Geochemical and clay mineral characteristics of the Holocene sediments on the west coast of Bohai Bay and their implications for environmental and climatic changes
-
摘要: 通过对渤海湾西岸BXZK11孔沉积物黏土矿物、地球化学元素组分、粒度分析以及AMS14C年代测定并与研究区周边6个具有较好年龄控制的钻孔剖面对比,结合黏土矿物蒙脱石/(伊利石+绿泥石)比值以及元素Al/Si和Al/Na比值对气候变化的响应,探讨了渤海湾西岸地区全新世以来沉积环境以及气候变化过程。结果表明,末次盛冰期到8830 cal. aBP,海平面快速上升,海水临近研究区,沉积物以黄河古河道沉积为主,气候温凉略湿;8830~6255 cal. aBP,海侵范围达到最大,研究区主要为潮坪-浅海环境,气候温暖湿润;6255~3650 cal. aBP,海平面逐渐降低,沉积环境为前三角洲沉积,沉积物为黄河三角洲的一期超级叶瓣,气候转为温凉稍湿;3650~2780 cal. aBP,海平面趋于稳定,三角洲不断进积,为三角洲前缘环境,气候向凉干方向变化;2780 cal. aBP至今,古黄河三角洲不断进积,该区变成三角洲平原环境,气候凉干与现今相似。Abstract: Based on the data of clay mineralogy, element geochemistry, grain size and AMS14C dating from the core of BXZK11 collected from the west coast of Bohai Bay and the correlation made with six well dated core profiles surrounding the study area, in addition to the smectite/(illite+chlorite) ratio, Al/Si ratio and Al/Na ratio analysis results, the sedimentary environmental and climatic changes since the beginning of Holocene are discussed for the region in this paper. The results suggest that owing to the rapid sea level rising during the period from the Last Glacial Maximun to 8830 cal. aBP, the sea water was quite close to the study area, the sedimentary environment had been dominated by the paleo-channel of the Yellow River, and a cool and slightly humid climate. During the period of 8830 to 6255 cal. aBP when the transgression reached its peak, the study area had been dominated by tidal flat and shallow sea and a warm and humid climate. From 6255 cal. aBP to 3650 cal. aBP, as the sea level was gradually dropping, this area had been occupied by a prodelta deposit, as one of the super lobes of the Yellow River Delta, under a cool and slightly humid climate. In the period from 3650 to 2780 cal. aBP, the sea level had remained stable to keep the delta continuously progradating as a delta front, while the climate changed to cool and dry. Since 2780 cal. aBP, the ancient Yellow River Delta has been continuously expanding, and the study area become a wide deltaic plain and the climate is cool and dry, similar to that of the present.
-
Keywords:
- clay minerals /
- geochemistry /
- sedimentary environment /
- Holocene /
- the west coast of Bohai Bay
-
北部湾位于南海西北部,北面为我国广西沿海,东面与雷州半岛、海南岛相邻,西面为越南沿海,南面即南海深水盆地,以琼州海峡与南海北部陆架相连。北部湾等深线大体与岸线平行,由海岸向湾内和湾口地区逐渐加深,平均水深约为50 m(图1)。入海河流众多,其中越南沿岸主要有红河,海南岛沿岸有珠碧江、昌化江,广西沿岸有南流江、钦江、防城河等[1-2]。
