西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征

刘凯, 王珍岩

刘凯, 王珍岩. 西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101
引用本文: 刘凯, 王珍岩. 西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101
LIU Kai, WANG Zhenyan. Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101
Citation: LIU Kai, WANG Zhenyan. Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 210-222. DOI: 10.16562/j.cnki.0256-1492.2020092101

西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征

基金项目: 中国科学院战略性先导科技专项“印太交汇区海洋物质能量中心形成演化过程与机制”(XDB42010203),“地球大数据科学工程”(XDA9060401);科技部基础资源调查专项“西太平洋典型海山生态系统科学调查”(2017FY100802)
详细信息
    作者简介:

    刘凯(1994—),男,硕士研究生,研究方向为海洋沉积,E-mail:liukai175@mails.ucas.ac.cn

    通讯作者:

    王珍岩(1972—),男,副研究员,主要从事海洋沉积学研究,E-mail:zywang@qdio.ac.cn

  • 中图分类号: P744, P736.4

Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific

  • 摘要: 西太平洋麦哲伦海山区是全球重要的铁锰结壳资源分布区,具有丰富的稀土元素资源潜力。本文对采自麦哲伦海山区Kocebu海山的11个铁锰结壳表层样(<1 mm)进行稀土元素地球化学研究,探讨其含量特征、成因和影响稀土元素富集的环境因素。结果表明:Kocebu海山铁锰结壳表层样品ΣREY(Rare earth elements and yttrium)平均含量为1 366 mg/kg,低于前人在麦哲伦海山区其他海山以及邻近的马尔库斯–威克海山区的分析结果;样品轻稀土富集和Ce正异常(平均值为1.45)特征以及稀土元素成因图解、配分曲线和分配系数曲线等均表明该海山结壳属于水成成因;海水中稀土元素含量和溶解氧含量是控制结壳生长的关键环境参数,二者在Kocebu海山所在海区的浅水环境中含量较低;结壳ΣREY含量偏低与采样点水深较浅导致的海水稀土元素含量和溶解氧含量较低密切相关,受碎屑矿物的稀释作用影响较小。在开展铁锰结壳地球化学特征研究和资源勘探评价时应充分考虑采样水深的分布范围,局部水深样品的分析结果可能导致研究结果出现较大偏差。
    Abstract: The Magellan Seamounts in the Western Pacific, as an important contract area for ferromanganese crusts exploration, contain high potential of rare earth resources. In this paper, the geochemistry of rare earth elements and yttrium (REY) from 11 top surface ferromanganese crust samples (<1 mm) collected from the Kocebu Guyot were studied. We analyzed the REY composition characteristics and genetic type of the samples and discussed the factors which control the enrichment of REY. The results show that the average REY abundance (ΣREY) of the crusts is 1366 mg/kg, which is lower than that from other seamounts in Magellan Seamounts and Marcus-Wake Seamounts. The Kocebu Guyot is characterized by enriched light REE and high positive Ce anomalies (mean δCe value 1.45). Genetic discrimination diagram, normalized REY plots and REY partition coefficient patterns indicate that all the crusts are hydrogenetic in origin. REY abundance and dissolved oxygen content in seawater should be regarded as primary environmental parameters controlling the growth of crusts. The lower REY abundance in the samples is related to the water depth and affected by lower REY and oxygen content in shallower waters near Kocebu Guyot, but not observably diluted by detrital minerals. Geochemistry research and resource evaluation of ferromanganese crusts in seamount areas should take the influence of water depth into further consideration, the analysis of samples from limited water depth may cause large deviations in the research results.
  • 铁锰结壳是一种从海水中沉淀出来的“壳状”铁锰沉积物,主要分布于最低含氧带(OMZ)以下,碳酸盐补偿深度(CCD)以上的海山斜坡上,分布水深一般为800~3 000 m[1-2]。铁锰结壳富含Co、Ni、稀土元素(REY)等关键金属(Critical metals,USGS分类[3-4]),且资源储量大,产出部位浅,具有很高的潜在经济价值, 是海洋矿产资源研究的热点[1, 5]。铁锰结壳中稀土元素的富集、分布和配分模式与海水中悬浮颗粒的沉降以及海山区生物地球化学环境等铁锰矿物形成条件等密切相关[6],可以指示铁锰结壳物质来源、成因和沉积环境信息等[7-8]。但以往对结壳中稀土元素地球化学特征研究大多针对结壳的全岩样品或分层变化的环境信息,对于新近生长的、与现今海洋环境关系密切的表层结壳样品的稀土元素特征等缺少针对性研究。

