渤海主要汇入河流碎屑磷灰石地球化学特征及成因

刘海金, 龚志军, 林旭

刘海金, 龚志军, 林旭. 渤海主要汇入河流碎屑磷灰石地球化学特征及成因[J]. 海洋地质与第四纪地质, 2021, 41(4): 74-86. DOI: 10.16562/j.cnki.0256-1492.2020100301
引用本文: 刘海金, 龚志军, 林旭. 渤海主要汇入河流碎屑磷灰石地球化学特征及成因[J]. 海洋地质与第四纪地质, 2021, 41(4): 74-86. DOI: 10.16562/j.cnki.0256-1492.2020100301
LIU Haijin, GONG Zhijun, LIN Xu. Geochemical characteristics and genesis of detrital apatites from the surrounding rivers into the Bohai Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 74-86. DOI: 10.16562/j.cnki.0256-1492.2020100301
Citation: LIU Haijin, GONG Zhijun, LIN Xu. Geochemical characteristics and genesis of detrital apatites from the surrounding rivers into the Bohai Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 74-86. DOI: 10.16562/j.cnki.0256-1492.2020100301

渤海主要汇入河流碎屑磷灰石地球化学特征及成因

基金项目: 国家自然科学基金“青海南山新生代隆升与黄河龙羊峡下切时间的低温热年代学研究”(41702178),“青藏高原东北缘兰州盆地新生代盆-山耦合和黄河水系演化研究”(41972212);湖南省自然科学基金“江汉盆地物源示踪研究”(2019JJ40198)
详细信息
    作者简介:

    刘海金(1996—),男,硕士研究生,第四纪地质与释光年代学专业,E-mail:lhjnsxw@163.com

    通讯作者:

    林旭(1984—),男,博士,副教授,从事大河物源示踪研究,E-mail:hanwuji-life@163.com

  • 中图分类号: P736.4

Geochemical characteristics and genesis of detrital apatites from the surrounding rivers into the Bohai Sea

  • 摘要: 渤海的碎屑物质详细记录了源区的地质信息,对其进行物源示踪研究有助于提高我们对周围造山带及黄河的演化、中国东部陆架海碎屑物质扩散等的认识。本文利用激光剥蚀电感耦合等离子质谱分别对辽东湾、渤海湾及莱州湾周围主要汇入河流的碎屑磷灰石进行原位微量元素分析,结合Kolmogorov-Smirnov统计方法的多维判别图与反向传播神经网络等方法,分析渤海主要汇入河流碎屑磷灰石的微量元素与稀土元素。结果表明在汇入渤海的主要河流中,碎屑磷灰石的微量元素主要以Sr元素与Y元素为主,且都出现较为明显的HREE富集,但在不同河流之间的碎屑磷灰石Sr元素与REE也存在一定差异,这可能与其母岩不同相关。
    Abstract: To trace where the detrital deposits of the Bohai Sea come from is important for better understanding the basin-mountain coupling and the formation of the Yellow River, in addition to the distribution of the detrital sediments around the Bohai Sea. In this paper, the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is applied to analyze the composition of trace elements of the detrital apatite grains from the main rivers pouring into Liaodong Bay, Bohai Bay, and Laizhou Bay, combining with Kolmogorov-Smirnov multi-dimensional discrimination diagram (MDS) and Back Propagation(BP) neural network to perform sediment provenance discrimination. Results show that they are all characterized by high Sr, Y and light rare earth elements(LREE). However, there are some differences in the sediments from different rivers, which may be related to the source rocks of apatite.
  • 通过对沉积区的碎屑物质进行物源示踪研究,可以提高对造山带及沉积盆地自身演化、海陆相互作用的认识[1-5],而河流是连接造山带与沉积盆地物质运输的重要路径,是源汇研究的通道,已成为物源示踪研究的重要对象[6-11]。因而寻找河流沉积物的特征物源信息及良好的物源示踪指标是对其开展物源示踪的基础与关键。

    渤海位于华北克拉通内部[12],自北向南包含辽东湾、渤海湾、莱州湾3个次一级海湾,分别发源于大兴安岭南部、燕山、太行山和鲁中山区的辽河、海河、滦河、弥河等诸多河流将大量碎屑物质搬运而进入渤海[3]。最为显著的是,发源于青藏高原东北缘的黄河携带大量碎屑物质流经黄土高原、华北平原后汇入渤海,成为渤海最主要的碎屑物质输送河流[13-14]。因此,对这些河流开展碎屑物源示踪研究,是认识渤海湾盆地演化、黄河的形成与发展等重要科学问题的关键步骤。前人对此开展了广泛的沉积物物源示踪工作,主要集中在矿物组合特征[11, 15-17]、粒度特征[18-20]、磁学特征[21-22]、全岩地球化学特征[23-25]、锆石U-Pb年龄谱系特征[26-28]、单颗粒矿物特征[10, 29-30]等方面。这些研究工作更多是对某一条或者几条河流的物源示踪,而对整个渤海3大海湾(辽东湾、渤海湾、莱州湾)主要汇入河流的特征物源示踪指标研究还相对较少,研究程度较为薄弱。

    磷灰石是河流碎屑沉积物中常见的副矿物,是Sr元素和稀土元素(REE)的主要携带矿物之一。磷灰石的含量与母岩中SiO2的含量呈反相关,与母岩中P2O5的含量呈正相关,不同岩石中磷灰石的微量元素差异较大[31-32],因而非常适合用于不同河流物源示踪研究[33-37]。然而将该方法系统地用于渤海主要汇入河流的物源示踪指标研究还未开展。基于此,分别对辽东湾、渤海湾及莱州湾周围主要汇入河流进行碎屑磷灰石原位微量元素分析,结合Kolmogorov-Smirnov统计方法的多维判别图(MDS)及BP神经网络分析结果,对河流碎屑磷灰石的微量元素及REE特征与差异性进行分析,以期为渤海碎屑沉积物源示踪提供新的地球化学指标。

    燕山运动以后,在西太平洋板块向西俯冲的大地质背景下,华北克拉通内部的岩石圈受到挤压、隆升、侵蚀,同时出现持续的拉张与断陷。渤海湾盆地就是在华北克拉通基底上发育形成的断陷盆地[38]。在渤海湾盆地内堆积有砂泥岩以及发育中—酸性火山岩等,岩石最大厚度接近4000 m。第四系沉积地层厚度变化不大,范围为300~400 m,以灰黄色—土黄色黏土、砂质黏土与粉砂层、泥质砂层为主[39]。渤海初具形态是在第四纪海侵早期[40],历经地质演化,现今的渤海为典型半封闭浅海陆架,自北向南依次可分为辽东湾、渤海湾以及莱州湾(图1)。辽东湾处于渤海北端,其三面均与辽宁省接壤,南侧水深可超过30 m,其位于华北克拉通的东侧,属于辽东隆起区、辽西隆起区以及辽河坳陷区构造带的交叉地带[41],主要汇入河流为辽河与滦河。渤海湾位于渤海的西侧,是一个典型受海陆交互作用影响的海湾,渤海湾处于中生代活化地台区域,逐渐演化为沉积巨厚碎屑物质的盆地,并发育同沉积生长断裂[17],主要汇入河流为黄河、海河与滦河。莱州湾地处渤海南部、山东半岛北部,其总面积为9530 km2,在构造上属于渤海盆地莱州湾坳陷,其新构造运动整体相对活跃,第四系沉积物以棕黄色粉砂质黏土、含砾中粗砂、细砂为主,黄河、弥河等河流为莱州湾碎屑物质的主要来源[24]表1列举渤海3大海湾主要汇入河流的基本水文信息。

