基于水下自主航行器(AUV)的神狐峡谷谷底块体搬运沉积特征及其对深水峡谷物质输运过程的指示

刘铮, 陈端新, 朱友生, 张广旭, 董冬冬

刘铮, 陈端新, 朱友生, 张广旭, 董冬冬. 基于水下自主航行器(AUV)的神狐峡谷谷底块体搬运沉积特征及其对深水峡谷物质输运过程的指示[J]. 海洋地质与第四纪地质, 2021, 41(2): 13-21. DOI: 10.16562/j.cnki.0256-1492.2020110301
引用本文: 刘铮, 陈端新, 朱友生, 张广旭, 董冬冬. 基于水下自主航行器(AUV)的神狐峡谷谷底块体搬运沉积特征及其对深水峡谷物质输运过程的指示[J]. 海洋地质与第四纪地质, 2021, 41(2): 13-21. DOI: 10.16562/j.cnki.0256-1492.2020110301
LIU Zheng, CHEN Duanxin, ZHU Yousheng, ZHANG Guangxu, DONG Dongdong. Geophysical studies of mass transport deposits on the slope canyon floor with high-resolution autonomous underwater vehicle (AUV) in the Shenhu area and its implications for sediment transportation[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 13-21. DOI: 10.16562/j.cnki.0256-1492.2020110301
Citation: LIU Zheng, CHEN Duanxin, ZHU Yousheng, ZHANG Guangxu, DONG Dongdong. Geophysical studies of mass transport deposits on the slope canyon floor with high-resolution autonomous underwater vehicle (AUV) in the Shenhu area and its implications for sediment transportation[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 13-21. DOI: 10.16562/j.cnki.0256-1492.2020110301

基于水下自主航行器(AUV)的神狐峡谷谷底块体搬运沉积特征及其对深水峡谷物质输运过程的指示

基金项目: 国家自然科学基金面上项目“基于三维地震资料和底边界层潜标观测的珠江迁移峡谷的沉积过程研究”(41776068);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项“南海北部海底滑坡形成机制及其与天然气水合物的关系”(GML2019ZD0104)
详细信息
    作者简介:

    刘铮(1979—),男,工程师,主要从事地球物理综合研究工作,E-mail:liuzheng2@cnooc.com.cn

    通讯作者:

    陈端新(1984—),男,博士,副研究员,主要从事深水沉积过程和流体活动研究,E-mail:chenduanxin07@qdio.ac.cn

  • 中图分类号: P736.21

Geophysical studies of mass transport deposits on the slope canyon floor with high-resolution autonomous underwater vehicle (AUV) in the Shenhu area and its implications for sediment transportation

  • 摘要: 海底峡谷是陆源物质向深海运移的重要通道。对于远离陆地的海底峡谷,通常认为浊流是物质搬运的主要营力。受限于探测精度和复杂作业环境影响,使用常规地球物理资料对深水海底峡谷尤其是对谷底沉积体的形态和结构特征的刻画不够精细。基于水下自主航行器(AUV, Autonomous Underwater Vehicle)采集的高分辨率多波束、旁扫声呐和浅地层剖面资料,对神狐峡谷群中的一条峡谷的谷底表面及部分浅部地层的沉积特征进行了分析。结果表明,峡谷谷底浅部地层并不像它平滑的表面那么简单,而是由大量内部杂乱弱反射、厚度在8.4 m及以下的块体搬运沉积体组成。峡谷中下游块体搬运沉积体大都沿峡谷走向整体呈条带状展布,不是直接来源于相邻的峡谷脊部。研究认为在特定沉积环境下(例如高海平面时期),陆坡限定性峡谷谷底的块体搬运沉积过程的重复进行是峡谷谷底物质输运的重要途径,与浊流共同雕刻了峡谷的地形地貌。基于AUV的地球物理探测技术将是研究海底浅表层沉积过程和保障海底工程施工的重要手段。
    Abstract: Submarine canyons are important pathways for terrestrial sediment moving to the deep water far away from the land, and turbidity current is considered as the primary agent. Detailed sedimentary features of the canyon floor are not clear so far due to the low resolution of conventional geophysical data and complicated operating setting in deep water. Here, in this program, high-resolution autonomous underwater vehicle (AUV) based multi-beam bathymetry data, side-scan sonar data and chirp sub-bottom profiles are jointly used to map the floor of a canyon and image its shallow strata in the Shenhu area. The canyon floor looks quite flat. However, the underlying shallow strata are composed of widespread mass transport deposits (MTDs) which are a little less than 8.4 meters with weak and chaotic acoustic reflections. They are distributed along the canyon floor in an elongated shape and show little direct links with adjacent steep canyon ridges at the middle and lower segments of the canyon. Thus, we suggest the repeated mass wasting downslope on the canyon floor is an effective mechanism for sediment transportation in addition to turbidity currents. The AUV based geophysical exploration is a efficient tool for further studies of marine sedimentation and seabed installation under deep water.
  • 图  1   研究区位置

    a.神狐峡谷群的位置,b.神狐峡谷群海底地形图,c.基于三维地震资料的研究区海底地形图,d.基于AUV采集的多波束的研究区海底地形图。

    Figure  1.   Locations of the study area

    a. The location of the studied slope confined canyons, b. the bathymetric map of canyons, c. the bathymetric map of the studied canyon segment based on 3D seismic reflection data, d. the bathymetric map of the studied canyon segment based on multi-beam data acquired by AUV.