    西太平洋麦哲伦海山区是全球大洋中最大的海山群之一[9],海山数量多且年龄极大,可达120 Ma[10],海山斜坡上生长了大量的厚层结壳,是重要的铁锰结壳勘探合同区[11]。前人曾对该海山区内MA(Pallada,或采薇海山)、MC(Ita Mai Tai,或维嘉海山)、MD(Govorov)、ME(Il'ichev)和MK(Skornyakov)等海山结壳的稀土元素特征进行研究,发现ΣREY含量多为1 367~2 833 mg/kg,具有明显的Ce正异常特征,稀土元素主要赋存在δ-MnO2相中[12-16]。此外,薛婷等[17]还分析了不同结壳层之间REE组成和δCe的差别,认为其变化主要受控于形成时氧化环境不同;REE含量高的层圈形成于较氧化的环境,有利于铁锰氧化物的形成和Ce等稀土元素的吸附。王晓红等[18]利用Al/(Fe+Mn)记录指示了西太平洋结壳中碎屑组分的来源和变化,认为该指标可以反映亚洲季风气候的演化历史。本文选取采自麦哲伦海山区Kocebu海山11个结壳的表层样品(<1 mm),通过分析其稀土元素地球化学特征,并与麦哲伦海山区其他海山和邻近的马尔库斯–威克海山区海山的铁锰结壳稀土元素分析结果进行对比,探讨Kocebu海山结壳稀土元素物质来源和成因机制,分析影响结壳中稀土元素富集的环境因素和作用机制,为开展海山区铁锰结壳稀土元素资源评价和勘探区圈定等提供科学依据。

    Kocebu平顶海山位于西太平洋麦哲伦海山区的西北部,西南侧与东马里亚纳海盆相偎,西侧与马里亚纳海沟相望,北侧与马尔库斯–威克海山区相邻,东北侧与皮嘉费他海盆相依,经纬度坐标为17°25’N、152°55’E。Kocebu海山是一座热点/断裂成因的海底火山(图1),主体为2个火山机构,因其底座相连,被整体视为一座海山。

    图  1  Kocebu海山区域位置与采样位置图
    十字代表文献中的CTD站位;水深数据来源于:GEBCO 2020 Gridded Bathymetry Data,https://www.gebco.net/;地形图来源于http://guyot.ocean.ru/
    Figure  1.  Location of Kocebu Guyot on GEBCO-based bathymetric map and sampling locations on topographic map
    The crosses represent the CTD stations from the literatures; bathymetry datas are from GEBCO 2020 Gridded Bathymetry Data, https://www.gebco.net/; Topographic map from http://guyot.ocean.ru/

    Kocebu海山东西两个海山机构相距约40 km。海山山顶为三角形平台,距海表水深约为1 500 m,最小深度分别为1 360和1 174 m,面积分别为295和190 km2。海山最大深度为4 674 m,总体高度为3 500 m。两个海山机构中间的鞍部水深约3 500 m。另外,在北部还有两个小型海山锥,深度为3 500~4 000 m(图1)。Kocebu海山的顶部覆盖远洋沉积物,主要为生物礁灰岩、角砾岩、泥岩等,少见黏土矿物,厚度约为30~50 m;海山斜坡基岩出露,海山底部为滑塌沉积[19]

    40Ar-39Ar同位素定年结果显示,麦哲伦海山区海山年龄范围为74~121 Ma[20],但在相关海山研究文献[21]中未找到Kocebu海山基岩测年数据。同位素地球化学和地球物理研究表明,麦哲伦海山区起源于现法属波利尼西亚附近(20°~30°S)[9-10, 22],随太平洋板块北西向漂移,跨过赤道后继续运动至目前位置[23]

    2018年3—4月,中国科学院海洋研究所“科学”号考察船使用“发现”号遥控无人潜水器在西太平洋麦哲伦海山区Kocebu海山斜坡上采集铁锰结壳样品,采样位置如图1所示,采样信息如表1所示。采集结壳样品的水深范围为1 314~1 652 m,取样位置处于海山顶部边缘下的海山斜坡上,坡度较陡;样品采集点海底被大面积厚层铁锰结壳覆盖,上有少量有孔虫砂,偶见珊瑚等底栖生物。本次调查采集的铁锰结壳样品主要为砾状结壳,厚度在10 cm以内,部分样品破碎后可见蚀变玄武岩核心。