    图  1  辽东湾、渤海湾及莱州湾位置图
    Figure  1.  Location map of Liaodong Bay, Bohai Bay, Laizhou Bay
    表  1  渤海主要汇入河流的水文特征
    Table  1.  Hydrological characteristics of the main rivers flowing into the Bohai Sea
    河流发源山区总长度/km流域总面积/104 km2输沙量/104 t径流量/108 m3入海海湾
    辽河燕山、大兴安岭134521.96173(2009—2019年)26.12(2009—2019年)辽东湾*
    滦河燕山8774.41739(1950—1984年)46.5(1950—1984年)辽东湾[16]
    黄河青藏高原55007517200(2009—2019年)282.3(2009—2019年)渤海湾*
    滹沱河太行山5872.79.46(1956—2000年)渤海湾[42]
    漳河太行山4121.8728(1951—2015年)8.59(1951—2015年)渤海湾*
    弥河鲁中山区2060.3884.1(多年平均)4.27(多年平均)莱州湾[24]
      注:*数据来源于《2019中国河流泥沙公报》。
    下载: 导出CSV 
    | 显示表格

    辽河样品(TA-3)采集于辽宁省鞍山市台安县红庙子村(41°45′05″N、122°48′15″E),滦河样品(LH-1)采集于河北省承德市双滦区三道合村滦河干流边滩(40°26′04″N、117°38′20″E)。漳河样品(ZHH-1)采集于河北省邯郸市磁县观台镇漳河边滩(36°31′49″N、114°08′31″E);滹沱河样品(HTH-1)采集于河北省石家庄市正定县河流边滩(38°10′20″N、114°64′47″E);黄河样品采集于山东省菏泽市东明县黄河干流边滩(35°20′29″N、115°01′40″E)。弥河样品(MH-1)采集于山东省潍坊市临朐县冶源水库上游的弥河干流边滩(36°20'42″N、118°32′8″E)。每个样品均采集3~5 kg,采集双份以便能挑出足够的目标矿物用于后续研究。

    通过对各河流的碎屑砂样进行前期重砂分析、磁性分选,提取出所需的磷灰石,随后利用双目显微镜剔除其他杂质矿物,达到提纯的目的。首先挑选样品中一定数量的碎屑磷灰石,通过背散射、反射光及投射光图像拍摄等方式,获得单颗粒磷灰石的结构特征,剔除含有裂隙与包裹体以及表面不光滑的碎屑磷灰石。随后在符合要求的样品中利用完全随机原则挑选60颗磷灰石测试其微量元素,以避免人为干预导致所选择的数据不能完全代表样品的总体特征。提取的磷灰石粒径多集中于90 ~150 μm。利用武汉上谱分析科技有限责任公司的激光剥蚀-等离子体质谱仪(LA-ICP-MS)测定碎屑磷灰石的微区微量元素含量。GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。在实验过程中,利用氦气作为实验的载气,利用氩气作为实验的补偿气,氦气与氩气在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置。本次分析的激光束斑和频率分别为 44 µm和5 Hz。碎屑磷灰石微量元素测定时通过玻璃标准物质BHVO-2G、BCR-2G和BIR-1G进行多外标无内标校正。每个时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正以及元素含量计算)采用软件ICPMSDataCal[43]完成。

    在寻找渤海盆地碎屑磷灰石微量元素中的特征元素组合时,为了更好地反映数据的差异性,本文利用MDS多维标度法来检验各河流样品间元素组合的差异性,对各样品Sr元素进行MDS投图[44]

    此外,为更好说明各样品的差异性,避免人为判断的主观性,本文尝试利用BP神经网络分别对辽东湾的辽河、滦河,渤海湾的滦河、滹沱河、漳河、黄河以及莱州湾的弥河与黄河REE进行机器学习分类并判断其准确性,准确性越高,即机器分类识别效果越好,说明数据差异性越大,反之则说明数据差异性较小。在构建BP神经网络时,本文选择的loss损失函数是sparse_categorical_crossentropy(交叉熵),评价指标是accurancy(准确度),优化器选用“adam”,学习率设置为0.01,epochs(迭代次数)是10万,网络结构是输入层(14个神经元)+1个隐藏层,权重初始化方法为he_uniform,采用“relu”激活函数,采用“softmax”激活函数。辽东湾、渤海湾、莱州湾输出层神经元个数分别为2、4、2。

    为对碎屑磷灰石选择的随机性实现定量化表示,本文通过使用游程检验对所获得的微量元素数据进行分析。游程检验,即连贯检验,可用来检验数据的随机性。在样本中,连续出现同一状态的样本点组成一个游程(run),本文以所测磷灰石某一微量元素的含量平均值作为检验值[45],随后对该元素利用统计分析软件计算游程检验的渐近显著性水平,若所得渐近显著性水平p<0.05,则说明该数据的随机性较差,相反若渐近显著性水平p>0.05,则说明所测该元素的数据具有随机性,可代表整体的特征。基于此,本文分别对辽河、滦河、漳河、滹沱河、黄河、弥河各微量元素分别进行了游程检验(表2),可以看出在所有河流所获得的磷灰石微量元素中,其游程检验的显著性水平绝大部分都大于0.05,这说明在随机挑选碎屑磷灰石时,遵循了完全随机的原则,因而可以认为本次研究随机挑选的磷灰石能够代表整体样品的特征,具有一定统计学意义。

    表  2  渤海主要汇入河流碎屑磷灰石微量元素游程检验
    Table  2.  Runs test of trace elements in main rivers of Bohai Sea
    辽河滦河漳河滹沱河黄河弥河
    Li0.760.5140.6250.970.7390.328
    B0.0960.8880.8010.4120.7130.801
    Sc0.5710.5740.8030.8380.6750.379
    V0.9820.5760.0920.2460.6370.317
    Cr0.4660.330.4680.5020.0710.201
    Co0.3290.7060.1250.6530.0360.6
    Ni0.8960.9640.6260.1580.540.54
    Cu0.8270.360.370.9060.4880.002
    Zn0.760.3280.8030.540.860.283
    Ga0.0880.1780.9190.0130.7490.801
    Rb0.7560.5020.3170.8610.8990.758
    Sr0.1730.0610.1180.050.1120.795
    Y0.4920.0880.6950.8180.6370.514
    Zr0.8510.8450.8610.0540.7720.046
    Nb0.4660.7090.2460.540.8610.302
    Mo0.8940.1250.6560.8280.2450.602
    Ag0.3980.4340.750.7550.7720.349
    Cd0.1630.5770.0670.2010.0160.477
    Sn0.6950.9020.1950.280.9380.412
    Sb0.0780.8450.1250.5450.6860.6
    Cs0.870.3280.2890.4930.3290.16
    Ba0.0630.6560.220.320.470.555
    Hf0.8510.8030.4350.6060.7720.046
    Ta0.3860.7950.8010.7550.7720.036
    W0.5170.2040.3530.4680.0490.876
    Tl0.5760.7090.4340.0710.1790.732
    Bi0.3340.2050.0760.5760.4640.992
    Pb0.2360.970.5770.0330.1530.193
    Th0.6590.8140.2220.040.4160.05
    U0.5710.4490.5990.7680.2230.732
    La0.0020.3790.0690.9640.250.625
    Ce0.2380.2460.2460.1720.4940.193
    Pr0.0880.1780.1950.1340.7490.821
    Nd0.2760.2230.7820.2350.8630.602
    Sm0.960.7730.5740.330.7220.655
    Eu0.6950.8030.2580.0070.220.828
    Gd0.9820.1060.0810.1190.8290.919
    Tb0.6920.3710.5140.8380.9540.919
    Dy0.5760.6250.7090.950.8290.919
    Ho0.6920.7550.970.950.4520.97
    Er0.6260.4930.6950.660.5460.514
    Tm0.960.750.6950.3830.7230.278
    Yb0.8860.1780.540.8450.9540.344
    Lu0.7680.0220.540.8580.7490.344
    下载: 导出CSV 
    | 显示表格

