广东三水盆地玄武岩源区特征与南海早期演化

张煜, 方念乔

张煜, 方念乔. 广东三水盆地玄武岩源区特征与南海早期演化[J]. 海洋地质与第四纪地质, 2021, 41(3): 95-113. DOI: 10.16562/j.cnki.0256-1492.2020092902
引用本文: 张煜, 方念乔. 广东三水盆地玄武岩源区特征与南海早期演化[J]. 海洋地质与第四纪地质, 2021, 41(3): 95-113. DOI: 10.16562/j.cnki.0256-1492.2020092902
ZHANG Yu, FANG Nianqiao. Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 95-113. DOI: 10.16562/j.cnki.0256-1492.2020092902
Citation: ZHANG Yu, FANG Nianqiao. Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 95-113. DOI: 10.16562/j.cnki.0256-1492.2020092902

广东三水盆地玄武岩源区特征与南海早期演化

基金项目: 国家自然科学基金面上项目“三水盆地及周边地区古近纪火山-沉积组合与南海早期演化”(41572207)
详细信息
    作者简介:

    张煜(1992—),男,博士研究生,研究方向为岩石大地构造,E-mail:zhangyu_cugb@foxmail.com

  • 中图分类号: P736.1

Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea

  • 摘要: 南海在扩张前是否经历了陆内裂谷阶段是南海成因研究中一个重要的问题。三水盆地位于南海北部陆缘,其新生代以来喷发的双峰式火山岩具备大陆裂谷的岩石组合特征。通过对其中玄武岩主微量元素分析认为三水盆地玄武岩可以分为亚碱性和碱性玄武岩系列,两者均显示出明显的Nb、Ta正异常,相对于大陆地壳具有较低的Th/Sc、La/Nb和U/Al×1000,陆壳混染程度低;首次对盆地内玄武岩进行40Ar-39Ar测年,结合前人年代学结果表明玄武质岩浆强烈喷发的时段为61~54 Ma,其中亚碱性玄武岩喷发时间(60 Ma)早于碱性玄武岩(56 Ma);通过熔融柱模型反演得到亚碱性岩浆源区起止熔融温压分别为1 517 ℃(3.03 GPa)和1 471 ℃(2.25 GPa),深度为101~76 km,碱性岩浆源区起止熔融温压分别为1 555 ℃(3.33 GPa)和1 506 ℃(2.48 GPa),深度为110~84 km,整体为石榴石-尖晶石橄榄岩过渡区且呈逐渐变深的趋势。综合岩浆源区特征以及岩石组合特征认为三水盆地在古新世具备大陆裂谷特征。通过对比三水盆地与南海扩张期岩浆活动的分布时段及源区特征,发现三水盆地与南海扩张期岩浆活动时间分布存在较长间隔,深部过程差异较大,三水盆地岩浆活动与南海扩张并无直接因果联系。
    Abstract: It is an important issue in the study of the origin of the South China Sea (SCS) whether the SCS evolved in an intracontinental rift stage before its opening up. The Sanshui Basin is located on the northern margin of the SCS. The Cenozoic eruption of the bimodal volcanic suggest that the basin was a continental rift. The major and trace elements of the basalts indicate that the basalts in Sanshui Basin can be divided into sub-alkaline and alkaline basalts series. Both of them show obvious Nb and Ta positive anomalies. Compared with the continental crust, they have lower Th/Sc, La/Nb and U/Al×1000. 40Ar-39Ar age and previous chronology results suggests that the eruption of basaltic magma was intense in 61~54 Ma, while the eruption of sub-alkaline basalt (60 Ma) is earlier than alkaline basalt (56 Ma). Based on the mantle melting column model, the temperature and pressure of the subalkaline magma source range from 1 517℃ (3.03 GPa) to 1 471℃ (2.25 GPa), in a depth of 101~76 km, while the alkaline magma source range from 1 555℃ (3.33 GPa) to 1 506℃ (2.48 GPa) in a depth of 110~84 km. According to the source of magmatism and rock assemblage, it is concluded that the Sanshui Basin was a Paleocene continental rift. Comparing the temporal distribution and source magmatic activity in the spreading period between the Sanshui Basin and the South China Sea, it is inferred that there is a long time interval between the magmatic activity of the Sanshui Basin and the spreading of SCS, and the deep process is quite different. There is no direct relationship between magmatism in the Sanshui Basin and the spreading of SCS.
  • 苏北盆地是我国东部陆相中、新生代大型盆地之一,盆地内已发现多个富含油气的凹陷以及多套烃源岩层系,其中古近系阜宁组阜四段(E1f4)和阜二段(E1f2)以暗色泥岩为主的烃源岩是本区主要生油岩,油气显示丰富,在非常规油气勘探方面(页岩油)也逐渐显示出较大潜力[1]。相关文献指出,苏北探区全区有200多口钻井在阜二段和阜四段泥页岩层系中见油气显示,其中多口井试获原油,如盐城凹陷的YC1井在阜二段试获日产油36.83 m3,海安凹陷的H20井阜四段累计试获原油11.65 t,说明这两套泥页岩层系也是我国页岩油气勘探的重点层系[2]

    前人虽然从烃源评价角度对阜二段、阜四段泥页岩的基本有机地球化学参数(有机碳、生烃潜量、氯仿沥青“A”含量、有机质类型与成熟度Ro)进行过统计[3-9],但样品来源、数量、纵向变化特征等信息均没有阐述,且往往只是针对某一重点凹陷进行含油性、储集性评价,而对盆地内各凹陷之间烃源岩的生烃条件差异性、横向对比性研究不够深入;同时,对苏北盆地阜二段、阜四段页岩油的富集机理、成藏地质条件及勘探前景等虽零星有论述[10-11],但均缺乏系统性剖析,一定程度上制约了对阜二段、阜四段富有机质泥页岩有机地球化学特征的系统认识以及对各凹陷已知油气藏贡献大小的判识。本文在对前人资料整理的基础上,采集典型样品,较为系统地对苏北盆地阜宁组烃源岩的地球化学特征和储集性能进行分析,对阜宁组阜二段、阜四段烃源岩在各凹陷之间的展布规律进行了精细的评价,以便为该层段常规与非常规油气勘探评价、已知油气藏烃源岩贡献判识提供基础资料。

    苏北盆地探区属于苏北-南黄海盆地的陆上部分,东临黄海,西接鲁苏隆起,南侧为苏南隆起,北部以滨海隆起为界,总面积约33200 km2图1[12]。盆地自形成后经历了多期构造运动的改造,以建湖隆起为界,向北为盐阜坳陷,南侧称为东台坳陷,高邮、金湖、海安、盐城、溱潼等凹陷分布其中[13]。苏北盆地基底为海相中、古生代沉积实体;盖层为陆相中、新生代断拗沉积体[14],包括泰州组、阜宁组、戴南组、三垛组、盐城组等多套地层,地层沉积厚度超过了11000 m,其中阜宁组E1f2、E1f4暗色泥页岩最为发育,属较稳定的较深湖沉积,是页岩油评价与勘探的主要目的层[15]

    图  1  苏北盆地构造单元划分略图及重点井位图[12]
    Figure  1.  Tectonic map of Subei Basin and locations of the key wells

    阜二段(E1f2)沉积期属盆地拗陷演化阶段,湖盆比较平缓,周围高差不大,基本还保持西高东低的格局。E1f2在纵向上可分3个阶段:海侵开始阶段、海侵影响阶段与海侵退却阶段。地层厚度200~300 m,最大厚度约370 m,整体以灰黑色泥岩为主,与下伏阜一段整合接触。E1f2除金湖凹陷西斜坡下部为砂岩外,以富含有机质的暗色泥页岩为主,在高邮、金湖、海安、溱潼、盐城凹陷均有分布,向西凸起,厚度逐渐减薄,直至尖灭;具厚度大、分布广的特征。

    阜四段(E1f4)沉积期属盆地拗陷演化阶段,主体为半深湖-深湖环境。该段地层主要由灰黑色泥岩夹薄层泥灰岩组成,总厚度300~400 m,最厚达500 m,受吴堡事件剥蚀现象严重,导致凹陷和低凸起及隆起部位泥页岩厚度差异较大[13]。E1f4上亚段富有机质泥页岩主要分布于高邮凹陷和金湖凹陷,金湖凹陷的汊涧和龙岗次凹厚度约为300余米,厚度向凹陷边缘减薄;高邮凹陷深凹带厚度可达400余米,同样向凹陷边缘减薄。海安、盐城、阜宁凹陷仅在深凹带局部残存,厚度多小于100 m[14]。E1f4下亚段泥页岩在全区分布较为普遍,特别是在深凹带和斜坡带,残存厚度均较大,多大于100 m。

    本次研究主要采集了苏北盆地70口井的395块典型样品(部分重点井已在图1标出),涉及高邮凹陷、海安凹陷、金湖凹陷、溱潼凹陷、盐城凹陷、泰州凸起阜宁组阜二段和阜四段两套烃源岩,另外采集油样7个。根据研究需要,对采集样品开展了有效烃源岩评价、泥页岩储层评价以及含油性分析在内的20余项分析测试项目。本次测试中涉及到的所有测试项目均在中石化无锡石油地质研究所实验测试研究中心完成。

    众所周知,在评价烃源岩生油潜力的参数中有机质丰度是关键指标之一,含量高低直接影响着对油气资源前景的评价。其中由于影响有机碳含量的因素较少,是有机质丰度评价中最直接也是最为重要的参数,有机质丰度越高,代表生烃能力越强[16]

    通过对苏北盆地290个阜二、阜四段泥页岩样品的热解分析结果统计,阜宁组二套陆相泥页岩层段有机质丰度基本集中于0.5%~2.0%,局部地区达到2.5%以上,纵向上富有机质泥页岩非均质性较强,横向上各凹陷之间也存在一定的差异。阜二段TOC为0.152%~6.992%,平均为2.011%,其中盐城凹陷阜二段泥页岩TOC整体较高,普遍大于2.5%,其他各凹陷泥页岩TOC含量略有差异(表1)。氯仿沥青“A”为 0. 010%~0.447%,平均为 0.132%,生烃潜量(S1 + S2)最大为 50.824 mg/g,最小为0.032 mg/g,平均为10.241 mg/g。各凹陷含量略有不同,表明各凹陷所含页岩油资源略有差异。阜四段TOC为0.184%~4.322%,平均为1.263%,氯仿沥青“A”平均为 0.025%,生烃潜量(S1 + S2)最大为 42.5 mg/g,最小为0.02 mg/g,平均为4.871 mg/g(见表2)。阜二段总体有机质丰度高于阜四段。

