黄淮平原区晚新生代气候变迁

李宗盟, 朱文敏, 高红山, 刘芬良, 邢伟

李宗盟, 朱文敏, 高红山, 刘芬良, 邢伟. 黄淮平原区晚新生代气候变迁[J]. 海洋地质与第四纪地质, 2021, 41(4): 179-191. DOI: 10.16562/j.cnki.0256-1492.2020112303
引用本文: 李宗盟, 朱文敏, 高红山, 刘芬良, 邢伟. 黄淮平原区晚新生代气候变迁[J]. 海洋地质与第四纪地质, 2021, 41(4): 179-191. DOI: 10.16562/j.cnki.0256-1492.2020112303
LI Zongmeng, ZHU Wenmin, GAO Hongshan, LIU Fenliang, XING Wei. Late Cenozoic climate changes in the Huanghuai Plain[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 179-191. DOI: 10.16562/j.cnki.0256-1492.2020112303
Citation: LI Zongmeng, ZHU Wenmin, GAO Hongshan, LIU Fenliang, XING Wei. Late Cenozoic climate changes in the Huanghuai Plain[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 179-191. DOI: 10.16562/j.cnki.0256-1492.2020112303

黄淮平原区晚新生代气候变迁

基金项目: 国家自然科学基金项目“晚更新世以来淮河上游河流地貌对气候变化的响应过程研究”(41901007);信阳师范学院南湖学者奖励计划青年项目(Nanhu Scholars Program for Young Scholars of XYNU)
详细信息
    作者简介:

    李宗盟(1987—),男,博士,讲师,主要从事流域地貌演化研究,E-mail:lizm@xynu.edu.cn

  • 中图分类号: P532

Late Cenozoic climate changes in the Huanghuai Plain

  • 摘要: 通过梳理黄淮平原内的黄土、湖沼和石笋等剖面及钻孔沉积记录,探讨了该区晚新生代以来的气候变化特征,并对比分析了该区气候变化的时空差异。结果表明,新近纪期间东亚季风系统开始逐渐建立,研究区气候带由干旱区转为湿润区。晚新生代以来,黄淮平原区构造尺度气候变化符合东亚气候变化的一般趋势,即经历了较显著的阶段性冷干化演变。第四纪期间,黄淮平原区气候表现出典型的轨道尺度冷暖波动(冰期-间冰期旋回),可能是在全球宏观气候背景下对东亚季风强弱变化的响应。然而在千年尺度,受区域地形等局地因素的影响,黄淮平原区全新世气候变化在空间上表现出一定的差异性和穿时性。
    Abstract: Based on the published records of loess, lacustrine-marsh deposits, stalagmite and other archives, this paper attempts to explore the characteristics of Late Cenozoic climate changes and to make comparative analyzes of the similarities and differences of climate changes on different spatiotemporal scales in the Huanghuai Plain. The results show that the East Asian monsoon system began to establish in Neogene, and as the result this area changed its climate zone from a previous arid area to a humid area. Since late Cenozoic, the pattern of climate change in the Huanghuai Plain has been consistent with the general trend of East Asian region in the tectonic timescale, which has experienced a drastic change from warm and humid to cold and dry. During the Quaternary period, the climate changes showed typical orbit-scale cold and warm fluctuations or glacial-interglacial cycles in the study area, possibly as a response to the changes of the intensity of the East Asian monsoon under the global climate background. However, due to the influence of local factors such as regional topography, the Holocene climate change shows a certain degree of spatial differentiation and diachroneity in the Huanghuai Plain on a millennium scale.
  • 地质时期气候记录的重建是探讨区域环境演变和预测未来气候变化的基础[1-4]。近百年来,基于深海沉积[5-8]、大陆冰芯[9-10]和黄土[11-13]三大记录的全球气候变化研究已经取得了较大的进展,并在石笋[14-17]、树轮[18-20]等高分辨率载体的研究下不断提高着气候变化研究的精度。然而,受限于研究方法和气候记录的保存完整性,当前的古气候研究仍较多地集中于晚新生代。此外,研究表明,我国现今构造地貌格局的形成,以及东亚季风环流系统的建立均源于晚新生代[21-24]。因此,晚新生代气候记录的重建和变迁研究一直是全球气候变化研究的重要内容。

    在构造(≥106 a)和轨道尺度(104~105 a)上,晚新生代以来全球气候变化具有较显著的一致性[1, 12-13],然而地表的复杂性决定了不同区域之间的气候必然存在着差异,而这种区域差异在千年尺度(101~103 a)尤其显著[25]。古温度重建研究表明,末次冰期旋回中不同区域的降温幅度存在显著的差异[26-27]。此外,在当前全球变暖的背景下,有研究认为不同地区间气候的“马太效应”将更加突显,即湿润区更加湿润,而干旱区更加干旱[28]。然而我国西北干旱区近半个世纪以来却呈现出湿润化的趋势[29-30]。显然,不同区域之间的气候变迁具有其独特性和复杂性,因此深入开展不同典型地域气候变迁的对比研究显得尤为重要。

    黄淮平原位于我国东部长江和黄河流域之间,是我国东部季风区亚热带和暖温带的过渡地带(图1),也是我国南北过渡带的东段组成部分。南北过渡带是我国重要的地理-生态走廊,对于我国地理格局的形成具有重要的意义[31]。黄淮平原区在气候等自然地理要素上具有显著的南北过渡性分异,针对黄淮平原区气候变迁的研究,有助于深入理解南北过渡带地理环境的演变规律。近几十年来,黄淮平原区已经积累了丰富的黄土、湖沼和石笋等气候记录(图2[32-35],为探讨黄淮平原区晚新生代气候变迁提供了良好的基础。基于此,本文在已有研究的基础上,通过对该区气候记录的梳理和对比分析,探讨了研究区晚新生代的气候变迁,并对比分析了该区气候演变的时空差异。

    图  1  黄淮平原地理位置
    a. 中国季风与非季风区示意图, b. 黄淮平原及邻区地形。
    Figure  1.  Location of the Huanghuai Plain
    a. Schematic diagram of monsoon and non-monsoon regions, b. Topography of the Huanghuai Plain and its surroundings.
    图  2  晚新生代黄淮平原区主要气候记录分布位置图
    1.寺河南剖面,2.皂角树剖面,3.马沟洞, 4.禹州剖面, 5.襄城剖面, 6.邓家剖面, 7.郑州Z37-2孔, 8.开封孔, 9.光山剖面, 10.胡族铺剖面, 11—18.淮北平原黄口孔、亳县孔、太和孔、临泉孔、濉溪孔、蒙城孔、固镇孔、颖上孔, 19.凤台孔, 20.禹会村剖面, 21.宝应孔, 22.岗西剖面, 23.庆丰剖面, 24.里下河SG孔, 25.周奋剖面, 26.兴化DS孔, 27.XH-1孔, 28.XH-2孔, 29.YZQ孔, 30.泰州PM4剖面。 图中“其他”类载体包含了两种及以上的沉积记录, 如河流、湖沼和海洋沉积, 其中禹会村剖面以冲积物为主, 但夹有文化层。
    Figure  2.  Location map of the main climate records in the Huanghuai Plain during Late Cenozoic
    1. Sihenan profile, 2. Zaojiaoshu profile,3. Magoudong, 4. Yuzhou profile, 5. Xiangcheng profile, 6. Dengjia profile, 7. Z37-2 core of Zhengzhou, 8. Kaifeng core, 9. Guangshan profile,10. Huzupu profile, 11—18. Huangkou, Boxian, Taihe, Linquan, Suixi, Mengcheng, Guzhen and Yingshang cores in the Huaibei Plain, 19. Fengtai core, 20. Yuhuicun profile, 21. Baoying core, 22. Gangxi profile, 23. Qingfeng profile, 24. SG core in Lixiahe area, 25. Zhoufen profile,26. DS core, 27—28. The XH-1 and XH-2 cores, 29. YZQ core, 30. The PM4 profile in Taizhou. The "Others"-type carrier contains two or more climate records, such as fluvial, lacustrine and marine deposits. The Yuhuicun profile is dominated by alluvial sediments with cultural layers.

