西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征

刘凯, 王珍岩

刘凯, 王珍岩. 西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101
引用本文: 刘凯, 王珍岩. 西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101
LIU Kai, WANG Zhenyan. Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101
Citation: LIU Kai, WANG Zhenyan. Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101

西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征

基金项目: 中国科学院战略性先导科技专项“印太交汇区海洋物质能量中心形成演化过程与机制”(XDB42010203),“地球大数据科学工程”(XDA9060401);科技部基础资源调查专项“西太平洋典型海山生态系统科学调查”(2017FY100802)
详细信息
    作者简介:

    刘凯(1994—),男,硕士研究生,研究方向为海洋沉积,E-mail:liukai175@mails.ucas.ac.cn

    通讯作者:

    王珍岩(1972—),男,副研究员,主要从事海洋沉积学研究,E-mail:zywang@qdio.ac.cn

  • 中图分类号: P744, P736.4

Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific

  • 摘要: 西太平洋麦哲伦海山区是全球重要的铁锰结壳资源分布区,具有丰富的稀土元素资源潜力。本文对采自麦哲伦海山区Kocebu海山的11个铁锰结壳表层样(<1 mm)进行稀土元素地球化学研究,探讨其含量特征、成因和影响稀土元素富集的环境因素。结果表明:Kocebu海山铁锰结壳表层样品ΣREY(Rare earth elements and yttrium)平均含量为1 366 mg/kg,低于前人在麦哲伦海山区其他海山以及邻近的马尔库斯–威克海山区的分析结果;样品轻稀土富集和Ce正异常(平均值为1.45)特征以及稀土元素成因图解、配分曲线和分配系数曲线等均表明该海山结壳属于水成成因;海水中稀土元素含量和溶解氧含量是控制结壳生长的关键环境参数,二者在Kocebu海山所在海区的浅水环境中含量较低;结壳ΣREY含量偏低与采样点水深较浅导致的海水稀土元素含量和溶解氧含量较低密切相关,受碎屑矿物的稀释作用影响较小。在开展铁锰结壳地球化学特征研究和资源勘探评价时应充分考虑采样水深的分布范围,局部水深样品的分析结果可能导致研究结果出现较大偏差。
    Abstract: The Magellan Seamounts in the Western Pacific, as an important contract area for ferromanganese crusts exploration, contain high potential of rare earth resources. In this paper, the geochemistry of rare earth elements and yttrium (REY) from 11 top surface ferromanganese crust samples (<1 mm) collected from the Kocebu Guyot were studied. We analyzed the REY composition characteristics and genetic type of the samples and discussed the factors which control the enrichment of REY. The results show that the average REY abundance (ΣREY) of the crusts is 1366 mg/kg, which is lower than that from other seamounts in Magellan Seamounts and Marcus-Wake Seamounts. The Kocebu Guyot is characterized by enriched light REE and high positive Ce anomalies (mean δCe value 1.45). Genetic discrimination diagram, normalized REY plots and REY partition coefficient patterns indicate that all the crusts are hydrogenetic in origin. REY abundance and dissolved oxygen content in seawater should be regarded as primary environmental parameters controlling the growth of crusts. The lower REY abundance in the samples is related to the water depth and affected by lower REY and oxygen content in shallower waters near Kocebu Guyot, but not observably diluted by detrital minerals. Geochemistry research and resource evaluation of ferromanganese crusts in seamount areas should take the influence of water depth into further consideration, the analysis of samples from limited water depth may cause large deviations in the research results.
  • 现代的大西洋经圈翻转流(Atlantic Meridional Overturning Circulation,AMOC)驱动南大西洋上层海水跨越赤道流向北大西洋地区,同时北大西洋地区通过深对流活动形成的深层水向南流出大西洋海盆 [1]。现代AMOC的上层海水供应主要来自两条海流路径(图1),即印度洋-大西洋路径和太平洋-大西洋路径,这两条海流路径的水体分别以高温高盐和低温低盐为特征,因此分别被称为暖水路径和直接的“冷水路径” [2-3]

    图  1  全球热盐环流示意图 [3]
    红色箭头代表温暖的表层水及其暖水路径,蓝色箭头代表上层冷水流动及其冷水路径,白色箭头代表深层水及其路径。
    Figure  1.  The global thermohaline circulation[3]
    Red arrows represent warm surface water and warm water path, blue arrows are upper cold water flow and cold water path, and white arrows indicate deep water and the path.

    地质历史时期上的AMOC最晚形成于中新世时期 [4-7],当时的海陆分布已与现代接近 [8-10]。距今约16.9~14.7 Ma的中中新世大暖期(Middle Miocene Climatic Optimum,MMCO)是这一时期最暖的时段,特提斯海道和巴拿马海道这两处中低纬海道仍然保持开放状态,这表明大西洋海盆东西两侧的边界并非完全封闭。通过这些海道,大西洋海水能与临近的海域进行交换,从而影响AMOC的强度和空间结构 [11-12]。特提斯海道在中中新世至晚中新世期间关闭 [13-14],这一重要板块构造事件影响了AMOC、西印度洋水团性质以及南极冰盖的变化 [15]。巴拿马海道关闭则发生于上新世时期,高温低盐的热带太平洋海水停止直接流入北大西洋中高纬度地区,导致北大西洋深水团形成过程增强[12]。总而言之,构造运动造成的海陆变迁在地质时间尺度上能够引起全球海洋环流的重新调整,使AMOC空间格局与现代存在明显差异。

    基于古气候代用资料和数值模拟的对比研究表明,尽管围绕中低纬海道的闭合时间及其气候影响仍存在较大不确定性 [11,16-21],但模拟结果也揭示了一些共通的机制,例如,虽然不同模式对特提斯海道贯穿流流向的模拟结果还存在不确定性,但流入大西洋的特提斯贯穿流普遍有利于AMOC增强 [11,15,22]。开放的巴拿马海道则偏向于减弱AMOC强度[19,23]。但是,这些研究极少关注中低纬海道开放时AMOC上层海水来源的变化,特别是特提斯贯穿流、巴拿马贯穿流和南大西洋不同性质的海水对AMOC强度和形态变化的相对贡献。

