菲律宾海及其邻近海域表层沉积物中放射虫的分布对不同区域环境的响应

邱卓雅, 张兰兰, 胡邦琦, 常虎, 程夏雯, 向荣

邱卓雅, 张兰兰, 胡邦琦, 常虎, 程夏雯, 向荣. 菲律宾海及其邻近海域表层沉积物中放射虫的分布对不同区域环境的响应[J]. 海洋地质与第四纪地质, 2021, 41(1): 87-101. DOI: 10.16562/j.cnki.0256-1492.2020092903
引用本文: 邱卓雅, 张兰兰, 胡邦琦, 常虎, 程夏雯, 向荣. 菲律宾海及其邻近海域表层沉积物中放射虫的分布对不同区域环境的响应[J]. 海洋地质与第四纪地质, 2021, 41(1): 87-101. DOI: 10.16562/j.cnki.0256-1492.2020092903
QIU Zhuoya, ZHANG Lanlan, HU Bangqi, CHANG Hu, CHENG Xiawen, XIANG Rong. Radiolarian distribution in surface sediments of the Philippine Sea and adjacent areas and its response to environment[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 87-101. DOI: 10.16562/j.cnki.0256-1492.2020092903
Citation: QIU Zhuoya, ZHANG Lanlan, HU Bangqi, CHANG Hu, CHENG Xiawen, XIANG Rong. Radiolarian distribution in surface sediments of the Philippine Sea and adjacent areas and its response to environment[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 87-101. DOI: 10.16562/j.cnki.0256-1492.2020092903

菲律宾海及其邻近海域表层沉积物中放射虫的分布对不同区域环境的响应

基金项目: 国家自然科学基金项目“东印度洋不同深度水团中现代放射虫的生态特征及其古环境意义”(41876056),“东北印度洋末次冰盛期以来放射虫的时空分布及其环境变化响应”(41576044),“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局项目(DD20191010);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0206)
详细信息
    作者简介:

    邱卓雅(1996—),女,硕士研究生,研究方向为海洋微体古生物和沉积环境,E-mail:qiuzhuoya@scsio.ac.cn

    通讯作者:

    张兰兰(1978—),女,副研究员,从事海洋微体古生物与沉积研究,E-mail:llzhang@scsio.ac.cn

  • 中图分类号: P736.22

Radiolarian distribution in surface sediments of the Philippine Sea and adjacent areas and its response to environment

  • 摘要: 为了解菲律宾海放射虫的区域分布特色,利用同样的样品处理方法,对菲律宾海及其邻近海域的44个表层沉积样中的放射虫进行对比分析,鉴定统计了500个属种,物种多样性较高。菲律宾海表层沉积物中放射虫的群落结构和丰度变化幅度较大,反映了菲律宾海更为复杂的区域生态环境或沉积环境;南海北部放射虫丰度非常高且罩笼虫目占据较大优势,表明南海北部区域营养盐和生物生产力较高;冲绳海槽放射虫丰度相对较低且泡沫虫目占据绝对优势,推测冲绳海槽的海底沉积环境可能不利于放射虫壳体的埋藏富集。RDA分析结果显示暖水种在冲绳海槽的分布与夏季125 m温度呈明显的正相关,可能与夏季黑潮次表层水的影响有关;在南海北部,暖水种的分布主要受冬季75 m硅酸盐和夏季200 m磷酸盐的影响控制,说明高浓度的硅酸盐可能更加有利于罩笼虫目的发育繁殖;菲律宾海主要是次表层水的环境因子影响着放射虫暖水种的分布,比如75 m冬季盐度、200 m年均溶解氧含量和125 m夏季温度。此外,菲律宾海中深层水(1000~3000 m)不同层深66个环境变量和生活于该水体中的5个冷水种的RDA分析结果,显示菲律宾海北部区域主要与1000 m硅酸盐浓度呈显著正相关,可能与富含硅酸盐的北太平洋中深层水南下进入菲律宾有关;而在菲律宾海中南部的分布则主要与1000 m硅酸盐浓度呈显著负相关,与2 000 m溶解氧和2200 m磷酸盐和硝酸盐呈明显正相关,可能与具有高溶解氧低硅酸盐性质的绕极深层水由南端进入菲律宾海后,一部分水体向上进入菲律宾海中层水有关。
    Abstract: In order to understand the distribution pattern of radiolarians in the Philippine Sea, this article, based on a unified method for sample processing and analysis, made analysis and comparison of radiolarians for 44 surface sediment samples taking from the Philippine Sea and its adjacent regions. A total of 500 radiolarians species are identified, suggesting a very high species diversity. The community structure and abundance of radiolarians in the surface sediments of the Philippine Sea vary greatly, suggesting complex regional ecological or sedimentary environments. The abundance of radiolarians dominated by Nassellaria is also very high in the northern South China Sea, indicating that the northern South China Sea is rich in nutrients and high in biological productivity. However, the radiolarian abundance, dominated by Spumellaria, is relatively low in the Okinawa Trough. It is speculated that the submarine environment of the Okinawa Trough is not so conducive to the accumulation and preservation of radiolarian shells. 8 warm water species group living in the euphotic layer and 162 environmental variables at different depths of the 0~200 m water layers are selected for RDA analysis. The results show that the distribution of these warm water species in the Okinawa Trough is significantly positively correlated with the summer temperature in 125 m of water depth, probably owing to the influence of the summer Kuroshio subsurface water. The distribution of warm water species in the northern South China Sea is mainly affected by winter silicate of 75 m and summer phosphate of 200 m. It means that high-concentration silicate is more conducive to the production of Nassellaria. In the Philippine Sea, however, environmental factors mainly in the subsurface water affect the distribution of warm water species, such as winter salinity of 75 m, 200 m annual dissolved oxygen content and summer temperature of 125 m. In addition, the RDA analysis results of 66 environmental variables at different depths of the medium-deep water (1000~3000 m) of the Philippine Sea and 5 cold water species living in this layer show that the northern Philippine Sea is mainly positively correlated with the silicate concentration of 1000 m. This may be related to the fact that the silicate-rich intermediate-deep water mass of the North Pacific moving southward into the Philippine Sea. The distribution in the central and southern part of the Philippine Sea is mainly negatively correlated with the concentration of silicate at 1000 m, and is significantly positively correlated with dissolved oxygen at 2000 m. It may be related to the Circumpolar Deep Water with high dissolved oxygen content and low silicate entering from the southern end of the Philippine Sea, and part of the water upwardly enter the intermediate layer of the Philippine Sea.
  • 2023年元旦,我国沉积地质学界的著名学者何起祥教授在铺天盖地的新冠疫情中驾鹤西去。惊闻何起祥先生离世的消息我一时竟呆住了,我们只是在新冠病毒肆虐的一段时间里里没有见面,谁知竟致阴阳两隔。回想起与先生相识相知的近40年挥之不去不呼即来的往事都历历在目,不禁悲从中来。先生是我的前辈,我们不仅是一个单位的同事,也曾是同一个所领导班子的成员,他是我的领导也是我的朋友,彼此的了解和相知就是再自然不过的事了。何先生是青岛海洋地质研究所的第二任所长,也是一位为业界所称道的沉积学家。先生无论是人品还是学识都不仅为我辈所仰慕也为业界所熟知。忆及与先生交往的点点滴滴,想拮取记忆深刻的往事当作圣洁的花束,希望花的馨香能上达天堂带去我们的思念,也以为先生祭。

