆活动区的海丘可能是不同类型岩浆作用的产物,也可能是多种岩浆作用的共同产物[23]。研究区内海丘广泛分布,在东部隆起区和西部盆地区尤为发育,这两个区域地形变化较大,分析认为其是经历过复杂的构造作用和频繁的岩浆活动下形成。
山间谷地:山间谷地通常分布在走向狭长的海丘或海丘群之间,海丘较海山高程小,所夹持的山间谷地相对山间盆地较浅。海丘或海丘群特殊形态的分布,造成了山间谷地的狭长发育。
山间洼地:山间洼地主要有两种成因,一是可能由于周围海山或海丘围绕而形成相对低洼的负地形,二是可能由于弧后扩张的构造裂谷而形成的低洼地[4]。研究区主要受九州-帕劳海岭影响,缺少裂谷地貌干预,山间洼地的形成主要由正地形地貌围限形成。
山间盆地:主要位于海山与海山之间,受海山隆起影响而形成规模较大、深度较深、长期接受沉积的负地形地貌。因此,其成因与海山的成因密切相关,是在海山形成过程中由于构造作用的挤压或拉伸造成区域相对下降而形成的。
4. 结论
(1)本次研究提出了研究区深远海海底地貌类型划分标准,对四级地貌划分标准进行了量化,划分出了海山、海丘、海底裂谷、山间谷地、山间洼地、山间盆地6种四级地貌单元。
(2)研究区水深变化较大,最浅处约为1692 m,最深处约为6713 m,覆盖了西菲律宾海盆、九州-帕劳海岭和帕里西维拉海盆三大地貌单元(二级地貌单元)。受控于不同形成时期的构造应力特征,西部与东部具有显著的构造走向差异,西部海岭呈近EW向雁式排列,东部海丘呈近NS向雁式排列;东部海丘相较于西部海岭更为狭窄。海山、山间盆地等大规模地貌单元的形成往往受控于强烈的岩浆、构造等地质作用。
(3)我国暂时缺少对深远海海底地貌类型划分的相关标准、规范,应尽快进行量化标准的制定,规范深远海海底地貌图件的绘制,本次研究是对解决这些问题的有益尝试。
-
图 2 热液贻贝元素富集概念图
A.外套膜,B.腮(主要包括共生菌和金属矿物),C.消化腺(主要为金属颗粒),D.足,E.足丝组织,F.壳[45] 。
Figure 2. Sketch of hydrothermal mussel tissues metal accumulation
A.mantle, B.gills(symbiotic bacteria and metal-bearing mineral particles in the gills), C.digestive gland(metal-rich granules in the digestive gland), D.foot, E.byssus thread, F.shell[45].
图 5 不同共生菌的生物壳体碳氧同位素分布图[68]
红色三角为共生甲烷营养菌生物壳体,黄色方形为共生硫营养菌贻生物壳体,蓝色圆圈为两类菌都存在的生物壳体[68]。
Figure 5. Distribution of oxygen and carbon isotope compositions according to the type of symbiotic bacteria present in bivalve gills[68]
Red triangle: bivalves harboring only methanotrophic bacteria, yellow rectangle bivalves harboring only sulfide-oxidizing bacteria, bule circle: bivalves harboring sulfide-oxidizing and methanotrophic bacteria[68].
表 1 海底冷泉和热液系统宏体生物的地球化学记录特征对比
Table 1 Comparison of geochemical record characteristics of macrobiota of seafloor cold seeps and hydrothermal systems
相似点流体浓度决定生物种类和数量 记录栖息地地球化学特征 生物体不同组织的元素种类和含量不同 微生物过程和周围环境影响生物同位素信息
不同点热液区生物种类和数量受温度影响较大 热液区生物的金属元素含量更高 稀土元素的富集模式不同 生物标志物种类不同 -
[1] 魏合龙, 孙治雷, 王利波, 等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 36(1):1-13 WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system [J]. Marine Geology & Quaternary Geology, 2016, 36(1): 1-13.