    因此,为探讨MMCO时期以来的特提斯海道和巴拿马海道变化对AMOC及其上层海水来源的演变过程及其气候效应,本研究将基于耦合气候系统模式FGOALS-g3,开展MMCO气候模拟试验,在此基础上进行特提斯海道和巴拿马海道先后关闭的敏感性试验。

    FGOALS-g3是由中国科学院大气物理研究所自主开发的最新的全球耦合气候系统模式,该模式参与了国际耦合模式比较计划第六阶段(Couple Model Intercomparison Project Phase 6, CMIP6)的模拟试验,具有较好的模拟性能 [24-26]。FGOALS-g3的分量模式包含大气模式GAMIL3(the Grid-Point Atmospheric Model of IAP-LASG version 3) [27]、海洋模式LICOM3(LASG/IAP Climate Ocean Model version3) [28]、陆面模式CAS-LSM(Land Surface Model for Chinese Academy of Sciences)[29]和海冰模式CICE4(Community Ice CodE Version 4) [30]

    大气模式GAMIL3在垂直方向上采用sigma坐标系(26层),水平方向上采用等面积加权的经纬网格,水平分辨率为2°(180×80)。该模式采用两步保形平流方案,从而提升模式的水汽守恒性。海洋分量模式LICOM3采用η垂直坐标系,垂直分辨率为30层,水平分辨率为1°,并使用三极网格。三极网格通过将北极点分裂并转移至北半球的陆地(61°N/65°E和61°N/115°W),避免了经纬网格模式在北极产生“奇点”的计算问题,既提升了对北极海洋过程的模拟能力,也提高了计算的并行效率。陆面模式分量CAS-LSM是在CLM4.5基础上作了改进,耦合了自主研发的方案和陆面过程,如地下水的侧向流动、人为地下水的开采、土壤冻融界面的变化和河流中的人为氮排放过程等。在FGOALS-g3中,陆面模式与大气模式的水平网格分布是一致的,海冰分量模式与海洋分量模式的水平网格分布相同,这些模式通过耦合器CPL7实现分量模式的耦合以及通量的交换 [31]

    为研究影响中新世中低纬度海道变化对全球气候以及海洋环流的影响机制,本研究设计了4组模拟试验,试验细节见表1。PI试验为工业革命前对照试验 [32],采用现代海陆分布、水深、地形和陆地植被类型,大气CO2浓度设置为工业革命前的浓度,即280×10−6, 三组MMCO模拟试验均采用Frigola等 [8]所提供的中中新世的海陆分布、水深、海拔和陆地植被类型。其中,MMCO地形中的特提斯海道东部深度超过4000 m,其西部和巴拿马海道的深度均约1000 m(图2)。CO2浓度则根据中中新世时期的重建结果 [33-37],折中取值为400×10−6。MMCO_400为中中新世模拟标准试验,特提斯海道和巴拿马海道均设置为开放状态。考虑到特提斯海道和巴拿马海道分别在晚中新世和上新世关闭 [12,38-43],另设计了两组海道敏感性试验用于考察海道关闭对海洋环流和气候的影响:MMCO_B1只关闭特提斯海道,MMCO_B2在MMCO_B1基础上进一步关闭巴拿马海道。本研究中所有试验的温盐初始场都是来自极地科学中心的PHC3.0(Polar Science Center Hydrographic Climatology, Version 3.0) [44]的一月气候平均值,每组试验积分1000模式年,最后100 年的全球平均地表温度和海表温度的变化趋势均小于0.05℃/100a,表明模拟基本上达到了一个准平衡气候态,因此采用最后100 年模式结果进行数据诊断分析。

    表  1  试验设计
    Table  1.  The experiment design.
    试验 PI MMCO_400 MMCO_B1 MMCO_B2
    CO2浓度/10−6 280 400 400 400
    陆地海拔 现代 中中新世 中中新世 中中新世
    海洋水深 现代 中中新世 中中新世 中中新世
    特提斯海道 关闭 开放 关闭 关闭
    巴拿马海道 关闭 开放 开放 关闭
    陆地植被 现代 中中新世 中中新世 中中新世
    偏心率 0.016724 与PI相同
    轨道倾角 23.446°
    岁差 102.04°
    下载: 导出CSV 
    | 显示表格

    本研究中通过对北大西洋地区(25°~80°N)进行淡水收支分析,诊断中低纬度海道的开闭对于中新世AMOC的影响。北大西洋地区的海表至海底的淡水含量(Freshwater Content,FWC)的计算方法为:

    $$ \mathrm{F}\mathrm{W}\mathrm{C}=\iint \frac{({S}_{\mathrm{r}\mathrm{e}\mathrm{f}}-S)}{{S}_{\mathrm{r}\mathrm{e}\mathrm{f}}}\mathrm{d}A\mathrm{d}z $$ (1)

    式中,S为北大西洋地区格点每层深度上的盐度,Sref为基准盐度取为35 psu,dA为北大西洋地区面积,dz为每个模式垂直层的厚度,公式(1)对北大西洋地区进行面积积分并从海表到海底进行垂直积分,所得结果即为淡水含量。淡水含量的变化受到海表淡水通量强迫和海洋动力过程的影响,其中淡水通量(Freshwater Flux,FWF)由降水量P、径流量R和蒸发量E组成:

    $$ \mathrm{FWF=} \mathit{P} \mathrm+ \mathit{R} \mathrm- \mathit{E} $$ (2)

    而海洋动力过程则来自北大西洋边界处的淡水输运(Freshwater Transport,FWT):

    $$ \mathrm{F}\mathrm{W}\mathrm{T}=\iint v\frac{({S}_{\mathrm{r}\mathrm{e}\mathrm{f}}-S)}{{S}_{\mathrm{r}\mathrm{e}\mathrm{f}}}\mathrm{d}s\mathrm{d}z $$ (3)

    v为北大西洋地区边界处的海流,以流入北大西洋的方向取为正值,ds为相应边界上的网格距离。不难看出,淡水输运即是将北大西洋外的淡水含量通过平流过程输送向北大西洋地区,这一过程与将北大西洋地区的盐分向外输送的过程是等价的。对北大西洋地区的淡水输运,其边界除了南北边界外,还有来自东边界即直布罗陀海峡处,西边界为封闭的陆地边界,因此北大西洋地区的淡水输运的散度为:

    $$ \mathrm{\nabla FWT=FWT}_{ \mathit{S} } \mathrm{+FWT}_{ \mathit{N} } \mathrm{+FWT}_{ \mathit{E} } $$ (4)