    表  1  苏北盆地探区阜宁组阜二段富有机质泥页岩丰度统计
    Table  1.  Statistical table of organic matter abundance for source rocks of the F2 Member of Funing Formation in the Subei Basin
    探区TOC(%)/样品数氯仿沥青“A”(%)/样品数HI(%)/样品数S1+S2(mg/g)/样品数
    高邮凹陷1.583/380.034/5362.301/386.823/38
    金湖凹陷1.724/420.208/5328.432/427.854/42
    海安凹陷2.094/450.099/8439.815/4513.123/45
    盐城凹陷2.833/380.159/14481.000/3815.630/38
    溱潼凹陷1.691/19393.762/197.351/19
    泰州凸起1.154/2290.000/23.000/2
    平均值2.011/1840.132/32400.511/18410.241/184
    下载: 导出CSV 
    | 显示表格
    表  2  苏北盆地探区阜宁组阜四段富有机质泥页岩丰度统计
    Table  2.  Statistical table of organic matter abundance for source rocks of the F4 Member of Funing Formation in the Subei Basin
    探区TOC(%)/样品数氯仿沥青“仿沥(%)/样品数HI(%)/样品数S1+S2(mg/g)/样品数
    高邮凹陷1.102/39246.032/334.080/33
    金湖凹陷1.281/290.025/3257.670/183.963/18
    海安凹陷0.572/1144.000/10.834/1
    盐城凹陷1.163/17348.000/27.891/2
    溱潼凹陷1.663/20237.811/206.892/20
    平均值1.263/1060.025/4248.012/744.871/74
    下载: 导出CSV 
    | 显示表格

    为了研究苏北盆地阜宁组两套陆相泥页岩层段有机质丰度在纵向上的差异性,选取了阜二段、阜四段重点层位阜2-2亚段、阜4-1亚段的TOC平面分布进行论述(图2),同时选取金湖凹陷河参1井、崔2井,海安凹陷安1井三组典型钻井取芯段进行评价(图3)。

    图  2  苏北盆地重点凹陷阜2-2亚段、阜4-1亚段有机碳平面分布图
    Figure  2.  The plane distribution of total organic carbon of the Sub-members F2-1 and F4-1 in the key depressions of Subei Basin
    图  3  苏北盆地重点凹陷典型井阜二段、阜四段各亚段有机碳分布特征
    Figure  3.  The characteristics of total organic carbon in the typical wells of the F2 and F4 Members of Funing Formation in the key depressions of the Subei Basin

    依据纵向上E1f2含油泥页岩的TOC含量变化特征,将E1f2进一步划分为3个亚段。阜2-1亚段TOC总体0.5%~2.0%,各凹陷均有分布;阜2-2亚段平均TOC均值大于2%,整体为1%~3%,广泛分布于金湖、高邮、溱潼、海安及盐城凹陷,高邮凹陷深凹带厚度接近100 m,向金湖西斜坡带逐渐减薄(图2);阜2-3亚段TOC为0.5%~1.5%,分布广泛。从两口重点井TOC的纵向分布规律看,阜2-1、阜2-2的TOC含量都高于阜2-3亚段。因此,阜二段纵向上虽然TOC差异较大,但变化规律一致,以阜2-1、阜2-2两个页岩段的TOC含量稍高,表明这两个页岩层段具有更高的生烃潜力。

    依据纵向上E1f4泥页岩的TOC含量变化特征,将E1f4进一步划分为两个亚段(图2图3)。阜4-1亚段TOC为1%~1.5%,主要分布在金湖、高邮、溱潼凹陷,海安和盐城凹陷分布局限,厚度薄。阜4-2亚段TOC为0.5%~1%,主要分布在金湖、高邮凹陷,厚度最大140 m,溱潼凹陷次之,海安和盐城凹陷也有残存。从重点井金湖凹陷崔2井阜四段烃源岩TOC变化也可以看出,阜4-1亚段TOC含量为0.5%~2.4%,略高于阜4-2亚段,纵向非均质性明显。

    苏北盆地阜二段、阜四段两套泥页岩虽然纵向非均质性明显,横向非均质性在同一沉积相带内各凹陷略有差异,同一凹陷不同地区和构造单元的泥页岩地球化学特征差异不明显,虽有个别异常点,但总体并无变化规律可循。苏北盆地阜宁组两套泥页岩地球化学特征在纵向、横向的分布特点主要与沉积特征有关。晚白垩世—古新世大型内陆坳陷沉积特征决定了区内E1f2和E1f4沉积相带规模巨大,跨构造单元,跨海陆区域,且具单一沉积中心的特征[10]。该时期,断层(包括凹陷的边界断层)虽然控制地层厚度,但并不控制沉积相,导致苏北盆地各凹陷均属同一沉积相带或沉积相变化不大,如高邮、金湖、海安、盐城、阜宁凹陷E1f2期均为半深湖—深湖相(金湖凹陷和高邮凹陷西部地区在E1f2沉积早期为浅湖相);同一凹陷内部斜坡带和深凹带沉积相带变化也不大,正是这一沉积特征决定了苏北盆地E1f2和E1f4满盆深湖,腐泥型泥页岩遍及全盆,且横向上非均质性不明显,各凹陷可对比。纵向上,苏北盆地晚白垩世—古新世在大型内陆坳陷背景下,发育3个次级断拗演化旋回,其中E1f2、E1f4均形成于拗陷演化阶段[17]。频繁的断拗转换,导致纵向上沉积相变较快,泥页岩非均质性强。

    有机质类型是衡量烃源岩质量的指标,不同类型有机质反映生烃母质的质量,不同的生烃母质其生油能力也不同,生油门限值和生烃过程也有一定差别[18]。本次有机质类型根据大量热解数据并结合有机岩石学分析结果进行评价。

    大量热解氢指数HI—Tmax 分析资料显示,苏北盆地阜宁组阜二段和阜四段有机质类型复杂,I型到III型均有发育。阜二段主要是Ⅰ型(腐泥型)、II1型(以腐泥为主的混合型)干酪根,后者主要为Ⅱ2—Ⅲ型(腐殖型)、少数Ⅱ1型(以腐殖为主的混合型)。

    根据干酪根统计数据可以看出(表3),E1f2泥页岩Ⅰ—Ⅱ1型干酪根所占比例最大,达52%~84%,明显好于E1f4段;E1f4段泥页岩Ⅰ—Ⅱ1型干酪根占35%~51%;横向上,E1f2泥页岩自西向东,Ⅰ—Ⅱ1型干酪根比例增大(表3),东部海安和盐城凹陷泥页岩有机质类型好于西部高邮和金湖凹陷,这与有机质丰度变化相似;而E1f4泥页岩有机质类型分布特征则相反,Ⅰ—Ⅱ1型干酪根主要分布在高邮凹陷深凹带,并且西部金湖和高邮凹陷明显好于东部盐城和海安凹陷(表3),这主要与沉积相发生变化有关[19]

    表  3  苏北盆地各凹陷泥页岩有机质类型百分含量统计表(%)
    Table  3.  Statistical table of percentage content of organic matter types in each depression of the Subei Basin
    层位分析项目金湖凹陷高邮凹陷海安凹陷盐城凹陷溱潼凹陷
    IⅡ1Ⅱ2IⅡ1Ⅱ2IⅡ1Ⅱ2IⅡ1Ⅱ2IⅡ1Ⅱ2
    阜二段热解2834231521313315245321276810635302411
    阜四段热解5017337442920637322543539228274124
    下载: 导出CSV 
    | 显示表格

    全岩有机显微组分数据显示,苏北盆地阜宁组显微组分以腐泥组为主,镜质组和壳质组含量较高,惰性组含量较低。其中腐泥组的来源主要是藻类体及其降解产物,标志藻类微生物的生源输入,而镜质组、壳质组和惰性组则代表陆生高等植物的生源输入[9]

    对苏北盆地样品的全岩有机岩石学统计分析表明,苏北盆地阜二段泥页岩有机显微组分相对含量中,平均含腐泥组47.3%,壳质组9.1%,镜质组35.2%,惰性组8.6%。主要显微组分为腐泥组和镜质组,含少量壳质组(主要是孢粉体)、惰性组。苏北盆地阜四段泥页岩有机显微组分相对含量中,平均含腐泥组42.2%,壳质组8.5%,镜质组41.8%,惰性组7.5%。与阜二段泥页岩比较,阜四段泥页岩相对贫腐泥组、壳质组,相对富惰性组和镜质组,有机质类型相对差些,与热解结果相符合。显微组分的这种分布和组成模式反映了有机质水生和陆生的双重来源[20]

    由于苏北盆地各凹陷均属同一沉积相带,如高邮、金湖、海安、盐城、阜宁凹陷E1f2期均为半深湖—深湖相(金湖凹陷和高邮凹陷西部地区在E1f2沉积早期为浅湖相),因此导致腐泥组是主要的生烃有机质,其富集程度和分布范围对页岩油富集规模影响较大。本研究区腐泥组中层状藻类体和沥青质体含量占绝对优势,主要来源于降解的藻类体(图4ch)。层状藻类体极为发育,呈细长条状顺层分布,形态保存完整,呈黄色荧光(图4abf);部分样品中见密集分布的线形藻类薄层(图4d),呈橙黄色荧光[21-22];沥青质体或藻纹层中可见发黄绿色强荧光的结构藻类体,主要为葡萄球藻,其次为个体较小的甲藻(图4egh)。这些结构藻类体降解后在纹层中均有残迹存在,是最重要的生烃母质。