    我国南部热带区域东亚季风的形成最早可以追溯到始新世[36-37],但我国东部广大地区东亚季风格局的形成可能发生在新近纪初(图3[38-39]。古近纪期间,我国中纬度地区主要受行星风系的影响[22, 24, 40],黄淮平原区以炎热干燥的气候为主,属于半干旱-干旱亚热带;而在新近纪,随着古季风系统的出现,该区转变为暖温-亚热带潮湿带[41]

    图  3  新生代期间中国气候带分布
    a、b分别为渐新世和中新世期间干旱气候带(黄色)分布示意图(转绘自文献[38])。
    Figure  3.  Distribution of the climate zone in China during Cenozoic
    a. Oligocene, b. Miocene. Arid zone is shown in yellow.(modified from reference [38])

    晚新生代以来,全球气候呈现出冷干化的总体趋势[1]。内陆盆地沉积记录[39]和南海沉积[7]的研究表明,晚新生代以来我国西北干旱区和东部季风区也表现出显著的冷干化(图4a、b)。黄淮平原区新近纪气候记录主要来自钻孔沉积。淮河中游固镇孔(图2)的孢粉分析表明[42-43],淮北平原中新世孢粉以木本植物为主,其中榆、山核桃和松含量丰富,区域植被以常绿、落叶阔叶混交林为主。具体来看,该区中新世孢粉序列可分为3个阶段,淮北平原早中新世植被经历了由以针叶树为主到以阔叶树为主的混交林的演变;中中新世以被子植物占主导,为含针叶的落叶阔叶林;晚中新世草本植物含量升高,区域植被由森林演变为森林草原[43]。黄淮平原东部苏北XH-2孔的研究表明,晚中新世(6.65~5.29 Ma)苏北盆地孢粉组合以针叶树等木本植物为主,森林覆盖度较高[44]。综合上述孢粉记录可以发现,中新世期间淮北平原和苏北平原区以森林植被为主,气候相对暖湿,但同时又经历了多次的干湿和冷暖变化。此外,淮南凤台孔8~7 Ma以黏土和粉砂质为主,为湖相沉积;约7 Ma,淮南地区由湖相逐渐转为河湖交互相(图4c[35],指示了中新世末期气候的波动和冷干化趋势。

    图  4  东亚季风区晚新生代以来气候记录对比
    a. 南海ODP1148站底栖有孔虫氧同位素记录[7], b. 季风/干旱气候演化综合曲线[39],c. 淮南凤台孔沉积物粒度组成[35], d. 淮北平原晚新生代气温重建[42]。O、M、P、Q分别指示渐新世、中新世、上新世和第四纪。
    Figure  4.  Comparison of Late Cenozoic climate records of the East Asia monsoon area
    a. Neogene benthic foraminiferal isotope data of South China Sea ODP1148[7], b. A synthesis of the paleoclimatic changes of depositional records[39]; c. Grain size of the Fengtai core in Huainan[35], d. Reconstructed temperature curve of the Huaibei Plain during the Late Cenozoic[42]. O. Oligocene, M. Miocene,P. Pliocene, Q. Quaternary.

    上新世沉积中,淮北平原区草本植物花粉含量升高,且以禾本科为主;木本植物则以松、栎和榆为主,指示了以针阔叶混交林草原为主的植被[42]。此外,上新世期间淮北平原可能经历了由以阔叶为主的针阔混交林、森林草原到以阔叶为主的针阔混交林草原的转变[43]。苏北XH-2孔孢粉研究显示,早上新世(5.29~3.7 Ma)孢粉浓度较中新世减小,后期逐渐恢复为温湿环境下的植被;而在晚上新世(3.7~2.78 Ma),苏北地区以草本花粉为主,指示了稀树草原景观[44]。显然,从植被的演替来看,上新世期间淮北平原和苏北地区的气候均呈现出干旱化的趋势(图4)。然而,沉积记录的研究表明,淮北和苏北地区上新世期间气候波动强烈。如淮南凤台孔揭示淮南地区上新世期间为河湖交互沉积环境,反映了气候的频繁波动[35]。XH-1孔沉积同样揭示3.2~2.58 Ma苏北地区河湖交互频繁,气候虽总体干热,但波动强烈,后期向暖湿化过渡[45]

    上新世末北极冰盖发育[46],全球气候持续转冷。第四纪期间,全球气候表现为以冰期-间冰期旋回为代表的强烈冷暖波动[47],黄淮平原区更新世气候同样表现出显著的冷暖和干湿旋回(图5)。

    图  5  黄淮平原区第四纪气候记录对比
    a. 全球深海氧同位素记录[6],b. 灵台剖面磁化率记录[12], c. 淮南凤台孔沉积物粒度组成[35], d. 淮北平原第四纪古气温重建[42], e. 兴化XH-1孔中更新世以来的碳酸盐记录[53], f. 苏北周奋剖面Rb/Sr元素记录[57],g. 苏北SG孔沉积物平均粒径[59]
    Figure  5.  Comparison of Quaternary climate records of the Huanghuai Plain
    a. Global deep-sea oxygen isotope record[6], b. Magnetic susceptibility curves of the Lingtai loess profile[12]; c. Grain size of the Fengtai core in Huainan[35], d. Reconstructed temperature curve of the Huaibei Plain during the Late Cenozoic[42], e. Carbonate record since the Pleistocene of the XH-1 Core in Xinghua[53],f. Rb/Sr record of Zhoufen profile in Northern Jiangsu[57], g. Mean size of the sediments from SG core in Northern Jiangsu[59].

    开封孔孢粉记录显示[48],早更新世初该区孢粉匮乏,且以蒿、藜等草本植物为主,局部见少量木本植物,指示了蒿类草原和稀树草原景观;早更新世中期,草本植物花粉含量显著升高,并伴有松、臭椿等木本植物花粉,指示了暖温带稀树草原和针阔混交林景观;而在早更新世晚期,该区为草原和稀树草原景观,但阔叶木本、水生和湿生草本增多。综合开封孔及其他研究,从时间上看,早更新世初黄淮平原西部有大幅的冷干化趋势,但仍较暖湿;后期则有升温趋势,如在河南舞阳等地形成了红土沉积[40]。从空间上看,该地区开始出现气候带的分异,豫北地区为北温带森林草原带,豫南则为亚热带森林带[40]

    淮北平原太和孔和蒙城孔的孢粉研究表明[49],下更新统下部桃园组以木本花粉为主,松、蒿开始占主导;桃园组上部为潘集组,草本大量增多。该孢粉组合显示出早更新世由温凉向冷干气候的转变。金权等[42]将淮北平原早更新世分为7个孢粉组合带、13个气候阶段,该区植被以木本植物为主,其中早期以云杉和榆为主,指示落叶阔叶和针阔混交林;中期则以栎、胡桃、山毛榉等落叶阔叶植物为主;晚期过渡为以松、云杉为主的针阔混交林;指示了区域气候的早期冷湿、中期暖湿和晚期冷湿的特征。淮南凤台孔1.7 Ma由河-湖相沉积环境转为河流相沉积环境(图5c),同样指示了气候的快速波动[35]

    苏北兴化XH-1孔研究表明,2.58~0.99 Ma区域地理环境表现为强烈气候波动下的河湖频繁交互过程[45]。在邻近的兴化XH-2孔中,2.78~0.94 Ma花粉整体较少且以草本为主,反映相对干旱的草原环境,期间干湿波动明显;1.86~0.94 Ma孢粉依旧贫乏,但曾短暂出现森林阶段[44]。苏北宝应钻孔揭示了1.95 和1 Ma发生的两次海侵过程,反映了气候变迁下的海陆交互作用[50]。综合以上研究可以发现,早更新世期间黄淮平原区植被和沉积环境变化显著,反映了冷干背景下的冰期-间冰期旋回气候波动。

    中更新世时期,黄淮平原西部气候波动显著,河南出现较显著的气候分异,以东秦岭-伏牛山-淮河为界,南北生物区系明显。北部为暖温带阔叶森林草原,南部为北亚热带落叶和常绿阔叶过渡型森林带[40]。河南信阳光山黄土剖面的地化元素研究显示,淮河源区中更新世期间整体以暖湿气候为主,但早期相对冷干,中期转暖湿,晚期再次转冷干,期间夹多次的冷暖干湿旋回[51]

    临泉、濉溪和亳县钻孔的孢粉研究表明[42],淮北平原区中更新世含两个孢粉带,其中下部孢粉带早期为含常绿成分的落叶阔叶林,气候相对温湿;中期草本繁茂,为混交林-草原类型;晚期以柳、栎为主,为草原成分的落叶阔叶林,较暖湿。上部孢粉带为含草原成分的针叶林-暗针叶林,指示冷湿气候。该区的另一处研究同样指示了中更新世期间频繁的气候波动[49]:如0.7~0.45 Ma,为以阔叶为主的针阔混交林草原,具北亚热带温湿气候特征。0.45~0.25 Ma该区植被演变为森林草原,指示了半干旱-半湿润的暖温带气候,其中0.45~0.3 Ma以草本植物为主,指示了暖干气候下的稀树草原;0.3~0.25 Ma仍以草本为主,但云杉、冷杉等木本植物花粉增多,为以针叶树为主的针阔混交林草原;0.25 Ma以来为稀树草原,总体为较湿润的暖温带气候。