    综上得到北大西洋地区的淡水收支的表达式:

    $$ \frac{\mathrm{d}\mathrm{F}\mathrm{W}\mathrm{C}}{\mathrm{d}t}=\mathrm{F}\mathrm{W}\mathrm{F}+\nabla \mathrm{F}\mathrm{W}\mathrm{T}+{\mathrm{F}\mathrm{W}}_{\mathrm{r}\mathrm{e}\mathrm{s}} $$ (5)

    方程(5)的左侧第一项为北大西洋淡水含量的时间倾向,右侧第三项为淡水收支的残差,由次网格物理过程如混合、中尺度涡等过程引起 [45-47]。方程(5)中垂直积分的项是从海表向海底积分。

    图3给出了FGOALS-g3四组试验所模拟的AMOC强度和结构,结果表明所有MMCO试验中的AMOC强度均大于PI试验。当巴拿马海道和特提斯海道同时开放或仅前者开放时,MMCO试验的AMOC分布与PI试验存在明显差异(图3)。在大西洋海盆东西边界未封闭的情况下,南大西洋南端至赤道的上层1000 m与海表的经圈流函数差值接近于0(图3b、c),而该差值在大西洋海盆东西边界闭合时的值约为30 Sv(图3a、d)。这一差异说明中中新世时期AMOC上层海水主要来自巴拿马贯穿流和特提斯贯穿流,而非南大西洋海盆。只有特提斯海道和巴拿马海道都关闭时,AMOC才形成了与现代相似的空间结构,即上层海水从南大西洋向北跨过赤道,在高纬度地区通过深对流活动形成深层水后向南流出。相比MMCO_B2试验,MMCO_B1试验中仅开放了巴拿马海道,模拟的AMOC强度相对MMCO_B2偏弱约3 Sv。进一步对比MMCO_400与MMCO_B1试验可以发现,开放的特提斯海道使AMOC增强约6 Sv,其作用大于开放的巴拿马海道导致的AMOC减弱,表明开放的特提斯海道对开放的巴拿马海道减弱AMOC有正的补偿作用。

    图  2  MMCO地形
    Figure  2.  The topography in the MMCO
    图  3  各试验模拟的北大西洋经圈流函数
    正值表示海流顺时针流动。MMCO试验中的6°N和34°N至40°N的两处紫色阴影框分别表示巴拿马海道和特提斯海道所在位置。
    Figure  3.  The simulated Atlantic Meridional Overturning Circulation in each experiment
    Positive value represent the clockwise rotation. The purple shaded region at 6°N represents the Panama Seaway, and that in 34°~40°N represents the Tethys Seaway in MMCO experiments.

    北大西洋淡水收支分析结果(表2)表明,PI试验的AMOC相对MMCO试验偏弱,主要是由于北大西洋中高纬度海域有更多的淡水输入。PI试验该区域海洋通过海气交换和河流径流得到的淡水通量为正值,而MMCO各试验中的结果为负值,表明PI试验北大西洋海洋垂直层结相对较弱。同时,直布罗陀海峡处的淡水输运很小,仅为−0.015×109 kg/s,可忽略不计。

    表  2  各试验的北大西洋淡水收支中的各项
    Table  2.  The freshwater budget of the North Atlantic in each experiment /(109 kg/s)
    参数 PI MMCO_400 MMCO_B1 MMCO_B2
    $ \dfrac{\mathrm{d}\mathrm{F}\mathrm{W}\mathrm{C}}{\mathrm{d}t} $ −0.092 −0.095 −0.067 −0.086
    FWF 0.175 −0.265 −0.215 −0.262
    FWTE −0.015 −0.392 −0.161 −0.163
    FWTN 0.026 0.084 0.066 0.076
    FWTS −0.230 0.410 0.123 0.163
    FWres −0.048 0.068 0.120 0.100
    AMOC强度 45.06 57.73 51.46 54.97
    FWTS 0-1000m −0.947 −0.617 −0.611 −1.160
    FWTS 1000−5000m 0.717 1.027 0.734 1.323
    注:淡水含量的时间倾向($ \dfrac{\mathrm{d}\mathrm{F}\mathrm{W}\mathrm{C}}{\mathrm{d}t} $)、淡水通量(FWF)、东边界(直布罗陀海峡)处的淡水输运(FWTE)、南北边界处的淡水输运(FWTS和FWTN)和残差项(FWres)。AMOC强度(北大西洋500 m以下的经圈流函数最大值,单位:Sv)和北大西洋南边界上层1000 m和1000 m至海底的淡水输运。
    下载: 导出CSV 
    | 显示表格

    MMCO各试验中,从北冰洋流入北大西洋北边界的淡水输运最小,且大小都接近北大西洋淡水含量的时间倾向,因此北边界的淡水输运变化对于AMOC的影响也可忽略不计(表2)。造成MMCO所有试验的北大西洋淡水含量损失的过程主要来自海表淡水通量和直布罗陀海峡流入的高盐海水(图4a),这两个因子的总效应大于其他因子,导致北大西洋淡水含量随时间而减少。MMCO所有试验中补充北大西洋淡水含量的过程主要来自南边界的淡水输运,这一过程在PI试验则是相反的。由于AMOC上下两层的海流体积输送方向相反,分界面位于1000 m附近,因此进一步分析北大西洋南边界上层1000 m的淡水输运,结果表明所有试验中,1000 m以上都有向北大西洋输运的高盐海水(对应向南淡水输运),1000 m以下则向南输送北大西洋的高盐海水。对于MMCO试验,由于海表淡水通量、直布罗陀海峡和南边界上层1000 m输运高盐海水的共同作用,导致北大西洋上层1000 m积聚了大量高盐海水,使得南边界1000 m以下的淡水输运量高于上层。

    图  4  大西洋地区相关断面的上层1380 m的海水体积输送垂直廓线
    a:布罗陀海峡断面,其位置在PI和MMCO各试验中分别位于10°W和9°W;b:巴拿马海道断面位于6°N;c:北大西洋断面位置在PI和MMCO各试验中均位于25°N;d:南大西洋断面位置在PI和MMCO各试验中分别位于34°S和37°S。
    Figure  4.  The profiles of the upper 1380 volume transport at the relevant sections in the Atlantic
    a: The sections of the Gibraltar Strait are located at 10°W for PI and at 9°W for all MMCO experiments; b: the section of the Panama Seaway is located at 6°N; c: the section of the North Atlantic is located at 25°N; d: the sections of the South Atlantic are located at 34°S for PI and at 37°S for all the MMCO experiments.