    图  4  阜宁组阜二段、阜四段烃源岩有机显微组分照片
    a. 高邮凹陷单1井阜二段2 101.8 m灰黑色泥岩层状藻类体显微照片;b. 海安凹陷安24井阜二段3 034.9 m灰黑色泥岩层状藻类体显微照片;c. 金湖凹陷崔19井阜二段1 491.1 m沥青质体显微照片;d. 金湖凹陷河参1井阜二段3 151 m灰黑色泥岩层状藻类体显微照片;e. 盐城凹陷新朱1井阜二段2 729.8 m灰黑色泥岩沥青质体、结构藻类体显微照片;f. 金湖凹陷戴1阜二段1 636 m灰黑色泥岩层状藻类体显微照片;g. 金湖凹陷河X4井阜四段1 894.2 m深灰色灰质泥岩沥青质体、结构藻类体显微照片;h. 盐城凹陷站1井阜四段2 088.1 m深灰色泥岩矿物沥青基质显微照片;I.海安凹陷陈3井阜四段2 206.7 m孢粉体显微照片。
    Figure  4.  Photos of organic macerals of source rocks of the F2 and F4 Members of Funing Formation

    源于高等植物碎屑的镜质体反射率(Ro)随热演化程度的升高而稳定增大,并且有相对广泛、稳定的可比性。而镜质体测试的可靠性和有效性一直备受研究人员关注,目前镜质体反射率的测量还有一些不足之处,比如有机质类型与镜质体反射率的关系,某些有机质类型对镜质体反射率具有抑制作用。许多学者均指出, 壳质组、藻类体占优势的岩石中,镜质体反射率受到抑制[23]。目前,解决镜质体反射率抑制问题的有效方法为FAMM(fluorescence alteration of multiple macerals)技术[24]。为了更好地评价镜质体反射率测定结果的合理性,在开展镜质体反射率测定的同时,对个别样品开展了FAMM分析,使苏北盆地阜二、阜四段烃源岩成熟度评价更趋于合理。

    镜质体反射率测试结果表明,各凹陷阜二段—阜四段泥页岩镜质体反射率总体随深度的增高而增大,但同一深度段镜质体反射率差异明显,这可能因为各凹陷不同地区古地温存在一定的差异,同时不同地区泥页岩的有机质类型存在差异,从而会导致镜质体反射率抑制程度不同。另外,各凹陷在2500~4000 m深度段,其镜质体反射率值较上部深度段偏低的特点,这可能主要与该深度段样品主要处于深洼区,泥页岩有机质类型相对较好,镜质体反射率受抑制程度相对大相关,这为FAMM分析结果所证实。图5为溱潼凹陷鲁1井2965.62 m深度段灰黑色灰质泥岩样品(阜四段,有机质类型属Ⅱ1)FAMM分析等效镜质体反射图,可见该样品等效镜质体反射率值为0.76%,镜质体反射率抑制值为0.20%,这意味着镜质体反射率Ro值约为0.56%,该样品的实测镜质体反射率Ro值为0.55%,两者结果相吻合。而对于有机质类型为Ⅲ型的泥页岩样品,FAMM分析结果显示其镜质体反射率抑制程度很低或无抑制现象,镜质体反射率实测值可以代表其真实成熟度值。

    图  5  溱潼凹陷鲁1井2965.62 m灰黑色灰质泥岩FAMM分析等效镜质体反射图
    Figure  5.  FAMM analysis of equivalent vitrinite reflectogram of a gray black grey mudstone from well Lu1 in Qintong Sag, 2965.62 m

    研究表明(图6),阜二段烃源岩成熟度总体大于0.8%,除了高邮、溱潼凹陷深凹带为高成熟生烃阶段(Ro>1.2%),其他地区,包括高邮斜坡带、金湖、溱潼、盐城、海安斜坡带泥页岩成熟度均小于1.0%,处于成熟阶段,主要以生油为主。阜四段 Ro总体上大于0.5%,为0.5%~0.7%,处于低熟—成熟生烃阶段,除高邮凹陷深凹带、金湖三河次凹和龙港次凹、溱潼凹陷深凹带泥页岩成熟度相对较高,大于0.7%,Ro 最大为 1.2%,总体上成熟度低于阜四段。

    图  6  苏北盆地各重点凹陷成熟度平面分布图
    Figure  6.  The plane distribution of maturity of major depressions in the Subei Basin

    苏北盆地阜宁组生油岩的演化严格受断陷制约[25],断陷深凹有机质演化最高,是成熟油中心形成的中心区;而广阔的斜坡和低凸起演化程度相对较低。盆地东部各凹陷生油岩直到新近纪深埋才进入大量生烃的晚期成油凹陷,而中部金湖、高邮及溱潼凹陷则是一类古近系沉积时期就已进入生烃门限的早期成油凹陷,从而决定不同地区原油的成熟度不同。

    为了获取泥页岩矿物组成特征,对苏北盆地重点凹陷阜二、阜四段泥页岩开展全岩和黏土X射线衍射分析。横向上,阜二段和阜四段不同凹陷矿物组成类似,含量有差异。阜二段各凹陷,以碳酸盐矿物和黏土矿物为主,石英和方沸石含量次之,少量黄铁矿、长石,微量石膏(表4)。溱潼凹陷阜二段未检测出铁白云石,白云石含量较高,而盐城凹陷则与之相反,铁白云石含量相对较高,白云石微量。阜四段矿物组成以黏土矿物为主,次为石英和碳酸盐矿物,少量长石、黄铁矿和石膏,未见方沸石。阜四段泥页岩各凹陷的黏土矿物含量分布于38.7%~53%,高于阜二段28.2%~32.2%。黏土主要以伊/蒙混层矿物为主,同时含有一定量的伊利石,另含少量高岭石和绿泥石。前人研究表明,蒙脱石遇水膨胀能力是四种黏土矿物中最强的,依次为伊蒙混层、伊利石和高岭石[2]。苏北盆地黏土矿物中蒙脱石含量相对较高,页岩遇水易膨胀,对后期的压裂有一定影响。苏北盆地主要脆性矿物包括石英、长石、方解石和白云石,脆性矿物含量不仅对地层中原始裂缝发育有控制作用,而且影响后期压裂改造裂缝的条件。数据显示,苏北盆地阜二段各凹陷脆性矿物分布于49.3%~64.5%,各凹陷均值高达53.1%;阜四段脆性矿物分布于40%~52.8%,各凹陷脆性矿物含量值均在40%以上,说明阜宁组各页岩段脆性矿物含量均较高。整体上,阜二段高邮凹陷、金湖凹陷和溱潼凹陷各页岩段脆性矿物含量平均大于50%,黏土矿物含量约30%,对压裂造缝有利。这些特征与中国东部泌阳凹陷核三上(E1h3)页岩及美国 Barnett 页岩、Bakken页岩脆性相似[26],有利于天然缝的形成及后期压裂。高邮凹陷E1f4各页岩段脆性矿物含量大于50%,黏土矿物含量约为38%,有利于岩石的压裂改造。而其他凹陷阜四段脆性矿物含量相对较低,整体约40%。

    表  4  苏北盆地重点凹陷阜二段、阜四段全岩矿物组分
    Table  4.  The whole rock mineral components of the F2 and F4 Members of Funing Formation in the key depressions of Subei Basin
    层段重点凹陷石英钾长石斜长石方解石白云石铁白云石菱铁矿黄铁矿石膏方沸石黏土矿物脆性矿物
    高邮凹陷20.5101.8037.05011.10013.11020.9301.3022.9082.4007.61232.21050.810
    金湖凹陷20.3015.3237.62112.6048.51314.1091.0324.1011.62112.70129.61649.088
    阜二段海安凹陷21.2051.5145.08011.20317.60911.3140.8191.7950.919.91030.71256.013
    盐城凹陷22.7042.5232.42613.2053.01118.4121.1013.4922.19815.68130.20145.337
    溱潼凹陷32.8121.3329.0146.51015.011.0143.2212.1109.0128.2964.212
    高邮凹陷30.1931.7027.81312.3012.6154.2170.7982.1131.70138.70652.811
    金湖凹陷25.6022.8215.5188.2095.21819.3011.5132.8311.00741.21243.091
    阜四段海安凹陷22.0981.0784.09511.0442.0485.0112.05253.03340.045
    盐城凹陷20.0321.51612.0347.0152.0331.0174.0322.51449.02640.547
    溱潼凹陷18.0322.8186.3128.0657.61.0203.30244.20741.811
    下载: 导出CSV 
    | 显示表格

    纵向上,以金湖凹陷河参1井阜2-2和阜2-3亚段(分界深度3138 m)为例(图7),除了个别泥质灰岩外,金湖凹陷河参1井阜2-2和阜2-3泥页岩主要组成矿物为黏土、石英、碳酸盐、方沸石和长石。其中阜2-2亚段黏土矿物含量一般为20%~30%,以伊/蒙混层矿物占主体(相对百分含量55%左右),方沸石含量一般为7%~22%,并且由浅至深含量呈增高的趋势;而阜2-3段黏土矿物含量可达35%左右,同样以伊/蒙混层矿物占主体(相对百分含量55%左右)。可见,阜2-2亚段相对贫黏土矿物,并且由阜2-2顶部至阜2-3下部,黏土矿物含量总体上呈现增高的趋势;方沸石含量由阜2-2顶部至底部则具有增高的特征,总体与碳酸盐矿物含量呈反消长关系;而在阜2-3亚段,个别样品黏土矿物含量低,石英和长石矿物含量高,且不含方沸石矿物。

    图  7  金湖凹陷河参1井阜二段全岩矿物组成图
    Figure  7.  Mineral composition of the 2nd Member of Funing Formation, Jinhu Sag, Hecan 1 well

    对采集的阜宁组阜二段、阜四段泥页岩进行了孔隙度分析,部分样品开展了渗透率测定,由于泥页岩本身的易碎性,获取的物性数据相对较少,但是测试结果仍然能反映该段物性相对较好,结果见表5

    表  5  苏北盆地重点凹陷阜二、阜四段泥页岩孔隙度和渗透率统计表
    Table  5.  Statistical table of shale porosity and permeability in the 2nd and 4th Members of Funing Formation of the key sags in the Subei Basin
    层段重点凹陷孔隙度范围/%孔隙度平均值/%渗透率范围/10−3 μm2渗透率平均值/10−3 μm2
    高邮凹陷1.613~32.83413.22525.23325.233
    金湖凹陷3.761~17.9128.5610.0940.094
    阜二段海安凹陷1.441~12.8627.1320.0080.008
    盐城凹陷2~27.77111.962
    溱潼凹陷1.774~19.9159.6500.004~0.1150.005
    高邮凹陷4.293~27.37117.400
    金湖凹陷11.53011.530
    阜四段海安凹陷
    盐城凹陷16.171~20.31117.712
    溱潼凹陷12.641~26.26419.4450.0230.023
    下载: 导出CSV 
    | 显示表格