[2] 席世川, 张鑫, 王冰, 等. 海底冷泉标志与主要冷泉区的分布和比较[J]. 海洋地质前沿, 2017, 33(2):7-18 XI Shichuan, ZHANG Xin, WANG Bing, et al. The indicators of seabed cold seep and comparison among main distribution areas [J]. Marine Geology Frontiers, 2017, 33(2): 7-18.
[3] Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025
[4] Nakajima Y, Shinzato C, Khalturina M, et al. Isolation and characterization of novel polymorphic microsatellite loci for the deep-sea hydrothermal vent limpet, Lepetodrilus nux, and the vent-associated squat lobster, Shinkaia crosnieri [J]. Marine Biodiversity, 2018, 48(1): 677-684. doi: 10.1007/s12526-017-0704-5
[5] Parson L M, Walker C L, Dixon D R. Hydrothermal vents and processes [J]. Geological Society, London, Special Publications, 1995, 87: 1-2. doi: 10.1144/GSL.SP.1995.087.01.01
[6] German C R, Seyfried W E Jr. Hydrothermal processes [J]. Treatise on Geochemistry, 2014, 6: 191-233.
[7] Cardigos F, Colaço A, Dando P R, et al. Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores) [J]. Chemical Geology, 2005, 224(1-3): 153-168. doi: 10.1016/j.chemgeo.2005.07.019
[8] Melwani A R, Kim S L. Benthic infaunal distributions in shallow hydrothermal vent sediments [J]. Acta Oecologica, 2008, 33(2): 162-175. doi: 10.1016/j.actao.2007.10.008
[9] Dando P R. Biological communities at marine shallow-water vent and seep sites[M]//Kiel S. The Vent and Seep Biota. Dordrecht: Springer, 2010: 333-378.
[10] Markulin K, Peharda M, Mertz-Kraus R, et al. Trace and minor element records in aragonitic bivalve shells as environmental proxies [J]. Chemical Geology, 2019, 507: 120-133. doi: 10.1016/j.chemgeo.2019.01.008
[11] Galkin S V. Structure of hydrothermal vent communities[M]//Demina L L, Galkin S V. Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. Cham: Springer, 2016: 77-95.
[12] Schreier J E, Lutz R A. Hydrothermal vent biota[M]//Steele J H. Encyclopedia of Ocean Sciences. Elsevier: Academic Press, 2019: 308-319.
[13] Dattagupta S, Arthur M A, Fisher C R. Modification of sediment geochemistry by the hydrocarbon seep tubeworm Lamellibrachia luymesi: a combined empirical and modeling approach [J]. Geochimica et Cosmochimica Acta, 2008, 72(9): 2298-2315. doi: 10.1016/j.gca.2008.02.016
[14] Taviani M, Angeletti L, Ceregato A, et al. The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage [J]. Biogeosciences, 2013, 10(7): 4653-4671. doi: 10.5194/bg-10-4653-2013
[15] Lenihan H S, Mills S W, Mullineaux L S, et al. Biotic interactions at hydrothermal vents: recruitment inhibition by the mussel Bathymodiolus thermophilus [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2008, 55(12): 1707-1717. doi: 10.1016/j.dsr.2008.07.007
[16] Karpen V, Thomsen L, Suess E. Groundwater discharges in the Baltic Sea: survey and quantification using a schlieren technique application [J]. Geofluids, 2010, 6(3): 241-250.