    在MMCO各试验之间,北大西洋区域的海表淡水通量差异较小,主要的差异来自其南边界和东边界的淡水输运的差异,影响AMOC的主要因子是中低纬海道开合引起的淡水输运变化。在巴拿马海道开放的试验MMCO_400和MMCO_B1中,巴拿马海道向北的淡水输运分别为0.22×109和0.16×109 kg/s,表明低盐度的太平洋海水流入大西洋,导致北大西洋南边界上层1000 m的淡水输运量小于其他试验,从而抑制了北大西洋区域的深对流活动。在MMCO_B1试验中,开放的特提斯海道使整个直布罗陀海峡向北大西洋输送高盐海水,相应的淡水输运量比巴拿马海道高出约75%,这表明特提斯贯穿流向北大西洋输送的高盐海水不仅完全抵消了巴拿马海道贯穿流的影响,还进一步增强了AMOC的强度。当特提斯海道关闭时,特提斯海区处于类似现代地中海的半封闭状态,北大西洋海水从上层400 m流入特提斯海并由于海表的强蒸发作用导致盐度和密度增加,海水下沉后从直布罗陀海峡流出(图4a)。这种海流垂直结构的变化使得尽管直布罗陀海峡仍向北大西洋输送大量的高盐海水,但其对应的淡水输运量相比特提斯海道开放时减少了约60%,其量值与巴拿马贯穿流的淡水输运相近,仅能够抵消巴拿马海道的作用但无法使AMOC进一步增强,因此在特提斯海道关闭时AMOC强度是减弱的,北大西洋深对流运动减弱,向深层海洋输运的高盐海水减少。在特提斯海道和巴拿马海道都关闭的MMCO_B2试验中,相比MMCO_B1的结果,直布罗陀海峡的淡水输运不变,但热带太平洋低盐海水无法直接流入北大西洋,北大西洋南边界的淡水输运量增强约90%,大量高盐海水向北输运促进了AMOC的增强。

    为理解流入AMOC上层的海水来源及其进入北大西洋后的垂直分布变化,进一步分析巴拿马海道、直布罗陀海峡、北大西洋25°N和南大西洋南端的断面处上层1380 m的体积输运(图4),这一深度对应FGOALS-g3海洋模式第23模式层,是MMCO各试验中的直布罗陀海峡底部所在深度,也接近但略深于巴拿马海道深度约300 m 。在MMCO_400和MMCO_B1试验中,大西洋海盆东西两侧边界均处于封闭状态,南大西洋断面200 m以上的海水向北流入,在200 m以下则向南流出,表明南大西洋海水无法跨赤道输运到北大西洋地区。而在MMCO_B2和PI试验大西洋海盆东西两侧边界都闭合的情况下,上层1000 m北大西洋和南大西洋断面的体积输运垂直分布相似,大量海水都是向北流入大西洋,1000 m以下则向南流出南大西洋。这些结果表明,只有当巴拿马海道和特提斯海道都关闭时,AMOC的空间结构和海水源汇才与现代相似,即上层海水从现代“暖水路径”和“冷水路径”流入南大西洋,向北流动跨过赤道输运至北大西洋地区,通过深对流活动形成深水团向南流出。结合图3图4可看出,PI与MMCO_B2的结果仍有一定的不同,这可能与这两个试验的一些边界条件如陆地地形高度、陆面植被和径流等仍存在区别有关。

    通过分析MMCO各试验中的直布罗陀海峡、巴拿马海道和北大西洋25°N断面体积输运的垂直分布可以发现,特提斯贯穿流的海水体积输运量在600 m附近达到最大值,巴拿马贯穿流的海水体积输运量最大值出现在约300~600 m深度,而北大西洋25°N断面的海水最大输运量位于400 m深度附近(图4)。这些断面的流量输运最大值所在深度不一致,表明从直布罗陀海峡和巴拿马海道进入北大西洋的海水被AMOC环流中的回升运动所抬升,其垂直分布结构发生了重新分布。

    自中中新世以来,中低纬海道的变化影响了AMOC,进而通过海洋环流调节全球海温和盐度的分布,影响全球气候状态。在MMCO边界条件的影响下,MMCO_400试验模拟的全球海表温度比PI试验偏暖,尤其是在北大西洋高纬度地区偏暖可达12℃以上;北大西洋海盆的盐度也比PI试验高(图5a、d),其部分原因是来自海表淡水通量的差异。当特提斯海道关闭时,全球海温变化表现为以巴拿马海道所在纬度(6°N附近)为界呈现出北半球冷却而南半球增暖的分布特征(图5b),全球平均温度仅降低0.05℃,这与Hamon等[15]的模拟结果不同,可能与特提斯海流方向的差异有关。伴随着AMOC减弱,全球盐度变化则出现不同的空间分布,北大西洋和北冰洋区域盐度明显降低(图5e),反映来自直布罗陀海峡的高盐海水减少和巴拿马海道的低盐海水增加的作用;而特提斯海区因其半封闭的状态,高盐海水易于在该区域堆积,盐度增加。当巴拿马海道关闭时,全球温盐分布的变化与特提斯海道关闭的结果相反(图5c、f),全球平均温度降低0.16℃。值得注意的是,在南大西洋40°S附近东西两侧,分别表现出了现代“暖水路径”和“冷水路径”的影响:高温高盐的南印度洋海水穿过好望角以厄加勒斯流流系进入南大西洋,在东南大西洋出现3℃的增温和强度较弱的盐度增加;同时低温低盐的南太平洋高纬海水从西南大西洋流入,使得温度和盐度分别降低6℃和4 psu以上。这从水平分布上进一步表明,AMOC空间结构是在特提斯海道和巴拿马海道都关闭之后形成的,开放状态下的特提斯海道和巴拿马海道为热带印度洋和太平洋海水提供了直接进入北大西洋区域的“捷径”。

    图  5  年平均海表温度和海表盐度差异
    a-c:海表温度差异,d-f:海表盐度差异。
    Figure  5.  The annual mean sea surface temperature and sea surface salinity differences
    a-c show the sea surface temperature (SST) differences; d-f show the sea surface salinity (SSS) differences.