    我与先生的交往是先闻其名后识其人的。1983年在地矿部石油地质海洋地质局刘光鼎副局长的办公室听刘先生和业治铮先生讲何起祥,言谈中赞赏有加。那时地矿部党组按照革命化、知识化、年轻化的要求,准备调整海洋地质研究所的领导班子。业先生力荐当时还在长春地质学院工作的何起祥同志到海洋地质所担任主持业务工作的副所长,这一提议得到了刘光鼎副局长的鼎力支持。在部党组讨论任免事项时,经孙大光部长提议何起祥同志被直接任命为海洋地质研究所所长。翌年2月份何起祥先生从长春地质学院调任海洋地质研究所所长我们方才谋面。随即我就在何所长的领导之下工作达七年之久,直到他赴泰国曼谷担任东亚-东南亚近海和沿岸地球科学项目协调委员会(CCOP)技术秘书处高级石油地质专家,实际上是那时候技术秘书处的技术负责人。在1984—1991年何所长任职期间正值改革开放我国国民经济调整和转型的爬坡期间,地质工作处于一个相对艰难的低谷时期,地质科学研究单位也面临着转制和转型的局面。我们所按照地矿部和国家科委的规定经常性基本经费减拨到位六四开,即事业费只拨付核定额度的60%,而另外40% 要依靠自己的努力,或者有能力争取更多的项目,或者能到市场上去打拼挣钱。这对于习惯了依靠国家财政全额拨款的地质事业单位而言,其难度不言自明。特别是对于既无成熟产品也无“独门绝技”的地质科研单位更是难上加难。国家为了促进科研单位走向经济建设的主战场,在科技政策和经济政策上也作了引导性和鼓励性的调整。即便如此,如何适应这种转变,把“一业为主多种经营”的政策落到实处,使科学技术成果转化为生产力,转化为经济效益,保证地质科研单位的正常运转和不断发展,仍然是对一个单位领导集体的智慧和能力的考验。作为所长何起祥先生做出的努力对所有的亲历者而言是有目共睹的。他一方面在稳住地质科学研究主体方面下功夫,争取确立了部局支持的“四大支柱”科学研究项目;另一方面组建了服务社会走向地质市场的地质技术开发公司,在发展多种经营方面发挥自己的主观能动作用。这些有力的举措保证了本单位的正常运转和发展。

    为了争取把部控项目“中国海区及邻域地质-地球物理系列图”的负责单位和项目办公室放在我所,争取我单位成为国家“八五”重大科技攻关计划85-904 中的06和08两个项目的牵头单位,何起祥所长亲自到地矿部和石油海洋局去游说,经过一番努力,这几个项目负责单位和项目办公室如愿落在我们所。这些项目的实施不仅锻炼形成了我单位科研骨干团队,而且整体提升了业务水平和技术素质。提高了单位在海洋地质界的声誉和地位。系列图项目的成果获得国家自然科学二等奖,85-904-06和85-904-08两个项目获得国家计委、国家科委、财政部颁发的国家“八五”科技攻关重大科技成果奖。何所长不仅是科研工作的指挥员而且是战斗员。他和业治铮先生、张明书先生负责的《海南、西沙礁相第四纪地质研究》是完全由我所独立承担的先导性部控项目。项目在西沙群岛的永乐群岛、宣德礁等七个岛屿开展地质调查研究,并在石岛和琛航岛首开海岛深部全取心科学钻探工作,开拓了生物礁相比较沉积学研究的先河。其成果获得地矿部科技成果二等奖。何所长以自身的经历深知广泛的国内外合作与交流的重要性。他在任职期间全力推进与CCOP、荷兰、日本、美国等国际组织和国家间的学术交流和科研合作,取得了卓有成效的成果。通过何所长的运作,在中科院海洋研究所秦蕴珊所长的理解和支持下,青岛地质学会的挂靠单位从中科院海洋研究所转移到海洋地质所。又在文圣常院长支持下,与时任山东海洋学院地质系主任的徐世浙先生签署了校所合作协议。这些举措对于海洋地质研究所稳定科研主体,切实落实一业为主的任务发挥了重要作用。