[17] Jensen P, Aagaard I, Burke R A Jr, et al. ‘Bubbling reefs’ in the Kattegat: submarine landscapes of carbonate-cemented rocks support a diverse ecosystem at methane seeps [J]. Marine Ecology Progress Series, 1992, 83: 103-112. doi: 10.3354/meps083103
[18] Snelgrove P V R. Hydrodynamic enhancement of invertebrate larval settlement in microdepositional environments: colonization tray experiments in a muddy habitat [J]. Journal of Experimental Marine Biology and Ecology, 1994, 176(2): 149-166. doi: 10.1016/0022-0981(94)90182-1
[19] Tarasov V G, Gebruk A V, Mironov A N, et al. Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? [J]. Chemical Geology, 2005, 224(1-3): 5-39. doi: 10.1016/j.chemgeo.2005.07.021
[20] Mae A, Yamanaka T, Shimoyama S. Stable isotope evidence for identification of chemosynthesis-based fossil bivalves associated with cold-seepages [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3-4): 411-420. doi: 10.1016/j.palaeo.2006.09.003
[21] Dando P R, Aliani S, Arab H, et al. Hydrothermal studies in the Aegean Sea [J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere, 2000, 25(1): 1-8. doi: 10.1016/S1464-1909(99)00112-4
[22] Beccari V, Basso D, Spezzaferri S, et al. Preliminary video-spatial analysis of cold seep bivalve beds at the base of the continental slope of Israel (Palmahim Disturbance) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2020, 171: 104664. doi: 10.1016/j.dsr2.2019.104664
[23] Guillon E, Menot L, Decker C, et al. The vesicomyid bivalve habitat at cold seeps supports heterogeneous and dynamic macrofaunal assemblages [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 120: 1-13. doi: 10.1016/j.dsr.2016.12.008
[24] Campbell K A, Bottjer D J. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments [J]. Geology, 1995, 23(4): 321-324. doi: 10.1130/0091-7613(1995)023<0321:BACBIP>2.3.CO;2
[25] Feng D, Roberts H H. Initial results of comparing cold-seep carbonates from mussel- and tubeworm-associated environments at Atwater Valley lease block 340, northern Gulf of Mexico [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(21-23): 2030-2039. doi: 10.1016/j.dsr2.2010.05.004
[26] Pellerin A, Antler G, Røy H, et al. The sulfur cycle below the sulfate-methane transition of marine sediments [J]. Geochimica et Cosmochimica Acta, 2018, 239: 74-89. doi: 10.1016/j.gca.2018.07.027
[27] Duros P, Silva Jacinto R, Dennielou B, et al. Benthic foraminiferal response to sedimentary disturbance in the Capbreton canyon (Bay of Biscay, NE Atlantic) [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 120: 61-75. doi: 10.1016/j.dsr.2016.11.012
[28] Khripounoff A, Caprais J C, Decker C, et al. Variability in gas and solute fluxes through deep-sea chemosynthetic ecosystems inhabited by vesicomyid bivalves in the Gulf of Guinea [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2015, 95: 122-130. doi: 10.1016/j.dsr.2014.10.013
[29] Marlow J J, Steele J A, Ziebis W, et al. Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea [J]. Nature Communications, 2014, 5(1): 5094. doi: 10.1038/ncomms6094
[30] Toyama K, Paytan A, Sawada K, et al. Sulfur isotope ratios in co-occurring barite and carbonate from Eocene sediments: a comparison study [J]. Chemical Geology, 2020, 535: 119454. doi: 10.1016/j.chemgeo.2019.119454
[31] Roberts H H, Feng D. Carbonate precipitation at gulf of mexico hydrocarbon seeps: an overview[M]//Aminzadeh F, Berge T B, Connolly D L. Hydrocarbon Seepage. American: Society of Exploration Geophysicists, 2013: 43-61.
[32] Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351(6274): 703-707. doi: 10.1126/science.aad7154
[33] Tong H P, Feng D, Cheng H, et al. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology [J]. Marine and Petroleum Geology, 2013, 43: 260-271. doi: 10.1016/j.marpetgeo.2013.01.011
[34] Dattagupta S, Miles L L, Barnabei M S, et al. The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply [J]. Journal of Experimental Biology, 2006, 209(19): 3795-3805. doi: 10.1242/jeb.02413
[35] Cordes E E, Becker E L, Hourdez S, et al. Influence of foundation species, depth, and location on diversity and community composition at Gulf of Mexico lower-slope cold seeps [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(21-23): 1870-1881. doi: 10.1016/j.dsr2.2010.05.010
[36] Kádár E, Costa V. First report on the micro-essential metal concentrations in bivalve shells from deep-sea hydrothermal vents [J]. Journal of Sea Research, 2006, 56(1): 37-44. doi: 10.1016/j.seares.2006.01.001
[37] 冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6):1047-1056 FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056.