    本次研究自环渤海河流的碎屑沉积物中获取367颗碎屑磷灰石,随后测量其微量元素(表3)。在研究区主要的汇入河流中,碎屑磷灰石的微量元素含量较高的元素均为Sr元素与Y元素。具体来看,辽河的碎屑磷灰石的Sr元素和Y元素平均含量分别为534.9、472.0 μg/g,滦河分别为990.3和919.0 μg/g,漳河分别为911.8和550.3 μg/g,滹沱河分别为370.7和521.9 μg/g,黄河分别为717.2和631.7 μg/g,弥河分别为303.2和609.6 μg/g。

    表  3  辽东湾、渤海湾及莱州湾主要汇入河流微量元素数据统计
    Table  3.  The value of the trace elements of apatite from the main rivers around Liaodong Bay, Bohai Bay and Laizhou Bay
    μg/g
    辽河(n=60)滦河(n=60)漳河(n=60)滹沱河(n=60)黄河(n=67)弥河(n=60)
    最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值
    Li5.400.52.000.42.900.44.500.410.400.85.50.21.4
    B3.702.43.80.41.83.90.42.05.90.62.26.601.34.202.1
    Sc2.600.311.600.71.900.21.400.266.901.20.900.3
    V15.60.14.2186.207.840.605.28.302.232.106.012.50.95.6
    Cr2.200.52.100.63.600.72.400.56.700.33.000.7
    Co0.5000.2002.200.10.1007.300.20.600
    Ni11.900.30.800.23.600.30.900.212.700.51.600.2
    Cu4.500.22.500.39.500.21.400.189.902.81.200.2
    Zn1.800.21.300.22.500.31.800.221.300.67.000.2
    Ga23.90.88.330.10.39.747.90.59.729.50.76.539.00.310.520.31.39.6
    Rb14.000.30.600.10.300.10.700.12.300.119.100.4
    Sr1049.6252.7534.96083.487.9990.38672.2123.6911.81709.976.3370.75526.595.0717.2537.1165.8303.2
    Y1683.417.5472.03136.174.6919.02914.438.2550.33717.50.7521.92876.527.0631.72897.1119.0609.6
    Zr3126.7053.69.300.53.600.6333.906.5131785.602052.0122.203.4
    Nb0.1000.2000.2000.10031.500.50.100
    Mo0.4000.50011.200.20.2000.700.10.100
    Ag0.1000000000004.900.1000
    Cd1.100.213.203.61.100.30.500.14.200.20.600.2
    Sn1.300.61.800.91.100.61.400.61.500.41.20.10.6
    Sb0.1000.600.10.2000.2000.1000.300
    Cs0.1000.1000.1000.1000.2000.400
    Ba6.100.774.702.413.001.22.700.443.301.510.700.3
    Hf78.001.30.1000.1008.200.22775.4043.33.500.1
    Ta0.1000000000002.500000
    W16.600.86.500.82.000.22.700.610.801.12.300.2
    Hg000000000000000000
    Tl0000000000000000.100
    Bi0.1000.6000.3000.3005.100.40.200
    Pb6.61.13.226.40.66.610.90.63.010.40.93.317.81.04.329.94.511.5
    Th165.2015.2174.20.118.553.8011.7103.907.3161.6017.8145.25.743.4
    U110.90.514.658.11.714.871.60.210.660.7012.546.40.211.562.58.131.4
    下载: 导出CSV 
    | 显示表格

    本文对研究区内主要汇入河流碎屑磷灰石REE含量进行了分析与统计(表4图2)。辽河的碎屑磷灰石主要的REE为Ce、Nd、La、Sm、Gd,滦河和漳河的碎屑磷灰石主要的REE为Ce、Nd、La、Gd、Sm;滹沱河碎屑磷灰石主要的REE为Ce、Nd、La、Gd、Sm;黄河碎屑磷灰石主要的REE为Ce、Nd、La、Gd、Sm;弥河碎屑磷灰石主要的REE为Ce、Nd、La、Gd、Sm。

    表  4  辽东湾、渤海湾及莱州湾主要汇入河流碎屑磷灰石REE含量
    Table  4.  The average value of the rare earth elements of apatite from the main rivers around Bohai Bay Basin
    μg/g
    LaCePrNdSmEuGdTbDyHoErTmYbLu
    辽河(n=60)最大值1407.12132.7252.31179.8396.363.6377.456.3318.651.5134.917.5106.418.2
    最小值1.58.41.914.45.91.44.80.73.00.51.30.21.40.3
    平均值221.1593.088.9464.6119.121.5113.715.783.015.142.25.332.04.8
    滦河(n=60)最大值1082.72664.6327.71541.2361.884.6642.7110.4842.3201.4670.4111.7734.8100.2
    最小值0.10.50.11.51.40.66.71.613.72.26.10.72.80.3
    平均值218.2666.4104.5522.1132.921.8169.327.4168.833.789.712.270.89.4
    漳河(n=60)最大值1626.73794.5575.91172.0265.769.7576.878.9525.3100.6289.538.4230.134.9
    最小值1.24.70.94.92.40.34.30.87.21.23.30.41.80.4
    平均值348.6779.2107.4461.9109.120.7127.816.298.918.450.36.437.45.4
    滹沱河(n=60)最大值887.71977.9372.01082.4279.098.2326.8182.61174.6235.5645.180.7463.858.5
    最小值0.31.10.21.40.40.10.20.00.20.00.00.00.00.0
    平均值166.4458.769.5298.478.612.481.916.099.520.858.97.342.46.0
    黄河(n=67)最大值5126.77593.3794.53656.9822.087.6776.2101.9561.5100.5277.238.0246.931.3
    最小值3.513.13.021.010.72.810.31.05.20.82.00.21.20.2
    平均值578.11502.4210.4973.3200.223.6183.122.4119.521.555.66.841.35.7
    弥河(n=60)最大值1079.72199.5242.51062.1308.048.2430.067.6376.168.6236.037.7326.753.2
    最小值15.853.37.938.38.75.210.51.711.33.012.22.218.72.9
    平均值251.6745.0107.7491.8115.921.3119.716.690.217.655.17.657.98.8
    下载: 导出CSV 
    | 显示表格