    彩度、磁化率和地化指标研究表明,苏北地区XH-1孔记录的中更新世气候可划分为多个干湿旋回和气候阶段(图5e),从中更新世中期开始苏北地区逐渐冷干化,气候变幅增大[52-53]。从沉积上看,0.99~0.42 Ma,XH-1孔以湖泊沉积为主,并表现出多个湖进-湖退旋回;0.42 Ma以来,主要为湖沼沉积体系,湖泊收缩浅化[45]。在邻近的XH-2孔中,落叶阔叶树种在深海氧同位素阶段(Marine Isotope Stage, MIS)16发生了显著的降低;而MIS 12前后草本含量快速增加[44, 54]。苏北地区两处钻孔揭示的中更新世期间植被、沉积等环境指标的显著变化,可能是对中更新世气候转型的响应。而在苏北宝应钻孔中,在中更新世相对暖湿的气候背景下,宝应地区发生了大规模的海侵[50]

    基于孢粉、微体古生物和元素地球化学分析,黄淮平原西南部的信阳胡族铺沉积剖面揭示,晚更新世期间该区气候以暖湿为主[55]。其中,30~25 kaBP,湖泊范围经历了多期的扩大和收缩,可能反映了MIS 3/2转型过程中的气候异常波动。25~13 kaBP,湖盆由扩大到逐渐萎缩消亡,最后转为河流沉积环境,区域气候经历了暖湿-暖干-暖湿的转变。

    淮北平原颍上孔孢粉指示了以草原和混交林草原为主的植被特征[42, 49],其中0.13~0.1 Ma以草本植物为主,局部木本含量较高,孢粉中含较多喜热成分,反映较湿热的环境;0.1~0.07 Ma,以草本占绝对优势,木本植物以松、云杉等为主,指示寒冷气候下的稀树草原;0.07~0.03 Ma,仍以草本为主,但榆、栎等喜湿热木本植物增多,表明气候湿热[49]

    苏北XH-1、XH-2孔磁化率和孢粉等指标均可与深海记录进行很好的对比,指示了晚更新世期间轨道尺度的多次干湿冷暖变化,其变化趋势与全球气候变化呈较好的一致性[44, 52-53, 56]。如XH-2孔在MIS 5阶段以落叶阔叶林为主,但期间孢粉波动较大,反映相对暖湿气候下的频繁波动;MIS 4—2孢粉含量有所降低,但仍表现为落叶阔叶林,较MIS 5阶段冷干[54]。苏北周奋剖面粒度和磁化率等指标揭示了MIS 3晚期(40~30 kaBP)相对湿润的气候,以及MIS 2早期(30~18.6 kaBP)冷干的气候特征(图5f[57]。苏北里下河SG孔的粒度和地化元素显示了MIS 2阶段内的气候波动,如30~26 kaBP气候相对湿润,26~18 kaBP气候转干,18~15 kaBP气候相对暖湿(图5g[58-59]。宁波平原钻孔记录同样指示了晚更新世期间频繁的气候波动[60],其中MIS 3阶段(约40 kaBP)有较大规模的海侵发生,同期的海侵在宝应孔也有记录[50]

    全新世期间,我国进入相对温暖湿润的气候期,大致表现为早全新世(11.7~8.2 kaBP)的升温期,中全新世大暖期(8.2~4.2 kaBP)和晚全新世(4.2 kaBP至今)的降温期[61-62]。此外,全新世期间还含有千年至百年尺度的冷暖波动[14-17]。众多研究表明,黄淮平原区全新世气候与我国全新世气候大致呈相似的变化规律[32, 63-64]。如黄淮平原西部地区早全新世逐渐变湿,中全新世湿润,而晚全新世呈现出干旱化[65]

    早全新世期间,黄淮平原区气候呈现出较显著的增温增湿现象(图6)。如许昌马沟洞石笋氧同位素记录显示,11.2~9.1 kaBP区域季风降水在波动中逐渐增加[34];而襄城黄土剖面粒度和磁化率均指示11.6~9.4 kaBP为升温期,成壤作用较弱,总体偏暖干[33]。禹州黄土中黏粒含量在11.5~8.5 kaBP逐渐升高(图6g),指示了早全新世的增湿现象[66]。在苏北地区DS和YZQ钻孔均指示,末次冰消期苏北平原气候冷暖波动剧烈,而全新世早期则逐渐升温,以暖湿为主[67-68]。在此气候背景下,郑州Z37-2孔(11~7.5 kaBP)孢粉以松为主,其次为胡桃、槭等,区域植被为稍冷湿气候下的针阔混交林草原[69]。安徽黄口孔孢粉以藜、蒿等草本植物为主,木本植物中以松占绝对优势,含少量阔叶树种,为以针叶林为主的针阔叶混交林-草原,气候总体温凉偏湿[42]。江苏建湖庆丰剖面研究表明,10.1~7.5 kaBP,苏北地区以泥炭沼泽和滨海沼泽为主,孢粉组合显示早期植被为针叶林和草原,晚期植被为盐生草甸与针阔叶混交林,反映区域气候温和干燥[32]。在早全新世升温的背景下,海平面呈不断上升的趋势[70]

    图  6  黄淮平原区全新世气候记录对比
    a. 格陵兰GISP2冰芯氧同位素记录[9], b. 董哥洞石笋氧同位素记录[14],c. 襄城黄土剖面春季近地面气温指数[33],d. 苏北庆丰剖面全新世气温重建[32],图中灰色实线指示庆丰地区现代年平均气温, e. 苏北兴化YZQ孔湖沼沉积磁化率记录[68], f. 洛阳皂角树剖面沉积物<2 μm含量[71], g. 河南禹州黄土剖面细颗粒(1~5 μm)含量[66]。HCO为全新世气候最宜期。
    Figure  6.  Comparison of Holocene climate records of the Huanghuai Plain
    a. Oxygen isotop record of the GISP2 ice core in Greenland[9], b. The stalagmite oxygen isotope record of Dongge cave[14],c. Spring near-surface temperature of loess profile in Xiangcheng, Henan[33], d. Reconstructed Holocene temperature of Qingfeng profile in Northern Jiangsu[32], The grey line indicates modern annual average temperature of Qingfeng, e. Magnetic susceptibility of YZQ core in Xinghua, Northern Jiangsu[68], f. Grainsize percentage of sediment that lower than 2 μm of Zaojiaoshu profile in Luoyang[71], g. The content of fine materials of the loess profile in Yuzhou, Henan[66]. HCO: Holocene Climatic Optimum.

    中全新世期间,黄淮平原区气候整体以暖湿为主(图6)。如郑州Z37-2孔7.5~2.5 kaBP以乔木花粉为主,指示暖湿气候下的落叶阔叶林[69]。8~3 kaBP,禹州黄土剖面[66]和洛阳皂角树黄土剖面[71]的粒度显著细化。7.2~5.6 kaBP,洛阳寺河南湖沼沉积中乔木花粉增多、喜暖的胡桃等出现,指示全新世大暖期的暖湿气候;在5.6~4.6 kaBP,孢粉组合以蒿属、禾本科和藜科为主,气候寒冷干旱[72]。许昌马沟洞石笋δ18O记录显示,9.1~4.9 kaBP季风降水保持较稳定的高值,但可见显著短期波动[34]。嵩山东麓邓家黄土剖面粒度和元素地球化学分析显示,9~2 kaBP粒度细化,Ca/Mg值较低,该时期气候温暖湿润,夏季风强盛,生物化学淋溶作用强烈[64]

    淮北平原黄口钻孔孢粉组合显示,中全新世孢粉以蒿、藜等草本为主,植被类型为混交林-草原[42]。该时段植被可分为3段,其中早期和晚期木本含量增多,以栗、栎为优势种,可见喜热的罗汉松;草本中可见喜湿的莎草、禾本科植物,为含针叶成分的落叶阔叶林-草原,气候总体温湿。中期木本含量降低,以松为主,为针阔叶混交林-草原,指示气候温和偏干。全新世大暖期时,由于降水增多引起的洪涝灾害频发,安徽淮北地区新石器文化一度中断[73]

    江苏建湖庆丰剖面研究表明,8.5~4 kaBP为全新世高温湿润期,常绿乔木增多,常绿落叶阔叶混交林逐渐过渡到常绿阔叶林,但也夹有几次快速降温事件[32]。陈月秋则认为,8~5.5 kaBP为江苏地区全新世最暖期,海侵广泛;而5.5~3 kaBP为短暂的低温期,植被转变为含针叶的落叶阔叶林[70]。兴化DS孔的粒度、磁化率和地化分析,均指示中全新世期间(9.1~6.48 kaBP)区域气候以温湿为主,但包含了多次千年尺度波动[67]。在中全新世暖湿气候背景下,苏北地区受海平面上升影响发生多次海侵。如江苏建湖冈西剖面研究显示,8.5~7.5 kaBP该区受波动性海侵影响;7.5~5.8 kaBP海侵作用减弱,该地区主要受淮河的冲积作用影响,海岸线东进[74]。而苏北泰州PM4剖面的粒度和微体古生物分析表明,11.9~4.85 kaBP为灰绿色湖相沉积,未受海平面上升影响,沉积环境较稳定;4.85~4.25 kaBP发生海侵,区域转为滨海沼泽环境[75]