    1984年11月,所领导决定成立地质技术开发公司,这是实现地质科研成果转化,地质技术的社会化服务,地质工作走向经济建设主战场的重要举措。1985年5月何起祥所长代表所领导找我谈话,要我从仅当了一年多的工会副主席转岗担任这个一无资金二无队伍的地质技术开发公司经理。要千方百计开拓地质市场,走向社会去找市场找资金;为保证本单位正常运转和发展做出贡献;争取在国家和地方经济建设中体现地质工作的地位和价值。我们两人都知道这个担子的份量,也有着宁肯苦干也不能苦熬的共识。何所长说他能给我的支持就是所里的职工和设备地质技术开发公司都可以调动和使用,但投资是没有的。同时许诺地质技术开发公司可以制定一些跟所里标准不一样的一些经济分配方面的规定,以适应市场经济的需求。我深知这也是别无选择的只有硬着头皮往前闯的工作。只有现在的拼搏和奋斗,才有将来的各种可能。在我任经理的六年里,何所长对开发公司的工作给与了有力的支持。1985年在滴水成冰的隆冬季节里我作为项目负责人和项目技术负责人徐明广同志一起陪同何所长驱车前往引黄济青工程地质勘察施工工地逐一看望在沿线7个县区250 km野外施工线路上顶风冒雪工作的我所技术人员。每到一地除了向野外工作的一线同志表示慰问之外,还认真听取汇报,检查施工质量,与大家一起探讨地质技术问题。他还亲自主持地质勘察成果报告的评审,把好调查研究成果的最终出口。我们提交的引黄济青线路工程地质勘察报告获得了委托单位—山东省水利设计院的充分肯定,为引水工程建设提供了高质量的地质资料和数据。我们为引黄济青工程所做出的贡献得到了青岛市委市政府的肯定,1986年2月9日青岛日报在头版头条做了专门的报道。这些项目的完成有效地提升了社会效益和我所的社会知名度。

    即墨温泉地热的调查和开发利用项目是时任青岛市科委程友新主任与何起祥所长共同策划的一个地下热水资源开发利用项目。1985年12月28日何起祥所长和蔡乾忠副所长带着我以及所科技处、物探室的同志共六个人,程友新主任带领科委计划科梁科长、市水源办公室臧丕津主任等3人到即墨县温泉镇与即墨县姜县长、县科委修主任、温泉镇伊镇长和东温村丁书记,以及温泉镇驻军的庞处长共同研讨地热资源的调查和开发利用问题。经过协商讨论,确定由青岛市科委立项,由我所地质技术开发公司承担地热资源调查和评价任务,即墨县和温泉镇及东温村为调查施工提供一切便利条件。1986年6月18日地质技术开发公司先后组织了由薛春汀带领的地质组开展地热地质构造和资源量评价工作,由齐国钧带领的物探组开展一米测温等物探工作。经过对10 km2调查区的调查评价,圈出了地热分布区6.5 km2,测算地下热水资源总量达1.78亿m3。为地热资源的开发利用规划提供了第一手资料。时至今日,当我们亲眼见到温泉开发利用带来的发展,不由得对何起祥所长和后来担任过青岛市委副书记的程友新这些先行者们心生敬意,也钦佩他们的远见卓识。由地质技术开发公司主持的项目,如为招远县黄金公司完成的“招远县河流砂金调查评价”项目和为平度市城区供水找到的白沙河水源地项目,只要是需要所领导出面的事,何起祥所长都必定亲力亲为。在所领导和全所职工的支持下,地质技术开发公司不断发展壮大。不仅发展了工程勘察和桩基施工业务,还发展了测试分析技术和珠宝玉石质量鉴定业务;而且以我所技术主业的优势抢占了更多的市场份额。在壮大技术业务能力的同时经济总量和经济效益得到了迅速提升。1985年当年实现产值 10.5万元,1988年实现产值34.5万元,1991年实现产值162.2万元 。成为海洋地质研究所的支柱产业,实现了出成果、出人才、出效益的目的。

    “一业为主,多种经营”方针的落实,为稳定和发展海洋地质研究所发挥了重要作用。何起祥所长在其中所起的作用是不容置疑的。这不仅使我想起了法国思想家罗曼罗兰的名言:“世界上只有一种英雄主义,那就是看清了生活的真相,依然真诚地热爱生活”。他做到了这一点。面对工作中的困局和困难,他作为一个单位的领导者没有选择退缩而是勇于拼搏和奋斗,推进了单位的发展和事业的进步。

    何起祥先生是我国沉积地质学界的知名科学家,扎实的专业功底和严谨的治学态度为刘宝珺、孙枢、刘东生、业治铮、刘光鼎、许靖华、汪品先、秦蕴珊等中外沉积学界和海洋地质学界的大家所赞赏。他曾在国内外多所高等院校和学术组织担任职务;长期担任《沉积学报》 《海洋地质与第四纪地质》 《海洋与湖沼》 《China Earth Sequences》等刊物的编委,为培养地学人才、加强学科建设、推进国际合作做出了突出的贡献。何先生文学功底深厚,他的《沉积岩与沉积矿床》这样的专业著作使人读起来并不觉艰涩难懂。他翻译的许靖华的著作《搏击沧海—地学革命风云录》文字如行云流水,堪称地学译著的范本。他的书法和绘画都有相当的功底。这也似乎是地学界诸多大师们的一种共性,他们不仅是地学专业领域的佼佼者,对地学领域的“经史子集”如数家珍,而且跨界到文学、艺术等领域无论是诗词歌赋还是琴棋书画也颇有建树。这些融会贯通的学识令人觉得地质科学并不是冰冷刻板的石头和板块,而是可以有情趣有温度的人文科学。