图 1 北部湾区域图等值线为水深,单位为m;红点为表层悬浮体浓度实测站位;黑色三角为北部湾沿岸主要河流入海口位置(1.Lam River,2.Day,3.Balat,4.Van Uc,5.防城河,6.茅岭江,7.钦江,8.大风江,9.南流江,10.珠碧江,11.昌化江);黑色线段(A、B、C、D)为选取的研究断面;绿色点(a、b)为选取的研究点位。Figure 1. Map of Beibu GulfContours indicate isobaths in meters. Red dots are the investigation position. Black triangles represent the estuaries of the rivers(1.Lam River,2.Day,3.Balat,4.Van Uc,5.Fangcheng River,6.Maoling River,7.Qinjiang River,8.Wind River,9.Nanliu River,10.Zhubi River,11.Changhua River). Black lines represent the selected research section. Green dots are the selected observation places.悬浮体输运过程中的“源”与“汇”是陆-海相互作用研究的核心内容[3-4],对表层悬浮体分布的研究可以为北部湾水质环境和与南海间物质交换等研究提供基础资料。由于北部湾特殊的地理位置,我国于20世纪60年代初与越南合作开展了两次覆盖整个北部湾海域的海洋综合调查[5-6],对北部湾区域水文气候、地质地貌等多个方面进行了研究。此后,我国对北部湾海域独立开展的调查研究多局限于东部海域[7],大多学者主要基于近岸局部海域的现场实测数据开展悬浮体分布与输运研究。
21世纪以来,随着信息技术的不断发展,卫星遥感成为获取大范围海域长时间连续数据的有力手段,为悬浮体浓度(suspended sediment concentration,SSC)的获取提供了更多的可能[8-11]。一些学者基于卫星遥感资料和实测水文泥沙资料,对北部湾悬浮体分布、叶绿素浓度、海表温度和浊度的季节变化趋势进行了研究。北部湾悬浮体分布具有明显地域性特征,琼州海峡和海南岛西部近海SSC由近海向海湾中部逐渐减小[12-13],浓度整体较小,在广西沿海最高值仅为50 mg/L[14]。河流输沙是北部湾悬浮体的主要来源,湾顶的南流江是廉州湾悬浮体的主要物质来源[15],湾西岸的红河携带大量悬浮体入海。河流入海悬浮体在沿岸流的作用下会向外海输运,但大部分会在河口附近沉积[16-18],入海口附近SSC明显较高[19]。海南岛西南海域,受冬季离岸风等影响,海表悬浮体在风浪和潮流作用下发生再悬浮,高浓度悬浮体向深海方向逐减扩展。冬季,在季风作用下北部湾水体垂向混合增强,海湾中部叶绿素浓度升高[20];夏季北部湾水体出现层化,中央海域叶绿素浓度、水体浊度均较低[21-22]。洋流、季风、离岸流、河流入海、近岸地形等,是控制北部湾海域SSC分布的主要因素。利用卫星遥感资料对台风前后SSC及分布特征进行对比,发现台风易造成SSC剧烈变化,如2014年7月“威马逊”台风过境后,越南中东部北部湾海域、雷州半岛西侧SSC增幅明显,海南岛西北部局部地区由台风前的2.86 mg/L增加到7.68 mg/L[23]。但由于受实测数据海域位置的限制,目前基于遥感手段对北部湾表层悬浮体的研究,在部分海域如海湾西部精度不高,且缺乏对SSC季节变化的研究。
本文基于2003—2017年MODIS-Aqua卫星海表反射率数据,利用海南岛西部、琼州海峡、北部湾湾顶和越南沿岸等实测SSC,通过建立遥感反射率和实测表层SSC的拟合关系,实现南海北部湾表层SSC的反演,研究其季节变化规律以及影响机制。
1. 数据及方法
1.1 数据来源
MODIS(moderate resolution imaging spectroradiometer)是美国EOS(地球观测系统)计划的主要传感器之一,其数据可以从NASA官网(https://www.nasa.gov/)免费申请获得。本文收集了2003—2017年MODIS-Aqua卫星每个白天的L1B数据,空间分辨率1 km,空间范围16°~22°N,105°~111°E,用于分析研究海域表层SSC季节变化特征。
风场资料来源于RSS(remote sensing systems)的CCMP(cross-calibrated multi-platform)风场,该资料结合了遥感、浮标以及模型计算结果,时间分辨率6 h,空间分辨率0.25°×0.25°。热带气旋(tropical cyclone,TC)数据来源于Unisys Weather相关网站(http://50.206.172.193/hurricane/w_pacific/index.php)以及美国国家海洋和大气管理局(NOAA)官方网站(https://www.noaa.gov/)。
现场实测资料包括表层SSC数据和河流含沙量数据。实测表层SSC数据来源于越南海洋环境和资源研究所、自然资源部第一海洋研究所、中国海洋大学的现场监测数据,并收集了部分文献资料[7, 24]。实测表层SSC数据用于遥感反射率反演,站位基本覆盖了北部湾北侧、东侧、西侧的悬浮体高浓度区。河流附近含沙量数据包括越南海洋环境和资源研究所提供的红河2009年Balat河口含沙量,以及昌化江下游水体多年月平均含沙量数据[25]。
1.2 遥感反射率反演
利用NASA官网提供的Seadas软件,对MODIS-Aqua卫星的L1B级遥感数据进行除云,削弱太阳耀斑影响,保留反射高值等处理后,将其转换成各波段的遥感反射率(Rrs)数据,最终获得412、443 nm等共10个波段的反射率。
在利用卫星遥感反演海洋表层SSC的研究中,大多数学者都是选取对SSC分布敏感的反射波段进行组合[26]。本研究借鉴Zhang等2010年提出的反演算法来反演表层SSC[27],提取与实测数据在空间和时间上最匹配的反射波段(即555、645、488 nm波段)进行组合,建立反射波段Rrs和实测表层SSC的拟合关系,实现北部湾表层SSC的反演,反演公式见式(1)。
$$\begin{split}{\rm{lo}}{{\rm{g}}_{{\rm{10}}}}{\rm{SSC }}=&0{\rm{.643\;1 + 27}}{\rm{.21 \times }}\left( {{\rm{Rrs555 + Rrs645}}} \right){\rm{ - }}\\&0{\rm{.529\;8 \times }}\left( {\frac{{{\rm{Rrs488}}}}{{{\rm{Rrs555}}}}} \right)\end{split}$$ (1) 式中:Rrs555、Rrs645、Rrs488分别表示555、645、488 nm波段的反射率。通过对悬浮体敏感的555 nm和645 nm波段反射率进行相加增加两者相关性,同时减去488 nm和555 nm波段的反射率比值以削弱叶绿素对反演结果的影响。反演结果决定系数R2为0.84,均方根误差RMSE为3.71 mg/L,图2展示了MODIS遥感反演结果与现场观测数据的拟合关系。