    将磷灰石微量元素进行二维散点投图,进一步对特征物源示踪指标进行判别。对辽东湾两条河流来说,La-Sm(图3c)、∑REE-(Ce/Yb)CN图3f)的二元散点图中,辽河和滦河的大部分磷灰石颗粒重叠在一起,而在Ce-Y(图3a)、Nd-Sm(图3e)、∑REE-Sr/Y(图3g)、∑REE-Y(图3h)、Sr-Ba(图3i)、Sr-Y(图3l)二元散点图中滦河出现明显的特征区域;在(Gd/Yb)CN-(La/Yb)CN图3b)、(La+Ce)/∑REE-La/Nd(图3d)的二元散点图中,可以看到辽河出现特征区域。渤海湾的4条河流中,La-Sm(图4c)、Nd-Sm(图4e)、∑REE-(Ce/Yb)CN图4f)、∑REE-Sr/Y(图4g)、∑REE-Y(图4h)的二元散点图中,黄河均出现明显的特征分布区域。莱州湾的两条河流中,除(La+Ce)/∑REE-La/Nd的二元散点图中未出现明显特征区域外,其他散点图中黄河均出现明显的特征分布区域(图5)。

    图  3  辽东湾主要汇入河流磷灰石微量元素二维散点图
    Figure  3.  Correlation of the trace elements of apatite from the two rivers around the Liaodong Bay
    图  4  渤海湾主要汇入河流磷灰石微量元素二维散点图
    Figure  4.  Correlation of the trace elements of apatite from the main rivers around the Bohai Bay
    图  5  莱州湾主要汇入河流微量元素二维散点图
    Figure  5.  Correlation of the trace elements of apatite from the main rivers around Laizhou Bay

    对研究区河流Sr元素进行MDS分析(图6),整体而言,研究区未出现明显重叠区。在辽东湾的主要汇入河流中,辽河与滦河在MDS图上距离较远,没有明显关系;在渤海湾的主要汇入河流中,横向上滹沱河距离黄河、漳河、滦河较远,纵向上黄河则距离其他3条河流较远;在莱州湾的主要汇入河流中,黄河与弥河在横向上距离明显偏远。

    图  6  渤海主要汇入河流磷灰石Sr元素K-S距离MDS图
    Figure  6.  MDS plot showing the K-S distances between the Sr of apatite

    利用球粒陨石标准化后的REE数据对BP神经网络模型进行训练,其中随机选取80%组数据进行训练,随后选取剩余组数据进行实验,以检验BP神经网络分类的合理性。通过计算辽东湾、渤海湾、莱州湾主要汇入河流稀土元素球粒陨石标准化数据的BP神经网络训练样本与实验样本准确性(图7)及交叉熵损失(图8),辽东湾(辽河与滦河)的训练集拟合度达到89.7%且交叉熵损失为0.33,测试集准确率为90.75%,交叉熵损失为0.32;莱州湾(黄河与弥河)的训练集拟合度达到95.5%且交叉熵损失为0.26,测试集准确率为94.34%,交叉熵损失为0.27;渤海湾(黄河、滦河、漳河、滹沱河)训练集拟合度达到41.19%且交叉熵损失为1.25,测试集准确率为42.91%,交叉熵损失为1.22。

    图  7  辽东湾(a)、渤海湾(b)、莱州湾(c)主要汇入河流磷灰石稀土元素BP神经网络训练样本与实验样本准确性
    Figure  7.  The accuracy of the training samples and experimental samples from the main rivers around Liaodong Bay(a)、Bohai Bay(b)and Laizhou Bay(c)
    图  8  莱州湾(a)、渤海湾(b)、辽东湾(c)磷灰石稀土元素BP神经网络训练样本与实验样本损失
    Figure  8.  The loss of the training samples and experimental samples from the main rivers around Laizhou Bay(a)、Bohai Bay(b)and Liaodong Bay(c)

    本文根据前人绘制的碎屑磷灰石母岩图解,利用磷灰石的微量元素与REE对汇入渤海的主要河流的碎屑磷灰石进行了母岩判别[34, 46]图9),发现辽河磷灰石的母岩以花岗岩与辉绿岩为主,滦河则以花岗伟晶岩及花岗岩为主。滹沱河与漳河的碎屑磷灰石母岩类型以辉绿岩、花岗伟晶岩、花岗岩为主。黄河碎屑磷灰石的母岩主要以花岗岩、辉绿岩、正长岩为主。弥河的碎屑磷灰石的母岩则几乎全部集中于花岗岩与花岗伟晶岩。

    图  9  辽东湾(a)、渤海湾(b)、莱州湾(c)磷灰石母岩类型判别
    Figure  9.  The recognition of apatites from different rock types from the main rivers around Liaodong Bay(a)、Bohai Bay(b) and Laizhou Bay(c)

    渤海作为一个多物源的沉积盆地,汇集了来自青藏高原、鲁中山区、太行山、燕山及大兴安岭的碎屑物质[47],对其开展物源示踪工作对于研究周围造山带的剥蚀、相关河流物质搬运、盆-山耦合过程具有重要意义。碎屑磷灰石作为一种初次沉积旋回的代表矿物,保留了一定源区信息[46],对其地球化学特征尤其是微量元素与REE的含量及分布特征研究有助于提高对渤海“源-汇”过程的认识。

    经上述研究可发现,辽河和滦河的碎屑磷灰石微量元素主要以Sr与Y元素为主,但滦河碎屑磷灰石的Sr与Y元素要高出辽河近1倍(表3图3il),磷灰石Sr元素MDS表明,辽河与滦河磷灰石在Sr元素上差距明显。对碎屑磷灰石REE而言,两者都体现出较为明显的LREE富集,但辽河的碎屑磷灰石∑LREE/∑HREE的平均值为16.94,而滦河的平均值则为11.85,说明滦河磷灰石的LREE富集程度要略低于辽河。利用BP神经网络对辽河与滦河标准化后的碎屑磷灰石REE进行分类(图7a图8a),得到的准确率超过90%,这也能够定量说明辽河的碎屑磷灰石REE含量与滦河磷灰石的REE含量差异明显。在渤海湾的主要汇入河流中,滦河、漳河、滹沱河、黄河的碎屑磷灰石微量元素主要以Sr与Y元素为主,其中滦河、漳河、黄河磷灰石Sr元素与Y元素含量差距不大,滹沱河明显低于其他3条河流。在REE的分布特征上,黄河磷灰石的LREE含量明显高于其他3条河流,其∑LREE/∑HREE的平均值为24.27,明显高于滦河磷灰石的11.85、漳河磷灰石的22.52、滹沱河磷灰石的16.12。在注入莱州湾的主要河流中,弥河碎屑磷灰石的Sr元素平均含量为303.2 μg/g,只占黄河磷灰石的42%,Y元素也明显低于黄河的磷灰石。Sr元素的K-S距离MDS图(图6)显示,黄河与弥河磷灰石的距离非常远,说明二者碎屑磷灰石的Sr元素含量特征明显不同。在二维散点图中黄河分布明显广泛,而弥河磷灰石微量元素在散点图中分布范围则较小。弥河磷灰石的REE同样为轻稀土富集型,但其∑LREE/∑HREE的平均值为11.54,明显小于黄河的磷灰石。利用BP神经网络对黄河与弥河标准化后的碎屑磷灰石REE进行分类(图7c图8c),得到的准确率超过90%,说明两者的碎屑磷灰石REE含量差异明显。因而可以看出,对环渤海的主要汇入河流而言,其磷灰石微量元素主要以Sr与Y元素为主,REE则为轻稀土富集,但不同河流的碎屑磷灰石Sr元素含量与LREE富集程度存在一定差异,其差异程度可用MDS图与BP神经网络进行量化。