    各凹陷阜二、阜四段泥页岩孔隙度存在差异,其中,E1f2实测孔隙度平均10.1%,渗透率相差较大,最大为25.2×10−3 μm2(偏高可能与裂缝有关),最小0.004 ×10−3 μm2,平均6.32×10−3 μm2;E1f4实测孔隙度平均值16.52%,渗透率测点少,结果为0.023×10−3 μm2。通过与泌阳凹陷核三段上部页岩基质孔隙度4%~6%、渗透率(0.0001~0.0009)×10−3 μm2对比可知,苏北盆地阜宁组阜二段、阜四段页岩物性总体相对较好,具有一定的储集条件。另外,各凹陷阜二段、阜四段泥页岩孔隙值总体随埋藏深度的增加呈降低趋势,显示压实成岩作用是泥页岩孔隙度大小的重要制约因素。

    泥页岩储集空间类型、大小和排布不仅影响页岩的物性,而且还影响页岩油气的原地赋存与聚集[27]。在大量岩心观察及扫描电镜分析的基础上,结合压汞、低温液氮吸附测试结果以及前人研究成果,研究了阜二和阜四泥页岩储集空间孔缝类型与孔隙结构(图8)。苏北盆地阜宁组阜二段和阜四段泥页岩储集空间类型以裂缝和微孔隙为主,是页岩油的主要赋存空间[28]

    图  8  苏北盆地阜二段、阜四段泥页岩裂缝和孔隙类型图
    a.高邮凹陷临1井阜二段2 723.0 m灰色灰质泥岩微裂缝照片;b.高邮凹陷富深X1阜四段3 328.4 m灰黑色泥岩层理缝照片;c.高邮凹陷临1井阜二段2 723.0 m灰色灰质泥岩黄铁矿粒内孔隙照片;d.金湖凹陷河参1井阜二段3 183.5 m灰色泥岩有机质孔照片;e.盐城凹陷新洋1-5L井阜二段1 686.9 m白云石黏土矿物间孔隙照片;f.高邮凹陷联5-8L井阜四段2 104.2 m黑色泥岩有机质收缩缝照片。
    Figure  8.  Types of cracks and pores of shales in the F2 and F4 Members of Funing Formation

    在宏观尺度上,苏北盆地发育4类裂缝,分别为平移式剪裂缝、正向剪裂缝、顺层缝、正向剪裂缝,裂缝内多被方解石充填,裂缝发育处可见油气显示。泥页岩中微裂缝及层理缝较为常见,通常尺寸在纳米级-微米级,主要为沉积形成的层理缝及后期构造活动引起的微裂缝,期间通常有沥青充填,为主要的储集空间类型。另外,阜宁组阜二段、阜四段泥页岩样品氩离子抛光+扫描电镜分析发现,泥页岩样品中有机质颗粒与无机矿物颗粒之间均发育有20~100 nm不等宽度缝隙-有机质收缩缝,其成因与有机质在热演化过程中由于生烃作用,干酪根体积发生收缩有关。

    苏北盆地阜二段、阜四段泥页岩发育粒(晶)间孔隙、粒(晶)内孔隙和有机质孔隙等微孔隙。粒(晶)间孔隙在研究区页岩中广泛发育,是主要的微孔隙,孔径通常为数百纳米-微米级,孔隙数量与相应矿物含量紧密相关,主要有以下几类:黏土矿物晶(粒)间孔,呈房室状、长条形或三角形等,发育于伊利石等黏土矿物之间,连通性好;碳酸盐矿物晶(粒)间孔,呈多边形或环形,发育于白云石、方解石等碳酸盐矿物间,多孤立分布;长英质等其他颗粒晶(粒)间孔,多边形或近椭圆形,发育于颗粒周边,多孤立分布[29]。粒(晶)内孔隙可进一步细分为粒(晶)内孔隙、粒(晶)溶孔和基质溶孔,溶孔形态取决于被溶颗粒和溶蚀程度,随着溶蚀程度的增强,其连通性增加。苏北盆地各凹陷阜二段、阜四段泥页岩总体处于生油窗内,故有机质孔隙不发育,但在个别泥页岩样品中也见到少量的有机孔隙,其应为有机质原生孔隙。原生有机质孔的尺度较大,孔径为微米级,其规则的几何形态继承了原始有机质的主要结构特征,原生有机质孔中通常充填同沉积的无机矿物。

    根据压汞和氮吸附联合测定技术对苏北盆地阜二、阜四段泥页岩样品的孔隙结构特征进行了分析,经过简单转化后分别得到微孔孔隙度、介孔孔隙和宏孔孔隙度。高邮凹陷富深X1井阜二段灰黑色泥岩其孔隙的孔径相对较大,以孔径大于50 nm的宏孔为主,宏孔孔隙体积占总孔隙体积75%左右,另含少量孔隙孔径为2~50 nm的介孔,介孔孔隙体积占总孔隙体积25%左右。而溱潼凹陷鲁1井阜二段灰黑色泥岩其孔隙的孔径均很小,以孔径2~20 nm的介孔为主,介孔孔隙体积占总孔隙体积90%以上,微孔孔隙体积占总孔隙体积不足10%。溱潼凹陷帅4井阜四段灰黑色含灰泥岩其孔隙的孔径分布范围相对较宽,含少量孔径大于50 nm的宏孔,宏孔孔隙体积占总孔隙体积6%左右;孔隙孔径为2~50 nm的介孔,占总孔隙体积90%以上;另含极少量孔隙孔径小于2 nm的微孔。当样品不发育裂缝时,该方法得到的孔隙度相对准确,特别是微孔孔隙度和介孔孔隙度之和可以较好地反映泥页岩基质的储集能力[30]

    北美页岩油勘探实践表明[31],获得页岩油勘探突破的层段(无论是泥页岩层还是砂岩层),其油饱和指数(热解S1×100/TOC)大于100。对苏北盆地290个阜二、阜四段泥页岩样品的热解分析结果统计显示,虽然只有12个样品的油饱和指数大于或接近100,但结果表明在泥页岩层系存在具有页岩油勘探潜力的层段。本文以典型页岩油藏高邮凹陷的许X38井和盐城凹陷盐城1井为例,进行解剖,分析该页岩油藏的成藏条件。

    许X38井阜二段泥页岩地质特征统计表显示(表6),两层段岩性分别为块状灰质泥岩和纹层状钙质页岩,有机碳含量较高,分别为2.95%和1.53%;矿物组分均以碳酸盐、长英质为主,次为黏土矿物;孔隙度则块状灰质泥岩较低,为4.13%,纹层状钙质页岩较高,为10.85%;同时地层压力系数为1.233,显示为超压的特征。页岩油地表密度为0.858 g/cm3,粘度为10.54 mPa.s,总体显示正常原油特征。盐城凹陷盐城1井阜二段页岩油富集层段的特征与许X38井有很多共性,该层段岩性以富有机质的块状灰质泥岩和纹层状钙质页岩为主,脆性矿物含量相对较高,层理缝与裂缝发育,成熟度处于生油高峰期,同时地层具有异常高压。

    表  6  许X38井、盐城1井试油层地质特征统计
    Table  6.  Statistical table of geological characteristics of Xu X38 well and Yancheng 1 well
    井号页岩层岩石相TOC/%Ro/%脆性矿物/%黏土/%孔隙度/%页岩油密度/(g/cm3页岩油粘度/mPa·s压力系数
    盐城1井E1f2块状灰质泥岩2.1620.77147.12375.3210.88721701.600
    E1f2纹层状钙质页岩1.88440.43157.4013.711
    许X38井E1f2块状灰质泥岩2.9510.92270.10127.5424.1310.85810.5441.233
    E1f2纹层状钙质页岩1.53265.2126.04010.852
    下载: 导出CSV 
    | 显示表格

    页岩油富集层段的典型解剖结果表明,TOC大于2%、Ro大于0.8%是苏北盆地阜宁组页岩油富集的物质基础,高脆性矿物(大于45%)的有利岩相-岩性组合利于层理缝与微裂缝的发育,裂缝发育程度控制页岩油的富集程度与可动用性,异常高压是高产的关键[32-33]。根据上述标准和页岩油气显示特征,结合各钻井取心段岩心烃源岩品质评价结果,对苏北盆地阜二段、阜四段泥页岩层系的有利区进行了预测。平面上,阜二段优质烃源岩主要分布在高邮凹陷及其以东的海安、盐城等凹陷,厚度达到200~300 m,是页岩油勘探的有利区带;阜四段有利勘探层主要分布在高邮深凹、溱潼、金湖凹陷中,厚度120~260 m。其中,高邮和金湖凹陷的有机质丰度较高,成熟度大于0.7%,以I型干酪根为主,是阜四段优质“生油岩”,属于勘探页岩油气的有利区带。纵向上,阜2-1,阜2-2两个页岩段最有利,阜2-3次之。

    (1)苏北盆地阜宁组两套泥页岩有机质丰度较高,类型较好,阜宁组阜二段烃源岩的有机质丰度高于阜四段,烃源岩类型优于阜四段。成熟度方面,阜二段整体处于成熟阶段,阜四段处于低熟阶段,均进入生烃门限。苏北盆地阜宁组两套泥页岩均具备形成页岩油的物质基础。

    (2)苏北盆地阜宁组两套泥页岩矿物成分主要为黏土、碳酸盐矿物、石英等;阜二段各凹陷脆性矿物含量均值大于50%,黏土含量低于35%,有利于页岩油的开采,对于天然缝的形成及后期压裂造缝均具备良好的条件。苏北盆地阜宁组两套泥页岩储集空间包括微孔隙和裂缝,具备较好的储集物性条件。

    (3)页岩油富集层段的典型解剖结果表明,TOC大于2%、Ro大于0.8%是苏北盆地阜宁组页岩油富集的物质基础,高脆性矿物(大于45%)的有利岩相-岩性组合利于层理缝与微裂缝的发育,裂缝发育程度控制页岩油的富集程度与可动用性,异常高压是高产的关键。

    (4)通过对苏北盆地阜宁组阜二段、阜四段的基本石油地质条件分析,指出苏北盆地高邮凹陷、海安凹陷及盐城凹陷深凹带地区是阜二段页岩油勘探的有利区带,阜2-1、阜2-2两个页岩段最有利,阜2-3次之;阜四段有利勘探层主要分布在高邮深凹、溱潼、金湖凹陷中,其中,高邮和金湖凹陷的有机质丰度较高,成熟度大于0.7%,以I型干酪根为主,是阜四段优质“生油岩”,属于勘探页岩油气的有利区带。

  • 图  1   三水盆地位置及地质简图

    a.南海北部陆域火山岩盆地分布(据文献[13]进行修改),b.三水盆地地质简图。

    Figure  1.   Location and geological map of Sanshui Basin

    a. the distribution of volcanic basins to the northern part of South China Sea (modified from reference [13]), b. the geological map of Sanshui Basin.