    何起祥所长作为我的领导和同事,我们在工作中配合默契,生活中是君子之交。相互之间坦诚相待,他对我的指导、帮助和提携既无功利也无物欲。对于他的学生和年轻人,他更是殚精竭虑倾心相授。在长春地质学院任教的时候,他的学生说,何老师上沉积岩课的时候,教室里座无虚席。在海洋地质研究所任所长期间,不管是否是他主持的课题,都会得到他的指导和帮助。他结束CCOP的工作回到所里以后已经过了退休年龄;虽然已经不在领导岗位,但他依然为了所的发展发挥自己的光和热。1997年6月,何起祥先生应邀担任“地矿部海洋地质开放研究实验室”主任,2001年4月应邀担任“海洋地质研究所科学技术咨询委员会”主任,5月又应邀出任“中国地质调查局海岸带地质研究中心”主任。这些岗位并不是通常所说的“闲职”,而是有明确的岗位职责和工作内容的。何起祥先生在这些岗位上兢兢业业、尽职尽责,做了大量有益的工作,为培养海洋地质研究所的科研团队,提升科研能力和学术水平做出了贡献。2002年海洋地质研究所组织编写出版《海洋地质丛书》共九册,何起祥先生执笔撰写了《中国海洋沉积地质学》一书;2009年海洋地质研究所联合海洋出版社编写出版《海洋地学科普丛书》共五册,何起祥先生与许靖华先生共同署名撰写了其中的《海底探索之路》一书。特别令人感动的是,2002年5月20—6月7日青岛海洋地质研究所以中国地质调查局海岸带地质研究中心的名义争取到荷兰教育部提供的基金援助项目,由荷兰地调局为海岸带地质研究中心举办海洋地质填图培训班。经中国地质调查局批准,海岸带研究中心组成了以中国地调局海洋处副处长赵洪伟为领队,以何起祥先生为顾问的培训团队赴荷兰代尔夫特学习。13名学员来自青岛海洋地质研究所、广州海洋地质调查局和中国地质调查局发展研究中心。在半个月的学习过程中,何先生负责与荷方讨论安排教学计划,安排学员的食宿,白天与学员一起上课,晚饭后又要将学员集中起来归纳和总结白天听课的内容,还要检查学员每天的学习小结;他以花甲之年每天这样乐此不疲地周而复始,无形之中也督促着年轻人认真努力地学习。大家觉得何先生既是大家的老师也是大家的管家,学不好就觉得有愧于何先生的付出,也有无颜见江东父老之感。这次地质填图培训班取得的成效不仅仅反映在学员们撰写的培训总结报告中,更重要的是在以后开展的海洋地质保障工程和海洋地质大调查以及海岸带地质调查研究中得到了充分的体现。参加培训的人员毫无例外地都成为海洋区域地质调查研究和海岸带地质调查填图等整装性项目的负责人或技术骨干,对高质量地完成这些项目发挥了重要作用。毫无疑问,这其中就包含着何起祥先生的心血和努力。

    与何起祥先生相知共事的岁月里,我认为何先生是一位有大格局的领导者,一位有真才实学的科学家,一位甘为人梯的良师益友。何起祥先生的人品和学识山高水长。人生际遇正如大海一样,潮涨潮落,有时离我们远一点,有时离我们近一点,但却从未远离我们而逝去。何先生虽然仙逝,但他留给我们的高尚道德风范和宝贵学术贡献却是一份优秀遗产总是伴随着我们去追逐星辰大海。何起祥先生千古!

    青岛海洋地质研究所 刘守全

  • 图  1   本次研究站位分布(黑色圆点所示)和以往研究站位(红色三角形和绿色菱形所示)

    Figure  1.   Locations of sampling sites of this research(shown by the black dots)and previous research (shown by the red triangles and the green diamond)

    图  2   研究区部分放射虫(比例尺为100 μm)

    1. Dictyocoryne elegans(Ehrenberg)(站位号29),2. Dictyocoryne muelleri(Haeckel)(站位号29), 3. Didymocyrtis tetrathalamus tetrathalamus(Haeckel)(站位号29), 4. Phorticium pylonium Zhang and Suzuki(站位号27), 5. Phorticium polycladum Tan and Tchang(站位号27), 6. Tetrapyle group(站位号29), 7. Acanthodesmia vinculata(Müller)(站位号27), 8. Amphispyris reticulata(Ehrenberg)(站位号29),9. Botryocyrtis scutum(Harting)(站位号29), 10. Pterocanium praetextum praetextum(Ehrenberg)(站位号29), 11. Actinomma leptodermum(Jørgensen)(站位号27), 12. Lithelius minor Jørgensen(站位号27), 13. Lithelius nautiloides Popofsky(站位号29), 14. Cornutella profunda Ehrenberg(站位号29), 15. Cycladophora davisiana Ehrenberg(站位号29)。

    Figure  2.   Some radiolarian species in the research area(Scale bars=100 μm)

    图  3   菲律宾海及其邻近海域表层沉积物中放射虫的三大类群占比分布

    Figure  3.   Relative abundances of three Order of radiolarians in surface sediments of the Philippine Sea and adjacent waters.

    图  4   菲律宾海及其邻近海域表层沉积物中放射虫绝对丰度分布

    使用Ocean Data View(ODV)(https://odv.awi.de/)绘制,采用VG网格化算法。

    Figure  4.   Radiolarian absolute abundance in surface sediments of the Philippine Sea and adjacent waters

    The map was drawn using VG grid method by Ocean Data View(ODV)(https://odv.awi.de/).

    图  5   放射虫暖水种和上层水环境变量的RDA排序图

    a. 物种和环境变量排序图,b. 样品和环境变量排序图。蓝色圆圈代表冲绳海槽站位,绿色圆圈代表南海站位,洋红色代表菲律宾海站位。Oxy_a200m为200 m年均溶解氧含量,Si_w75m为75 m冬季平均硅酸盐含量,Pho_s200m为200 m夏季平均磷酸盐含量,Tem_s125m为125 m夏季平均温度,Sal_w75m为75 m冬季平均盐度。

    Figure  5.   The sequence diagram of the RDA of warm water radiolarian species and upper water environmental variables

    a. Sequence diagram of species and environmental variables, b. Sequence diagram of samples and environmental variables. The blue circle represents the station of Okinawa Trough, the green circle represents the station of South China Sea, and the magenta represents the station of Philippine Sea. Oxy_a200m is the annual mean dissolved oxygen content at 200 m, Si_w75m is the winter mean silicate content at 75 m, Pho_s200m is the summer mean phosphate content at 200 m, Tem_s125m is the summer mean temperature at 125 m, and Sal_w75m is the winter mean salinity at 75 m.