[38] Basso D, Beccari V, Almogi-Labin A, et al. Macro- and micro-fauna from cold seeps in the Palmahim Disturbance (Israeli off-shore), with description of Waisiuconcha corsellii n. sp. (Bivalvia, Vesicomyidae) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2020, 171: 104723. doi: 10.1016/j.dsr2.2019.104723
[39] Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough [J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015
[40] Amano K, Jenkins R G, Sako Y, et al. A Paleogene deep-sea methane-seep community from Honshu, Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 387: 126-133. doi: 10.1016/j.palaeo.2013.07.015
[41] Pavlidou A, Velaoras D, Karageorgis A P, et al. Seasonal variations of biochemical and optical properties, physical dynamics and N stable isotopic composition in three northeastern Mediterranean basins (Aegean, Cretan and Ionian Seas) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2020, 171: 104704. doi: 10.1016/j.dsr2.2019.104704
[42] Almeida M J, Machado J, Moura G, et al. Temporal and local variations in biochemical composition of Crassostrea gigas shells [J]. Journal of Sea Research, 1998, 40(3-4): 233-249. doi: 10.1016/S1385-1101(98)00033-1
[43] Wang X C, Li C L, Zhou L. Metal concentrations in the mussel Bathymodiolus platifrons from a cold seep in the South China Sea [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 129: 80-88. doi: 10.1016/j.dsr.2017.10.004
[44] Ruelas-Inzunza J, Soto L A, Páez-Osuna F. Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas basin, Gulf of California [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2003, 50(6): 757-761. doi: 10.1016/S0967-0637(03)00054-2
[45] Koschinsky A. Sources and forms of trace metals taken up by hydrothermal vent mussels, and possible adaption and mitigation strategies[M]//Demina L L, Galkin S V. Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. Cham: Springer, 2016: 97-122.
[46] Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium [J]. Chemical Geology, 1991, 93(3-4): 219-230. doi: 10.1016/0009-2541(91)90115-8
[47] Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems [J]. Earth and Planetary Science Letters, 2010, 299(3-4): 310-316. doi: 10.1016/j.jpgl.2010.09.011
[48] 李景喜, 孙承君, 蒋凤华, 等. 印度洋热液区贻贝及栖息沉积物中金属元素的特征分析[J]. 分析化学, 2017, 45(9):1316-1322 doi: 10.11895/j.issn.0253-3820.170348 LI Jingxi, SUN Chengjun, JIANG Fenghua, et al. Characteristics analysis of metal elements in sediments and habitat mussels from india ocean hydrothermal area [J]. Chinese Journal of Analytical Chemistry, 2017, 45(9): 1316-1322. doi: 10.11895/j.issn.0253-3820.170348
[49] Vanreusel A, De Groote A, Gollner S, et al. Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review [J]. PLoS One, 2010, 5(8): e12449. doi: 10.1371/journal.pone.0012449
[50] Shiller A M, Chan E W, Joung D J, et al. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy [J]. Scientific Reports, 2017, 7(1): 10389. doi: 10.1038/s41598-017-11060-z
[51] Wang X, Barrat J A, Bayon G, et al. Lanthanum anomalies as fingerprints of methanotrophy [J]. Geochemical Perspectives Letters, 2020, 14: 26-30. doi: 10.7185/geochemlet.2019
[52] Akagi T, Edanami K. Sources of rare earth elements in shells and soft-tissues of bivalves from Tokyo Bay [J]. Marine Chemistry, 2017, 194: 55-62. doi: 10.1016/j.marchem.2017.02.009
[53] Yamanaka T, Mizota C, Fujiwara Y, et al. Sulphur-isotopic composition of the deep-sea mussel Bathymodiolus marisindicus from currently active hydrothermal vents in the Indian Ocean [J]. Journal of the Marine Biological Association of the United Kingdom, 2003, 83(4): 841-848. doi: 10.1017/S0025315403007872h
[54] Paull C K, Jull A J T, Toolin L J, et al. Stable isotope evidence for chemosynthesis in an abyssal seep community [J]. Nature, 1985, 317(6039): 709-711. doi: 10.1038/317709a0
[55] Suzuki Y, Sasaki T, Suzuki M, et al. Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean [J]. Applied and Environmental Microbiology, 2005, 71(9): 5440-5450. doi: 10.1128/AEM.71.9.5440-5450.2005
[56] Yamanaka T, Shimamura S, Nagashio H, et al. A compilation of the stable isotopic compositions of carbon, nitrogen, and sulfur in soft body parts of animals collected from deep-sea hydrothermal vent and methane seep fields: variations in energy source and importance of subsurface microbial processes in the sediment-hosted systems[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 105-129.