    图  2   三水盆地玄武岩TAS图解

    橙色线为碱性-亚碱性界线,据文献[28]。

    Figure  2.   TAS diagram of basalt in Sanshui Basin

    The orange line is the alkaline-subalkaline boundary, according to reference[28].

    图  3   三水盆地玄武岩稀土及微量元素分布

    a.三水盆地玄武岩球粒陨石标准化稀土元素配分图,b.原始地幔标准化微量元素蛛网图;原始地幔以及球粒陨石数据来自文献[28],LCC(下地壳)和UCC(上地壳)数据来自文献[29],U1500(约33 Ma)为南海扩张初期洋壳样品,数据来自文献[30];a、b图例相同,ZD、WJG、DQC及STC含义同表1

    Figure  3.   Distribution of rare earth and trace elements in basalts in Sanshui Basin

    a.trace element pattern, b.REE pattern of the basalt; data are normalized to primitive mantle and chondrite of [28], LCC (lower continental crust) and UCC (upper continental crust) is from [29], U1500 (about 33 Ma) are the ocean crust of SCS from [30]; the legends of a and b are the same, and the meanings of ZD, WJG, DQC and STC are same as those in Table 1.

    图  4   三水盆地玄武岩40Ar/39Ar测年结果

    Figure  4.   40Ar/39Ar dating results of basalt in Sanshui Basin

    图  5   三水盆地玄武岩Haker图解

    Figure  5.   Haker diagram for basalts in Sanshui Basin

    图  6   三水盆地亚碱性-碱性玄武岩FeOT、Na2O含量回归校正

    a.FeOT回归校正,b.Na2O回归校正;ZD-紫洞,WJG-王借岗。

    Figure  6.   FeOT and Na2O regression correction of sub-alk (ZD) and alk (WJG) basalts

    a.regression correction of FeOT, b. regression correction of Na2O; ZD-ZiDong, WJG-WangJieGang.

    图  7   亚碱性(ZD)-碱性(WJG)玄武岩熔融柱模型FeO-Na2O关系图

    P0表示部分熔融作用发生时的压力,Pf表示部分熔融作用结束时的压力;ZD-紫洞,WJG-王借岗。

    Figure  7.   FeO-Na2O diagram of sub-alk (ZD) and alk (WJG) mantle melting column

    P0 represents the pressure when partial melting occurs, and Pf represents the pressure at the end of partial melting; ZD-ZiDong, WJG-WangJieGang.

    图  8   三水盆地源区性质(La/Yb)N-(Sm/Yb)N图解

    Figure  8.   Mantle source (La/Yb)N-(Sm/Yb)N diagram of Sanshui Basin

    图  9   三水盆地火山岩年龄分布

    年龄数据来自[16],[17]及[21]。

    Figure  9.   Age distribution of volcanic rocks in Sanshui Basin

    Age datas are from [16], [17] and [21].

    图  10   三水盆地演化模式及其与南海演化的关系

    Figure  10.   The evolution model of the Sanshui Basin and its relationship with the evolution of the South China Sea

    图  11   三水盆地玄武岩与OIB、MORB、玳瑁海山以及U1500样品源区对比

    彩色箭头为不同区域样品熔融柱模型计算结果,箭尾和箭头分别为部分熔融作用开始和停止时的的源区特征;彩色区块为前人对不同区域样品源区范围的计算结果,其中夏威夷OIB、东太平洋海岭及中大西洋洋脊MORB源区据文献[52];灰色实线(近垂直)为固体地幔在不发生熔融条件下绝热上升线,据文献[52];灰色虚线为熔融分数等值线,二辉橄榄岩固相线及熔融分数等值线据文献[53];F-部分熔融分数;U1500 MORB源区计算结果据文献[30]。

    Figure  11.   Comparison of basalt source in Sanshui Basin with OIB, MORB, Daimao seamount and U1500 samples.

    The colored arrows are the calculation results of the melting column model for samples in different regions, the arrow tails and arrows represents the source area characteristics when partial melting starts and stops respectively; the colored blocks are the calculation results of the source area of the samples in different areas, while Hawaii OIB, the Eastern Pacific Rise and the Mid-Atlantic Ridge MORB source areas are based on [52]; the solid gray line (near vertical) represents the solid mantle adiabats, according to [52]; the gray dashed line is the melt fraction isopleths, according to [53]; F-partial melting fraction; the source of U1500 MORB according to [30].

    表  1   三水盆地玄武岩野外及镜下特征

    Table  1   Field and microscopic characteristics of basalts in Sanshui Basin

    采样地区野外特征镜下结构主要矿物及含量矿物特征
    紫洞(ZD)灰黑色、块状构造,露头呈现明显的柱状节理间粒-间隐结构橄榄石(1%~3%)、单斜辉石(10%~12%)、斜长石(15%~19%)橄榄石无色(0.2~0.3 mm),他形粒状包裹于辉石颗粒中;辉石(2 mm)具筛状熔蚀特征,自形短柱状;斜长石(2~6 mm),发育聚片双晶,可见环带结构。
    王借岗(WJG)黑色、块状构造间隐结构橄榄石(3%~5%)、辉石(10%~15%)、斜长石(20%~36%)橄榄石呈椭圆形粒状(1.5~3 mm)。部分细粒橄榄石被具有环带的辉石包裹在核部。单斜辉石裂隙发育,多见呈八边形的横切面。
    邓群村(DQC)黑色、块状构造间隐结构辉石(5%~10%)、斜长石(约20%)辉石(1 mm)分为两类,一类为未发生变质的新鲜辉石,呈他形,另一类为表面发生滑石化的辉石。
    石头村(STC)黑色、块状构造间粒-间隐结构辉石(约15%)、斜长石(约15%)单斜辉石多见呈八边形的横切面,亦可见发育裂纹,发育较弱的环带。斜长石自形板状,发育清晰、完整的环带结构。部分长石具有熔蚀结构。基质具间隐结构,主要为斜长石微晶。
    下载: 导出CSV

    表  2   三水盆地玄武岩主量元素测试及标准矿物计算结果

    Table  2   Major element and CIPW results of basalts in Sanshui Basin

    主量元素含量/(wt%) 标准矿物计算/%
    样品编号SiO2Al2O3TiO2Fe2O3Fe2O3TFeOCaOMgOK2ONa2OMnOP2O5FeOTQOrAbAnNeDiHyOlMtIlHmAp
    紫洞ZD-201-A51.6615.881.963.437.017.866.631.613.310.160.5010.100.309.4928.0023.740.009.6718.950.004.973.720.001.16
    ZD-20151.7716.201.953.396.767.966.331.643.350.160.509.820.499.6728.3124.350.009.5717.830.004.923.700.001.16
    14SSZD-N50.9815.842.0311.437.965.851.713.570.150.4910.280.0010.1730.4022.310.0011.4114.410.006.273.890.001.15
    14SSZD-S251.3515.631.9110.977.576.282.043.650.150.459.860.0012.1231.1120.380.0011.5811.192.746.183.650.001.05
    ZD-10152.4615.981.892.976.857.516.172.073.500.140.479.520.0012.2429.6221.780.0010.0616.231.114.313.580.001.08
    14SSZD-S152.4416.001.9110.797.465.222.003.560.150.459.712.1511.8730.3521.930.009.9512.940.006.113.660.001.05
    ZD-20251.4416.162.016.314.348.016.041.653.350.160.5110.032.6610.0329.2024.870.009.9312.940.005.243.920.001.22
    ZD-20351.7016.052.005.534.967.685.811.983.630.150.529.940.7311.9231.3722.090.0010.6213.000.005.183.880.001.22
    18SS082-151.3116.252.020.0011.206.878.245.311.663.330.140.5310.081.309.8628.4224.670.0010.5414.880.005.213.870.001.25
    18SS082-251.8416.122.030.0010.827.948.175.151.803.380.150.539.740.0310.7428.8723.690.0011.2517.370.002.933.880.001.24
    王借岗WJG-20147.2616.782.855.354.838.547.171.764.510.150.819.64 0.0010.3926.6620.336.2513.050.008.277.765.420.001.87
    WJG-20347.8017.362.794.705.208.476.581.684.450.140.829.060.009.9228.9222.464.7211.130.008.836.825.300.001.91
    WJG-20447.0517.272.764.815.538.786.781.694.370.150.819.360.009.9825.7422.556.0712.410.009.176.975.250.001.87
    14SS012c46.5216.922.8811.438.607.002.203.580.150.7210.280.0013.1322.3823.744.4311.490.0011.506.155.510.001.69
    14SS012b46.8616.652.8211.048.977.092.203.510.150.729.930.0013.0822.1623.324.2213.320.0010.915.935.390.001.68
    14SS01246.8916.882.7610.998.677.232.243.460.150.739.890.0013.3122.8024.093.6211.440.0011.855.915.280.001.71
    18SS083-347.7317.022.7910.578.438.536.531.903.880.150.889.510.0011.3425.0923.624.3810.790.0015.601.765.360.002.07
    石头村14SS004-247.7417.402.7912.119.705.081.712.830.150.4910.89 0.0010.1724.1329.980.0012.337.233.546.145.340.001.15
    18SS079-247.7417.482.8111.798.049.825.411.372.910.150.5310.610.008.1424.8030.910.0012.046.556.764.185.390.001.23
    17SS060-147.7217.342.8511.956.8310.005.291.342.850.170.5010.750.008.0024.3030.780.0012.759.751.446.375.460.001.17
    17SS060-247.9817.712.8111.698.079.955.131.302.720.170.5310.520.007.7523.2332.570.0011.2311.623.003.985.390.001.23
    18SS079-147.9017.282.8211.758.4110.015.231.362.960.150.5410.570.008.0925.2630.160.0013.445.107.773.515.420.001.26
    18SS081-847.9017.492.8411.867.609.905.131.472.710.160.5410.670.008.7523.1431.490.0011.7411.082.124.985.450.001.26
    18SS081-748.1317.362.8111.838.109.945.281.382.560.160.5510.640.008.2421.8432.100.0011.4814.481.074.135.390.001.28
    邓群村17SS063-248.9416.262.7313.066.048.334.021.803.460.231.1611.75 2.7810.7329.4823.670.008.147.990.009.275.220.002.72
    19SS023-149.2515.832.8313.676.527.734.121.613.510.261.1912.313.959.5629.9322.850.006.319.830.009.405.410.002.78
    17SS063-149.1116.332.7012.907.358.553.951.643.370.201.2511.612.149.7928.7424.790.007.9611.580.006.925.180.002.91
    下载: 导出CSV