    在现代地形下,南太平洋和南印度洋中高纬度地区海水分别通过“冷水路径”和“暖水路径”流入南大西洋地区,并作为AMOC上层海水的补给源,向北跨越赤道流入北大西洋区域。而在MMCO地形下,开放的特提斯海道和巴拿马海道为热带印度洋和热带太平洋海水提供了“捷径”流入北大西洋,无需绕过好望角和合恩角进入南大西洋。只有特提斯海道和巴拿马海道都关闭的情况下,高温高盐的南印度洋海水和低温低盐的南太平洋海水开始绕过好望角和合恩角进入南大西洋地区并跨越赤道流入北大西洋地区,AMOC的空间格局才与现代相似。

    当特提斯海道和巴拿马海道均开放时,这两处海道的贯穿流分别向北大西洋输运高盐和低盐海水,其中特提斯贯穿流的高盐海水输运量比巴拿马贯穿流的低盐海水输送量大75%左右,不仅完全抵消了后者对AMOC的减弱作用,还能够进一步增强AMOC强度。因此,特提斯海道的变化是影响全球海洋环流和气候的一个重要因素。

    当特提斯海道关闭而巴拿马海道仍开放时,特提斯海处于半封闭状态,其与北大西洋之间海水交换减弱。特提斯海海水盐度和密度增加,直布罗陀海峡次表层溢流将高盐海水向北大西洋输运,但相应的高盐海水输运量相对特提斯海道开放时减少了近60%,仅能抵消巴拿马贯穿流的影响,无法进一步加强AMOC。因此,其综合效应表现为北大西洋海表盐度降低、AMOC显著减弱、巴拿马海道所在纬度以北的半球降温、以南的半球增温。

  • 图  1   Kocebu海山区域位置与采样位置图

    十字代表文献中的CTD站位;水深数据来源于:GEBCO 2020 Gridded Bathymetry Data,https://www.gebco.net/;地形图来源于http://guyot.ocean.ru/

    Figure  1.   Location of Kocebu Guyot on GEBCO-based bathymetric map and sampling locations on topographic map

    The crosses represent the CTD stations from the literatures; bathymetry datas are from GEBCO 2020 Gridded Bathymetry Data, https://www.gebco.net/; Topographic map from http://guyot.ocean.ru/

    图  2   Kocebu海山与附近海山铁锰结壳表层稀土元素含量对比

    Figure  2.   REY content variation in surface layer of crusts from Kocebu Guyot and nearby seamounts

    图  3   Kocebu海山铁锰结壳样品北美页岩标准化REY图解

    麦哲伦海山区包含MA、MD、ME、MK海山与麦哲伦其他海山数据;马尔库斯威克海山包含Lamont海山与Takuyo-Daigo海山数据;北美页岩稀土元素数据来源于文献[31]。

    Figure  3.   NASC shale-normalized REY plots for the Fe-Mn crust samples from Kocebu Guyot

    Magellan Seamounts include MA, MD, ME, MK Guyots and other guyots in Magellan; Marcus-Wake Seamounts include Lamont Guyot and Takuyo-Daigo Seamount; NASC REE data from reference[31].

    图  4   Kocebu海山铁锰结壳成因类型判别图解[34]

    Figure  4.   Ternary diagram for the genetic classification of oceanic ferromanganese deposits[34]

    图  5   结壳-海水体系中稀土元素的分配系数

    a. 分配系数的倒数(1/Kd)与平均滞留时间(t)对数的关系,b. Kocebu海山铁锰结壳REY分配系数(Kd)配分曲线。海水中的稀土元素数据使用MC海山MCCTD1504测站1 978 m的海水样品数据,来源于文献[42];稀土元素平均滞留时间数据来源于文献[54]。

    Figure  5.   The partition coefficient of REY in crust-seawater system

    a. plot of logarithm of the residence time(t) of REY in seawater versus logarithm of the inverse distribution coefficient(1/Kd) between Fe-Mn crusts and seawater,b. patterns of REY partition coefficients(Kd) between Fe–Mn crusts and seawater.The datas of REY content in seawater are from MCCTD1504 station of MC Guyot, 1 978 m, from reference [42]; the datas of average residence time of REY are from reference [54].

    图  6   不同海山(区)铁锰结壳Al/(Fe+Mn)与REY含量的关系

    Figure  6.   Bivariate diagram of Al/(Fe+Mn) and REY content of the hydrogenetic Fe–Mn crusts in different areas

    图  7   表层铁锰结壳与海水中的REY含量剖面图

    MC海山MCCTD 1504站位海水数据来自文献[42];皮嘉费他海盆CTD1站位海水数据来自文献[60]。

    Figure  7.   Profile of REY content in surface layer of Fe-Mn crusts and seawater

    The data of REY content in seawater from MCCTD1504 station of MC Guyot, 1 978 m, from reference [42]; the datas of CTD1 station are from reference[60].

    图  8   表层铁锰结壳中δCe与海水中溶解氧含量剖面图

    海水溶解氧含量曲线来源于文献[8]。

    Figure  8.   Profile of δCe in surface layer of Fe-Mn crusts and dissolved oxygen in seawater

    The curve of dissolved oxygen content in seawater is from reference [8].