    不同河流碎屑磷灰石的母岩类型分布存在一定差异(图9),而不同河流磷灰石主要的微量元素与REE表现不同的特征与碎屑磷灰石的母岩密切相关[34, 46]。以REE为例,滦河流经的河北地区地处华北克拉通内部,在1.85 Ga左右其与西部板块发生碰撞形成一系列伟晶岩[48],伟晶岩中HREE明显富集[33, 46],高于其他岩石类型,因此使得滦河磷灰石的HREE含量要明显高于辽河。黄河流经物源广泛的黄土高原,大量碎屑物质来自黄土高原[10, 47],同时也受流经区域的基岩碎屑影响[27]。黄河北部地区(华北克拉通北缘)发育众多正长岩岩体[49],而正长岩中的磷灰石的LREE富集明显[33],使得黄河的磷灰石LREE含量明显区别于其他3条河流,这在LREE平均含量(表4)、REE球粒陨石标准化型式(图2b)图及二维散点图中均有体现(图4fh)。而对弥河的磷灰石而言,其几乎全部来自于鲁中山区,来源单一,这在磷灰石微量元素的散点图(图5)中也充分体现出来。

    图  2  辽东湾(a)、渤海湾(b)及莱州湾(c)主要汇入河流磷灰石REE分布型式图
    球粒陨石标准化数据引自Taylor and Mclennan,1985。
    Figure  2.  The chondrite-normalized REE distribution patterns for apatite form the surrounding rivers of
    Liaodong Bay(a)、Bohai Bay(b)and Laizhou Bay(c).

    综上所述,在汇入渤海的主要河流中,碎屑磷灰石的微量元素主要以Sr与Y元素为主且都出现较为明显的HREE富集,然而不同河流间磷灰石的Sr元素与REE特征也存在一定差异,这可能与其母岩来源不同有关。因而利用磷灰石微量元素中的Sr元素与REE在一定程度上可对辽东湾与莱州湾来自不同河流的碎屑沉积物中的磷灰石进行区分。

    通过对渤海周围河流碎屑磷灰石微量元素和REE的地球化学特征分析,结合K-S距离MDS图及BP神经网络,结果发现在汇入渤海的主要河流中,碎屑磷灰石的微量元素主要以Sr与Y元素为主且都出现较为明显的HREE富集,但在不同河流之间的碎屑磷灰石Sr元素与REE也存在一定差异,这可能与其母岩不同有关。此外利用BP神经网络可对各河流的碎屑磷灰石的微量元素与REE的差异性进行定量评价。

  • 图  1   辽东湾、渤海湾及莱州湾位置图

    Figure  1.   Location map of Liaodong Bay, Bohai Bay, Laizhou Bay

    图  3   辽东湾主要汇入河流磷灰石微量元素二维散点图

    Figure  3.   Correlation of the trace elements of apatite from the two rivers around the Liaodong Bay

    图  4   渤海湾主要汇入河流磷灰石微量元素二维散点图

    Figure  4.   Correlation of the trace elements of apatite from the main rivers around the Bohai Bay

    图  5   莱州湾主要汇入河流微量元素二维散点图

    Figure  5.   Correlation of the trace elements of apatite from the main rivers around Laizhou Bay

    图  6   渤海主要汇入河流磷灰石Sr元素K-S距离MDS图

    Figure  6.   MDS plot showing the K-S distances between the Sr of apatite

    图  7   辽东湾(a)、渤海湾(b)、莱州湾(c)主要汇入河流磷灰石稀土元素BP神经网络训练样本与实验样本准确性

    Figure  7.   The accuracy of the training samples and experimental samples from the main rivers around Liaodong Bay(a)、Bohai Bay(b)and Laizhou Bay(c)

    图  8   莱州湾(a)、渤海湾(b)、辽东湾(c)磷灰石稀土元素BP神经网络训练样本与实验样本损失

    Figure  8.   The loss of the training samples and experimental samples from the main rivers around Laizhou Bay(a)、Bohai Bay(b)and Liaodong Bay(c)

    图  9   辽东湾(a)、渤海湾(b)、莱州湾(c)磷灰石母岩类型判别

    Figure  9.   The recognition of apatites from different rock types from the main rivers around Liaodong Bay(a)、Bohai Bay(b) and Laizhou Bay(c)

    图  2   辽东湾(a)、渤海湾(b)及莱州湾(c)主要汇入河流磷灰石REE分布型式图

    球粒陨石标准化数据引自Taylor and Mclennan,1985。

    Figure  2.   The chondrite-normalized REE distribution patterns for apatite form the surrounding rivers of

    Liaodong Bay(a)、Bohai Bay(b)and Laizhou Bay(c).

    表  1   渤海主要汇入河流的水文特征

    Table  1   Hydrological characteristics of the main rivers flowing into the Bohai Sea

    河流发源山区总长度/km流域总面积/104 km2输沙量/104 t径流量/108 m3入海海湾
    辽河燕山、大兴安岭134521.96173(2009—2019年)26.12(2009—2019年)辽东湾*
    滦河燕山8774.41739(1950—1984年)46.5(1950—1984年)辽东湾[16]
    黄河青藏高原55007517200(2009—2019年)282.3(2009—2019年)渤海湾*
    滹沱河太行山5872.79.46(1956—2000年)渤海湾[42]
    漳河太行山4121.8728(1951—2015年)8.59(1951—2015年)渤海湾*
    弥河鲁中山区2060.3884.1(多年平均)4.27(多年平均)莱州湾[24]
      注:*数据来源于《2019中国河流泥沙公报》。
    下载: 导出CSV

    表  2   渤海主要汇入河流碎屑磷灰石微量元素游程检验

    Table  2   Runs test of trace elements in main rivers of Bohai Sea

    辽河滦河漳河滹沱河黄河弥河
    Li0.760.5140.6250.970.7390.328
    B0.0960.8880.8010.4120.7130.801
    Sc0.5710.5740.8030.8380.6750.379
    V0.9820.5760.0920.2460.6370.317
    Cr0.4660.330.4680.5020.0710.201
    Co0.3290.7060.1250.6530.0360.6
    Ni0.8960.9640.6260.1580.540.54
    Cu0.8270.360.370.9060.4880.002
    Zn0.760.3280.8030.540.860.283
    Ga0.0880.1780.9190.0130.7490.801
    Rb0.7560.5020.3170.8610.8990.758
    Sr0.1730.0610.1180.050.1120.795
    Y0.4920.0880.6950.8180.6370.514
    Zr0.8510.8450.8610.0540.7720.046
    Nb0.4660.7090.2460.540.8610.302
    Mo0.8940.1250.6560.8280.2450.602
    Ag0.3980.4340.750.7550.7720.349
    Cd0.1630.5770.0670.2010.0160.477
    Sn0.6950.9020.1950.280.9380.412
    Sb0.0780.8450.1250.5450.6860.6
    Cs0.870.3280.2890.4930.3290.16
    Ba0.0630.6560.220.320.470.555
    Hf0.8510.8030.4350.6060.7720.046
    Ta0.3860.7950.8010.7550.7720.036
    W0.5170.2040.3530.4680.0490.876
    Tl0.5760.7090.4340.0710.1790.732
    Bi0.3340.2050.0760.5760.4640.992
    Pb0.2360.970.5770.0330.1530.193
    Th0.6590.8140.2220.040.4160.05
    U0.5710.4490.5990.7680.2230.732
    La0.0020.3790.0690.9640.250.625
    Ce0.2380.2460.2460.1720.4940.193
    Pr0.0880.1780.1950.1340.7490.821
    Nd0.2760.2230.7820.2350.8630.602
    Sm0.960.7730.5740.330.7220.655
    Eu0.6950.8030.2580.0070.220.828
    Gd0.9820.1060.0810.1190.8290.919
    Tb0.6920.3710.5140.8380.9540.919
    Dy0.5760.6250.7090.950.8290.919
    Ho0.6920.7550.970.950.4520.97
    Er0.6260.4930.6950.660.5460.514
    Tm0.960.750.6950.3830.7230.278
    Yb0.8860.1780.540.8450.9540.344
    Lu0.7680.0220.540.8580.7490.344
    下载: 导出CSV