    表  3   三水盆地玄武岩微量元素测试结果

    Table  3   Trace elements of basalts in Sanshui Basin

    μg/g
    样品编号YLaCePrNdSmEuGdTbDyHoErTmYbLuLiBeScVCrCo
    紫洞ZD-201-A28.7330.1753.386.8828.276.662.176.241.116.051.102.670.462.880.6222.481.8823.08165.40217.6041.94
    ZD-20127.2629.0751.276.5527.066.502.125.951.065.651.062.540.442.770.6021.491.6521.50155.00192.0037.32
    14SSZD-N29.4028.1053.406.6127.406.232.096.231.005.591.062.810.412.420.361.6121.20159.00139.0042.80
    14SSZD-S228.2028.7054.006.5726.706.011.985.910.955.411.022.730.402.450.371.6720.10148.00184.0038.90
    ZD-10127.4629.5651.976.6127.056.342.095.981.065.571.052.580.432.670.6311.141.7522.47164.90199.3040.25
    14SSZD-S128.5029.3054.706.6927.206.112.016.090.975.441.042.780.412.440.371.5620.70151.00196.0040.80
    ZD-20228.8631.2656.356.7827.536.122.155.810.975.821.072.930.442.830.4719.191.6621.52153.10155.7041.29
    ZD-20329.1032.9958.527.0528.696.302.226.091.015.991.123.060.472.930.4810.121.6421.26152.70147.2039.92
    18SS082-130.0027.8051.606.6427.206.442.255.000.995.171.072.400.462.930.3810.501.3522.10177.00165.0062.30
    18SS082-230.6028.1053.606.6927.306.172.175.280.994.901.072.420.472.840.377.571.7121.90185.00173.0060.50
    王借岗WJG-20128.2641.8976.199.0735.987.312.536.721.045.911.072.890.432.660.4228.131.5823.85211.20154.4041.93
    WJG-20329.7042.8677.979.2136.707.432.556.771.045.941.092.980.432.740.4435.391.6822.69206.40116.2043.74
    WJG-20426.4639.9671.278.5233.696.762.336.290.965.470.992.720.402.520.4132.641.5820.69191.00109.7040.45
    14SS012c27.1037.6070.708.6034.707.062.396.691.005.311.002.610.372.070.321.5621.00211.00116.0045.60
    14SS012b28.5039.2074.209.0136.407.512.507.001.065.651.052.800.392.280.341.5123.40217.00153.0043.50
    14SS01226.1037.2070.008.4834.207.022.386.540.995.230.972.530.352.010.301.5020.70197.00119.0038.20
    18SS083-329.5037.1070.209.1035.707.272.425.761.074.991.092.290.382.520.3725.001.5320.60215.00113.0063.10
    石头村14SS004-224.2024.0049.706.4827.406.192.165.960.925.010.912.400.341.980.291.2524.30240.0067.3042.00
    18SS079-225.1023.1046.306.2025.906.092.204.630.914.460.952.090.352.290.3020.001.2024.90256.0066.7055.30
    17SS060-129.2026.2051.806.8429.606.472.176.081.146.001.122.900.462.720.3818.501.3825.40284.0069.3040.40
    17SS060-226.4023.9050.006.2628.806.362.445.030.974.921.012.120.362.220.3021.701.2624.40272.0068.5081.10
    18SS079-125.1022.8048.406.0927.306.342.134.650.934.711.002.120.342.350.3116.501.2024.60263.0072.9058.10
    18SS081-824.5023.0047.606.4427.506.222.254.730.894.440.982.160.372.290.3132.601.1825.40255.0069.8060.30
    18SS081-725.8023.8050.506.1728.006.442.324.850.994.540.992.140.372.360.3016.301.2023.90248.0066.1058.20
    邓群村17SS063-251.4038.0086.3010.5047.8010.903.8610.501.9410.301.935.090.814.790.6714.001.4929.50176.0040.2038.90
    19SS023-150.4032.5070.209.4342.509.853.599.421.789.211.774.650.764.430.6426.101.7730.20169.0056.0066.90
    17SS063-145.9035.1076.2010.2045.0011.004.077.811.588.481.743.750.663.890.5814.301.5030.10168.0043.0064.00
    样品编号NiCuZnGaRbSrNbMoCdInCsBaTaWTlPbBiThUZrHf
    紫洞ZD-201-A113.1066.44113.9021.9220.80418.2452.551.860.110.080.49394.903.280.640.134.600.033.721.20251.806.03
    ZD-20195.2861.32106.3020.7919.03412.2648.291.660.110.080.39374.303.040.600.223.560.033.751.14250.706.02
    14SSZD-N108.0051.10107.0022.4024.30447.0071.800.48402.004.032.413.821.02256.005.82
    14SSZD-S2126.0042.80102.0021.6039.80414.0074.200.36358.004.152.604.271.15276.006.18
    ZD-101108.2067.06113.1022.3740.96412.9655.071.600.130.080.37363.003.410.510.163.890.033.631.29250.805.79
    14SSZD-S1132.0042.90106.0022.0020.50388.0073.200.18370.004.122.914.271.14280.006.22
    ZD-20292.6844.73102.3821.6520.92444.7054.922.640.080.42398.293.170.530.113.120.0216.471.18263.405.72
    ZD-20386.1040.65105.7021.9134.93410.0054.402.810.090.31367.213.130.600.123.290.0110.291.23239.905.35
    18SS082-1101.0064.80156.0022.3020.90451.0048.802.780.250.070.29391.002.84138.000.092.690.023.310.97129.005.40
    18SS082-2108.0062.60161.0022.7024.50437.0050.003.100.220.070.14367.002.91116.000.072.090.013.140.89137.005.68
    下载: 导出CSV
    续表 3
    样品编号NiCuZnGaRbSrNbMoCdInCsBaTaWTlPbBiThUZrHf


    WJG-20179.5738.12101.9119.0734.53774.8069.841.770.080.97693.932.920.440.108.750.037.991.10181.804.13
    WJG-20377.0638.4788.0419.8633.45825.2074.202.900.081.01739.073.540.470.103.190.0212.401.23202.704.37
    WJG-20472.9434.1687.3718.7831.68829.5070.361.730.070.90742.933.700.450.093.000.0217.891.13192.304.32
    14SS012c93.7036.8083.4019.3046.10895.0090.200.55572.005.072.513.781.09155.003.94
    14SS012b98.3040.3082.3019.7046.90901.0098.000.56605.005.312.713.891.67168.004.34
    14SS01290.7037.2078.4019.0045.80874.0089.700.50572.004.922.443.811.36150.003.94
    18SS083-382.0052.30162.0019.1045.90876.0064.602.830.230.080.71579.003.58116.000.061.780.003.690.83101.004.69


    14SS004-240.7045.60100.0022.6032.40768.0053.100.32318.003.132.572.550.73187.004.56
    18SS079-241.8059.20167.0021.1028.80871.0038.101.990.210.071.90291.002.3096.700.131.380.012.270.6294.504.30
    17SS060-134.7049.00116.0021.4022.50914.0041.101.770.090.071.23699.002.570.350.062.030.012.710.75258.005.55
    17SS060-243.0063.60177.0023.2023.60756.0038.102.070.170.071.01519.002.44201.000.061.600.012.530.6798.804.60
    18SS079-140.0062.20171.0022.0027.20693.0039.902.030.170.071.61329.002.24109.000.104.080.002.410.6398.804.17
    18SS081-841.8066.10172.0022.9025.70610.0038.801.980.210.080.37919.002.24128.000.071.540.002.290.6097.504.48
    18SS081-742.8063.80167.0021.5026.80603.0037.701.900.210.070.58407.002.33107.000.071.480.012.440.6793.304.51


    17SS063-226.6039.20138.0023.1036.20507.0045.702.100.140.093.07498.002.690.470.323.870.012.830.92322.006.75
    19SS023-131.1035.70143.0022.7023.00447.0041.102.160.270.1211.50411.002.99177.000.366.700.034.170.85266.007.16
    17SS063-135.5050.50200.0025.0030.20490.0044.902.510.220.092.50464.002.56129.000.493.390.012.710.85128.005.56
    下载: 导出CSV