    图  9   不同海山(区)表层铁锰结壳δCe与3+REY、REY含量的关系

    Figure  9.   Bivariate diagram of δCe and 3+REY, REY content of the surface layer of hydrogenetic Fe–Mn crusts in different areas

    表  1   Kocebu海山铁锰结壳采样信息

    Table  1   The sampling information of Fe-Mn crusts from Kocebu Guyot

    样品编号北纬东经水深/m
    1-3-117.393°153.125°1 327
    1-3-217.393°153.125°1 327
    2-517.472°153.168°1 318
    3-117.493°153.237°1 370
    3-217.493°153.237°1 368
    4-317.332°153.214°1 652
    4-517.336°153.207°1 314
    6-217.346°153.138°1 382
    7-117.341°152.698°1 570
    7-417.346°152.697°1 572
    7-517.346°152.697°1 572
    下载: 导出CSV

    表  2   Kocebu海山与附近其他海山(区)铁锰结壳表层稀土元素含量

    Table  2   Mean concentrations of rare earth elements and yttrium(REY) in surface layer of crusts from Kocebu Guyot and other areas nearby

    样品编号LaCePrNdSmEuGdTbDyYHoErTmYbLuΣREYΣ3+REYΣLREEΣHREEδCe
    1-3-120447939.916734.78.5741.06.3236.81547.8720.93.0819.12.801 2247459332921.22
    1-3-222358243.918538.39.5245.77.0141.51728.7923.33.5121.83.161 4098271 0823261.36
    2-523064946.619241.210.046.77.2241.91708.7222.83.3920.92.991 4938441 1683241.45
    3-122166246.419241.19.8347.07.2341.51628.6022.63.3120.62.931 4888261 1723161.51
    3-223060146.319440.39.7747.37.2141.91668.7823.13.3921.03.061 4448421 1223211.34
    4-323271446.419240.69.8646.37.1440.41518.2821.83.1920.12.881 5358211 2343011.59
    4-523871546.219341.09.9848.17.4543.01779.0223.83.5522.13.271 5808651 2433371.57
    6-214847928.912326.36.5231.44.7928.11125.9515.72.3315.12.221 0295508122181.69
    7-116749230.012525.96.2831.24.7928.71206.2717.02.5917.02.561 0785858472301.59
    7-424556849.920743.610.449.47.5943.51638.9423.53.4521.63.071 4488801 1243241.19
    7-520956740.616935.18.4440.66.2736.31397.5820.02.9618.72.771 3047361 0292741.42
    平均21359242.317637.19.0243.16.6438.51538.0721.33.1619.82.881 3667751 0702971.45
    MA(Pallada) 海山[24]22065147.819739.310.146.76.6639.51598.1822.23.1120.43.061 4748231 1653091.48
    MD(Govorov) 海山[12, 25-26]3051 06161.126354.113.662.39.2153.418811.129.54.2628.04.112 05910721 7483851.81
    ME(Il'ichev) 海山[12, 25]3651 19870.830160.915.271.510.158.222212.533.44.6631.04.592 16411631 9274341.77
    MK(Skornyakov) 海山[15-16, 25]27573749.422246.211.656.07.9647.815810.027.73.9425.43.931 7049671 3403641.50
    麦哲伦其他海山[13, 17]31696159.626154.413.362.99.2953.211.330.44.4327.64.321 8669071 6652031.84
    Lamont 海山[14]26483250.221646.011.050.28.0246.19.4025.93.9225.63.761 5927601 4191731.66
    Takuyo-Daigo Smt.[27]24993355.223451.412.453.37.9947.11459.1525.23.5822.23.291 8539191 5353171.85
    西北太平洋[28-29]2131 17947.521848.511.553.57.5143.81437.6922.93.0120.22.871 8948431 7173042.77
    中国南海[30]1911 14939.216036.39.2338.2 5.7933.41276.2017.92.5514.92.411 8316821 5855063.16
      注:Σ3+REY为不包含Ce的ΣREY含量,ΣLREE为La—Eu,ΣHREE为Gd—Lu,δCe=2×CeSN/(LaSN+PrSN),La—ΣHREE的单位为mg/kg;−表示无数据。
    下载: 导出CSV
  • [1]

    Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [2]

    Lusty P A J, Hein J R, Josso P. Formation and occurrence of ferromanganese crusts: earth's storehouse for critical metals [J]. Elements, 2018, 14(5): 313-318. doi: 10.2138/gselements.14.5.313

    [3]

    Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions [J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011

    [4]

    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier Ltd., 2014.

    [5]

    Pak S J, Seo I, Lee K Y, et al. Rare earth elements and other critical metals in deep seabed mineral deposits: Composition and implications for resource potential [J]. Minerals, 2019, 9(1): 3.

    [6]

    Li D F, Fu Y, Sun X M, et al. Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility [J]. Ore Geology Reviews, 2020, 118: 103371. doi: 10.1016/j.oregeorev.2020.103371

    [7]

    Guan Y, Sun X M, Shi G Y, et al. Rare earth elements composition and constraint on the genesis of the polymetallic crusts and nodules in the South China Sea [J]. Acta Geologica Sinica-English Edition, 2017, 91(5): 1751-1766. doi: 10.1111/1755-6724.13409

    [8]

    Ren Y Z, Sun X M, Guan Y, et al. Distribution of rare earth elements plus yttrium among major mineral phases of marine Fe–Mn crusts from the South China Sea and Western Pacific Ocean: A comparative study [J]. Minerals, 2019, 9(1): 8.

    [9]

    Smith W H F, Staudigel H, Watts A B, et al. The Magellan seamounts: early cretaceous record of the South Pacific isotopic and thermal anomaly [J]. Journal of Geophysical Research: Atmospheres, 1989, 94(B8): 10501-10523. doi: 10.1029/JB094iB08p10501

    [10]

    Koppers A A P, Staudigel H, Wijbrans J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion [J]. Earth and Planetary Science Letters, 1998, 163(1-4): 53-68. doi: 10.1016/S0012-821X(98)00175-7

    [11]

    Hein J R, Conrad T A, Dunham R E. Seamount characteristics and mine-site model applied to exploration-and mining-lease-block selection for cobalt-rich ferromanganese crusts [J]. Marine Georesources & Geotechnology, 2009, 27(2): 160-176.

    [12] 朱克超, 赵祖斌, 李扬. 麦哲伦海山区MD、ME、MF海山富钴结壳特征[J]. 海洋地质与第四纪地质, 2001, 21(1):33-38. [ZHU Kechao, ZHAO Zubin, LI Yang. Cobalt-rich ferromanganese crusts from the MA, ME and MF seamounts of the Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2001, 21(1): 33-38.
    [13] 卜文瑞. 太平洋富钴结壳稀有气体地球化学特征及其成矿指示意义[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2008.