    晚全新世期间,黄淮平原西部地区的气候呈现出较显著的冷干化趋势,如郑州Z37-2孔2.5 kaBP以来孢粉含量下降,且以松、藜为主[69]。4.6~3.1 kaBP,洛阳寺河南剖面禾本科含量增加,喜暖乔木胡桃、枫杨等出现,说明气候出现短暂的温和湿润阶段;但3.1 kaBP以后,孢粉组合以蒿属和禾本科为主,乔木花粉减少,且以松属为主,反映了气候的趋冷[72]。从风成沉积来看,约3 kaBP以来,邓家剖面[64]、禹州剖面[66]和皂角树剖面[71]粒度均显著粗化,指示了气候的干旱化。但1.5 kaBP后禹州剖面黏土含量再次升高(图6g),可能指示了晚全新世在冷干背景上,后期有一定的暖湿趋势[66]。然而,襄城黄土剖面的粒度和磁化率分析表明,4.5~3.8 kaBP气候干冷,但3.8~1.8 kaBP却是全新世最暖湿阶段;1.8~1 kaBP相对冷湿,1 kaBP以来又趋于暖干(图6c[33]

    蚌埠禹会村遗址孢粉记录显示,4.5~4 kaBP孢粉组合以禾本科等草本植物为主,乔木花粉以松、落叶栎和榆属为主,区域气候由暖湿转向温凉干燥[76]。淮北平原黄口钻孔孢粉以蒿、藜等草本为主;木本以松为主,其次为栗、桦,指示了针叶林、针阔混交林-草原,反映温和偏干的气候[42]。在此气候背景下,由于洪涝灾害的降低,安徽新石器中晚期文化得到空前的发展[73]

    江苏建湖庆丰剖面显示,4~2.3 kaBP常绿树种减少,以盐生草甸和落叶阔叶林为主,反映温和略干的气候;2.3~1.2 kaBP草本、禾本科增多,以香蒲沼泽和针阔叶混交林为主,指示气候温凉湿润[32]。苏北DS、YZQ孔的粒度和地化分析均表明,晚全新世期间苏北地区以暖湿为主,期间夹数次冷干期[67-68]。然而,苏北泰州PM4剖面的粒度、微体古生物研究表明,4 kaBP以来海平面逐渐下降,海岸线向南东方向迁移[75];4.2 kaBP以来,江苏建湖地区水域面积略有减小[74],均指示了气候的干旱化。上述研究可能表明,尽管晚全新世以来苏北地区呈一定的冷干趋势,但区域气候仍较暖湿。

    东亚季风的起源以及现代意义上的亚洲内陆干旱化可以追溯至25~22 Ma[39, 77-78]。中国北方粉尘沉积揭示,晚新生代以来亚洲内陆在14、8、3.6、2.5和1.2~0.9 Ma呈现出较显著的干旱化[279-80]。此外,Miao等[81]通过对伏平粉属的空间分布进行统计,讨论了晚新生代亚洲夏季风的演化,发现17~14 Ma东亚夏季风达到强盛,之后则逐渐减弱。青藏高原东北缘新生代盆地的沉积速率、孢粉等指标则指示了9~7 Ma的气候转冷[2]。晚新生代以来,黄淮平原区气候同样经历了较显著的冷干化趋势(图4)。如新近纪期间淮北平原植被经历了由常绿落叶阔叶混交林向针阔叶混交林草原的转变[42-43]。苏北平原XH-1孔在约3.7 Ma经历了由森林向森林草原的过渡[44]。淮南凤台孔沉积物在7 Ma显著粗化(图4c),同样显示了区域气候的恶化[35]。显然,在构造尺度,黄淮平原区的气候变迁可能是在全球气候变冷的背景下对东亚夏季风强度变化的响应。

    第四纪期间,淮北平原钻孔孢粉揭示出13个气候阶段(图5d[42]。苏北兴化XH-1、XH-2孔的粒度和孢粉等指标揭示了苏北地区第四纪期间气候的显著冷暖波动[44-45]。淮南凤台孔沉积和甘肃灵台黄土磁化率均记录了1.8~1.7 Ma的气候突变事件(图5b、c)。这表明,在轨道尺度,黄淮平原区气候与我国风成沉积[11-12, 80]、盆地地层记录[2]、全球深海沉积[6]等揭示的冰期-间冰期气候旋回变化趋势相一致。然而,黄淮平原区的气候变迁仍具有区域的特殊性,如淮南凤台孔沉积并没有记录区域环境在3.6 和2.5 Ma的突变[35]。此外,赵辰辰等[82]综合分析了我国48处第四纪孢粉研究,发现1.5~1.0 Ma我国东部地区偏湿,而西北和青藏地区则偏干。这些现象可能表明局地下垫面差异引起的自然地理要素组合对区域气候可以产生显著的影响。

    全新世期间,现代东亚季风体系已经建立,黄淮平原区处于典型的季风气候之下。早全新世期间,郑州Z37-2[69]和淮北钻孔[42]的孢粉分析均指示针阔叶混交林草原,反映稍冷湿的气候;禹州剖面[66]、皂角树剖面[71]和兴化DS、YZQ钻孔的粒度及地化记录均指示相对暖湿的气候[67-68]。江苏庆丰地区植被为落叶阔叶林,同样反映暖湿的气候[32]。这一现象与Chen等[83-84]的研究结果相似,即我国东部季风区早全新世气候相对湿润。此外,中全新世期间黄淮平原大部分地区的气候为相对暖湿状态(图6[32, 64-66, 69-72],这与其他地区全新世最宜期的研究相一致。晚全新世期间,黄淮平原区呈一定的冷干化趋势(图6)。这些研究表明,黄淮平原区全新世气候与我国东部季风区、西北干旱区气候呈相似的变化趋势。

    尽管黄淮平原区全新世气候特征与我国全新世气候整体特征相似,但不同地区之间的气候仍呈现出一定的差异或穿时性,如全新世气候最宜期在河南襄城黄土剖面中出现在3.8~1.8 kaBP[33],而在苏北YZQ剖面中却出现在早全新世(图6[68]。此外,尽管晚全新世期间黄淮平原西部呈现出较明显的冷干化趋势[64-65, 69, 71],但苏北兴化地区气候仍以暖湿为主[67-68],如江苏高淳地区的湖泊沉积记录表明,4.4 kaBP以来长江三角洲西部以温凉湿润为主[85]。上述全新世气候千年尺度的穿时性在其他地区的研究中也普遍存在,如基于湖泊沉积的孢粉、硅藻和氧同位素记录以及黄土磁学特征的研究表明,全新世期间中亚干旱区气候表现为早全新世干旱、中晚全新世相对湿润;而季风区则表现为早中全新世气候湿润,晚全新世干旱[83-84]。此外,我国东部地区全新世气候最宜期也具有显著的穿时性,即中国南北方全新世最宜期的出现时间存在差异[86-87]。此外,Wang等[25]在全球季风的框架下对比了北半球东部热带-亚热带不同地区的气候,发现全新世最湿润期在东非季风区、印度季风区和澳洲季风区出现在早全新世,而东亚季风区则出现在中全新世,并认为这种差异似乎与季风环流形式的差异有关。

    尽管不同研究中可能存在研究载体和测年方法等差异,但区域下垫面差异导致的局地小气候可能是不同地区全新世气候差异的重要原因。中亚地区全新世植被演变的研究认为,早、晚全新世植被的突变以及不同地区植被的时空差异,可能与不同气候区植被对气候变化的响应阈值差异有关[88]。中国东部不同沙漠区全新世湿润期的穿时性[89],华北平原末次冰盛期以来植被的空间分布差异可能是由地貌部位或景观的差异导致的[90]。除此之外,季风边界的迁移、热带辐合带的移动等,都会影响到区域植被对气候的响应[91]。因此,在进行千年尺度气候研究及区域对比时,要综合考虑不同自然地理要素的组合可能带来的潜在影响。

    本文通过对黄淮平原区已有的黄土、湖沼和石笋等气候记录的梳理,探讨了黄淮平原区晚新生代以来的气候变化特征。晚新生代以来,黄淮平原区构造和轨道尺度气候变化与东亚气候呈现出相似的演变趋势。然而在千年尺度,黄淮平原不同区域的气候呈现出一定的差异和穿时性,这种差异可能源自下垫面差异等自然地理要素对局地气候的影响。

    当前,黄淮平原区全新世气候研究已经获得了大量的资料,但仍需加强对不同区域气候变化特征的对比分析,探究气候变化穿时性的原因。对于更新世乃至新近纪期间的气候记录,未来应加强高分辨率的综合研究,如基于沉积钻孔进行高分辨率的年代学和沉积地层学分析,并综合多种气候代用指标进行研究。此外,当前的气候重建仍以定性和半定量研究为主,未来应加强对气候指标(温度、降水)的定量重建研究,为探讨气候的区域差异提供更精确可靠的证据。

  • 图  1   黄淮平原地理位置

    a. 中国季风与非季风区示意图, b. 黄淮平原及邻区地形。

    Figure  1.   Location of the Huanghuai Plain

    a. Schematic diagram of monsoon and non-monsoon regions, b. Topography of the Huanghuai Plain and its surroundings.