基于每日SSC,通过算术平均的方法,得到北部湾海域2003—2017年多年平均表层悬浮体月均浓度。
2. 北部湾表层SSC分布
2.1 表层SSC区域分布特征
北部湾海域表层SSC整体较低,一般低于50 mg/L,表现出明显的近岸高、远岸低的分布特点。浓度等值线大致沿等深线分布。高SSC区主要集中在广西沿岸主要河流入海口处、海南岛西侧以及红河各个分支入海口处,其中广西沿岸、海南岛西侧和红河三角洲沿岸SSC大于20 mg/L(图3),雷州半岛西侧大面积海域SSC约为5 mg/L,海湾中部大部分海域SSC低于1 mg/L。
2.2 表层SSC季节变化规律
北部湾海域表层SSC全年在量级上差异不大,但仍表现出季节变化特征(图4)。
12月至次年2月,北部湾沉积动力环境表现为冬季特征,SSC量值整体较高(图4a—c)。近岸SSC高值区分布范围较大,但量值逐月减小。12月为湾平均SSC最高的月份,大面积海域SSC大于1 mg/L,在海南岛西侧及越南红河三角洲海域表层SSC超过20 mg/L。
3—5月,北部湾沉积动力环境变化不大,表现为春季特征,SSC较冬季整体下降(图4d—f)。高值区(~20 mg/L)仅分布在几个河流入海口,海南岛西侧浓度仍较高,达10 mg/L。SSC高值水体逐月往陆地方向回退,5月湾中心海域SSC降至0.5 mg/L。
6—8月(图4g—i),表现为夏季特征,近岸SSC有所增大,中部海域SSC仍较低。近岸高值区分布与冬季大体接近,主要集中在河流入海口处,但范围明显减小,冬季高浓度值与近岸浅水再悬浮有关,而夏季高值则与入海泥沙增多有关。在北部湾西岸红河主要支流Balat的入海口处,高浓度表层悬浮体往东方向上分布较远。8月红河三角洲附近海域SSC达到全年最高,在红河支流Van Uc河口附近SSC可超过50 mg/L。
9—11月,表现为秋季特征,北部湾表层悬浮体开始向湾中心扩展,SSC仍较高。越南红河三角洲沿岸SSC高值区开始逐月减小,11月仅在红河支流入海口处有小范围高值分布;但海南岛西侧SSC逐月升高,并向南、向西扩展,11月SSC可达20 mg/L。
纵观整个海湾表层SSC的时间变化,12月至5月北部湾区域(17.1°~21.92°N,105.6°~109.92°E[28])平均SSC一直呈逐月下降趋势,6月开始回升但在9月又有回落,10月为秋季SSC最大月份。12月北部湾区域平均SSC约为3.40 mg/L,为全年最大,12月至次年1月冬季平均SSC约为2.75 mg/L;3—5月SSC均较低,其中5月为全年SSC最低月份,SSC约为1.74 mg/L,春季区域平均SSC约为1.85 mg/L;夏季区域平均SSC约为2.21 mg/L;秋季区域平均SSC约为2.60 mg/L。
从空间分布来看,雷州半岛西侧终年存在着SSC大于2.72 mg/L的水体,12月有较大范围SSC大于7.39 mg/L的水体分布;海南岛西侧SSC的季节变化与雷州半岛较为类似,但在昌化江等河流入海口附近存在终年高值区;广西沿岸也存在SSC高值区,但范围极小;红河三角洲沿岸受红河入海泥沙季节变化影响,在7、8、9、10月高值分布都较为明显,局部海域超过50 mg/L。
2.3 北部湾主要断面表层悬浮体分布
选取北部湾红河主要支流Balat入海口处断面(断面A,图5a)、海南岛西侧19.31°N昌化江入海口附近断面(断面B,图5b)分析河流入海口处高浓度悬浮体月变化及近岸高浓度悬浮体向海湾中部扩展特征,西岸湾口17.6°N附近断面(断面C,图5c)分析红河入海物质向南海输运特征,琼州海峡109.92°E处断面(断面D,图5d)分析北部湾与南海北部陆架悬浮体输运特征,各断面位置如图1所示。12月至次年1月,研究海域低浓度水体向海湾中部扩展较远(图5a—c),近岸在12月存在小范围的高值区。1—4月近岸SSC均较小,琼州海峡南北向水体SSC的梯度较大(图5d)。5月,研究海域各断面近岸SSC开始升高,Balat入海口在8月达到最高,昌化江入海口在6月达到最高。9—11月,近岸仍存在表层SSC较高的水体,但范围和向外扩展距离均较小。琼州海峡北侧即雷州半岛沿岸SSC终年高于南侧,即海南岛沿岸。
3. 北部湾表层悬浮体分布控制因素
根据前人研究,表层SSC分布与风、海洋环流、入海泥沙通量等因素密切相关。
3.1 季风和环流
根据CCMP风场计算的南海北部湾区域平均风场,冬季盛行东北风,平均风速可超4 m/s;夏季盛行偏南风,平均风速小于4 m/s(图5e)。夏季,北部湾西岸表层悬浮体的向东扩展主要受控于季节风向,偏南风Ekman作用下有利于其向海湾中部扩展。冬季,在强北风作用下,近岸出现悬浮体高浓度区,且海湾中部SSC超过1 mg/L。
前人研究发现北部湾表层环流呈现较明显的风生流特征[29-36]。冬季,在风场驱动及地形约束下,越南沿岸表层环流为东南向沿海岸线流动,可将北部湾悬浮体向南海输运(图5c),Balat河口处表层悬浮体向海湾中部扩展不明显(图5a);夏季受增温和淡水径流的影响,北部湾西岸仍为沿岸南下的沿岸流,南向季风有利于近岸表层悬浮体向海湾中部扩展(图5a)。
琼州海峡海流绝大多数时间向西,仅在夏季个别月份西风风速较大时发生转向,而在雷州半岛和琼州海峡东侧,逆时针涡旋流的存在促使其形成现代沉积中心,由此入海泥沙可穿越过琼州海峡向西输运至北部湾[37-40]。
3.2 热带气旋
除季风、环流外,极端天气也是影响北部湾表层悬浮体分布的重要原因。尽管夏季平均风速较小,但在热带气旋经过时,风速短时间内急剧增大,往往会造成表层悬浮体的大幅升高,同时在控制区域环流的基础上进一步影响表层悬浮体的分布。
北部湾是热带气旋发生频率较高的海区[41-42],2003—2017年过境北部湾的各种等级TC共有43个,年均接近3个,其中2013年6月,第5号热带风暴“贝碧嘉”穿过北部湾,过境风速为35~0 m/s。选取2013年6月表层悬浮体分布与多年平均值进行对比(图6),可以看到受台风右侧增强理论的作用,“贝碧嘉”路径右侧的SSC较多年平均值(图6b)明显增大,即SSC变化最剧烈的海域为雷州半岛西侧,SSC增幅超10 mg/L,可达多年平均值的75%;海南岛西北海域SSC增幅也可达50%。而在红河三角洲30 m等深线以浅的近岸浅水区,SSC明显降低,30 m等深线以外的海湾中部SSC则升高。这可能与无风暴时近岸高浓度悬浮体被海洋锋面限制在近岸浅水[43],而风暴加强了水平和垂直混合,使得近岸悬浮体得以向海湾中部输运,因此浅水区SSC降低,深水区SSC升高。