    表  3   辽东湾、渤海湾及莱州湾主要汇入河流微量元素数据统计

    Table  3   The value of the trace elements of apatite from the main rivers around Liaodong Bay, Bohai Bay and Laizhou Bay

    μg/g
    辽河(n=60)滦河(n=60)漳河(n=60)滹沱河(n=60)黄河(n=67)弥河(n=60)
    最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值
    Li5.400.52.000.42.900.44.500.410.400.85.50.21.4
    B3.702.43.80.41.83.90.42.05.90.62.26.601.34.202.1
    Sc2.600.311.600.71.900.21.400.266.901.20.900.3
    V15.60.14.2186.207.840.605.28.302.232.106.012.50.95.6
    Cr2.200.52.100.63.600.72.400.56.700.33.000.7
    Co0.5000.2002.200.10.1007.300.20.600
    Ni11.900.30.800.23.600.30.900.212.700.51.600.2
    Cu4.500.22.500.39.500.21.400.189.902.81.200.2
    Zn1.800.21.300.22.500.31.800.221.300.67.000.2
    Ga23.90.88.330.10.39.747.90.59.729.50.76.539.00.310.520.31.39.6
    Rb14.000.30.600.10.300.10.700.12.300.119.100.4
    Sr1049.6252.7534.96083.487.9990.38672.2123.6911.81709.976.3370.75526.595.0717.2537.1165.8303.2
    Y1683.417.5472.03136.174.6919.02914.438.2550.33717.50.7521.92876.527.0631.72897.1119.0609.6
    Zr3126.7053.69.300.53.600.6333.906.5131785.602052.0122.203.4
    Nb0.1000.2000.2000.10031.500.50.100
    Mo0.4000.50011.200.20.2000.700.10.100
    Ag0.1000000000004.900.1000
    Cd1.100.213.203.61.100.30.500.14.200.20.600.2
    Sn1.300.61.800.91.100.61.400.61.500.41.20.10.6
    Sb0.1000.600.10.2000.2000.1000.300
    Cs0.1000.1000.1000.1000.2000.400
    Ba6.100.774.702.413.001.22.700.443.301.510.700.3
    Hf78.001.30.1000.1008.200.22775.4043.33.500.1
    Ta0.1000000000002.500000
    W16.600.86.500.82.000.22.700.610.801.12.300.2
    Hg000000000000000000
    Tl0000000000000000.100
    Bi0.1000.6000.3000.3005.100.40.200
    Pb6.61.13.226.40.66.610.90.63.010.40.93.317.81.04.329.94.511.5
    Th165.2015.2174.20.118.553.8011.7103.907.3161.6017.8145.25.743.4
    U110.90.514.658.11.714.871.60.210.660.7012.546.40.211.562.58.131.4
    下载: 导出CSV

    表  4   辽东湾、渤海湾及莱州湾主要汇入河流碎屑磷灰石REE含量

    Table  4   The average value of the rare earth elements of apatite from the main rivers around Bohai Bay Basin

    μg/g
    LaCePrNdSmEuGdTbDyHoErTmYbLu
    辽河(n=60)最大值1407.12132.7252.31179.8396.363.6377.456.3318.651.5134.917.5106.418.2
    最小值1.58.41.914.45.91.44.80.73.00.51.30.21.40.3
    平均值221.1593.088.9464.6119.121.5113.715.783.015.142.25.332.04.8
    滦河(n=60)最大值1082.72664.6327.71541.2361.884.6642.7110.4842.3201.4670.4111.7734.8100.2
    最小值0.10.50.11.51.40.66.71.613.72.26.10.72.80.3
    平均值218.2666.4104.5522.1132.921.8169.327.4168.833.789.712.270.89.4
    漳河(n=60)最大值1626.73794.5575.91172.0265.769.7576.878.9525.3100.6289.538.4230.134.9
    最小值1.24.70.94.92.40.34.30.87.21.23.30.41.80.4
    平均值348.6779.2107.4461.9109.120.7127.816.298.918.450.36.437.45.4
    滹沱河(n=60)最大值887.71977.9372.01082.4279.098.2326.8182.61174.6235.5645.180.7463.858.5
    最小值0.31.10.21.40.40.10.20.00.20.00.00.00.00.0
    平均值166.4458.769.5298.478.612.481.916.099.520.858.97.342.46.0
    黄河(n=67)最大值5126.77593.3794.53656.9822.087.6776.2101.9561.5100.5277.238.0246.931.3
    最小值3.513.13.021.010.72.810.31.05.20.82.00.21.20.2
    平均值578.11502.4210.4973.3200.223.6183.122.4119.521.555.66.841.35.7
    弥河(n=60)最大值1079.72199.5242.51062.1308.048.2430.067.6376.168.6236.037.7326.753.2
    最小值15.853.37.938.38.75.210.51.711.33.012.22.218.72.9
    平均值251.6745.0107.7491.8115.921.3119.716.690.217.655.17.657.98.8
    下载: 导出CSV
  • [1] 闫义, 林舸, 王岳军, 等. 盆地陆源碎屑沉积物对源区构造背景的指示意义[J]. 地球科学进展, 2002, 17(1):85-90 doi: 10.3321/j.issn:1001-8166.2002.01.013

    YAN Yi, LIN Ge, WANG Yuejun, et al. The indication of continental detrital sediment to tectonic setting [J]. Advance in Earth Sciences, 2002, 17(1): 85-90. doi: 10.3321/j.issn:1001-8166.2002.01.013

    [2] 赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3):409-415 doi: 10.3969/j.issn.1000-0550.2003.03.007

    ZHAO Hongge, LIU Chiyang. Approaches and prospects of provenance analysis [J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415. doi: 10.3969/j.issn.1000-0550.2003.03.007

    [3] 林旭, 刘静, 吴中海, 等. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报, 2020, 94(10):3024-3035 doi: 10.3969/j.issn.0001-5717.2020.10.016

    LIN Xu, LIU Jing, WU Zhonghai, et al. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China [J]. Acta Geologica Sinica, 2020, 94(10): 3024-3035. doi: 10.3969/j.issn.0001-5717.2020.10.016

    [4] 林旭, 刘静. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质, 2019, 41(2):499-520 doi: 10.3969/j.issn.0253-4967.2019.02.015

    LIN Xu, LIU Jing. A review of mountain-basin coupling of Jianghan and Dongting basins with their surrounding mountains [J]. Seismology and Geology, 2019, 41(2): 499-520. doi: 10.3969/j.issn.0253-4967.2019.02.015