    表  4   三水盆地玄武岩稀土元素特征值

    Table  4   The characteristic values for REE of basalts in Sanshui Basin

    样品编号 ΣREE ΣLREE ΣHREE LREE/HREE δEu δCe (La/Sm)N (La/Yb)N (Sm/Nd)N (Gd/Yb)N
    ZD-201-A148.66127.5321.136.0354951.0137540.8595642.8495357.0626460.7248781.748391
    ZD-201142.64122.5720.076.1071251.0245220.8605972.8132267.0753810.7390981.73334
    14SSZD-N143.71123.8319.886.2288731.0154990.9126722.8372087.8284460.6996072.077396
    14SSZD-S2143.2123.9619.246.4428271.0044460.9127953.0038657.8976960.6925961.946561
    ZD-101143.59123.6219.976.1902851.0228250.8602572.9328387.4641050.7211721.807326
    14SSZD-S1145.55126.0119.546.4488230.9972110.9065553.0164728.0958490.6911762.014067
    ZD-202150.53130.1920.346.4006881.0870790.8917463.2129987.4470990.6840091.656671
    ZD-203156.92135.7721.156.4193851.0821720.8821313.2939327.5910050.6756581.677244
    18SS082-1140.33121.9318.46.626631.1699540.8863262.7153886.3967850.7285071.377047
    18SS082-2142.37124.0318.346.7628141.1349390.9119612.8647986.6707180.6954071.500245
    WJG-201194.11172.9721.148.1821191.0852930.9003013.60467310.617280.6251342.03861
    WJG-203198.15176.7221.438.2463841.0801070.9029013.62857610.545960.622931.993814
    WJG-204182.29162.5319.768.2252021.0754670.887653.71836210.690780.6173942.014172
    14SS012c180.42161.0519.378.3144041.048340.9124943.35008712.246220.6260252.607968
    14SS012b189.39168.8220.578.2070981.0379520.9169233.28336411.59140.6348272.477477
    14SS012178.2159.2818.928.4186051.0573210.91433.33333312.477610.6315792.625598
    18SS083-3180.26161.7918.478.759611.106330.8944493.2100559.9256270.6265891.844457
    14SS004-2133.74115.9317.816.5092641.0734240.9424342.4388978.1720430.6951152.429
    18SS079-2125.77109.7915.986.8704631.2190460.9143752.3859846.8008170.7234931.631519
    17SS060-1143.88123.0820.85.9173081.0422430.9120522.547246.494070.6725571.80377
    17SS060-2134.69117.7616.936.95571.2759290.963822.3638167.258210.6794871.828359
    18SS079-1129.47113.0616.416.8897011.1484690.970322.2621356.5411120.7145671.59673
    18SS081-8129.18113.0116.176.9888681.2205840.9278742.3260046.7713760.6959441.666757
    18SS081-7133.77117.2316.547.0876661.2198530.9815632.3246846.7990710.7076921.65835
    17SS063-2233.39197.3636.035.4776581.0891351.0238092.1929565.3485080.7016411.768888
    19SS023-1200.73168.0732.665.146051.1243460.9540372.0754874.9461150.7131221.715907
    17SS063-1210.06181.5728.496.3731131.279370.9582462.0071856.083340.7521371.620123
    下载: 导出CSV

    表  5   三水盆地岩浆熔融柱计算结果

    Table  5   Calculation results of mantle melting column in Sanshui Basin

    FeO8.0/%Na2O8.0/%FeOprim/%Na2Oprim/%P0 /GPaPf /GPaT0 /℃Tf /℃F/ %Z0 /kmZf /km
    ZD10.033.4210.092.923.032.251 5171 4719.22101.287376.6719
    WJG10.723.2510.682.723.322.481 5551 50610.06110.392584.01884
      注:FeO8.0、Na2O8.0分别表示样品中的FeO、Na2O在MgO=8%时的含量;FeOprim、Na2Oprim分别表示样品所代表的母岩浆在未发生橄榄石分离结晶时FeO、Na2O的含量;P0T0Z0分别表示部分熔融作用发生时的初始压力、温度及深度;PfTfZf分别表示部分熔融作用结束时的终止压力、温度及深度;F表示压力从P0下降至Pf的过程中的总部分熔融程度。
    下载: 导出CSV

    表  6   地幔源区矿物组成及La、Yb、Sm总分配系数

    Table  6   Mineral composition in mantle source and total partition coefficients of La, Yb and Sm

    岩石类型矿物相/% 总分配系数
    橄榄石单斜辉石斜方辉石石榴石尖晶石LaYbSm
    石榴石橄榄岩0.540.090.170.200.005112780.868120.129968
    尖晶石橄榄岩0.460.180.2800.080.009839220.116340.05835
    三水盆地源区0.510.140.240.060.050.007717570.3361550.075927
    下载: 导出CSV
  • [1]

    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine [J]. Geology, 1982, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    [2]

    Mai H A, Chan Y L, Yeh M W, et al. Tectonic implications of mesozoic magmatism to initiation of cenozoic basin development within the passive south China Sea margin [J]. International Journal of Earth Sciences, 2018, 107(3): 1153-1174. doi: 10.1007/s00531-017-1537-y

    [3]

    Sun W D. Initiation and evolution of the South China Sea: an overview [J]. Acta Geochimica, 2016, 35(3): 215-225. doi: 10.1007/s11631-016-0110-x

    [4]

    Holloway N H. North palawan block, philippines - its relation to asian mainland and role in evolution of South China Sea [J]. AAPG Bulletin, 1982, 66(9): 1355-1383.

    [5]

    Wu J, Suppe J. Proto-South China Sea plate tectonics using subducted slab constraints from tomography [J]. Journal of Earth Science, 2018, 29(6): 1304-1318. doi: 10.1007/s12583-017-0813-x

    [6]

    Xu Y G, Wei J X, Qiu H N, et al. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: preliminary results and a research design [J]. Chinese Science Bulletin, 2012, 57(24): 3150-3164. doi: 10.1007/s11434-011-4921-1

    [7]

    Chen L, Hu J W, Yang D H, et al. Kinematic models for the opening of the South China Sea: an upwelling divergent flow origin [J]. Journal of Geodynamics, 2017, 107: 20-33. doi: 10.1016/j.jog.2017.03.002

    [8] 林间, 李家彪, 徐义刚, 等. 南海大洋钻探及海洋地质与地球物理前沿研究新突破[J]. 海洋学报, 2019, 41(10):125-140

    LIN Jian, LI Jiabiao, XU Yigang, et al. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea [J]. Acta Oceanologica Sinica, 2019, 41(10): 125-140.

    [9]

    Sun Z, Lin J, Qiu N, et al. The role of magmatism in the thinning and breakup of the south China sea continental margin: special topic: the South China Sea ocean drilling [J]. National Science Review, 2019, 6(5): 871-876. doi: 10.1093/nsr/nwz116

    [10]

    Ebinger C J, Yemane T, Woldegabriel G, et al. Late eocene - recent volcanism and faulting in the Southern Main Ethiopian rift [J]. Journal of the Geological Society, 1993, 150(1): 99-108. doi: 10.1144/gsjgs.150.1.0099

    [11]

    Christiansen R L, Foulger G R, Evans J R. Upper-mantle origin of the yellowstone hotspot [J]. GSA Bulletin, 2002, 114(10): 1245-1256. doi: 10.1130/0016-7606(2002)114<1245:UMOOTY>2.0.CO;2

    [12]

    Putirka K D, Perfit M, Ryerson F J, et al. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling [J]. Chemical Geology, 2007, 241(3-4): 177-206. doi: 10.1016/j.chemgeo.2007.01.014

    [13] 阎贫, 刘海龄. 南海及其周缘中新生代火山活动时空特征与南海的形成模式[J]. 热带海洋学报, 2005, 24(2):33-41 doi: 10.3969/j.issn.1009-5470.2005.02.005

    YAN Pin, LIU Hailing. Temporal and spatial distributions of meso-enozoic igneous rocks over south China Sea [J]. Journal of Tropical Oceanography, 2005, 24(2): 33-41. doi: 10.3969/j.issn.1009-5470.2005.02.005

    [14]

    Chung S L, Cheng H, Jahn B M, et al. Major and trace element, and Sr-Nd Isotope constraints on the origin of paleogene volcanism in South China Prior to the South China Sea opening [J]. Lithos, 1997, 40(2-4): 203-220. doi: 10.1016/S0024-4937(97)00028-5

    [15] 董月霞, 肖龙, 周海民, 等. 广东三水盆地双峰式火山岩: 空间展布、岩石学特征及其盆地动力学意义[J]. 大地构造与成矿学, 2006, 30(1):82-92 doi: 10.3969/j.issn.1001-1552.2006.01.010

    DONG Yuexia, XIAO Long, ZHOU Haimin, et al. Spatial distribution and petrological characteristics of the bimodal volcanic rocks from Sanshui Basin, Guangdong Province: implication for basin dynamics [J]. Geotectonica et Metallogenia, 2006, 30(1): 82-92. doi: 10.3969/j.issn.1001-1552.2006.01.010

    [16] 肖龙, 周海民, 董月霞, 等. 广东三水盆地火山岩: 地球化学特征及成因-兼论火山岩性质的时空演化和南海形成的深部过程[J]. 大地构造与成矿学, 2006, 30(1):72-81 doi: 10.3969/j.issn.1001-1552.2006.01.009

    XIAO Long, ZHOU Haimin, DONG Yuexia, et al. Geochemistry and petrogenesis of cenozoic volcanic rocks from Sanshui basin: implications for spatial and temporal variation of rock types and constraints on the formation of South China Sea [J]. Geotectonica et Metallogenia, 2006, 30(1): 72-81. doi: 10.3969/j.issn.1001-1552.2006.01.009

    [17] 袁晓博. 三水盆地新生代岩浆记录与南海早期演化[D]. 中国地质大学(北京)博士学位论文, 2019.

    YUAN Xiaobo. The record of cenozoic magmatism in Sanshui basin and its relationship with the early tectonic evolution stage of the South China Sea[D]. Doctor Dissertation of Chian University of Geoscience (Beijing), 2019.

    [18] 袁晓博, 方念乔. 三水盆地中渐新世火山记录的新建与南海扩张[J]. 地质通报, 2019, 38(4):689-695

    YUAN Xiaobo, FANG Nianqiao. The new volcanics record in sanshui basin and its relationship with the spreading of the South China Sea [J]. Geological Bulletin of China, 2019, 38(4): 689-695.

    [19] 张维, 方念乔. 广东三水盆地始新世火山岩地球化学特征[J]. 地球科学—中国地质大学学报, 2014, 39(1):37-44 doi: 10.3799/dqkx.2014.004

    ZHANG Wei, FANG Nianqiao. Geochemistry characteristics of eocene volcanic rocks in Sanshui basin, Guangdong [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(1): 37-44. doi: 10.3799/dqkx.2014.004

    [20] 杨蜀颖. 南海玳瑁海山与相邻陆域玄武岩的地球化学特征及其构造意义[D]. 中国地质大学(北京)博士学位论文, 2015.