3.3 沿岸河流入海泥沙
北部湾沿岸有众多河流携带悬浮泥沙入海,是影响河口地区SSC分布的主要因素,各河流输沙量主要表现为夏季高、冬季低的季节变化特征[44]。
广西沿岸南流江、钦江输沙量和流量均为夏半年较大[45-46],因此,北部湾湾顶广西沿岸夏季出现小范围SSC较高水体;但冬季沿岸河流处于枯水期,近岸浅水区SSC高值主要受控于增强的海洋动力。
在北部湾西岸,根据收集的2009年红河最大支流Balat河口站含沙量数据(图7),可以看出12月至次年4月入海河流含沙量较小,6—9月雨季含沙量较大。河口断面A及a站(位置如图1)SSC的季节变化及高浓度SSC分布范围与该河流输沙量呈现明显的正相关,而北部湾湾口断面C处SSC季节变化与Balat入海河流含沙量变化无直接关联,说明河流入海物质只影响到河口附近海域。
海南岛第二大河流昌化江入海口位于海南岛西部。依据前人研究中昌化江河口水文资料[25],可以看出昌化江入海口含沙量在12月至次年4月极小,在6—10月较大;除10—12月外,b站(位置如图1)SSC与河流下游含沙量呈正相关(图8)。这说明河流输沙是昌化江河口邻近海域悬浮体的主要来源。冬季12月,尽管昌化江下游含沙量较低,但b站SSC仍较高,与冬季受该海域增强的风浪和海流等海洋动力控制有关。但10月昌化江下游含沙量呈现异常增大,而SSC相对较低,具体原因有待进一步研究。
4. 结论
(1)北部湾海域表层SSC高值区主要分布在红河三角洲邻近海域、广西沿岸河流入海口处和海南岛西部海域,这些海域SSC终年较高,浓度均超过20 mg/L。
(2)北部湾表层SSC呈现明显的季节变化特征,全海域平均SSC季节变化为:冬季、秋季、夏季和春季依次降低。冬季,近岸SSC为年内最高值,可超过50 mg/L;春季,随着冬季风的减弱,北部湾海域表层SSC明显降低;夏季,受河流入海泥沙增多影响,近岸河口附近SSC升高;从9月开始,随着风向转换及径流减弱,北部湾SSC分布开始向冬季特征过渡。
(3)北部湾海域表层SSC影响因素:冬季高浓度悬浮体主要受控于较强的冬季风及波浪;夏季河流入海物质的增多在河口形成高SSC区,但冬季河口的高值区主要受控于海洋动力要素;夏季尽管平均风速较小,但热带气旋可导致局部海域SSC提升,2013年6月热带风暴“贝碧嘉”导致路径右侧表层SSC增幅达75%,从海南岛过境的热带气旋有利于海南岛沿岸物质向湾中心输送。
致谢:在反演过程中得到了广东海洋大学李薛提供的广东海洋大学海洋遥感信息技术实验室MODIS卫星遥感悬浮泥沙资料,在此表示衷心的感谢。
-
图 7 钻孔位置和北黄海与渤海海域12000 cal. aBP以来的海岸线变化[53]
Figure 7. Location of core BXZK11 and coastline changes in the North Yellow Sea and the Bohai Sea since 12000 cal. aBP
图 8 渤海湾西岸由陆向海以及沿海岸线分布钻孔剖面对比图
Figure 8. Stratigraphic panel comparison of cores from land to sea and along the coastal shoreline in the west coast of Bohai Bay
The location of cores is shown in figure 1[20.52].
图 9 BXZK11孔黏土矿物蒙脱石/(伊利石+绿泥石)、元素Al/Si和Al/Na比值与四海龙湾玛珥湖年平均降水量和年平均温度[63]、中国季风区孢粉重建湿润度指数[61]、莱州湾南岸相对海平面[60]和董哥洞石笋氧同位素[62]对比
Figure 9. Correlation of the ratio value of smectite/(ilulite+chlorite)of clay mineral, elements Al/Si and Al/Na from core BXZK11, the mean temperature of the warmest month and the mean annual precipitation of Shihailongwan Maar Lake, the pollen-based moisture index in monsoonal China, the relative sea level of the southern coast of Laizhou Bay, and the stalagmite δ18O data from Nuanhe Cave
表 1 BXZK11孔14C年代测试数据
Table 1 AMS 14C dating of core BXZK11
样品编号 实验室编号 深度/m 材料 δ13C/‰ 惯用年龄/aBP 校正年龄/cal. aBP 中值 范围(1σ) BXZK11S1 462377 6.1 Potamocorbula laevis −2 2700±30 2640 2568~2730 BXZK11S5 485924 6.58 Potamocorbula ustulata −1.5 3400±30 3475 3400~3543 BXZK11S6 485925 7.76 Estellarca olivacea −1.7 3540±30 3640 3555~3716 BXZK11S4 470414 10.3 Nassarius sp. −2.5 3580±30 3695 3609~3776 BXZK11S2 462378 14.95 Anomia sp. 0.7 5660±30 6255 6190~6306 BXZK11S3 462379 16.6 植物碎屑 −27.9 7950±30 8830 8717~8975 -
[1] Driscoll N W, Nittrouer C. Source to sink studies [J]. Margins, 2002, 11: 1-14.