    图  2   晚新生代黄淮平原区主要气候记录分布位置图

    1.寺河南剖面,2.皂角树剖面,3.马沟洞, 4.禹州剖面, 5.襄城剖面, 6.邓家剖面, 7.郑州Z37-2孔, 8.开封孔, 9.光山剖面, 10.胡族铺剖面, 11—18.淮北平原黄口孔、亳县孔、太和孔、临泉孔、濉溪孔、蒙城孔、固镇孔、颖上孔, 19.凤台孔, 20.禹会村剖面, 21.宝应孔, 22.岗西剖面, 23.庆丰剖面, 24.里下河SG孔, 25.周奋剖面, 26.兴化DS孔, 27.XH-1孔, 28.XH-2孔, 29.YZQ孔, 30.泰州PM4剖面。 图中“其他”类载体包含了两种及以上的沉积记录, 如河流、湖沼和海洋沉积, 其中禹会村剖面以冲积物为主, 但夹有文化层。

    Figure  2.   Location map of the main climate records in the Huanghuai Plain during Late Cenozoic

    1. Sihenan profile, 2. Zaojiaoshu profile,3. Magoudong, 4. Yuzhou profile, 5. Xiangcheng profile, 6. Dengjia profile, 7. Z37-2 core of Zhengzhou, 8. Kaifeng core, 9. Guangshan profile,10. Huzupu profile, 11—18. Huangkou, Boxian, Taihe, Linquan, Suixi, Mengcheng, Guzhen and Yingshang cores in the Huaibei Plain, 19. Fengtai core, 20. Yuhuicun profile, 21. Baoying core, 22. Gangxi profile, 23. Qingfeng profile, 24. SG core in Lixiahe area, 25. Zhoufen profile,26. DS core, 27—28. The XH-1 and XH-2 cores, 29. YZQ core, 30. The PM4 profile in Taizhou. The "Others"-type carrier contains two or more climate records, such as fluvial, lacustrine and marine deposits. The Yuhuicun profile is dominated by alluvial sediments with cultural layers.

    图  3   新生代期间中国气候带分布

    a、b分别为渐新世和中新世期间干旱气候带(黄色)分布示意图(转绘自文献[38])。

    Figure  3.   Distribution of the climate zone in China during Cenozoic

    a. Oligocene, b. Miocene. Arid zone is shown in yellow.(modified from reference [38])

    图  4   东亚季风区晚新生代以来气候记录对比

    a. 南海ODP1148站底栖有孔虫氧同位素记录[7], b. 季风/干旱气候演化综合曲线[39],c. 淮南凤台孔沉积物粒度组成[35], d. 淮北平原晚新生代气温重建[42]。O、M、P、Q分别指示渐新世、中新世、上新世和第四纪。

    Figure  4.   Comparison of Late Cenozoic climate records of the East Asia monsoon area

    a. Neogene benthic foraminiferal isotope data of South China Sea ODP1148[7], b. A synthesis of the paleoclimatic changes of depositional records[39]; c. Grain size of the Fengtai core in Huainan[35], d. Reconstructed temperature curve of the Huaibei Plain during the Late Cenozoic[42]. O. Oligocene, M. Miocene,P. Pliocene, Q. Quaternary.

    图  5   黄淮平原区第四纪气候记录对比

    a. 全球深海氧同位素记录[6],b. 灵台剖面磁化率记录[12], c. 淮南凤台孔沉积物粒度组成[35], d. 淮北平原第四纪古气温重建[42], e. 兴化XH-1孔中更新世以来的碳酸盐记录[53], f. 苏北周奋剖面Rb/Sr元素记录[57],g. 苏北SG孔沉积物平均粒径[59]

    Figure  5.   Comparison of Quaternary climate records of the Huanghuai Plain

    a. Global deep-sea oxygen isotope record[6], b. Magnetic susceptibility curves of the Lingtai loess profile[12]; c. Grain size of the Fengtai core in Huainan[35], d. Reconstructed temperature curve of the Huaibei Plain during the Late Cenozoic[42], e. Carbonate record since the Pleistocene of the XH-1 Core in Xinghua[53],f. Rb/Sr record of Zhoufen profile in Northern Jiangsu[57], g. Mean size of the sediments from SG core in Northern Jiangsu[59].

    图  6   黄淮平原区全新世气候记录对比

    a. 格陵兰GISP2冰芯氧同位素记录[9], b. 董哥洞石笋氧同位素记录[14],c. 襄城黄土剖面春季近地面气温指数[33],d. 苏北庆丰剖面全新世气温重建[32],图中灰色实线指示庆丰地区现代年平均气温, e. 苏北兴化YZQ孔湖沼沉积磁化率记录[68], f. 洛阳皂角树剖面沉积物<2 μm含量[71], g. 河南禹州黄土剖面细颗粒(1~5 μm)含量[66]。HCO为全新世气候最宜期。

    Figure  6.   Comparison of Holocene climate records of the Huanghuai Plain

    a. Oxygen isotop record of the GISP2 ice core in Greenland[9], b. The stalagmite oxygen isotope record of Dongge cave[14],c. Spring near-surface temperature of loess profile in Xiangcheng, Henan[33], d. Reconstructed Holocene temperature of Qingfeng profile in Northern Jiangsu[32], The grey line indicates modern annual average temperature of Qingfeng, e. Magnetic susceptibility of YZQ core in Xinghua, Northern Jiangsu[68], f. Grainsize percentage of sediment that lower than 2 μm of Zaojiaoshu profile in Luoyang[71], g. The content of fine materials of the loess profile in Yuzhou, Henan[66]. HCO: Holocene Climatic Optimum.

  • [1]

    Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics [J]. Nature, 2008, 451(7176): 279-283. doi: 10.1038/nature06588

    [2]

    Li J J, Fang X M, Song C H, et al. Late Miocene–Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes [J]. Quaternary Research, 2014, 81(3): 400-423. doi: 10.1016/j.yqres.2014.01.002

    [3] 程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学: 地球科学, 2019, 62(10):1489-1513 doi: 10.1007/s11430-019-9478-3

    CHENG Hai, ZHANG Haiwei, ZHAO Jingyao, et al. Chinese stalagmite paleoclimate researches: A review and perspective [J]. Science China Earth Sciences, 2019, 62(10): 1489-1513. doi: 10.1007/s11430-019-9478-3

    [4] 姚檀栋, 秦大河, 王宁练, 等. 冰芯气候环境记录研究: 从科学到政策[J]. 中国科学院院刊, 2020, 35(4):466-474

    YAO Tandong, QIN Dahe, WANG Ninglian, et al. Study on climatic and environmental changes recorded in ice cores: from science to policy [J]. Bulletin of Chinese Academy of Science, 2020, 35(4): 466-474.

    [5]

    Hays J D, Imbrie J, Shackleton N J. Variations in the Earth’s orbit: Pacemaker of the Ice Ages [J]. Science, 1976, 194(4270): 1121-1132. doi: 10.1126/science.194.4270.1121

    [6]

    Lisiecki L E, Raymo M E. A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1003. doi: 10.1029/2004PA001071

    [7]

    Tian J, Zhao Q H, Wang P X, et al. Astronomically modulated Neogene sediment records from the South China Sea [J]. Paleoceanography and Paleoclimatology, 2008, 23(3): PA3210. doi: 10.1029/2007PA001552

    [8]

    Ren H J, Sigman D M, Martínez-García A, et al. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): E6759-E6766. doi: 10.1073/pnas.1701315114

    [9]

    Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ18O climate record of the past 16, 500 years and the role of the sun, ocean, and volcanoes [J]. Quaternary Research, 1995, 44(3): 341-354. doi: 10.1006/qres.1995.1079

    [10]

    Yan Y Z, Bender M L, Brook E J, et al. Two-million-year-old snapshots of atmospheric gases from Antarctic ice [J]. Nature, 2019, 574(7780): 663-666. doi: 10.1038/s41586-019-1692-3

    [11]

    Liu T S, Ding Z L. Chinese loess and the paleomonsoon [J]. Annual Reviews of Earth and Planetary Sciences, 1998, 26: 111-145. doi: 10.1146/annurev.earth.26.1.111

    [12]

    Song Y G, Fang X M, Torii M, et al. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau [J]. Journal of Asian Earth Sciences, 2007, 30(2): 324-332. doi: 10.1016/j.jseaes.2006.10.004

    [13]

    Li X M, Peng T J, Ma Z H, et al. Late Miocene–Pliocene climate evolution recorded by the red clay covered on the Xiaoshuizi planation surface, NE Tibetan Plateau [J]. Climate of the Past, 2019, 15(2): 405-421. doi: 10.5194/cp-15-405-2019

    [14]

    Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036

    [15]

    Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years [J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692

    [16]

    Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations [J]. Science, 2009, 326(5950): 248-252. doi: 10.1126/science.1177840

    [17]

    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    [18]

    Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and megadrought during the last millennium [J]. Science, 2010, 328(5977): 486-489. doi: 10.1126/science.1185188

    [19]

    Liu Y, Tian H, Song H M, et al. Tree ring precipitation reconstruction in the Chifeng-Weichang region, China, and East Asian summer monsoon variation since A. D. 1777 [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D6): D06103. doi: 10.1029/2009JD012330

    [20]

    Gou X H, Yang T, Gao L L, et al. A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau, China using tree-ring records [J]. Chinese Science Bulletin, 2013, 58(10): 1107-1114. doi: 10.1007/s11434-012-5539-7

    [21] 李吉均, 文世宣, 张青松, 等. 青藏高原隆起的时代、幅度和形式的探讨[J]. 中国科学, 1979, 22(11):1314-1328

    LI Jijun, WEN Shixuan, ZHANG Qingsong, et al. A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang plateau [J]. Scientia Sinica, 1979, 22(11): 1314-1328.