    YANG Shuying. Geochemical characteristics of basalts from the daimao seamount in the South China Sea (SCS) and from the SCS's neighboring lands: implications for the regional tectonic evolution[D]. Doctor Dissertation of Chian University of Geoscience (Beijing), 2015.

    [21] 朱炳泉, 王慧芬, 陈毓蔚, 等. 新生代华夏岩石圈减薄与东亚边缘海盆构造演化的年代学与地球化学制约[J]. 地球化学, 2002, 31(3):213-221 doi: 10.3321/j.issn:0379-1726.2002.03.001

    ZHU Bingquan, WANG Huigfen, CHEN Yuwei, et al. Geochronological and geochemical constraint on the cenozoic extension of cathaysian lithosphere and tectonic evolution of the Border Sea Basins in East Asia [J]. Geochimica, 2002, 31(3): 213-221. doi: 10.3321/j.issn:0379-1726.2002.03.001

    [22] 唐忠驭. 广东三水盆地白垩纪—早第三纪裂谷型火山作用[J]. 广东地质, 1994, 9(1):49-57

    TANG Zhongyu. Cretaceous-eogene rift valley-type volcanism in Sanshui Basin, Guangdong [J]. Guangdong Geology, 1994, 9(1): 49-57.

    [23]

    Ackerman L, Ulrych J, Řanda Z, et al. Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the ceske stredohori volcanic complex, the Ohre Rift, Bohemian Massif [J]. Lithos, 2015, 224-225: 256-271. doi: 10.1016/j.lithos.2015.03.014

    [24]

    Yoder H S. Citation-Classic Origin of basalt magmas - an experimental-study of natural and synthetic rock systems [J]. Current Contents, 1986(39): 14-20.

    [25]

    Shand S J. The problem of the alkaline rocks [J]. Proceedings of the Geological Society of South Africa, 1922, 25: 19-33.

    [26]

    Middlemost E A K. Naming materials in the magma/igneous rock system [J]. Earth-Science Reviews, 1994, 37(3-4): 215-24. doi: 10.1016/0012-8252(94)90029-9

    [27] 焦守涛, 张旗, 葛粲, 等. 碱性岩及碱性与亚碱性岩系列的界线: 基于全球火山岩数据的探讨[J]. 地质通报, 2019, 38(12):1955-1962

    JIAO Shoutao, ZHANG Qi, GE Can, et al. Alkaline rock and the distinction between alkaline and sub-alkaline: a discussion on data of global volcanic rocks [J]. Geological Bulletin of China, 2019, 38(12): 1955-1962.

    [28]

    McDonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium, and cesium in the earth and moon and the evolution of the mantle of the earth [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001-1112. doi: 10.1016/0016-7037(92)90043-I

    [29]

    Gaschnig R M, Rudnick R L, McDonough W F, et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites [J]. Geochimica et Cosmochimica Acta, 2016, 186: 316-43. doi: 10.1016/j.gca.2016.03.020

    [30]

    Yu X, Liu Z F. Non-mantle-plume process caused the initial spreading of the South China Sea [J]. Scientific Reports, 2020, 10(1): 10. doi: 10.1038/s41598-019-56089-4

    [31]

    Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south Eastern Australia utilizing geochemical and experimental petrological data [J]. Journal of Petrology, 1978, 19(3): 463-513. doi: 10.1093/petrology/19.3.463

    [32]

    Langmuir C H, Klein E M, Plank T. Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges[M]//Morgan J P, Blackman D K, Sinton J M. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington, D. C. : Geophysical Monograph Series, 1992: 183-280.

    [33] 梁涛, 罗照华, 李德东, 等. 托云盆地新生代幔源岩浆源区起止深度的限定[J]. 岩石学报, 2008, 24(12):2820-2838

    LIANG Tao, LUO Zhaohua, LI Dedong, et al. Source location identification of cenozoic mantle-derived magma in Tuyon Basin [J]. Acta Petrologica Sinica, 2008, 24(12): 2820-2838.

    [34]

    Wang K, Plank T, Walker J D, et al. A mantle melting profile across the basin and range, SW USA [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B1): ECV 5-1-ECV 5-21. doi: 10.1029/2001JB000209

    [35]

    Cheng L L, Liang T, Zeng L, et al. Mantle melting column software named Calmantle 1.0 and the preliminary discussion on the thickness variation of the Tengchong Cenozoic lithosphere [J]. Earth Science Frontiers, 2012, 19(4): 126-134.

    [36]

    Jones C H, Wernicke B P, Farmer G L, et al. Variations across and along a major continental rift: an interdisciplinary study of the basin and Range province, Western USA [J]. Tectonophysics, 1992, 213(1-2): 57-96. doi: 10.1016/0040-1951(92)90252-2

    [37] 黄海波, 郭兴伟, 夏少红, 等. 华南沿海地区地壳厚度与泊松比研究[J]. 地球物理学报, 2014, 57(12):3896-3906 doi: 10.6038/cjg20141204

    HUANG Haibo, GUO Xingwei, XIA Shaohong, et al. Crustal thickness and poisson's ratio in the coastal areas of South China [J]. Chinese Journal of Geophysics, 2014, 57(12): 3896-3906. doi: 10.6038/cjg20141204

    [38]

    Kelemen P B, Shimizu N, Dunn T. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La And Ce during melt/rock reaction in the upper mantle [J]. Earth and Planetary Science Letters, 1993, 120(3-4): 111-134. doi: 10.1016/0012-821X(93)90234-Z

    [39] 徐义刚, 钟孙霖. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地球化学杂志, 2001, 30(1):1-9

    XU Yigang, ZHONG Sunlin. The Emeishan large Igneous province: evidence for mantle plume activity and melting conditions [J]. Geochimica, 2001, 30(1): 1-9.

    [40] 陈盼盼. 三水盆地晚白垩世-始新世火山-沉积序列对南海北缘构造演化的响应[D]. 博士学位论文中国地质大学(北京), 2018.

    CHEN Panpan. The response of late cretaceous-eocene epoch volcanic and sedimentary sequence in sanshui basin to the tectonic evolution of the Northern margin of Southe China Sea[J]. Doctor Dissertation of Chian University of Geoscience (Beijing), 2018.

    [41] 邹和平, 李平鲁, 饶春涛. 珠江口盆地新生代火山岩地球化学特征及其动力学意义[J]. 地球化学, 1995, 24(S1):33-45

    ZOU Heping, LI Pinglu, RAO Chuntao. Geochemistry of cenozoic volcanic rocks in zhu jiangkou basin and its geodynamic significance [J]. Geochimica, 1995, 24(S1): 33-45.

    [42] 张斌, 王璞珺, 张功成, 等. 珠—琼盆地新生界火山岩特征及其油气地质意义[J]. 石油勘探与开发, 2013, 40(6):657-665 doi: 10.11698/PED.2013.06.03

    ZHANG Bin, WANG Pujun, ZHANG Gongcheng, et al. Cenozoic volcanic rocks in the pearl river mouth and southeast Hainan Basins of South China Sea and their implications for petroleum geology [J]. Petroleum Exploration and Development, 2013, 40(6): 657-665. doi: 10.11698/PED.2013.06.03

    [43] 李思伟. 珠江口盆地惠州凹陷新生代火山岩: 从岩石成因到火山岩储层[D]. 吉林大学博士学位论文, 2020.

    LI Siwei. Cenozoic volcanic rocks in Huizhou Sag of the Pearl River mouth basin: from petrogenesis to volcanic reservoir[D]. Doctor Dissertation of Jilin University, 2020.

    [44] 汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3):413-421 doi: 10.3969/j.issn.1000-0569.2001.03.009

    WANG Yunliang, ZHANG Chengjiang, XIU Shuzhi. Th/Hf-Ta/Hf identification of tectonic setting of basalts [J]. Acta Petrologica Sinica, 2001, 17(3): 413-421. doi: 10.3969/j.issn.1000-0569.2001.03.009

    [45]

    Fitton J G, Saunders A D, Norry M J, et al. Thermal and Chemical Structure of the Iceland Plume [J]. Earth and Planetary Science Letters, 1997, 153(3-4): 197-208. doi: 10.1016/S0012-821X(97)00170-2

    [46]

    Bevins R E, Kokelaar B P, Dunkley P N. Petrology and geochemistry of lower to middle ordovician igneous rocks in wales: a volcanic arc to marginal basin transition [J]. Proceedings of the Geologists’ Association, 1984, 95(4): 337-347. doi: 10.1016/S0016-7878(84)80064-4

    [47]

    Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints [J]. Earth and Planetary Science Letters, 1991, 104(2-4): 381-391. doi: 10.1016/0012-821X(91)90217-6

    [48]

    Hart S R, Hauri E H, Oschmann L A, et al. Mantle plumes and entrainment: isotopic evidence [J]. Science, 1992, 256(5056): 517-520. doi: 10.1126/science.256.5056.517

    [49] 阙晓铭, 李元森, 陈会霞, 等. 深部地幔在白云凹陷的岩浆记录: 基于BY7火山岩的地球化学研究[J]. 华南地质与矿产, 2013, 29(2):105-115

    QUE Xiaoming, LI Yuansen, CHEN Huixia, et al. Geochemistry research on the deep mantle activity in baiyun sag during the cenozoic from the volcanic rocks of well By7 [J]. Geology and Mineral Resources of South China, 2013, 29(2): 105-115.

    [50]

    Zhang G L, Sun W D, Seward G. Mantle source and magmatic evolution of the dying spreading ridge in the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11): 4385-4399. doi: 10.1029/2018GC007570

    [51]

    Zou H B, Fan Q C. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island [J]. Lithos, 2010, 116(1-2): 145-152. doi: 10.1016/j.lithos.2010.01.010

    [52]

    Lee C T A, Luffi P, Plank T, et al. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas [J]. Earth and Planetary Science Letters, 2009, 279(1-2): 20-33. doi: 10.1016/j.jpgl.2008.12.020

    [53]

    Katz R F, Spiegelman M, Langmuir C H. A new parameterization of hydrous mantle melting [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1073.

图(11)  /  表(7)
计量
  • 文章访问数:  1630
  • HTML全文浏览量:  335
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 修回日期:  2020-12-22
  • 网络出版日期:  2021-02-21
  • 刊出日期:  2021-06-27

目录

/

返回文章
返回