[2] Berglund B E. Human impact and climate changes-synchronous events and a causal link? [J]. Quaternary International, 2003, 105(1): 7-12.
[3] Dobrzańska H, Jerem E, Kalicki T. The Geoarchaeology of River Valleys[M]. Budapest: Archaeolingua, 2004: 1-216.
[4] 王强, 李凤林. 渤海湾西岸第四纪海陆变迁[J]. 海洋地质与第四纪地质, 1983, 3(4):83-89. [WANG Qiang, LI Fenglin. The changes of marine-cotinental conditions in the west coast of the Bohai Gulf during Quaternary [J]. Marine Geology & Quaternary Geology, 1983, 3(4): 83-89. [5] 成国栋, 薛春汀. 黄河三角洲沉积地质学[M]. 北京: 地质出版社, 1997: 73-139. CHENG Guodong, XUE Chunting. Sediment Geology of Huanghe River Delta[M]. Beijing: Geology Publishing House, 1997: 73-139.
[6] 胥勤勉, 袁桂邦, 张金起, 等. 渤海湾沿岸晚第四纪地层划分及地质意义[J]. 地质学报, 2011, 85(8):1352-1367. [XU Qinmian, YUAN Guibang, ZHANG Jinqi, et al. Stratigraphic division of the late Quaternary strata along the coast of Bohai Bay and its geology significance [J]. Acta Geologica Sinica, 2011, 85(8): 1352-1367. [7] 阎玉忠, 王宏, 李凤林, 等. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动[J]. 地质通报, 2006, 25(3):357-382. [YAN Yuzhong, WANG Hong, LI Fenglin, et al. Sedimentary environment and sea-level fluctuations revealed by Borehole BQ1 on the west coast of the Bohai Bay, China [J]. Geological Bulletin of China, 2006, 25(3): 357-382. doi: 10.3969/j.issn.1671-2552.2006.03.006 [8] 陈永胜, 王宏, 裴艳东, 等. 渤海湾西岸晚第四纪海相地层划分及地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(3):747-759. [CHEN Yongsheng, WANG Hong, PEI Yandong, et al. Division and its geological significance of the late quaternary marine sedimentary beds in the west coast of Bohai Bay, China [J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3): 747-759. [9] 陈永胜, 王宏, 李建芬, 等. 渤海湾西岸BT113孔35 ka以来的沉积环境演化与海陆作用[J]. 吉林大学学报(地球科学版), 2012, 42(S1):205-216. [CHEN Yongsheng, WANG Hong, LI Jianfen, et al. Sedimentary environment since 35 ka and terrestrial-marine interaction revealed by borehole BT113 in the western coast of Bohai Bay, China [J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S1): 205-216. [10] 王宏, 陈永胜, 田立柱, 等. 渤海湾全新世贝壳堤与牡蛎礁: 古气候与海面变化[J]. 地质通报, 2011, 30(9):1405-1411. [WANG Hong, CHEN Yongsheng, TIAN Lizhu, et al. Holocene cheniers and oyster reefs in Bohai Bay: palaeoclimate and sea level changes [J]. Geological Bulletin of China, 2011, 30(9): 1405-1411. doi: 10.3969/j.issn.1671-2552.2011.09.009 [11] 李凤林, 王宏, 阎玉忠, 等. 渤海湾西岸滨海平原晚第四纪以来的沉积间断[J]. 地质调查与研究, 2004, 27(3):177-183. [LI Fenglin, WANG Hong, YAN Yuzhong, et al. The significance of the depositional hiatuses on the coastal plain of west Bohai Bay since the late Quaternary period [J]. Geological Survey and Research, 2004, 27(3): 177-183. doi: 10.3969/j.issn.1672-4135.2004.03.008 [12] 李建芬, 王宏, 李凤林, 等. 渤海湾牡蛎礁平原中部兴坨剖面全新世地质环境变迁[J]. 地质通报, 2004, 23(2):169-176. [LI Jianfen, WANG Hong, LI Fenglin, et al. Holocene geo-environmental changes at the Xingtuo section in the central part of the Oyster Reef plain, Bohai Bay [J]. Geological Bulletin of China, 2004, 23(2): 169-176. doi: 10.3969/j.issn.1671-2552.2004.02.011 [13] 范昌福, 李建芬, 王宏, 等. 渤海湾西北岸大吴庄牡蛎礁测年与古环境变化[J]. 地质调查与研究, 2005, 28(2):124-129. [FAN Changfu, LI Jianfeng, WANG Hong, et al. Age and paleoenvironmental change of Dawuzhuang Oyster Reef on the northwest coast of Bohai Bay [J]. Geological Survey and Research, 2005, 28(2): 124-129. doi: 10.3969/j.issn.1672-4135.2005.02.011 [14] 范昌福, 王宏, 裴艳东, 等. 渤海湾西北岸滨海湖埋藏牡蛎礁古生态环境[J]. 海洋地质与第四纪地质, 2008, 28(1):33-41. [FAN Changfu, WANG Hong, PEI Yandong, et al. Palaeoecological environment revealed by the buried Binhaihu Oyster Reef on the northwest coast of Bohai Bay [J]. Marine Geology & Quaternary Geology, 2008, 28(1): 33-41. [15] 商志文, 范昌福, 李冬玲, 等. 硅藻组合指示的渤海湾西北岸两个牡蛎礁体生长环境的差异[J]. 海洋地质与第四纪地质, 2010, 30(5):33-39. [SHANG Zhiwen, FAN Changfu, LI Dongling, et al. Revealing paleo-environment difference of two oyster reefs by diatom assemblages in the northwest coast of Bohai Bay [J]. Marine Geology & Quaternary Geology, 2010, 30(5): 33-39. [16] 商志文, 田立柱, 王宏, 等. 渤海湾西北部CH19孔全新统硅藻组合、年代学与古环境[J]. 地质通报, 2010, 29(5):675-681. [SHANG Zhiwen, TIAN Lizhu, WANG Hong, et al. Holocene diatom assemblages, chronology and palaeoenvironment of the borehole CH19 in the northwestern Bohai Bay, China [J]. Geological Bulletin of China, 2010, 29(5): 675-681. doi: 10.3969/j.issn.1671-2552.2010.05.006 [17] Fan C F, Koeniger P, Wang H, et al. Ligamental increments of the mid-Holocene pacific oyster Crassostrea gigas are reliable independent proxies for seasonality in the western Bohai Sea, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3-4): 437-448.
