菲律宾海中部海域声速剖面结构及季节性变化

Structures and seasonal variation of sound velocity profiles in the central Philippine Sea

  • 摘要: 利用2019年菲律宾海中部海域经质量校正后的Argo浮标数据,采用Wilson第二方程式计算得到每个浮标站位不同水深的声速值,分析了研究区声速的垂向结构、水平分布及季节性变化特征,并初步探讨了声速与海底地形的关系。结果显示研究区声速在垂向上表现为典型的三层结构,从上到下分别是混合层、主跃变层、深海等温层;声速在100 m以浅受季节影响最大,100~800 m影响程度基本一致,800 m以深逐渐减弱,1200 m以深基本不受影响。声速水平分布特征主要表现为:声道轴深度为900~1100 m,大致呈现南部较浅、北部较深的趋势,季节性变化不大;声速值在200 m以浅表现为南高北低,200~700 m为北高南低,800~1100 m为中间高、四周低,1200 m以深为南高北低。九州-帕劳海脊声道轴附近深度声速受地形影响明显低于周围海域。

     

    Abstract: With the mass-calibrated Argo buoy data of 2019 from the central Philippine Sea, the sound velocity values at different water depths are calculated using Wilson's second equation, and the vertical structure, horizontal distribution patterns and seasonal variations of sound velocity are analyzed, and the relationship between sound velocity and seafloor topography was preliminarily discussed. It is found that the sound velocity in the study area has a typical three-layer structure in vertical direction, from the top to the bottom they are successively the mixed layer, the main thermocline layer, and the deep isothermal layer. The sound velocity in the water less than 100 m is mainly effected by the season, and the influence remains the same from 100 to 800 m in water depth. The influence is gradually weakening from 800 m to deep, and for the water deeper than 1200 m the sound velocity remains stable. The horizontal distribution of sound velocity shows that when the depth of the sound channel axis is between 900 and 1100 m, it is roughly shallow in the south and deep in the north, with little seasonal variation; when the water depth is less than 200 m, the sound velocity is high in the south and low in the north, for the water in depth of 200-700 m, the velocity is high in the north and low in the south, when the water is in the range of 800-1100 m, it is high in the middle and low in the south, for the area with water depth deeper than 1200 m the velocity is high in the south and low in the north. The sound velocity near the deep sound channel axis of the Kyushu-Palau ridge is significantly lower than that of the surrounding area due to the influence of topography.

     

/

返回文章
返回