    [5]

    Huang X T, Song J Z, Yue W, et al. Detrital Zircon U-Pb ages in the East China seas: implications for provenance analysis and sediment budgeting [J]. Minerals, 2020, 10(5): 398. doi: 10.3390/min10050398

    [6] 杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 2006, 21(6):648-655 doi: 10.3321/j.issn:1001-8166.2006.06.013

    YANG Shouye. Advances in sedimentary geochemistry and tracing applications of Asian rivers [J]. Advances in Earth Science, 2006, 21(6): 648-655. doi: 10.3321/j.issn:1001-8166.2006.06.013

    [7] 林旭, 刘静, 彭保发, 等. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质, 2017, 39(6):1091-1110 doi: 10.3969/j.issn.0253-4967.2017.06.001

    LIN Xu, LIU Jing, PENG Baofa, et al. A review of low-temperature thermochronology on bedrock and detritus from rivers around the Tibetan Plateau [J]. Seismology and Geology, 2017, 39(6): 1091-1110. doi: 10.3969/j.issn.0253-4967.2017.06.001

    [8]

    Liu J, Zhang J Q, Miao X D, et al. Mineralogy of the core YRD-1101 of the Yellow River Delta: implications for sediment origin and environmental evolution during the last ~1.9 Myr [J]. Quaternary International, 2020, 537: 79-87. doi: 10.1016/j.quaint.2019.12.025

    [9]

    Pan B T, Pang H L, Gao H S, et al. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau [J]. Journal of Asian Earth Sciences, 2016, 127: 1-11. doi: 10.1016/j.jseaes.2016.06.006

    [10] 张伟, 金秉福, 岳伟, 等. 黄河口和长江口沉积绿帘石地球化学特征及物源意义[J]. 矿物岩石地球化学通报, 2020, 39(3):576-586

    ZHANG Wei, JIN Bingfu, YUE Wei, et al. Geochemical characteristics and provenance of epidote grains in sediments in estuaries of the Yellow River and Yangtze River [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3): 576-586.

    [11]

    Dou Y G, Li J, Zhao J T, et al. Clay mineral distributions in surface sediments of the Liaodong Bay, Bohai Sea and surrounding river sediments: Sources and transport patterns [J]. Continental Shelf Research, 2014, 73: 72-82. doi: 10.1016/j.csr.2013.11.023

    [12]

    Li S Z, Suo Y H, Li X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate [J]. Earth-Science Reviews, 2019, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003

    [13] 张义丰, 李凤新. 黄河、滦河三角洲的物质组成及其来源[J]. 海洋科学, 1983(8):15-18

    ZHANG Yifeng, LI Fengxin. The characteristics of material component and the material resource in Huanghe (Yellow) River, Luanhe River [J]. Marine Sciences, 1983(8): 15-18.

    [14]

    Lu J, Qiao F L, Wang X H, et al. A numerical study of transport dynamics and seasonal variability of the Yellow River sediment in the Bohai and Yellow seas [J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 39-51. doi: 10.1016/j.ecss.2011.08.001

    [15] 林晓彤, 李巍然, 时振波. 黄河物源碎屑沉积物的重矿物特征[J]. 海洋地质与第四纪地质, 2003, 23(3):17-21

    LIN Xiaotong, LI Weiran, SHI Zhenbo. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance, China [J]. Marine Geology & Quaternary Geology, 2003, 23(3): 17-21.

    [16] 韩宗珠, 衣伟虹, 李敏, 等. 渤海湾北部沉积物重矿物特征及物源分析[J]. 中国海洋大学学报, 2013, 43(4):73-79

    HAN Zongzhu, YI Weihong, LI Min, et al. Analysis for heavy mineral characteristics and material provenance in the sediments of the northern Bohai Bay [J]. Periodical of Ocean University of China, 2013, 43(4): 73-79.

    [17] 张连杰, 胡日军, 朱龙海, 等. 渤海湾碎屑矿物特征及其物源和沉积动力环境指示意义[J]. 中国海洋大学学报, 2019, 49(5):60-70

    ZHANG Lianjie, HU Rijun, ZHU Longhai, et al. Characteristics of detrital minerals in Bohai Bay and their implications for provenance and sedimentary Dynamical Environment [J]. Periodical of Ocean University of China, 2019, 49(5): 60-70.

    [18] 张剑, 李日辉, 王中波, 等. 渤海东部与黄海北部表层沉积物的粒度特征及其沉积环境[J]. 海洋地质与第四纪地质, 2016, 36(5):1-12

    ZHANG Jian, LI Rihui, WANG Zhongbo, et al. Grain size characteristics of surface sediments in the east Bohai Sea and the northern Yellow Sea and their implications for environments [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 1-12.

    [19] 马晓红, 韩宗珠, 艾丽娜, 等. 中国渤黄海的沉积物源及输运路径研究[J]. 中国海洋大学学报, 2018, 48(6):96-101

    MA Xiaohong, HAN Zongzhu, AI Li’na, et al. Research on provenance and transport pattern in the Bohai Sea and Yellow Sea [J]. Periodical of Ocean University of China, 2018, 48(6): 96-101.

    [20]

    Song S, Feng X L, Li G G, et al. Change in sediment provenance near the current estuary of Yellow River since the Holocene transgression [J]. Journal of Ocean University of China, 2018, 17(3): 535-544. doi: 10.1007/s11802-018-3377-1

    [21] 王双. 黄渤海表层沉积物磁学特征及其环境指示意义[D]. 中国海洋大学硕士学位论文, 2014: 25-47.

    WANG Shuang. The magnetic characteristics and environmental implications of the surface sediments of the Yellow Sea and Bohai Sea[D]. Master Dissertation of Ocean University of China, 2014: 25-47.

    [22]

    Wang Y H, Dong H L, Li G X, et al. Magnetic properties of muddy sediments on the northeastern continental shelves of China: implication for provenance and transportation[J]. Marine Geology, 274(1-4): 107-119.

    [23] 廖永杰. 渤海中南部沉积地球化学特征和黄河改道事件[D]. 中国海洋大学硕士学位论文, 2014: 10-27.

    LIAO Yongjie. Geochemical characteristics of sediments in Bohai sea and relocation of Huanghe River[D]. Master Dissertation of Ocean University of China, 2014: 10-27.

    [24] 郭飞. 莱州湾晚更新世以来的沉积演化及物源分析[D]. 中国石油大学(华东)硕士学位论文, 2016: 8-11.

    GUO Fei. Sedimentary evolution and source analysis in Laizhou Bay since late Pleistocene[D]. Master Dissertation of China University of Petroleum (East China), 2016: 8-11.

    [25] 蓝先洪, 秦亚超, 陈晓辉, 等. 渤海东部晚第四纪沉积环境变化的稀土元素地球化学记录[J]. 海洋通报, 2016, 35(6):674-682

    LAN Xianhong, QIN Yachao, CHEN Xiaohui, et al. Rare earth element records of palaeoenvironmental changes during the Late Quaternary from core sediments of the eastern Bohai Sea [J]. Marine Science Bulletin, 2016, 35(6): 674-682.