    表  1  Kocebu海山铁锰结壳采样信息
    Table  1.  The sampling information of Fe-Mn crusts from Kocebu Guyot
    样品编号北纬东经水深/m
    1-3-117.393°153.125°1 327
    1-3-217.393°153.125°1 327
    2-517.472°153.168°1 318
    3-117.493°153.237°1 370
    3-217.493°153.237°1 368
    4-317.332°153.214°1 652
    4-517.336°153.207°1 314
    6-217.346°153.138°1 382
    7-117.341°152.698°1 570
    7-417.346°152.697°1 572
    7-517.346°152.697°1 572
    下载: 导出CSV 
    | 显示表格

    本文选取11个典型结壳样品,首先用蒸馏水洗去表面附着的有孔虫砂及杂质,用不锈钢刀片在其表面(<1 mm)仔细刮取5 g粉末样品,在60 ℃下烘干4 h后使用玛瑙研钵仔细研磨至200目,用于稀土元素测试分析。

    稀土元素分析仪器为Varian MS820型电感耦合等离子体质谱仪,分析元素为14种稀土元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)和Y元素。取0.040 g样品加入0.5 mL HF、0.5 mL HNO3与1.5 mL HCl消解12 h,赶酸至尽干,加入1 mL HNO3、1 mL H2O密闭消解12 h,冷却,稀释到40 g(稀释倍数为1 000),用于ICP-MS分析。为进行实验流程稳定性控制,测试过程中每5个样品做平行样一次。标准物质GBW07295、GBW07296、NOD-A-1与NOD-P-1(均为锰结核)的测试结果与推荐值基本一致,元素分析结果相对误差为5%~10%。ICP-MS分析测试工作在中国科学院海洋研究所分析测试中心完成。

    为进行对比分析,本文搜集了前人文献中麦哲伦海山区、马尔库斯-威克海山区以及西北太平洋和南海的表层结壳样品稀土元素、主量元素和水深数据,对全岩样品数据予以剔除,分层取样的样品仅使用最外层结壳数据。单个海山数据在3条以下的不予使用,以保证数据代表性。数据来源与各海山(区)的表层结壳中稀土元素的平均含量如表2所示。

    表  2  Kocebu海山与附近其他海山(区)铁锰结壳表层稀土元素含量
    Table  2.  Mean concentrations of rare earth elements and yttrium(REY) in surface layer of crusts from Kocebu Guyot and other areas nearby
    样品编号LaCePrNdSmEuGdTbDyYHoErTmYbLuΣREYΣ3+REYΣLREEΣHREEδCe
    1-3-120447939.916734.78.5741.06.3236.81547.8720.93.0819.12.801 2247459332921.22
    1-3-222358243.918538.39.5245.77.0141.51728.7923.33.5121.83.161 4098271 0823261.36
    2-523064946.619241.210.046.77.2241.91708.7222.83.3920.92.991 4938441 1683241.45
    3-122166246.419241.19.8347.07.2341.51628.6022.63.3120.62.931 4888261 1723161.51
    3-223060146.319440.39.7747.37.2141.91668.7823.13.3921.03.061 4448421 1223211.34
    4-323271446.419240.69.8646.37.1440.41518.2821.83.1920.12.881 5358211 2343011.59
    4-523871546.219341.09.9848.17.4543.01779.0223.83.5522.13.271 5808651 2433371.57
    6-214847928.912326.36.5231.44.7928.11125.9515.72.3315.12.221 0295508122181.69
    7-116749230.012525.96.2831.24.7928.71206.2717.02.5917.02.561 0785858472301.59
    7-424556849.920743.610.449.47.5943.51638.9423.53.4521.63.071 4488801 1243241.19
    7-520956740.616935.18.4440.66.2736.31397.5820.02.9618.72.771 3047361 0292741.42
    平均21359242.317637.19.0243.16.6438.51538.0721.33.1619.82.881 3667751 0702971.45
    MA(Pallada) 海山[24]22065147.819739.310.146.76.6639.51598.1822.23.1120.43.061 4748231 1653091.48
    MD(Govorov) 海山[12, 25-26]3051 06161.126354.113.662.39.2153.418811.129.54.2628.04.112 05910721 7483851.81
    ME(Il'ichev) 海山[12, 25]3651 19870.830160.915.271.510.158.222212.533.44.6631.04.592 16411631 9274341.77
    MK(Skornyakov) 海山[15-16, 25]27573749.422246.211.656.07.9647.815810.027.73.9425.43.931 7049671 3403641.50
    麦哲伦其他海山[13, 17]31696159.626154.413.362.99.2953.211.330.44.4327.64.321 8669071 6652031.84
    Lamont 海山[14]26483250.221646.011.050.28.0246.19.4025.93.9225.63.761 5927601 4191731.66
    Takuyo-Daigo Smt.[27]24993355.223451.412.453.37.9947.11459.1525.23.5822.23.291 8539191 5353171.85
    西北太平洋[28-29]2131 17947.521848.511.553.57.5143.81437.6922.93.0120.22.871 8948431 7173042.77
    中国南海[30]1911 14939.216036.39.2338.2 5.7933.41276.2017.92.5514.92.411 8316821 5855063.16
      注:Σ3+REY为不包含Ce的ΣREY含量,ΣLREE为La—Eu,ΣHREE为Gd—Lu,δCe=2×CeSN/(LaSN+PrSN),La—ΣHREE的单位为mg/kg;−表示无数据。
    下载: 导出CSV 
    | 显示表格