    [22] 张林源. 青藏高原上升对我国第四纪环境演变的影响[J]. 兰州大学学报, 1981(3):142-155

    ZHANG Linyuan. The influence of the uplift of Qinghai-Xizang Plateau on the Quaternary environmental evolution in China [J]. Journal of Lanzhou University, 1981(3): 142-155.

    [23] 刘东生, 丁梦林. 晚第三纪以来中国古环境的特征及其发展历史[J]. 地球科学—武汉地质学院学报, 1983(4):15-28

    LIU Dongsheng, DING Menglin. The characteristics and evolution of paleoenvironment of China since Late Tertiary [J]. Earth Science—Journal of Wuhan College of Geology, 1983(4): 15-28.

    [24]

    Wang P X. Progress in Late Cenozoic palaeoclimatology of China: a brief review[M]//Whyte R O. The Evolution of the East Asian Environment. Hong Kong, China: Centre of Asian Studies, University of Hong Kong, 1984, 165-187.

    [25]

    Wang Y B, Bekeschus B, Handorf D, et al. Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems [J]. Quaternary Science Reviews, 2017, 169: 231-242. doi: 10.1016/j.quascirev.2017.06.006

    [26] 刘东生, 张新时, 熊尚发, 等. 青藏高原冰期环境与冰期全球降温[J]. 第四纪研究, 1999, 19(5):386-396

    LIU Dongsheng, ZHANG Xinshi, XIONG Shangfa, et al. Qinghai-Xizang plateau glacial environment and global cooling [J]. Quaternary Science, 1999, 19(5): 386-396.

    [27] 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题[J]. 科学通报, 2000, 45(13):1236-1243 doi: 10.1007/BF02886087

    YAO Tandong, LIU Xiaodong, WANG Ninglian, et al. Amplitude of climatic changes in Qinghai-Tibetan Plateau [J]. Chinese Science Bulletin, 2000, 45(13): 1236-1243. doi: 10.1007/BF02886087

    [28]

    Chou C, Chiang J C H, Lan C H, et al. Increase in the range between wet and dry season precipitation [J]. Nature Geoscience, 2013, 6(4): 263-267. doi: 10.1038/ngeo1744

    [29] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2):152-164 doi: 10.3321/j.issn:1001-7410.2003.02.005

    SHI Yafeng, SHEN Yongping, LI Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in northwest China [J]. Quaternary Sciences, 2003, 23(2): 152-164. doi: 10.3321/j.issn:1001-7410.2003.02.005

    [30] 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2011, 54(12):1812-1821 doi: 10.1007/s11430-011-4333-8

    CHEN Fahu, HUANG Wei, JIN Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming [J]. Science China Earth Sciences, 2011, 54(12): 1812-1821. doi: 10.1007/s11430-011-4333-8

    [31] 张百平. 中国南北过渡带研究的十大科学问题[J]. 地理科学进展, 2019, 38(3):305-311 doi: 10.18306/dlkxjz.2019.03.001

    ZHANG Baiping. Ten major scientific issues concerning the study of China's north-south transitional zone [J]. Progress in Geography, 2019, 38(3): 305-311. doi: 10.18306/dlkxjz.2019.03.001

    [32] 赵希涛, 唐领余, 沈才明, 等. 江苏建湖庆丰剖面全新世气候变迁和海面变化[J]. 海洋学报, 1994, 16(1):78-88

    ZHAO Xitao, TANG Lingyu, SHEN Caiming, et al. Climate evolution and sea level changes based on Qingfeng Section, Jianhu, Jiangsu [J]. Acta Oceanologica Sinica, 1994, 16(1): 78-88.

    [33] 秦小光, 张磊, 穆燕. 中国东部南北方过渡带淮河半湿润区全新世气候变化[J]. 第四纪研究, 2015, 35(6):1509-1524 doi: 10.11928/j.issn.1001-7410.2015.06.20

    QIN Xiaoguang, ZHANG Lei, MU Yan. The Holocene climatic changes of the Huaihe River semi-humid region in the North and South Transition Zone of the eastern China [J]. Quaternary Sciences, 2015, 35(6): 1509-1524. doi: 10.11928/j.issn.1001-7410.2015.06.20

    [34] 毛瑞雪, 蔡演军, 马乐, 等. 河南马沟洞石笋记录的早中全新世气候和环境变化[J]. 地球环境学报, 2016, 7(3):254-268 doi: 10.7515/JEE201603004

    MAO Ruixue, CAI Yanjun, MA Le, et al. Early to mid-Holocene paleoclimatic changes recorded by the stalagmites from the Magou Cave, Henan Province [J]. Journal of Earth Environment, 2016, 7(3): 254-268. doi: 10.7515/JEE201603004

    [35]

    Zhang L, Liu J Q, Qin X G, et al. Magnetostratigraphy and paleoenvironmental events recorded in a late Cenozoic sedimentary succession in Huaibei Plain, East China [J]. Quaternary Science Reviews, 2018, 200: 52-64. doi: 10.1016/j.quascirev.2018.09.041

    [36]

    Qiu Z D, Li C K. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau [J]. Science in China Series D: Earth Sciences, 2005, 48(8): 1246-1258. doi: 10.1360/03yd0523

    [37]

    An Z S, Wu G X, Li J P, et al. Global monsoon dynamics and climate change [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 29-77. doi: 10.1146/annurev-earth-060313-054623

    [38]

    Sun X J, Wang P X. How old is the Asian monsoon system?: Palaeobotanical records from China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3-4): 181-222. doi: 10.1016/j.palaeo.2005.03.005

    [39] 鹿化煜, 郭正堂. 晚新生代东亚气候变化: 进展与问题[J]. 中国科学: 地球科学, 2014, 57(1):70-79 doi: 10.1007/s11430-013-4790-3

    LU Huayu, GUO Zhengtang. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review [J]. Science China Earth Sciences, 2014, 57(1): 70-79. doi: 10.1007/s11430-013-4790-3

    [40] 张光业. 河南省第四纪古地理的演变[J]. 河南大学学报, 1985, 15(3):11-22

    ZHANG Guangye. Evolution of quaternary paleogeograpy of Henan province, China [J]. Journal of Henan University, 1985, 15(3): 11-22.

    [41] 王鸿桢. 中国古地理图集[M]. 北京: 地图出版社, 1985: 121-130.

    WANG Hongzhen. Atlas of the Palaeogeography of China[M]. Beijing: Cartographic Press, 1985: 121-130.

    [42] 金权, 王平, 王松根. 安徽淮河中游平原晚新生代孢粉组合及古气候[J]. 海洋地质与第四纪地质, 1987, 7(4):93-109

    JIN Quan, WANG Ping, WANG Songgen. The sporo-pollen assemblages and palaeoclimate in the middle course area of the Huaihe River during late Cenozoic [J]. Marine Geology & Quaternary Geology, 1987, 7(4): 93-109.

    [43] 于振江, 黄多成. 淮北平原上第三系划分和孢粉序列[J]. 地层学杂志, 1993, 17(3):202-209

    YU Zhenjiang, HUANG Duocheng. Division of the upper tertiary of the Huaibei plain and sporo pollen sequence [J]. Journal of Stratigrapy, 1993, 17(3): 202-209.

    [44] 宋雪芳. 苏北盆地XH-2孔晚中新世以来古植被与古气候研究[D]. 南京师范大学硕士学位论文, 2016.

    SONG Xuefang. Paleo-vegetation and paleo-climate records from the XH-2 core in Northern Jiangsu Basin since late Miocene[D]. Master Dissertation of Nanjing Normal University, 2016

    [45] 张茂恒, 李吉均, 舒强, 等. 兴化XH-1孔记录的苏北盆地晚新生代沉积体系及环境变化过程[J]. 地理研究, 2011, 30(3):513-522

    ZHANG Maoheng, LI Jijun, SHU Qiang, et al. The sediments sequence and environmental oscillation of the core XH-1 in Subei Basin since late Cenozoic [J]. Geographical Research, 2011, 30(3): 513-522.