    [26]

    Xiao G Q, Sun Y Q, Yang J L, et al. Early Pleistocene integration of the Yellow River I: Detrital-zircon evidence from the North China Plain [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109691. doi: 10.1016/j.palaeo.2020.109691

    [27] 郑萍, 李大鹏, 陈岳龙, 等. 黄河口河流沙碎屑沉积物锆石U-Pb年龄及地质意义[J]. 现代地质, 2013, 27(1):79-90 doi: 10.3969/j.issn.1000-8527.2013.01.008

    ZHENG Ping, LI Dapeng, CHEN Yuelong, et al. Zircon U-Pb Ages of Clastic sediment from the outfall of the Yellow River and their geological significance [J]. Geoscience, 2013, 27(1): 79-90. doi: 10.3969/j.issn.1000-8527.2013.01.008

    [28] 岳保静, 廖晶. 黄河流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质, 2016, 36(5):109-119

    YUE Baojing, LIAO Jing. Provenance study of Yellow River sediments by U-Pb dating of the detrital zircons [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 109-119.

    [29] 金秉福, 岳伟, 王昆山. 黄河沉积中角闪石矿物晶体化学特征和成因分析[J]. 海洋学报, 2013, 35(1):131-143

    JIN Bingfu, YUE Wei, WANG Kunshan. The crystallochemistry characteristics and genetic analysis of amphibole in the sediments of the Huanghe River [J]. Acta Oceanologica Sinica, 2013, 35(1): 131-143.

    [30] 金秉福, 岳伟, 王昆山. 黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J]. 海洋学报, 2014, 36(4):11-21

    JIN Bingfu, YUE Wei, WANG Kunshan. Chemical composition of detrital amphibole in the sediments of the Huanghe River, Liaohe River and Yalu River, and its implication for sediment provenance [J]. Acta Oceanologica Sinica, 2014, 36(4): 11-21.

    [31]

    Sha L K, Chappell B W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis [J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3861-3881. doi: 10.1016/S0016-7037(99)00210-0

    [32] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1):267-286

    ZHAO Zhenhua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis [J]. Earth Science Frontiers, 2010, 17(1): 267-286.

    [33]

    O'Sullivan G J, Chew D M, Morton A C, et al. An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1309-1326. doi: 10.1002/2017GC007343

    [34]

    Belousova E A, Griffin W L, O'Reilly S Y, et al. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type [J]. Journal of Geochemical Exploration, 2002, 76(1): 45-69. doi: 10.1016/S0375-6742(02)00204-2

    [35]

    Bruand E, Fowler M, Storey C, et al. Apatite trace element and isotope applications to petrogenesis and provenance [J]. American Mineralogist, 2017, 102(1): 75-84. doi: 10.2138/am-2017-5744

    [36]

    Morton A C, Yaxley G M. Detrital apatite geochemistry and its application in provenance studies [J]. Special Papers-Geological Society of America, 2007, 420: 319-344.

    [37]

    O'Sullivan G, Chew D, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies [J]. Earth-Science Reviews, 2020, 201: 103044. doi: 10.1016/j.earscirev.2019.103044

    [38]

    Li S Z, Zhao G C, Dai L M, et al. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton [J]. Journal of Asian Earth Sciences, 2012, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008

    [39] 邱燕, 王立飞, 黄文凯, 等. 中国海域中新生代沉积盆地[M]. 北京: 地质出版社, 2016: 1-233.

    QIU Yan, WANG Lifei, HUANG Wenkai, et al. Meso-Cenozoic Sedimentary Basins in Chinese Waters[M]. Beijing: Geology Press, 2016: 1-233.

    [40] 姚政权, 石学法. 渤海湾沿岸第四纪海侵研究进展[J]. 海洋地质前沿, 2015, 31(2):9-16, 70

    YAO Zhengquan, SHI Xuefa. A review of quaternary transgression researches along the Bohai Bay [J]. Marine Geology Frontiers, 2015, 31(2): 9-16, 70.

    [41] 王利波, 李军, 赵京涛, 等. 辽东湾中部晚第四纪沉积物物源与沉积环境: 来自碎屑矿物和自生黄铁矿的证据[J]. 海洋地质与第四纪地质, 2016, 36(2):39-48

    WANG Libo, LI Jun, Zhao Jingtao, et al. Late quaternary sediment provenance and palaeoenvironment in Liaodong Bay, Bohai Sea: evidence from detrital minerals and authigenic pyrite [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 39-48.

    [42] 许建廷. 河北省滹沱河流域山区年径流变化情势分析[J]. 水科学与工程技术, 2008(6):3-5 doi: 10.3969/j.issn.1672-9900.2008.06.002

    XU Jianting. Analysis of annual runoff variation of Hutuo river mountainous basin in Hebei province [J]. Water Sciences and Engineering Technology, 2008(6): 3-5. doi: 10.3969/j.issn.1672-9900.2008.06.002

    [43]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [44]

    Vermeesch P, Resentini A, Garzanti E. An R package for statistical provenance analysis [J]. Sedimentary Geology, 2016, 336: 14-25. doi: 10.1016/j.sedgeo.2016.01.009

    [45] 兰嘉庆, 余宛泠. 异方差的游程检验[J]. 中山大学学报: 自然科学版, 2004, 43(S1):9-11

    LAN Jiaqing, YU Wanling. Runs test used for heteroscedasticity [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(S1): 9-11.

    [46] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示[J]. 地球科学进展, 2018, 33(11):1142-1153 doi: 10.11867/j.issn.1001-8166.2018.11.1142.

    ZHANG Shuo, JIAN Xing, ZHANG Wei. Sedimentary provenance analysis using detrital apatite: A review [J]. Advances in Earth Science, 2018, 33(11): 1142-1153. doi: 10.11867/j.issn.1001-8166.2018.11.1142.

    [47] 林旭, 赵希涛, 吴中海, 等. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报:, 2020, 39(6):10-18

    LIN Xu, ZHAO Xitao, WU Zhonghai, et al. Source tracing elements of K-feldspars of main rivers around Bohai Bay Basin [J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10-18.

    [48] 侯江龙, 王登红, 李建康, 等. 河北曲阳地区中佐伟晶岩脉中电气石原位硼同位素分析及其意义[J]. 地球科学与环境学报, 2017, 39(6):751-760 doi: 10.3969/j.issn.1672-6561.2017.06.006

    HOU Jianglong, WANG Denghong, LI Jiankang, et al. In-situ boron isotopic analysis and its geological significance of tourmalines from Zhongzuo Pegmatite Veins in Quyang Area of Hebei, China [J]. Journal of Earth Sciences and Environment, 2017, 39(6): 751-760. doi: 10.3969/j.issn.1672-6561.2017.06.006

    [49] 蔡剑辉, 阎国翰, 许保良, 等. 太行山—大兴安岭东麓晚中生代碱性侵入岩岩石地球化学特征及其意义[J]. 地球学报, 2006, 27(5):447-459 doi: 10.3321/j.issn:1006-3021.2006.05.007

    CAI Jianhui, YAN Guohan, XU Baoliang, et al. The late Mesozoic alkaline intrusive rocks at the east foot of the Taihang-Da Hinggan Mountains: Lithogeochemical characteristics and their implications [J]. Acta Geoscientica Sinica, 2006, 27(5): 447-459. doi: 10.3321/j.issn:1006-3021.2006.05.007

图(9)  /  表(4)
计量
  • 文章访问数:  1866
  • HTML全文浏览量:  447
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-02
  • 修回日期:  2020-12-09
  • 网络出版日期:  2021-01-26
  • 刊出日期:  2021-08-27

目录

/

返回文章
返回