    BU Wenrui. Noble Gas geochemistry of ferromanganese crusts form pacific ocean and their significations for the formation of crusts[D]. Doctor Dissertation of Graduate University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2008.

    [14] 李江山, 石学法, 刘季花, 等. 古海洋环境演化对富钴结壳稀土元素富集的制约[J]. 中国稀土学报, 2011, 29(5):622-629. [LI Jiangshan, SHI Xuefa, LIU Jihua, et al. Constraints of paleoceanographic environmental evolution on REEs enrichment in co-rich crust [J]. Journal of the Chinese Society of Rare Earths, 2011, 29(5): 622-629.
    [15] 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报: 地球科学版, 2011, 41(3):707-714. [REN Xiangwen, SHI Xuefa, ZHU Aimei, et al. Existing phase of rare earth elements in Co-Rich Fe-Mn crusts from seamount MK of magellan seamount cluster [J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 707-714.
    [16] 杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征: 以麦哲伦海山和马尔库斯-威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2):105-116. [YANG Shengxiong, LONG Xiaojun, QI Qi, et al. The mineralogical and geochemical characteristics of co-rich crusts from the western pacific: Taking the co-rich crusts from Magellan and Marcus-wake seamounts as an example [J]. Periodical of Ocean University of China, 2016, 46(2): 105-116.
    [17] 薛婷, 孙晓明, 张美, 等. 西太平洋海山富钴结壳稀土元素(REE)组成原位LA-ICPMS测定[J]. 岩石学报, 2008, 24(10):2423-2432. [XUE Ting, SUN Xiaoming, ZHANG Mei, et al. In-situ LA-ICPMS analysis of rare earth elements of ferromanganese crusts from west Pacific Ocean seamounts [J]. Acta Petrologica Sinica, 2008, 24(10): 2423-2432.
    [18] 王晓红, 周力平, 王毅民, 等. 太平洋富钴结壳高密度环境记录解读[J]. 中国科学 D辑: 地球科学, 2008, 51(10):1460-1469. [WANG Xiaohong, ZHOU Limin, WANG Yimin, et al. Paleoenvironmental implications of high-density records in Co-rich seamount crusts from the Pacific Ocean [J]. Science in China Series D: Earth Sciences, 2008, 51(10): 1460-1469. doi: 10.1007/s11430-008-0092-6
    [19]

    Lee T G, Hein J R, Lee K, et al. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(10): 1932-1956. doi: 10.1016/j.dsr.2005.04.009

    [20]

    Clouard V, Bonneville A. Ages of seamounts, islands, and plateaus on the Pacific plate[M]//Foulger G R, Natland J H, Presnall D C, et al. Plates, plumes and paradigms. Geological Society of America, 2005, 388: 71.

    [21]

    Rashidov V A. Geologic-geophysical investigations of Magellan Seamount Guyots, Pacific Ocean. Vestnik KRAUNC (Bulletin of Kamchanka Regional Association "Educational-Scientific Center") [J]. Earth Sciences, 2003(1): 103-126.

    [22]

    Pringle M S. Radiometric ages of basaltic basement recovered at Sites 800, 801, and 802, Leg 129, western Pacific Ocean [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992, 129: 389-404.

    [23] 赵俐红, 金翔龙, 高金耀, 等. 麦哲伦海山链漂移史及可能的来源[J]. 海洋学报, 2010, 32(3):60-66. [ZHAO Lihong, JIN Xianglong, GAO Jinyao, et al. The research on the drifting history and possible origin of the Magellan seamount trail [J]. Acta Oceanologica Sinica, 2010, 32(3): 60-66.
    [24] 王嘹亮, 钟和贤, 曾繁彩, 等. 麦哲伦海山区MA、MC海山富钴结壳元素间关系及成因意义[J]. 南海地质研究, 1999, 11:26-46. [WANG Liaoliang, ZHONG Hexian, ZENG Fancai, et al. Interelement relationships and their implications for crust genesis in cobalt-rich ferromanganese crusts from the MA and MC seamounts of the Magellan seamounts [J]. Gresearch of Eological South China Sea, 1999, 11: 26-46.
    [25] 任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院海洋研究所博士学位论文, 2005.

    REN Xiangwen. The Metallogenic system of co-rich manganese crusts in western pacific[D]. Doctor Dissertation of Institute of oceanology, Chinese Academy of Sciences, 2005.

    [26] 任向文, 刘季花, 石学法, 等. 麦哲伦海山群M海山富钴结壳成因与成矿时代: 来自地球化学和Co地层学的证据[J]. 海洋地质与第四纪地质, 2011, 31(6):65-74. [REN Xiangwen, LIU Jihua, SHI Xuefa, et al. Genesis and Ore-forming stages of Co-rich ferromanganese crusts from seamount M of magellan seamounts: evidence from geochemistry and Co Chronology [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 65-74.
    [27]

    Usui A, Nishi K, Sato H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500 m [J]. Ore Geology Reviews, 2017, 87: 71-87. doi: 10.1016/j.oregeorev.2016.09.032

    [28]

    Hein J R, Conrad T A, Frank M, et al. Copper‐nickel‐rich, amalgamated ferromanganese crust‐nodule deposits from Shatsky Rise, NW Pacific [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10022.