[18] Xu Q M, Yang J L, Yuan G B, et al. Stratigraphic sequence and episodes of the ancient Huanghe Delta along the southwestern Bohai Bay since the LGM [J]. Marine Geology, 2015, 367: 69-82.
[19] Tian L Z, Chen Y P, Jiang X Y, et al. Post-glacial sequence and sedimentation in the western Bohai Sea, China, and its linkage to global sea-level changes [J]. Marine Geology, 2017, 388: 12-24.
[20] He L, Xue C T, Ye S Y, et al. New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex [J]. Quaternary Science Reviews, 2019, 214: 117-138.
[21] 张树山, 任振纪, 刘春源. 晚更新世以来渤海湾沿岸的海进海退及古气候环境[J]. 河北师范大学学报: 自然科学版, 1996, 20(3):96-102. [ZHANG Shushan, REN Zhenji, LIU Chunyuan. Trimsgression, regression and ancient climatic environment in the littoral of Bohai Sea since Pleistocene epoch [J]. Journal of Heibei Normal University: Natural Science, 1996, 20(3): 96-102. [22] 李凤林, 阎玉忠, 商志文, 等. 渤海西岸全新世气候演化与海陆变迁[J]. 地质学刊, 2014, 38(2):173-186. [LI Fenglin, YAN Yuzhong, SHANG Zhiwen, et al. Holocene climate evolution and land-sea changes on west Bohai Sea [J]. Journal of Geology, 2014, 38(2): 173-186. doi: 10.3969/j.issn.1674-3636.2014.02.173 [23] 王玥铭, 窦衍光, 李军, 等. 16 ka以来冲绳海槽中南部沉积物物源演化及其对古气候的响应[J]. 沉积学报, 2018, 36(6):1157-1168. [WANG Yueming, DOU Yanguang, LI Jun, et al. Sediment provenance change and its response to paleochimate change in the middle Okinawa Trough since 16 ka [J]. Acta Sedimentologica Sinica, 2018, 36(6): 1157-1168. [24] Singer A. The paleoclimatic interpretation of clay minerals in sediments-A review [J]. Earth-Science Review, 1984, 21(4): 251-293.
[25] Chamley H. Clay Sedimentology[M]. New York: Springer-Verlag, 1989.
[26] 刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J]. 中国科学D辑: 地球科学, 2007, 50(11):1674-1684. [LIU Zhifei, ZHAO Yulong, LI Jianru, et al. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: implications for source analysis and East Asian monsoon evolution [J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1674-1684. [27] 刘志飞, COLIN C, TRENTESAUX A, 等. 南海南部晚第四纪东亚季风演化的粘土矿物记录[J]. 中国科学D辑: 地球科学, 2005, 48(1):84-92. [LIU Zhifei, COLIN C, TRENTESAUX A, et al. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea [J]. Science in China Series D: Earth Sciences, 2005, 48(1): 84-92. [28] Liu J G, Li T G, Xiang R, et al. Influence of the Kuroshio Current intrusion on Holocene environmental transformation in the South China Sea [J]. The Holocene, 2013, 23(6): 850-859.
[29] Liu Z F, Wang H, Hantoro W S, et al. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra) [J]. Chemical Geology, 2012, 291: 1-12.
[30] Zhang Q, Chen M H, Liu J G, et al. Clay mineral assemblages at IODP Site U1340 in the Bering Sea and their paleoclimatic significance [J]. Science China Earth Sciences, 2015, 58(5): 707-717.
[31] Chamley H, Diester-Haass L. Upper Miocene to Pleistocene climates in northwest Africa deduced from terrigenous components of Site 397 sediments (DSDP Leg 47A). In: von Rad U, Ryan W B F. Et al. Initial Reports Deep Sea Drilling Project[M]. Washington D C: U. S. Government Printing Office, 1979, 47(1): 641-646.
[32] Ehrmann W. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3-4): 213-231.
[33] Franke D, Ehrmann W. Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286(1-2): 55-65.
[34] Wei G J, Li X H, Liu Y, et al. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4214.
[35] Yang S L, Ding F, Ding Z L. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan [J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1695-1709.
[36] Jiang H C, Guo G X, Cai X M, et al. Geochemical evidence of windblown origin of the Late Cenozoic lacustrine sediments in Beijing and implications for weathering and climate change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 446: 32-43.