[57] De Ronde C E J, Massoth G J, Butterfield D A, et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand [J]. Mineralium Deposita, 2011, 46(5-6): 541-584. doi: 10.1007/s00126-011-0345-8
[58] Markert S, Arndt C, Felbeck H, et al. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila [J]. Science, 2007, 315(5809): 247-250. doi: 10.1126/science.1132913
[59] Bell J B, Reid W D K, Pearce D A, et al. Hydrothermal activity lowers trophic diversity in Antarctic sedimented hydrothermal vents[J]. Biogeosciences, 2016,doi: 10.5194/bg-2016-318.
[60] Portail M, Olu K, Dubois S F, et al. Food-web complexity in guaymas basin hydrothermal vents and cold seeps [J]. PLoS One, 2016, 11(9): e0162263. doi: 10.1371/journal.pone.0162263
[61] Vetter R D, Fry B. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms [J]. Marine Biology, 1998, 132(3): 453-460. doi: 10.1007/s002270050411
[62] Rodrigues C F, Hilário A, Cunha M R. Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic): distribution, life styles and nutritional patterns [J]. Biogeosciences, 2013, 10(4): 2569-2581. doi: 10.5194/bg-10-2569-2013
[63] Feng D, Cheng M, Kiel S, et al. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2015, 104: 52-59. doi: 10.1016/j.dsr.2015.06.011
[64] Ye F C, Crippa G, Angiolini L, et al. Mapping of recent brachiopod microstructure: a tool for environmental studies [J]. Journal of Structural Biology, 2018, 201(3): 221-236. doi: 10.1016/j.jsb.2017.11.011
[65] Kardon G. Evidence from the fossil record of an antipredatory exaptation: conchiolin layers in corbulid bivalves [J]. Evolution, 1998, 52(1): 68-79. doi: 10.1111/j.1558-5646.1998.tb05139.x
[66] Hein J R, Normark W R, Mcintyre B R, et al. Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California [J]. Geology, 2006, 34(2): 109-112. doi: 10.1130/G22098.1
[67] Ambrose W G Jr, Panieri G, Schneider A, et al. Bivalve shell horizons in seafloor pockmarks of the last glacial‐interglacial transition: a thousand years of methane emissions in the Arctic Ocean [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4108-4129. doi: 10.1002/2015GC005980
[68] Lietard C, Pierre C. Isotopic signatures (δ18O and δ13C) of bivalve shells from cold seeps and hydrothermal vents [J]. Geobios, 2009, 42(2): 209-219. doi: 10.1016/j.geobios.2008.12.001
[69] Dreier A, Loh W, Blumenberg M, et al. The isotopic biosignatures of photo- vs. thiotrophic bivalves: are they preserved in fossil shells? [J]. Geobiology, 2014, 12(5): 406-423. doi: 10.1111/gbi.12093
[70] Kiel S, Taviani M. Chemosymbiotic bivalves from Miocene methane-seep carbonates in Italy [J]. Journal of Paleontology, 2017, 91(3): 444-466. doi: 10.1017/jpa.2016.154
[71] Michener R H, Lajtha K. Stable Isotopes in Ecology and Environmental Science[M]. 2nd ed. Oxford: Blackwell Publishing Ltd, 2007.