    图  6   典型冷水种和中层水环境变量RDA分析排序图

    a. 物种和环境变量排序图,b. 样品和环境变量排序图。Oxy_2000m为2000 m年平均溶解氧含量,Tem_3000m为3000 m年平均温度,Si_1000m为1000 m年平均硅酸盐含量,Pho_2200m为2200 m年平均磷酸盐含量,Nit_2200m为2200 m年平均硝酸盐含量。

    Figure  6.   RDA sequence diagram of typical cold water species and intermediate water environmental variables

    a. sequence diagram of species and environmental variables, b. sequence diagram of samples and environmental variables. Oxy_2000m is the annual mean dissolved oxygen content at 2000 m, Tem_3000m is the annual mean temperature at 3000 m, Si_1000m is the anneal mean silicate content at 1000 m, Pho_2200m is the anneal mean phosphate content at 2200 m, and Nit_2200m is the anneal mean nitrate at 2200 m.

    表  1   研究站位位置、水深、放射虫丰度以及放射虫三大类(泡沫虫目、罩笼虫目和胶球虫目)的相对丰度

    Table  1   Sampling locations, water depths, total radiolarian abundance, and relative abundance of Spumellaria, Nassellaria, and Collodaria of three order of radiolarian

    站位号位置水深 /m放射虫总丰度/(枚/g)泡沫虫目相对丰度/%罩笼虫目相对丰度/%胶球虫目相对丰度/%
    111.4°N,142.36°E108536005144.5254.301.18
    211.64°N,135.19°E4092106174.9020.594.51
    314.56°N,133.22°E54668063452.1141.486.40
    416.07°N,134.01°E547216434.7860.874.35
    516.07°N,133.48°E5370976.9223.080
    616.53°N,136.21°E5060118154.3140.525.17
    719.23°N,131.64°E6059170340.7037.2122.09
    819.7°N,126.06°E54043820443.9152.883.21
    920.12°N,131.18°E580189819.3263.6417.05
    1017.83°N,126.71°E53808180150.7944.944.27
    1119.7°N,126.53°E4882232542.6535.2922.06
    1219.69°N,130.7°E57611486648.8242.019.17
    1317.9°N,129.3°E53071360053.2141.445.35
    1417.92°N,130.71°E57083224339.7152.178.12
    1516.99°N,128.82°E5505929348.0443.208.76
    1623.74°N,135.65°E52702195260.5131.947.54
    1724.6°N,135.63°E5370826967.1925.527.29
    1826.31°N,135.92°E5392871162.2131.576.22
    1927.14°N,135.64°E50502325062.5734.672.76
    2027.97°N,135.65°E48651710270.2225.933.86
    2128.77°N,136.7°E4560925773.6220.415.96
    2229.34°N,135.65°E4439376686.5312.031.43
    2329.89°N,136.42°E4725890172.1224.653.23
    2430.44°N,128.89°E7811023585.2411.992.77
    2530.1°N,128.49°E8853792455.2344.400.37
    2626.9°N,126.39°E1266304578.5815.835.59
    2726.08°N,126.08°E2044641476.6516.956.40
    2826.03°N,125.85°E20641006264.7432.762.50
    2924.03°N,122.5°E1800574073.3422.963.70
    3021.52°N,120°E3010705340.3058.960.75
    3120.49°N,119.96°E33472390832.9365.871.20
    3221.75°N,119.47°E270911552241.0957.171.74
    3321.79°N,118.54°E20491831947.5850.971.45
    3421.3°N,118.85°E26204688750.3048.491.21
    3521.28°N,118.24°E21844108751.4347.431.14
    3620.61°N,118.36°E25409029154.1943.012.80
    3720.17°N,118.75°E28939004246.1251.532.35
    3818.01°N,118.03°E38887583341.7656.261.98
    3919.22°N,115.98°E26128660750.3147.841.86
    4017.98°N,116°E38657522935.3762.442.20
    4119.89°N,115.11°E11828380040.1055.134.77
    4218.77°N,114.13°E157510049053.6644.391.95
    4318.35°N,112.27°E156410166744.2652.822.91
    4418.21°N,111.5°E18081731443.1855.331.50
    下载: 导出CSV

    表  2   菲律宾海放射虫组合和环境变量的RDA分析结果

    Table  2   RDA results of radiolarian assemblage and environmental variables in the Philippine Sea(I for warm species-upper environments, II for cold species-intermediate environments)

    类型参数轴1轴2轴3轴4总方差
    I特征值0.3250.0630.030.0061
    物种-环境相关性0.6760.6860.6140.489
    变量累积百分比
    物种数据32.538.841.842.4
    物种-环境关系76.391.198.299.5
    所有特征值总和1
    所有典范特征值总和0.426
    II特征值0.2680.1130.05201
    物种-环境相关性0.870.5540.4550.271
    变量累积百分比
    物种数据26.838.143.243.3
    物种-环境关系61.98899.9100
    所有特征值总和1
    所有典范特征值总和0.433
      注:I 暖水种-上层水环境因子,II 冷水种-中深层水环境因子。
    下载: 导出CSV
  • [1]

    Gallinari M, Ragueneau O, Corrin L, et al. The importance of water column processes on the dissolution properties of biogenic silica in deep-sea sediments I. Solubility [J]. Geochimica et Cosmochimica Acta, 2002, 66(15): 2701-2717.