[37] 王强, 袁桂邦, 张熟, 等. 渤海湾西岸贝壳堤堆积与海陆相互作用[J]. 第四纪研究, 2007, 27(5):775-786. [WANG Qiang, YUAN Guibang, ZHANG Shu, et al. Shelly ridge accumulation and sea-land interaction on the West Coast of the Bohai bay [J]. Quaternary Sciences, 2007, 27(5): 775-786. doi: 10.3321/j.issn:1001-7410.2007.05.019 [38] 陈永胜, 王福, 田立柱, 等. 渤海湾西岸全新世沉积速率对河流供给的响应[J]. 地质通报, 2014, 33(10):1582-1590. [CHEN Yongsheng, WANG Fu, TIAN Lizhu, et al. Holocene sedimentation rates and their response to fluvial supply on the west coast of Bohai Bay [J]. Geological Bulletin of China, 2014, 33(10): 1582-1590. doi: 10.3969/j.issn.1671-2552.2014.10.015 [39] Zhao G M, Ye S Y, He L, et al. Historical change of carbon burial in Late Quaternary sediments of the ancient Yellow River delta on the west coast of Bohai Bay, China [J]. Catena, 2020, 193: 104619.
[40] 中国科学院海洋研究所海洋地质研究室. 渤海地质[M]. 北京: 科学出版社, 1985. Department of Marine Geology, Institute of Oceanography, Chinese Academy of Sciences. Geology of Bohai Sea[M]. Beijing: Science Press, 1985.
[41] 方晶, 王福, 肖美美, 等. 岩芯EC、pH、泥分含量和有孔虫丰度对沉积环境的判读—以渤海湾西岸CZ61孔为例[J]. 第四纪研究, 2018, 36(6):1523-1526. [FANG Jing, WANG Fu, XIAO Meimei, et al. Analysis of paleoenvironment based on EC, pH, mud content and foraminifera numbers: Taking drilled core CZ61 collected from west coast of Bohai Bay as examples [J]. Quaternary Sciences, 2018, 36(6): 1523-1526. [42] 刘翀, 方晶, 王福, 等. 沉积物粘土混浊水电导率与pH值相关性研究: 以渤海湾西岸平原XZ、MD钻孔为例[J]. 第四纪研究, 2015, 35(2):319-325. [LIU Chong, FANG Jing, WANG Fu, et al. The correlation between electric conductivity and pH of the STICS-water: A case study of cores XZ and MD on the plain of west Bohai Bay [J]. Quaternary Sciences, 2015, 35(2): 319-325. doi: 10.11928/j.issn.1001-7410.2015.02.07 [43] Xue C T. Missing evidence for stepwise postglacial sea level rise and an approach to more precise determination of former sea levels on East China Sea Shelf [J]. Marine Geology, 2014, 348: 52-62.
[44] 赵松龄, 杨光复, 苍树溪, 等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼, 1978, 9(1):15-25. [ZHAO Songling, YANG Guangfu, CANG Shuxi, et al. On the marine stratigraphy and coastlines of the western coast of the Gulf of Bohai [J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 15-25. [45] 李建芬, 商志文, 王福, 等. 渤海湾西岸全新世海面变化[J]. 第四纪研究, 2015, 35(2):243-264. [LI Jianfeng, SHANG Zhiwen, WANG Fu, et al. Holocene sea level change on the west coast of the Bohai Bay [J]. Quaternary Sciences, 2015, 35(2): 243-264. doi: 10.11928/j.issn.1001-7410.2015.02.01 [46] Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian ocean and Southeast Asia [J]. Radiocarbon, 2002, 44(1): 167-180.
[47] Reimer P J, Bard E, Bayliss A, et al. IntCal 13 and Marine 13 radiocarbon age calibration curves 0-50, 000 years cal BP [J]. Radiocarbon, 2013, 55(4): 1869-1874.
[48] 赵东波. 常用沉积物粒度分类命名方法探讨[J]. 海洋地质动态, 2009, 25(8):41-44, 46. [ZHAO Dongbo. Discussion on general methods of the grain-size classification and nomenclature of sediments [J]. Marine Geology Letters, 2009, 25(8): 41-44, 46. doi: 10.3969/j.issn.1009-2722.2009.08.009 [49] 蓝先洪, 张志珣, 王中波, 等. 东海陆架晚更新世以来沉积物常量元素的分布及其地质意义[J]. 吉林大学学报: 地球科学版, 2014, 44(6):1883-1891. [LAN Xianhong, ZHANG Zhixun, WANG Zhongbo, et al. Content distributions and its geological implication of major elements in sediments from the continental shelf of the East China Sea during the late Pleistocene [J]. Journal of Jilin University: Earth Science Edition, 2014, 44(6): 1883-1891. [50] Moore D M, Reynolds R C Jr. X-Ray Diffraction and the Identification and Analysis of Clay Minerals[M]. Oxford: Oxford University Press, 1997: 1-332.
[51] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans [J]. GSA Bulletin, 1965, 76(7): 803-832.
[52] 陈永胜, 李建芬, 王福, 等. 渤海湾西岸现代岸线钻孔记录的全新世沉积环境与相对海面变化[J]. 吉林大学学报: 地球科学版, 2016, 46(2):499-517. [CHEN Yongsheng, LI Jianfen, WANG Fu, et al. Records of Holocene sedimentation environment and relative sea level by the boreholes collected along the present shoreline of the west coast of Bohai Bay, China [J]. Journal of Jilin University: Earth Science Edition, 2016, 46(2): 499-517. [53] Xue C T, Qin Y C, Ye S Y, et al. Evolution of Holocene ebb-tidal clinoform off the Shandong Peninsula on East China Sea shelf [J]. Earth-Science Reviews, 2018, 177: 478-496.