    [46]

    Raymo M E. The initiation of northern Hemisphere glaciation [J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 353-383. doi: 10.1146/annurev.ea.22.050194.002033

    [47] 鹿化煜, 王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报, 2016, 61(11):1164-1172 doi: 10.1360/N972015-01294

    LU Huayu, WANG Yao. What causes the ice ages in the late Pliocene and Pleistocene? [J]. Chinese Science Bulletin, 2016, 61(11): 1164-1172. doi: 10.1360/N972015-01294

    [48] 石钦周. 对 《河南省平原区第四纪下限的探讨》 一文的几点看法[J]. 河南地质, 1989, 7(3):73-78

    SHI Qinzhou. Several views on the article "Discussion on the lower boundary of the Quaternary in the plain area of Henan Province" [J]. Henan Geology, 1989, 7(3): 73-78.

    [49] 于振江, 黄多成. 安徽省淮北平原第四纪孢粉序列[J]. 海洋地质与第四纪地质, 1993, 13(1):21-32

    YU Zhenjiang, HUANG Duocheng. Quaternary palynological sequence in Huaibei Plain, Anhui province [J]. Marine Geology & Quaternary Geology, 1993, 13(1): 21-32.

    [50] 杨競红, 王颖, 张振克, 等. 苏北平原2.58 Ma以来的海陆环境演变历史: 宝应钻孔沉积物的常量元素记录[J]. 第四纪研究, 2006, 26(3):340-352 doi: 10.3321/j.issn:1001-7410.2006.03.005

    YANG Jinghong, WANG Ying, ZHANG Zhenke, et al. Major element records of land-sea interaction and evolution in the past 2.58 Ma from the Baoying borehole sediments, Northern Jiangsu Plain, China [J]. Quaternary Sciences, 2006, 26(3): 340-352. doi: 10.3321/j.issn:1001-7410.2006.03.005

    [51] 刘奇, 宋传中, 崔王, 等. 淮河源区中更新世黄土堆积的元素地球化学特征及其古气候意义[J]. 地球科学与环境学报, 2007, 29(4):356-361 doi: 10.3969/j.issn.1672-6561.2007.04.004

    LIU Qi, SONG Chuanzhong, CUI Wang, et al. Geochemical changes in Source Area of Huaihe river and its implications for variations of paleoclimate in middle Pleistocene [J]. Journal of Earth Sciences and Environment, 2007, 29(4): 356-361. doi: 10.3969/j.issn.1672-6561.2007.04.004

    [52] 朱芸, 陈晔, 舒强, 等. 苏北盆地XH1钻孔中更新世以来的彩度指标记录及其气候环境变化[J]. 海洋地质与第四纪地质, 2007, 27(2):23-31

    ZHU Yun, CHEN Ye, SHU Qiang, et al. Chroma index record of core XH1 at northern Jiangsu Basin and the climate since mid-Pleistocene [J]. Marine Geology & Quaternary Geology, 2007, 27(2): 23-31.

    [53] 舒强, 萧家仪, 赵志军, 等. 苏北盆地XH-1钻孔0.78 Ma以来的气候环境变化记录[J]. 地层学杂志, 2010, 34(1):27-34

    SHU Qiang, XIAO Jiayi, ZHAO Zhijun, et al. Environmental records in XH-1 core in northern Jiangsu Basin since about 780 kaBP [J]. Journal of Stratigraphy, 2010, 34(1): 27-34.

    [54] 牛旭亚. 中更新世以来苏北盆地XH-2孔的古植被与古气候研究[D]. 南京师范大学硕士学位论文, 2013.

    NIU Xuya. Study on climate and vegetation changes in core XH-2 in northern Jiangsu Basin since middle Pleistocene[D]. Master Dissertation of Nanjing Normal University, 2013.

    [55] 杨俊峰, 侯林晓, 晁红丽, 等. 黄淮平原西南部130~13 kaBP 气候环境及盆地演化: 以河南信阳胡族铺剖面为例[C]//河南地球科学通报2011年卷(上册). 郑州: 河南人民出版社, 2011: 20-25.

    YANG Junfeng, HOU Linxiao, CHAO Hongli, et al. Climate and basin evolution of the southwestern Huanghuai Plain during 130~13 kaBP take the Huzupu profile in Xinyang, Henan as an example[C]//Acta Geological Sinica of Henan 2011 (Volume 1). Zhengzhou: Henan People’s Publishing House, 2011: 20-25.

    [56] 萧家仪, 王丹, 吕海波, 等. 苏北盆地晚更新世以来的孢粉记录与气候地层学的初步研究[J]. 古生物学报, 2005, 44(4):591-598 doi: 10.3969/j.issn.0001-6616.2005.04.010

    XIAO Jiayi, WANG Dan, LV Haibo, et al. A study of pollen and climatic stratigraphy in the northern Jiangsu Basin since late Pleistocene [J]. Acta Palaeontologica Sinica, 2005, 44(4): 591-598. doi: 10.3969/j.issn.0001-6616.2005.04.010

    [57] 刘玉, 杨佩佩, 舒强. 苏北盆地晚更新世晚期湖泊沉积记录的气候环境变化[J]. 地球与环境, 2021, 49(1): 1-8.

    LIU Yu, YANG Peipei, SHU Qiang. Paleoclimatic and paleoenvironmental changes in late stage of late pleistocene inferred from lacustrine sediment in Subei basin[J]. Earth and Environment, 2021, 49(1): 1-8.

    [58] 张唯唯, 舒强, 陈晔, 等. 苏北盆地里下河地区30~15 cal.kaBP期间地球化学元素变化特征及古气候意义[J]. 地球与环境, 2014, 42(5):583-588

    ZHANG Weiwei, SHU Qiang, CHEN Ye, et al. Characteristics of geochemical element variation and paleoclimatical significance in the Subei Basin during 30~15 cal. kaBP [J]. Earth and Environment, 2014, 42(5): 583-588.

    [59] 陈景荣, 舒强, 赵志军, 等. 苏北盆地湖沼沉积记录的30~17 cal.kaBP期间的气候变化[J]. 地质科技情报, 2017, 36(2):75-79, 85

    CHEN Jingrong, SHU Qiang, ZHAO Zhijun, et al. Climate change records of lacustrine deposits of Subei Basin in eastern China, 30~17 cal.kaBP [J]. Geological Science and Technology Information, 2017, 36(2): 75-79, 85.

    [60] 骆丁, 肖渊甫, 叶思源, 等. 宁波平原晚第四纪的古气候变化[J]. 海洋地质与第四纪地质, 2013, 33(5):155-161

    LUO Ding, XIAO Yuanfu, YE Siyuan, et al. Palaeoclimatic changes during late Quaternary in Ningbo Plain [J]. Marine Geology & Quaternary Geology, 2013, 33(5): 155-161.

    [61] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学(B辑), 1994, 37(3):353-365

    SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. The climatic fluctuation and important events of Holocene megathermal in China [J]. Science in China Series B, 1994, 37(3): 353-365.

    [62] 侯光良, 方修琦. 中国全新世气温变化特征[J]. 地理科学进展, 2011, 30(9):1075-1080 doi: 10.11820/dlkxjz.2011.09.001

    HOU Guangliang, FANG Xiuqi. Characteristics of holocene temperature change in China [J]. Progress in Geography, 2011, 30(9): 1075-1080. doi: 10.11820/dlkxjz.2011.09.001

    [63] 闫慧, 申怀飞, 李中轩. 河南省全新世环境演变研究概述[J]. 气象与环境科学, 2011, 34(1):73-78 doi: 10.3969/j.issn.1673-7148.2011.01.013

    YAN Hui, SHEN Huaifei, LI Zhongxuan. Holocene environmental change in Henan Province [J]. Meteorological and Environmental Sciences, 2011, 34(1): 73-78. doi: 10.3969/j.issn.1673-7148.2011.01.013

    [64] 杨瑞霞, 李志飞, 张莉, 等. 河南嵩山东麓邓家剖面元素的地球化学特征及环境意义[J]. 海洋地质与第四纪地质, 2011, 31(2):129-134

    YANG Ruixia, LI Zhifei, ZHANG Li, et al. Elements distribution of the Dengjia loess section, central Henan and its environmental implications [J]. Marine Geology & Quaternary Geology, 2011, 31(2): 129-134.

    [65]

    Li K F, Gao W H. Holocene climate change in Henan area: A synthesis of proxy records [J]. Quaternary International, 2019, 521: 185-193. doi: 10.1016/j.quaint.2019.05.026

    [66]

    Li X Y, Huang C C, Pang J L, et al. Dust source of the Holocene loess-soil and pedogenic environmental changes in the upper Huaihe River [J]. Journal of Geographical Sciences, 2009, 19(1): 107-117. doi: 10.1007/s11442-009-0107-z

    [67] 舒强, 赵志军, 陈晔, 等. 江苏兴化DS浅孔沉积物地球化学元素与粒度所揭示的古环境意义[J]. 地理科学, 2009, 29(6):923-928

    SHU Qiang, ZHAO Zhijun, CHEN Ye, et al. Palaeoenvironmental significance of geochemistry elements and grain size of DS core sediments in Xinghua, Jiangsu Province [J]. Scientia Geographica Sinica, 2009, 29(6): 923-928.