    与麦哲伦海山区、马尔库斯–威克海山区和西北太平洋海山相比,Kocebu海山结壳样品的总稀土含量(ΣREY)、3价稀土含量(REY除去Ce元素, Σ3+REY)、轻稀土含量(ΣLREE)、重稀土含量(ΣHREE)、Ce和Y元素含量均明显偏低(图2)。ΣREY含量范围为1 029~1 580 mg/kg,平均含量为1 366 mg/kg。其中Ce元素占比重最高,占总REY含量的39%~47%,含量为479~714 mg/kg,平均含量为592 mg/kg。Σ3+REY含量为550~880 mg/kg,平均含量为775 mg/kg。Y元素含量为112~177 mg/kg,平均含量为153 mg/kg。ΣLREE含量为812~1 243 mg/kg,平均含量为1 070 mg/kg;ΣHREE含量为218~337 mg/kg,平均含量为297 mg/kg。轻重稀土比值(ΣLREE/ΣHREE)为3.20~4.10,平均为3.61,轻稀土显著富集。

    图  2  Kocebu海山与附近海山铁锰结壳表层稀土元素含量对比
    Figure  2.  REY content variation in surface layer of crusts from Kocebu Guyot and nearby seamounts

    稀土元素的北美页岩(NASC)标准化图解如图3所示(北美页岩稀土元素数据来自文献[31])。结果显示,结壳样品均表现出明显的Ce正异常,Ce异常值(δCe)为1.19~1.69,平均值为1.45,指示结壳形成时海水处于氧化环境。Y元素表现出明显的负异常,Y元素的离子半径和化合价(3+)与其他稀土元素相似,但Y不存在4f电子,较少形成稳定表面络合物,因此,其化学行为与相邻的Ho显著不同,在进入结壳时Y和Ho会发生分异,导致Y的负异常[32-33]。稀土元素配分曲线整体呈平缓状,LaSN/YbSN比值为0.97~1.13,平均为1.06。各结壳样品之间稀土元素总量虽略有差异,但其配分曲线基本平行,与附近其他海山的结壳样品相比,变化趋势也基本一致。

    图  3  Kocebu海山铁锰结壳样品北美页岩标准化REY图解
    麦哲伦海山区包含MA、MD、ME、MK海山与麦哲伦其他海山数据;马尔库斯威克海山包含Lamont海山与Takuyo-Daigo海山数据;北美页岩稀土元素数据来源于文献[31]。
    Figure  3.  NASC shale-normalized REY plots for the Fe-Mn crust samples from Kocebu Guyot
    Magellan Seamounts include MA, MD, ME, MK Guyots and other guyots in Magellan; Marcus-Wake Seamounts include Lamont Guyot and Takuyo-Daigo Seamount; NASC REE data from reference[31].