[54] 董红梅, 宋友桂. 黏土矿物在古环境重建中的应用[J]. 海洋地质与第四纪地质, 2009, 29(6):119-130. [DONG Hongmei, SONG Yougui. Clay mineralogy and its application to paleoenvironmental reconstruction [J]. Marine Geology & Quaternary Geology, 2009, 29(6): 119-130. [55] Rateev M A, Gorbunova Z N, Lisitzyn A P, et al. The distribution of clay minerals in the oceans [J]. Sedimentolgy, 1969, 13: 21-43.
[56] 刘大为, 张可欣, 裴艳东, 等. 渤海湾西岸QG01钻孔沉积物黏土矿物分布及古气候替代指标研究[J]. 海洋学研究, 2018, 36(3):28-36. [LIU Dawei, ZHANG Kexin, PEI Yandong, et al. The study of clay mineral assembalges and paleoclimatic proxies of borehole QG01 in the werstern coast of Bohai Bay, China [J]. Journal of Marine Sciences, 2018, 36(3): 28-36. doi: 10.3969/j.issn.1001-909X.2018.03.003 [57] 杨作升. 黄河、长江、珠江沉积物中黏土的矿物组合、化学风化特征及其与物源区气候环境的关系[J]. 海洋与湖沼, 1988, 19(4):336-346. [YANG Zuosheng. Mineralogical assemblages and chemical characteristics of clays from sediments of the Huanghe, Changjiang, Zhujiang Rivers and their relationship to the climate environment in their sediment source areas [J]. Oceanologia et Limnologia Sinica, 1988, 19(4): 336-346. [58] 黄湘通, 郑洪波, 杨守业, 等. 长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义[J]. 第四纪研究, 2009, 29(2):299-307. [HUANG Xiangtong, ZHENG Hongbo, YANG Shouye, et al. Investigation of sedimentary geochemistry of core DY03 in the Yangtze Delta: Implications to tracing provenance [J]. Quaternary Sciences, 2009, 29(2): 299-307. doi: 10.3969/j.issn.1001-7410.2009.02.14 [59] 钟巍, 李吉均, 方小敏, 等. 临夏盆地王家山剖面沉积物地球化学元素特征与季风演化[J]. 海洋地质与第四纪地质, 1997, 17(4):55-62. [ZHONG Wei, LI Jijun, FANG Xiaomin, et al. Geochemical features of the sediment in Wangjiashan section in Linxia Basin and monsoon evolution [J]. Marine Geology & Quaternary Geology, 1997, 17(4): 55-62. [60] Liu Y X, Huang H J, Qi Y L, et al. Holocene coastal morphologies and shoreline reconstruction for the southwestern coast of the Bohai Sea, China [J]. Quaternary Research, 2016, 86(2): 114-161.
[61] Zhao Y, Yu Z C, Chen F H, et al. Vegetation response to Holocene climate change in monsoon-influenced region of China [J]. Earth-Science Reviews, 2009, 97(1-4): 242-256.
[62] Wang Y L, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J]. Science, 2005, 308(5723): 854-857.
[63] Stebich M, Rehfeld K, Schlütz F, et al. Holocene vegetation and climate dynamics of ne china based on the pollen record from Sihailongwan maar lake [J]. Quaternary Science Reviews, 2015, 124: 275-289.
[64] 王绍武. 全新世大暖期[J]. 气候变化研究进展, 2011, 7(5):383-384. [WANG Shaowu. Megathermal [J]. Advances in Climate Change Research, 2011, 7(5): 383-384. doi: 10.3969/j.issn.1673-1719.2011.05.013 [65] 巩晓燕, 魏明建, 张玉华. 华北地区全新世气候时空变化特征研究述评[J]. 首都师范大学学报: 自然科学版, 2006, 27(4):73-78. [GONG Xiaoyan, WEI Mingjian, ZHANG Yuhua. General research on the spatio-temporal trait of climate change in North China in Holocene [J]. Journal of Capital Normal University: Natural Science Edition, 2006, 27(4): 73-78. [66] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学B辑, 1992, 22(12):1300-1308. [SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. The climate fluctuations and important events of Holocene Megathermal in China [J]. Science in China (Series B), 1992, 22(12): 1300-1308. doi: 10.3321/j.issn:1006-9240.1992.12.003 [67] 申改慧, 丁国强, 阳小兰, 等. 白洋淀地区全新世以来的气候环境变化[J]. 第四纪研究, 2018, 38(3):756-768. [SHEN Gaihui, DING Guoqiang, YANG Xiaolan, et al. Holocene climate and environmental change in the Baiyangdian area [J]. Quaternary Sciences, 2018, 38(3): 756-768. doi: 10.11928/j.issn.1001-7410.2018.03.20 [68] 许清海, 肖举乐, 中村俊夫, 等. 孢粉资料定量重建全新世以来岱海盆地的古气候[J]. 海洋地质与第四纪地质, 2003, 23(4):99-108. [XU Qinghai, XIAO Jule, NAKAMURA T, et al. Quantitative reconstructed climatic changes of Daihai basin by pollen data [J]. Marine Geology & Quaternary Geology, 2003, 23(4): 99-108. -
期刊类型引用(2)
1. 孙亚非,张艳伟,吕丹妮,阮威涵,庄志远,张刘祯怡. 2001-2020年南海周边河流入海沉积物通量时空变化特征研究. 海洋学报. 2024(06): 98-113 . 百度学术
2. 罗亚飞,陈炤光,李志强,付东洋,余果,徐华兵,钟小僅. 秋季环雷州半岛海域浊度空间分布特征. 广东海洋大学学报. 2022(03): 53-61 . 百度学术
其他类型引用(0)