    图  2   峡谷的旁扫声呐图和岩心图

    a.研究区所在峡谷的旁扫声呐图,b—e.局部放大的旁扫声呐图,f—g. MTD1上GC-3站位的部分重力柱状岩心样品。虚线多边形指示MTDs的位置。

    Figure  2.   The side-scan sonar map of the canyon floor and sections of the gravity core acquired from the canyon floor

    a. The side-scan sonar map of the studied canyon, b-e. amplified side-scan sonar maps of the study area, f-g. sediment samples from the gravity core GC-3 over MTD1 at 1.25 m and 3.25 m, respectively. The dashed polygons denote locations of MTDs on the canyon floor.

    图  3   研究区3个典型MTDs的地形立体图及穿过MTDs的地形变化曲线

    Figure  3.   Stereo views of three MTDs and bathymetric curves crossing these MTDs

    图  4   过同一峡谷位置的三维反射地震剖面和AUV浅地层剖面

    a.反射地震剖面,b.AUV浅地层剖面。

    Figure  4.   The seismic profile exttracted from the 3D seismic data and sub-bottom profiles acquired by AUV crossing the same section of the canyon

    a. The seismic profile, b. The AUV based sub-bottom profile.

    图  5   过MTD1的AUV浅地层剖面图

    a.上部横剖面,b.中部横剖面,c.下部横剖面。

    Figure  5.   AUV based sub-bottom profiles across MTD1

    a. The upper profile perpendicular to the strike, b. the middle profile perpendicular to the strike, c. the lower profile perpendicular to the strike.

    图  6   过MTD2的AUV浅地层剖面图

    a.横剖面,b.纵剖面。

    Figure  6.   AUV based sub-bottom profiles across MTD2

    a. The profile perpendicular to the strike, b. the profile parallel to the strike.

    图  7   过MTD3的AUV浅地层剖面图

    a.上部横剖面,b.下部横剖面,c.纵剖面。

    Figure  7.   AUV based sub-bottom profiles across MTD3

    a. The upper profile perpendicular to the strike, b. the lower profile perpendicular to the strike, c. the profile parallel to the strike.

    表  1   峡谷谷底MTDs的几何参数

    Table  1   Geometric parameters of MTDs on the canyon floor

    编号宽度/m长度/km长宽比厚度/m面积/km2体积/km3
    MTD180~5005.0010.00~62.501.30~8.400.904.37
    MTD2260~3500.752.14~2.880.90~3.200.280.58
    MTD370~6002.003.33~28.571.20~3.001.102.31
    下载: 导出CSV
  • [1]

    Stow D A V, Mayall M. Deep-water sedimentary systems: New models for the 21st century [J]. Marine and Petroleum Geology, 2000, 17(2): 125-135. doi: 10.1016/S0264-8172(99)00064-1

    [2]

    Harris P T, Whiteway T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins [J]. Marine Geology, 2011, 285(1-4): 69-86. doi: 10.1016/j.margeo.2011.05.008

    [3]

    Xu J P, Barry J P, Paull C K. Small-scale turbidity currents in a big submarine canyon [J]. Geology, 2013, 41(2): 143-146. doi: 10.1130/G33727.1

    [4]

    Paull C K, Talling P J, Maier K L, et al. Powerful turbidity currents driven by dense basal layers [J]. Nature Communications, 2018, 9(1): 4114. doi: 10.1038/s41467-018-06254-6

    [5]

    Hsu S K, Kuo J, Lo C L, et al. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan [J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(6): 767-772. doi: 10.3319/TAO.2008.19.6.767(PT)

    [6]

    Carter L, Milliman J D, Talling P J, et al. Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan [J]. Geophysical Research Letters, 2012, 39(12): L12603.

    [7] 陈芳, 苏新, 周洋. 南海神狐海域水合物钻探区钙质超微化石生物地层与沉积速率[J]. 地球科学—中国地质大学学报, 2013, 38(1):1-9. [CHEN Fang, SU Xin, ZHOU Yang. Late Miocene-Pleistocene calcareous nannofossil biostratigraphy of Shenhu gas hydrate drilling area in the South China Sea and variations in sedimentation rates [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(1): 1-9. doi: 10.3799/dqkx.2013.001
    [8]

    He Y, Zhong G F, Wang L L, et al. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea [J]. Marine and Petroleum Geology, 2014, 57: 546-560. doi: 10.1016/j.marpetgeo.2014.07.003

    [9]

    Chen D X, Wang X J, Völker D, et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea [J]. Marine and Petroleum Geology, 2016, 77: 1125-1139. doi: 10.1016/j.marpetgeo.2016.08.012

    [10] 罗进华, 朱培民. 琼东南盆地陆坡区重力流沉积体系超高精度解析[J]. 地质科技情报, 2019, 38(6):42-50. [LUO Jinhua, ZHU Peimin. Gravity induced deposits in the continental slope of Qiongdongnan basin based on ultrahigh resolution AUV data [J]. Geological Science and Technology Information, 2019, 38(6): 42-50.
    [11] 冯湘子, 朱友生. 南海北部陵水陆坡重力流沉积调查与分析[J]. 海洋地质与第四纪地质, 2020, 40(5):25-35. [FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35.
    [12]

    Paull C K, Anderson K, Caress D W, et al. Fine-scale morphology of tubeworm slump, Monterey canyon[M]//Lamarche G. Submarine Mass Movements and their Consequences. Cham: Springer, 2016: 155-162.