    [2]

    Hu W F, Zhang L L, Chen M H, et al. Distribution of living radiolarians in spring in the South China Sea and its responses to environmental factors [J]. Science China Earth Sciences, 2015, 58(2): 270-285.

    [3]

    Itaki T. Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea [J]. Marine Micropaleontology, 2003, 47(3-4): 253-270.

    [4]

    Kamikuri S I, Moore T C. Reconstruction of oceanic circulation patterns in the tropical Pacific across the early/middle Miocene boundary as inferred from radiolarian assemblages [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487: 136-148.

    [5]

    Sandoval M I, Boltovskoy D, Baxter A T, et al. Neogene paleoceanography of the eastern equatorial Pacific based on the radiolarian record of IODP drill sites off Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3): 889-906.

    [6] 陈木宏, 张兰兰, 张丽丽, 等. 南海表层沉积物中放射虫多样性与丰度的分布与环境[J]. 地球科学—中国地质大学学报, 2008, 33(4):431-442. [CHEN Muhong, ZHANG Lanlan, ZHANG Lili, et al. Distributions of radiolarian diversity and abundance in surface sediments of the South China Sea and their environmental implications [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(4): 431-442.
    [7] 张杰, 张兰兰, 陈木宏, 等. 现代放射虫的高阶分类现状及其生态学意义[J]. 微体古生物学报, 2020, 37(1):82-98. [ZHANG Jie, ZHANG Lanlan, CHEN Muhong, et al. The higher level classification of modern radiolarians and their ecological significance [J]. Acta Micropalaeontologica Sinica, 2020, 37(1): 82-98.
    [8]

    Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308.

    [9]

    Yan X H, Ho C R, Zheng Q N, et al. Temperature and size variabilities of the Western Pacific Warm Pool [J]. Science, 1992, 258(5088): 1643-1645.

    [10]

    Palmer M R, Pearson P N. A 23, 000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean [J]. Science, 2003, 300(5618): 480-482.

    [11] 张兰兰, 胡邦琦, 邱卓雅, 等. 西菲律宾海硅藻席沉积中的多囊虫类放射虫记录及其环境意义[J]. 地球科学, 2020. [ZHANG Lanlan, HU Bangqi, QIU Zhuoya, et al. Records of polycystine Radiolaria in the diatom mats sediments from the West Philippe Sea and their environmental significance [J]. Earth Science, 2020.
    [12] 李铁刚, 熊志方, 翟滨. 低纬度西太平洋硅藻席沉积与碳循环[M]. 北京: 海洋出版社. 2015.

    LI Tiegang, XIONG Zhifang, ZHAI Bin. Laminated Diatom Mat Deposits from the Low-Latitude Western Pacific Linked to Global Carbon Cycle[M]. Beijing: Ocean Press, 2015.

    [13]

    Chen M H, Tan Z Y. Radiolarian distribution in surface sediments of the northern and central South China Sea [J]. Marine Micropaleontology, 1997, 32(1-2): 173-194.

    [14]

    Matsuzaki K M, Itaki T, Kimoto K. Vertical distribution of polycystine radiolarians in the northern East China Sea [J]. Marine Micropaleontology, 2016, 125: 66-84.

    [15]

    Zhang L L, Chen M H, Xiang R, et al. Distribution of polycystine radiolarians in the northern South China Sea in September 2005 [J]. Marine Micropaleontology, 2009, 70(1-2): 20-38.

    [16]

    Chang F M, Zhuang L H, Li T G, et al. Radiolarian fauna in surface sediments of the northeastern East China Sea [J]. Marine Micropaleontology, 2003, 48(3-4): 169-204.

    [17] 董智, 石学法, 邹欣庆, 等. 冲绳海槽表层沉积物放射虫属种空间分布特征及其影响因素[J]. 地学前缘, 2020, 27(6):300-312. [DONG Zhi, SHI Xuefa, ZOU Xinqing, et al. Spatial distribution characteristics of radiolarian species in surface sediments from the Okinawa Trough and its influence factors [J]. Earth Science Frontiers, 2020, 27(6): 300-312.
    [18]

    Liu L, Zhang Q, Chen M H, et al. Radiolarian biogeography in surface sediments of the Northwest Pacific marginal seas [J]. Science China Earth Sciences, 2017, 60(3): 517-530.

    [19]

    Qu H X, Wang J B, Xu Y, et al. Radiolarian assemblage as an indicator of environmental conditions in the marginal seas of the Western North Pacific [J]. Marine Micropaleontology, 2020, 157: 101859.

    [20]

    Hernández-Almeida I, Cortese G, Yu P S, et al. Environmental determinants of radiolarian assemblages in the western Pacific since the last deglaciation [J]. Paleoceanography and Paleoclimatology, 2017, 32(8): 830-847.

    [21]

    Matsuzaki K M, Itaki T. New northwest Pacific radiolarian data as a tool to estimate past sea surface and intermediate water temperatures [J]. Paleoceanography and Paleoclimatology, 2017, 32(3): 218-245.

    [22]

    Hsueh Y. The Kuroshio in the East China Sea [J]. Journal of Marine Systems, 2000, 24(1-2): 131-139.

    [23]

    Matsuno T, Lee J S, Yanao S. The Kuroshio exchange with the South and East China Seas [J]. Ocean Science, 2009, 5(3): 303-312.

    [24] 张弦, 俞慕耕, 江伟, 等. 菲律宾海及其邻近海区的水文特征[J]. 海洋通报, 2004(1):8-14. [ZHANG Xuan, YU Mugeng, JIANG Wei, et al. Hydrologic characteristic of the Philippine Sea and its nearby areas [J]. Marine Science Bulletin, 2004(1): 8-14. doi: 10.3969/j.issn.1001-6392.2004.01.002
    [25] 赵一阳, 何丽娟, 张秀莲, 等. 冲绳海槽沉积物地球化学的基本特征[J]. 海洋与湖沼, 1984, 15(4):371-379. [ZHAO Yiyang, HE Lijuan, ZHANG Xiulian, et al. Basic characteristics of geochemistry of sediments in Okinawa trough [J]. Oceanologia et Limnologia Sinica, 1984, 15(4): 371-379.
    [26] 黄财京. 菲律宾海深层水团与环流特征分析[J]. 中国科学院大学硕士学位论文, 2018.