    [68] 舒强, 陈晔, 赵志军, 等. 江淮平原地区晚冰期以来的气候与环境变化记录[J]. 地理科学, 2013, 33(11):1377-1382

    SHU Qiang, CHEN Ye, ZHAO Zhijun, et al. Paleoclimatic and paleoenvironmental evolution since the Late Glacial epoch in Jianghuai Plain [J]. Scientia Geographica Sinica, 2013, 33(11): 1377-1382.

    [69] 刘钧枢. 郑州地区全新世古气候变化初探[J]. 西安地质学院学报, 1994, 16(4):48-54

    LIU Junshu. A preliminary probe into the Holocene palaeoclimate variations in the Zheng Zhou area [J]. Journal of Xi’an College of Geology, 1994, 16(4): 48-54.

    [70] 陈月秋. 江苏两万年来的古气候与海平面变化[J]. 海洋湖沼通报, 1992(4):1-5

    CHEN Yueqiu. Paleoclimate and sea level changes during the past 20000 years in Jiangsu Province [J]. Transactions of Oceanology and Limnology, 1992(4): 1-5.

    [71] 张本昀, 李容全. 洛阳盆地全新世气候环境[J]. 北京师范大学学报: 自然科学版, 1997, 33(2):275-280

    ZHANG Benyun, LI Rongquan. The environmental changes of Luoyang Basin in Holocene [J]. Journal of Beijing Normal University: Natural Science, 1997, 33(2): 275-280.

    [72] 孙雄伟, 夏正楷. 河南洛阳寺河南剖面中全新世以来的孢粉分析及环境变化[J]. 北京大学学报: 自然科学版, 2005, 41(2):289-294

    SUN Xiongwei, XIA Zhengkai. Paleoenvironment changes since mid-Holocene revealed by a palynological sequence from Sihenan profile in Luoyang, Henan Province [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(2): 289-294.

    [73] 黄润, 朱诚, 郑朝贵. 安徽淮河流域全新世环境演变对新石器遗址分布的影响[J]. 地理学报, 2005, 60(5):742-750 doi: 10.3321/j.issn:0375-5444.2005.05.005

    HUANG Run, ZHU Cheng, ZHENG Chaogui. Distribution of neolithic sites and environmental change in Huaihe River Basin, Anhui province [J]. Acta Geographica Sinica, 2005, 60(5): 742-750. doi: 10.3321/j.issn:0375-5444.2005.05.005

    [74] 吴小爽. 江苏建湖地区末次冰盛期以来的古植物群和古地理[D]. 南京师范大学硕士学位论文, 2018.

    WU Xiaoshuang. Paleophyte and paleogeographic environment since the last glacial maximum in the Jianhu area, Jiangsu Province[D]. Master Dissertation of Nanjing Normal University, 2018.

    [75] 程瑜, 李向前, 赵增玉, 等. 全新世以来苏北平原里下河南部地区的沉积记录和环境演化[J]. 海洋地质与第四纪地质, 2019, 39(1):49-58

    CHENG Yu, LI Xiangqian, ZHAO Zengyu, et al. Sedimentary and environment evolutionary records of the southern Lixiahe area in the Subei Plain during Holocene [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 49-58.

    [76] 赵琳, 马春梅, 张广胜, 等. 安徽蚌埠禹会村遗址地层的孢粉记录研究[J]. 微体古生物学报, 2013, 30(4):405-414

    ZHAO Lin, MA Chunmei, ZHANG Guangsheng, et al. Sporo-pollen record of the Yuhuicun site in Bengbu, Anhui Province [J]. Acta Micropalaeontologica Sinica, 2013, 30(4): 405-414.

    [77]

    Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the early Miocene [J]. Climate of the Past, 2008, 4(3): 153-174. doi: 10.5194/cp-4-153-2008

    [78]

    Sun J M, Ye J, Wu W Y, et al. Late Oligocece-Miocene mid-latitude aridification and wind patterns in the Asian interior [J]. Geology, 2010, 38(6): 515-518. doi: 10.1130/G30776.1

    [79]

    Lu H Y, Wang X Y, Li L P. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia [J]. Geological Society London Special Publications, 2010, 342(1): 29-44. doi: 10.1144/SP342.4

    [80]

    Zhang J, Li J J, Guo B H, et al. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau [J]. Quaternary Science Reviews, 2016, 139: 17-29. doi: 10.1016/j.quascirev.2016.02.025

    [81]

    Miao Y F, Song C H, Fang X M, et al. Late Cenozoic genus Fupingopollenites development and its implications for the Asian summer monsoon evolution [J]. Gondwana Research, 2016, 29(1): 320-333. doi: 10.1016/j.gr.2014.12.007

    [82] 赵辰辰, 王永波, 胥勤勉. 2.5 Ma以来中国陆地孢粉记录反映的古气候变化[J]. 海洋地质与第四纪地质, 2020, 40(4):175-191

    ZHAO Chenchen, WANG Yongbo, XU Qinmian. Climate changes on Chinese continent since 2.5 Ma: Evidence from fossil pollen records [J]. Marine Geology & Quaternary Geology, 2020, 40(4): 175-191.

    [83]

    Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history [J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. doi: 10.1016/j.quascirev.2007.10.017

    [84]

    Chen F H, Jia J, Chen J H, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China [J]. Quaternary Science Reviews, 2016, 146: 134-146. doi: 10.1016/j.quascirev.2016.06.002

    [85] 姚付龙, 朱诚, 马春梅, 等. 长江三角洲西部地区13200cal aB.P.以来环境演变及对长江两岸文化交流与传播影响研究[J]. 地层学杂志, 2018, 42(3):278-287

    YAO Fulong, ZHU Cheng, MA Chunmei, et al. Environmental evolution in the western region of the Yangtze River delta since 13200 cal a B. P. and its effects on cultural exchange between both sides of the Yangtze River [J]. Journal of Stratigraphy, 2018, 42(3): 278-287.

    [86]

    An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon [J]. Quaternary Science Reviews, 2000, 19(8): 743-762. doi: 10.1016/S0277-3791(99)00031-1

    [87]

    Zhou X, Sun L G, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region [J]. Earth and Planetary Science Letters, 2016, 456: 39-46. doi: 10.1016/j.jpgl.2016.09.052

    [88] 赵艳, 刘耀亮, 郭正堂, 等. 全新世气候渐变导致中亚地区植被突变[J]. 中国科学: 地球科学, 2017, 60(7):1317-1327 doi: 10.1007/s11430-017-9047-7

    ZHAO Yan, LIU Yaoliang, GUO Zhengtang, et al. Abrupt vegetation shifts caused by gradual climate changes in central Asia during the Holocene [J]. Science China Earth Sciences, 2017, 60(7): 1317-1327. doi: 10.1007/s11430-017-9047-7

    [89] 杨小平, 梁鹏, 张德国, 等. 中国东部沙漠/沙地全新世地层序列及其古环境[J]. 中国科学: 地球科学, 2019, 62(8):1302-1315 doi: 10.1007/s11430-018-9304-y

    YANG Xiaoping, LIANG Peng, ZHANG Deguo, et al. Holocene aeolian stratigraphic sequences in the eastern portion of the desert belt (sand seas and sandy lands) in northern China and their palaeoenvironmental implications [J]. Science China Earth Sciences, 2019, 62(8): 1302-1315. doi: 10.1007/s11430-018-9304-y

    [90] 李曼玥, 张生瑞, 许清海, 等. 华北平原末次冰盛期以来典型时段古环境格局[J]. 中国科学: 地球科学, 2019, 62(8):1279-1287 doi: 10.1007/s11430-018-9264-2

    LI Manyue, ZHANG Shengrui, XU Qinghai, et al. Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum [J]. Science China Earth Sciences, 2019, 62(8): 1279-1287. doi: 10.1007/s11430-018-9264-2

    [91] 杨石岭, 董欣欣, 肖举乐. 末次冰盛期以来东亚季风变化历史: 中国北方的地质记录[J]. 中国科学: 地球科学, 2019, 62(8):1181-1192 doi: 10.1007/s11430-018-9254-8

    YANG Shiling, DONG Xinxin, XIAO Jule. The East Asian Monsoon since the Last Glacial Maximum: Evidence from geological records in northern China [J]. Science China Earth Sciences, 2019, 62(8): 1181-1192. doi: 10.1007/s11430-018-9254-8

图(6)
计量
  • 文章访问数:  2714
  • HTML全文浏览量:  1070
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-22
  • 修回日期:  2021-01-27
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2021-08-27

目录

/

返回文章
返回