    [13]

    Gwiazda R, Paull C K, Caress D W, et al. Eel canyon slump scar and associated fluid venting[M]//Lamarche G. Submarine Mass Movements and Their Consequences. Cham: Springer, 2016: 411-418.

    [14]

    Tubau X, Paull C K, Lastras G, et al. Submarine canyons of Santa Monica Bay, Southern California: Variability in morphology and sedimentary processes [J]. Marine Geology, 2015, 365: 61-79. doi: 10.1016/j.margeo.2015.04.004

    [15] 李硕, 刘健, 徐会希, 等. 我国深海自主水下机器人的研究现状[J]. 中国科学: 信息科学, 2018, 48(9):1152-1164. [LI Shuo, LIU Jian, XU Huixi, et al. Research status of autonomous underwater vehicles in China [J]. Scientia Sinica: Informationis, 2018, 48(9): 1152-1164. doi: 10.1360/N112017-00264
    [16]

    Clift P, Lin J, Barckhausen U. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea [J]. Marine and Petroleum Geology, 2002, 19(8): 951-970. doi: 10.1016/S0264-8172(02)00108-3

    [17] 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统-中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2):145-151. [PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications [J]. Geological Review, 2007, 53(2): 145-151. doi: 10.3321/j.issn:0371-5736.2007.02.001
    [18] 陈端新. 南海北部陆缘深水盆地流体渗漏构造研究[D]. 中国科学院大学中国科学院海洋研究所博士学位论文, 2012: 51-75.

    CHEN Duanxin. Focused fluid flow structure in the deepwater basins of northern South China Sea margin[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Science, 2012: 51-75.

    [19]

    Ma B J, Wu S G, Sun Q L, et al. The late Cenozoic deep-water channel system in the Baiyun Sag, Pearl River Mouth Basin: Development and tectonic effects [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 226-239. doi: 10.1016/j.dsr2.2015.06.015

    [20]

    Zhu M Z, Graham S, Pang X, et al. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea [J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. doi: 10.1016/j.marpetgeo.2009.05.005

    [21]

    Gong C L, Wang Y M, Rebesco M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels? [J]. Geology, 2018, 46(6): 551-554. doi: 10.1130/G40204.1

    [22]

    Li X S, Zhou Q J, Su T Y, et al. Slope-confined submarine canyons in the Baiyun deep-water area, northern South China Sea: variation in their modern morphology [J]. Marine Geophysical Research, 2016, 37(2): 95-112. doi: 10.1007/s11001-016-9269-0

    [23]

    Su M, Lin Z X, Wang C, et al. Geomorphologic and infilling characteristics of the slope-confined submarine canyons in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2020, 424: 106166. doi: 10.1016/j.margeo.2020.106166

    [24]

    Wu L Y, Xiong X J, Li X L, et al. Bottom currents observed in and around a submarine valley on the continental slope of the northern South China Sea [J]. Journal of Ocean University of China, 2016, 15(6): 947-957. doi: 10.1007/s11802-016-3054-1

  • 期刊类型引用(5)

    1. 李彦杰,朱友生,陈冠军,王姝,王微微. 基于AUV观测数据的南海东沙北部浅表层精细地质特征及其灾害因素分析. 热带海洋学报. 2023(01): 114-123 . 百度学术
    2. 杨天宇,邹立,赵彦彦,宋晓帅,权永峥,贾永刚. 南海东北部上层沉积物有机碳的沉积特征. 海洋环境科学. 2022(01): 16-23 . 百度学术
    3. 王大伟,曾凡长,王微微,孙悦. 海底冲沟——深水沉积输运系统的“毛细血管”. 地球科学进展. 2022(04): 331-343 . 百度学术
    4. Xishuang Li,Chengyi Zhang,Baohua Liu,Lejun Liu. Mounded seismic units in the modern canyon system in the Shenhu area, northern South China Sea: Sediment deformation, depositional structures or the mixed system?. Acta Oceanologica Sinica. 2022(09): 107-116 . 必应学术
    5. 龚广传,李磊,何旺,张威,高毅凡,程琳燕,杨志鹏. 块体搬运沉积顶面沉积过程模拟--以南海北部坡为例. 海洋地质前沿. 2022(12): 75-83 . 百度学术

    其他类型引用(0)

图(7)  /  表(1)
计量
  • 文章访问数:  1430
  • HTML全文浏览量:  318
  • PDF下载量:  44
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-27
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2021-04-27

目录

    /

    返回文章
    返回