    HUANG Caijing. Analysis of the characteristics of deep water mass and circulation in the Philippine sea[D]. Master Dissertation of University of Chinese Academy of Sciences, 2018.

    [27]

    Zhang L L, Suzuki N. Taxonomy and species diversity of Holocene pylonioid radiolarians from surface sediments of the northeastern Indian Ocean [J]. Palaeontologia Electronica, 2017, 20(3).

    [28] 陈木宏, 谭智源. 南海中、北部沉积物中的放射虫[M]. 北京: 科学出版社, 1996: 271.

    CHEN Muhong, TAN Zhiyuan. Radiolaria from Surface Sediments of the Central and Northern South China Sea[M]. Beijing: Science Press, 1996: 271.

    [29] 谭智源, 陈木宏. 中国近海的放射虫[M]. 北京: 科学出版社, 1999: 404.

    TAN Zhiyuan, CHEN Muhong. Radiolaria off the Coast of China[M]. Beijing: Science Press, 1999: 404.

    [30]

    Boltovskoy D. Classification and distribution of South Atlantic recent polycystine Radiolaria [J]. Palaeontologia Electronica, 1998, 1(2): 116.

    [31]

    Matsuzaki K M, Suzuki N, Nishi H. Middle to Upper Pleistocene polycystine radiolarians from Hole 902-C9001C, northwestern Pacific [J]. Paleontological Research, 2015, 19(1): 1-77.

    [32]

    Zhang L L, Suzuki N, Nakamura Y, et al. Modern shallow water radiolarians with photosynthetic microbiota in the western North Pacific [J]. Marine Micropaleontology, 2018, 139: 1-27.

    [33]

    Müller J. Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres[M]. Abhandlungen: Konigliche Preussische Akademie der Wissenschaften zu Berlin, 1858: 1-62.

    [34]

    Haeckel E. Report on the radiolaria collected by H. M. S. Challenger during the Years 1873-1876[R]. Report on the Scientific Results of the Voyage of H. M. S. Challenger, 1887: 1-1803.

    [35]

    Petrushevskaya M G. Radiolarians of the Ocean [J]. Reports on the Soviet Expeditions. Academy of Sciences of the U.S.S.R., Zoological Institute, Explorations of the Fauna of the Seas, 1971, 9(17): 1-418.

    [36]

    Renz G W. Radiolaria from Leg 27 of the Deep Sea Drilling Poject[R]. Initial Reports of the Deep Dea Drilling Project (U. S. Government Printing Office), 1974, 27: 769-841.

    [37]

    Takahashi K, Honjo S. Vertical flux of Radiolaria: A taxon-quantitative sediment trap study from the western tropical Atlantic [J]. Micropaleontology, 1981, 27(2): 140-190.

    [38]

    Matsuzaki K M, Itaki T, Sugisaki S. Polycystine radiolarians vertical distribution in the subtropical Northwest Pacific during Spring 2015 (KS15-4) [J]. Paleontological Research, 2020, 24(2): 113-133.

    [39]

    Adl S M, Bass D, Lane C E, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes [J]. Journal of Eukaryotic Microbiology, 2019, 66(1): 4-119.

    [40]

    Zhang J, Zhang L L, Xiang R, et al. Radiolarian biogeographic contrast between spring of 2017 and winter of 2017-2018 in the South China sea and Malacca Strait [J]. Continental Shelf Research, 2020, 208: 104245.

    [41] 常凤鸣, 庄丽华, 李铁刚, 等. 冲绳海槽北部表层沉积物中的放射虫组合[J]. 海洋与湖沼, 2003, 34(2):208-216. [CHANG Fengming, ZHUANG Lihua, LI Tiegang, et al. Modern radiolarian assemblages in surficial sediments of northern Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 2003, 34(2): 208-216. doi: 10.3321/j.issn:0029-814X.2003.02.012
    [42] 程振波, 鞠小华. 冲绳海槽中部表层沉积物中的放射虫[J]. 海洋与湖沼, 1998, 29(6):656-662. [CHEN Zhenbo, JU Xiaohua. Radiolaria from the surface sediments in the middle Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 1998, 29(6): 656-662. doi: 10.3321/j.issn:0029-814X.1998.06.015
    [43] 王汝建, 陈荣华. 冲绳海槽南部表层沉积物中放射虫的初步研究[J]. 同济大学学报, 1996, 24(6):670-676. [WANG Rujian, CHEN Ronghua. Preliminary study on the radiolaria from the surface sediments in southern Okinawa Trough [J]. Journal of Tongji University, 1996, 24(6): 670-676.
    [44] 王越奇, 宋金明, 袁华茂, 等. 西北太平洋黑潮源区沉积特征及黑潮输入对东海沉积物的影响[J]. 海洋科学, 2018, 42(9):112-126. [WANG Yueqi, SONG Jinming, YUAN Huamao, et al. Sedimentary characteristics of the Kuroshio origination area and the influence of the Kuroshio intrusion on sediments of the East China Sea [J]. Marine Sciences, 2018, 42(9): 112-126. doi: 10.11759/hykx20180129001
    [45] 宋金明, 袁华茂. 黑潮与邻近东海生源要素的交换及其生态环境效应[J]. 海洋与湖沼, 2017, 48(6):1169-1177. [SONG Jinming, YUAN Huamao. Exchange and ecological effects of biogenic elements between Kuroshio and adjacent east China sea [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1169-1177. doi: 10.11693/hyhz20170900234
    [46] 冯庆来. 放射虫古生态的初步研究[J]. 地质科技情报, 1992, 11(2):41-46. [FENG Qinglai. A preliminary study on the rediolarian palaeoecology [J]. Geological Science and Technology Information, 1992, 11(2): 41-46.
    [47] 梁文, NILANTHI P, 冉莉华, 等. 南海北部和西菲律宾海颗石藻种群特征及差异[J]. 微体古生物学报, 2017, 34(3):279-290. [LIANG Wen, NILANTHI P, RAN Lihua, et al. Community structures of the living coccolithophores in the northern South China Sea and the western Philippines sea [J]. Acta Micropalaeontologica Sinica, 2017, 34(3): 279-290.
    [48]