    [29]

    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [30]

    Guan Y, Sun X M, Ren Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea [J]. Ore Geology Reviews, 2017, 89: 206-227. doi: 10.1016/j.oregeorev.2017.06.020

    [31]

    Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: its compilation, major and trace element characteristics [J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482. doi: 10.1016/0016-7037(84)90298-9

    [32]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [33]

    Menendez A, James R H, Roberts S, et al. Controls on the distribution of rare earth elements in deep-sea sediments in the North Atlantic Ocean [J]. Ore Geology Reviews, 2017, 87: 100-113. doi: 10.1016/j.oregeorev.2016.09.036

    [34]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [35] 赵广涛, 何雨旸, 陈淳, 等. 太平洋铁锰结核与富Co结壳的矿物地球化学比较研究[J]. 中国海洋大学学报, 2011, 41(5):85-93. [ZHAO Guangtao, HE Yuyang, CHEN Chun, et al. Comparison of the mineral and geochemistry characteristics between co-rich crusts and ferromanganese nodules from the Pacific ocean [J]. Periodical of Ocean University of China, 2011, 41(5): 85-93.
    [36]

    Marino E, González F J, Kuhn T, et al. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island Seamounts and their influence in the metal recovery rate with hydrometallurgical methods [J]. Minerals, 2019, 9(7): 439. doi: 10.3390/min9070439

    [37]

    Fitzgerald C E, Gillis K M. Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean [J]. Marine Geology, 2006, 225(1-4): 145-156. doi: 10.1016/j.margeo.2005.09.005

    [38]

    Pelleter E, Fouquet Y, Etoubleau J, et al. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific) [J]. Ore Geology Reviews, 2017, 87: 126-146. doi: 10.1016/j.oregeorev.2016.09.014

    [39]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [40]

    De Carlo E H, McMurtry G M. Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific [J]. Chemical Geology, 1992, 95(3-4): 235-250. doi: 10.1016/0009-2541(92)90014-V

    [41]

    Lécuyer C. Seawater residence times of some elements of geochemical interest and the salinity of the oceans [J]. Bulletin de la Société Géologique de France, 2016, 187(6): 245-260.

    [42] 任江波, 邓希光, 邓义楠, 等. 中国富钴结壳合同区海水的稀土元素特征及其意义[J]. 地球科学, 2019, 44(10):3529-3540. [REN Jiangbo, DENG Xiguang, DENG Yi’nan, et al. Rare earth element characteristics and its geological implications for seawater from cobalt-rich ferromanganese crust exploration contract area of China [J]. Earth Science, 2019, 44(10): 3529-3540.
    [43]

    Bau M, Koschinsky A. Hafnium and neodymium isotopes in seawater and in ferromanganese crusts: the “element perspective” [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 952-961. doi: 10.1016/j.jpgl.2005.09.067

    [44]

    Ohta A, Kawabe I. Rare earth element partitioning between Fe oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO3: Determinations of rare earth element complexation constants with carbonate ions [J]. Geochemical Journal, 2000, 34(6): 439-454. doi: 10.2343/geochemj.34.439

    [45]

    Patten J T, Byrne R H. Assessment of Fe (III) and Eu (III) complexation by silicate in aqueous solutions [J]. Geochimica et Cosmochimica Acta, 2017, 202: 361-373. doi: 10.1016/j.gca.2016.12.004

    [46]

    Ohta A, Kawabe I. REE (III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce (III) oxidation by δ-MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0

    [47]

    Luo Y R, Byrne R H. Carbonate complexation of yttrium and the rare earth elements in natural waters [J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 691-699. doi: 10.1016/S0016-7037(03)00495-2

    [48]

    Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1

    [49]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R, ed. Deep-sea Mining. Cham: Springer, 2017: 23-63.

    [50]

    Langmuir D. Aqueous environmental geochemistry[M]. Englewood Cliffs: Prentice-Hall, Inc., 1997.

    [51]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [52]

    Byrne R H, Kim K H. Rare earth element scavenging in seawater [J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2645-2656. doi: 10.1016/0016-7037(90)90002-3

    [53]

    Cantrell K J, Byrne R H. Rare earth element complexation by carbonate and oxalate ions [J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 597-605. doi: 10.1016/0016-7037(87)90072-X

    [54]

    Alibo D S, Nozaki Y. Dissolved rare earth elements in the eastern Indian Ocean: chemical tracers of the water masses [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(4): 559-576. doi: 10.1016/j.dsr.2003.11.004

    [55]

    Mizell K, Hein J R, Lam P J, et al. Geographic and oceanographic influences on ferromanganese crust composition along a pacific ocean meridional transect, 14 N to 14S [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008716.

    [56]

    Mizell K, Hein J R. Ferromanganese crusts and nodules, rocks that grow[M]. Springer International Publishing, 2016.

    [57]

    Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    [58]

    Prakash L S, Ray D, Paropkari A L, et al. Distribution of REEs and yttrium among major geochemical phases of marine Fe–Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits [J]. Chemical Geology, 2012, 312-313: 127-137. doi: 10.1016/j.chemgeo.2012.03.024

    [59]

    Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    [60]

    Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7: 16539. doi: 10.1038/s41598-017-16379-1

    [61]

    Conrad T, Hein J R, Paytan A, et al. Formation of Fe-Mn crusts within a continental margin environment [J]. Ore Geology Reviews, 2017, 87: 25-40. doi: 10.1016/j.oregeorev.2016.09.010

    [62]

    Kawabe M, Fujio S, Yanagimoto D, et al. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(10): 1675-1687. doi: 10.1016/j.dsr.2009.06.003

    [63]

    Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005

    [64] 韩杰, 武光海, 叶瑛, 等. 铁锰结壳中底层洋流活动的地球化学研究[J]. 矿床地质, 2006, 25(5):620-628. [HAN Jie, WU Guanghai, YE Ying, et al. Geochemical record of bottom water in ferromanganese crusts [J]. Mineral Deposits, 2006, 25(5): 620-628. doi: 10.3969/j.issn.0258-7106.2006.05.009
    [65]

    De Carlo E H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean [J]. Marine Geology, 1991, 98(2-4): 449-467. doi: 10.1016/0025-3227(91)90116-L

    [66] 姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学: 地球科学, 2011, 54(2):197-203. [JIANG Xuejun, LIN Xuehui, YAO De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 54(2): 197-203. doi: 10.1007/s11430-010-4070-4
  • 期刊类型引用(2)

    1. Jingjing Gao,Jihua Liu,Hui Zhang,Shijuan Yan,Xiangwen Ren,Quanshu Yan. The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts. Acta Oceanologica Sinica. 2024(08): 58-68 . 必应学术
    2. 丁雪,刘佳,杨慧良,赵京涛,黄威,李攀峰,宋维宇,郭建卫,虞义勇,崔汝勇,胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制. 海洋地质与第四纪地质. 2023(04): 105-115 . 本站查看

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  3400
  • HTML全文浏览量:  421
  • PDF下载量:  58
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-09-20
  • 修回日期:  2020-11-10
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

/

返回文章
返回