[72] O’Donnell T H, Macko S A, Chou J, et al. Analysis of δ13C, δ15N, andδ34S in organic matter from the biominerals of modern and fossil Mercenaria spp. [J]. Organic Geochemistry, 2003, 34(2): 165-183. doi: 10.1016/S0146-6380(02)00160-2
[73] Feng D, Peckmann J, Li N, et al. The stable isotope fingerprint of chemosymbiosis in the shell organic matrix of seep-dwelling bivalves [J]. Chemical Geology, 2018, 479: 241-250. doi: 10.1016/j.chemgeo.2018.01.015
[74] Yan Y X, Sun C J, Huang Y H, et al. Distribution characteristics of lipids in hadal sediment in the Yap Trench [J]. Journal of Oceanology and Limnology, 2020, 38(3): 634-649. doi: 10.1007/s00343-019-8120-2
[75] Ding L, Zhao M X, Yu M, et al. Biomarker assessments of sources and environmental implications of organic matter in sediments from potential cold seep areas of the northeastern South China Sea [J]. Acta Oceanologica Sinica, 2017, 36(10): 8-19. doi: 10.1007/s13131-017-1068-1
[76] Guan H X, Sun Z L, Mao S Y, et al. Authigenic carbonate formation revealed by lipid biomarker inventory at hydrocarbon seeps: a case study from the Okinawa Trough [J]. Marine and Petroleum Geology, 2019, 101: 502-511. doi: 10.1016/j.marpetgeo.2018.12.028
[77] Guerreiro V, Narciso L, Almeida A J, et al. Fatty acid profiles of deep-sea fishes from the Lucky Strike and Menez Gwen hydrothermal vent fields (Mid-Atlantic ridge) [J]. Cybium, 2004, 28(1): 33-44.
[78] Pond D W, Gebruk A, Southward E C, et al. Unusual fatty acid composition of storage lipids in the bresilioid shrimp Rimicaris exoculata couples the photic zone with MAR hydrothermal vent sites [J]. Marine Ecology Progress Series, 2000, 198: 171-179. doi: 10.3354/meps198171
[79] Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean [J]. Organic Geochemistry, 2004, 35(5): 573-582. doi: 10.1016/j.orggeochem.2004.01.002
[80] Li J W, Zhou H Y, Peng X T, et al. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney [J]. Journal of Sea Research, 2011, 65(3): 333-339. doi: 10.1016/j.seares.2011.01.005
[81] 万志峰, 张伟, 陈崇敏, 等. 琼东南盆地冷泉差异发育特征及其深部控制机理[J]. 海洋地质前沿, 2021, 37(7):1-10 WAN Zhifeng, ZHANG Wei, CHEN Chongmin, et al. Hydrodynamic characteristics of cold seep differential development in the Qiongdongnan Basin and their deep controlling mechanisms [J]. Marine Geology Frontiers, 2021, 37(7): 1-10.
[82] Li J T, Mara P, Schubotz F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust [J]. Nature, 2020, 579(7798): 250-255. doi: 10.1038/s41586-020-2075-5
[83] Watkins J M, Hunt J D. A process-based model for non-equilibrium clumped isotope effects in carbonates [J]. Earth and Planetary Science Letters, 2015, 432: 152-165. doi: 10.1016/j.jpgl.2015.09.042
[84] McConnaughey T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects [J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 163-171. doi: 10.1016/0016-7037(89)90283-4
-
期刊类型引用(2)
1. 许冠军,吴梓源,龙桂,方梓彬,陈浩权,唐海燕,陈禹聪,刘岳昕,涂华,赖忠平. 陆丰、惠来地区第四纪沉积物粒度、微体古生物与沉积相分析及其对古环境的指示意义. 汕头大学学报(自然科学版). 2024(01): 31-43 . 百度学术
2. 贺辰戋,张桂华,梁定辉,李明坤,张俊岭,李结涛,关燕萍,彭莎莎,丁盛昌,曾提,王云鹏,欧阳婷萍,朱照宇. 珠江三角洲花斑粘土磁学特征及其沉积环境实例研究. 第四纪研究. 2024(05): 1349-1361 . 百度学术
其他类型引用(0)