    Takahashi K. Vertical flux, ecology and dissolution of Radiolaria in tropical oceans: implications for the silica cycle[D]. Doctor Dissertation of Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1981: 1-461.

    [49] 袁梁英, 戴民汉. 南海北部低浓度磷酸盐的测定与分布[J]. 海洋与湖沼, 2008, 39(3):202-208. [YUAN Liangying, DAI Minhan. The distribution of low-level phosphate in the northern South China sea [J]. Oceanologia et Limnologia Sinica, 2008, 39(3): 202-208. doi: 10.3321/j.issn:0029-814X.2008.03.002
    [50]

    Glud R N, Wenzhöfer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth [J]. Nature Geoscience, 2013, 6(4): 284-288.

    [51] 杨海燕, 毛新燕, 郭新宇. 基于WOD数据集的西北太平洋混合层内营养盐浓度初步研究[J]. 中国海洋大学学报, 2018, 48(8):1-9. [YANG Haiyan, MAO Xinyan, GUO Xinyu. A preliminary study on nutrients concentration within the mixed layer in the northwest pacific based on WOD data [J]. Periodical of Ocean University of China, 2018, 48(8): 1-9.
    [52]

    Liu K K, Chao S Y, Shaw P T, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(8): 1387-1412.

    [53] 张金鹏, 邓希光, 杨胜雄, 等. 马里亚纳海沟挑战者深渊南部7000 m水深处发现硅藻化石软泥[J]. 地质通报, 2015, 34(12):2352-2354. [ZHANG Jinpeng, DENG Xiguang, YANG Shengxiong, et al. Diatom ooze found in 7000 m submarine area of Challenger Depth in Mariana Trench [J]. Geological Bulletin of China, 2015, 34(12): 2352-2354. doi: 10.3969/j.issn.1671-2552.2015.12.021
    [54] 黄财京, 谢强, 陈举, 等. 菲律宾海底层水体在1990s—2010s之间的暖化[J]. 热带海洋学报, 2018, 37(6):26-32. [HUANG Caijing, XIE Qiang, CHEN Ju, et al. Bottom-water warming in the Philippine Sea between 1990s and 2010s [J]. Journal of Tropical Oceanography, 2018, 37(6): 26-32.
    [55]

    Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403.

    [56] 张兰兰, 陈木宏, 胡维芬, 等. 现生放射虫的水深分布及其环境指示意义[J]. 热带海洋学报, 2013, 32(6):101-107. [ZHANG Lanlan, CHEN Muhong, HU Weifen, et al. Vertical distribution of living radiolarians and its environmental implication [J]. Journal of Tropical Oceanography, 2013, 32(6): 101-107. doi: 10.3969/j.issn.1009-5470.2013.06.015
    [57]

    Zhang Q, Chen M H, Zhang L L, et al. Variations in the radiolarian assemblages in the Bering Sea since Pliocene and their implications for paleoceanography [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 337-350.

    [58]

    Matsuzaki K M, Itaki T, Tada R. Paleoceanographic changes in the Northern East China Sea during the last 400 kyr as inferred from radiolarian assemblages (IODP Site U1429) [J]. Progress in Earth and Planetary Science, 2019, 6: 22.

    [59] 畠田 健太朗. 現世放散虫に関する生態情報リスト[J]. 大阪微化石研究会誌, 2009, S1(14):31-41. [Hatakeda K. Compiled ecological data on living Polycystine radiolarian [J]. News of Osaka Micropaleontologists (NOM), 2009, S1(14): 31-41.
    [60]

    Boltovskoy D. Vertical distribution patterns of Radiolaria Polycystina (Protista) in the World Ocean: living ranges, isothermal submersion and settling shells [J]. Journal of Plankton Research, 2017, 39(2): 330-349.

    [61]

    Welling L A, Pisias N G. Radiolarian fluxes, stocks, and population residence times in surface waters of the central equatorial Pacific [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(4-5): 639-671.

    [62]

    Pisias N G. Vertical water mass circulation and the distribution of radiolaria in surface sediments of the Gulf of California [J]. Marine Micropaleontology, 1986, 10(1-3): 189-205.

    [63]

    Matsuzaki K M, Itaki T, Tada R, et al. Paleoceanographic history of the Japan Sea over the last 9.5 million years inferred from radiolarian assemblages (IODP Expedition 346 Sites U1425 and U1430) [J]. Progress in Earth and Planetary Science, 2018, 5: 54.

    [64]

    Takahashi K. Radiolaria: Flux, Ecology, and Taxonomy in the Pacific and Atlantic[M]. Woods Hole, MA: Woods Hole Oceanographic Institution Ocean, 1991.

  • 期刊类型引用(1)

    1. 陈柯安,张慧超,陶春辉,梁锦,杨伟芳,廖时理. 西南印度洋中脊龙旂热液区中硫化物的结构和微量元素特征-——对金赋存形式和沉淀机制的启示. 海洋学报. 2023(06): 93-108 . 百度学术

    其他类型引用(0)

图(6)  /  表(2)
计量
  • 文章访问数:  1511
  • HTML全文浏览量:  288
  • PDF下载量:  52
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2020-12-01
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

/

返回文章
返回