    海洋铁锰沉积物由于其成分差异,通常被分为3种类型:水成型、成岩型和热液型[34]。水成型铁锰沉积物的金属离子来源于海水,主要成分为海水中胶体沉淀而成的铁锰氧化物,通常在强氧化条件下形成,沉积速率非常缓慢(1~10 mm/Ma),稀土元素含量在1 500 mg/kg以上,配分图解显示出明显的Ce正异常和Y负异常[1, 34]。成岩型铁锰沉积物的金属离子来源于亚氧化条件下沉积物中或沉积物-水界面的孔隙水,其形成环境氧化性较弱,稀土元素含量一般低于水成型沉积物,约1 000 mg/kg;配分图解同时显示Ce和Y的负异常[35-36]。热液型铁锰沉积物来源于中–低温热液流体喷出海底后与海水的混合过程,生长速率最快,稀土含量一般低于100 mg/kg,配分图解显示Ce的负异常和Y的正异常[37-38]

    Kocebu海山铁锰结壳样品的Ce异常值均在1以上,Nd含量大于100 mg/kg,YSN/HoSN小于1,在稀土元素δCe-Nd和δCe-YSN-HoSN成因图解[34, 39]图4)中均位于水成成因范围内。从稀土元素配分模式上看(图3),Kocebu海山铁锰结壳表现为较高的Ce正异常、Y负异常、较高的Nd元素含量和REY含量,均符合水成结壳的特征,表明Kocebu海山铁锰结壳是在氧化条件下沉淀形成的,属于典型的水成成因,受成岩作用和热液活动影响较小。

    图  4  Kocebu海山铁锰结壳成因类型判别图解[34]
    Figure  4.  Ternary diagram for the genetic classification of oceanic ferromanganese deposits[34]

    为了进一步揭示结壳样品的成矿物质来源,本文对结壳–海水体系中稀土元素的分配系数(Kd)和分配系数的倒数(1/Kd)与稀土元素在海水中平均滞留时间(t)的关系进行分析(图5)。分配系数Kd定义为某元素在结壳中的平均含量与其在海水中平均含量的比值,即:Kd=CMn/Csw[40-41]

    图  5  结壳-海水体系中稀土元素的分配系数
    a. 分配系数的倒数(1/Kd)与平均滞留时间(t)对数的关系,b. Kocebu海山铁锰结壳REY分配系数(Kd)配分曲线。海水中的稀土元素数据使用MC海山MCCTD1504测站1 978 m的海水样品数据,来源于文献[42];稀土元素平均滞留时间数据来源于文献[54]。
    Figure  5.  The partition coefficient of REY in crust-seawater system
    a. plot of logarithm of the residence time(t) of REY in seawater versus logarithm of the inverse distribution coefficient(1/Kd) between Fe-Mn crusts and seawater,b. patterns of REY partition coefficients(Kd) between Fe–Mn crusts and seawater.The datas of REY content in seawater are from MCCTD1504 station of MC Guyot, 1 978 m, from reference [42]; the datas of average residence time of REY are from reference [54].

    从分析结果来看(图5a),稀土元素分配系数的倒数(1/Kd)与其在海水中平均滞留时间(t)呈明显的正相关关系(R2=0.801 0),表明海水与结壳之间的稀土元素化学组成存在极为紧密的联系,结壳的成矿物质来源于海水,进一步证实了结壳样品的水成成因。稀土元素在海水中滞留时间越短,在结壳中越富集,结壳对这些稀土元素的强烈吸附,可能是导致其滞留时间减小,并低于大洋混合时间的因素之一。从稀土元素分配系数(Kd)上来看(图5b),各样品的分配系数模式差异不大,说明其稀土元素的富集过程受相同因素控制;Ce的分配系数明显高于+3价稀土元素,表明结壳在形成过程中,铁锰矿物对海水中Ce元素的强烈吸附,是造成结壳中Ce强烈富集、具有明显Ce正异常特征的重要因素[42];随着原子序数增大,从轻稀土到重稀土,配分曲线由平缓逐渐变为右倾,轻稀土的分配系数明显大于重稀土。

    大洋海水中的稀土元素主要以溶解态的REE3+,REECO3+,REE(CO32,REEOH2+等形式存在,最常见的是REECO3+络合离子形式[43-45]。实验研究[44, 46]表明,稀土元素进入结壳的过程中不仅发生固-液体系之间的分馏,还存在稀土元素内部的分馏,δ-MnO2和FeOOH对海水中稀土元素的选择性吸附是稀土元素在结壳中富集的重要机制[8, 40]。在Eh>0.5,pH≈8的正常海水条件下,海水中的轻稀土优先以REE3+和REECO3+的形式存在,而重稀土则以REE(CO32形式出现[47];Mn倾向于氧化为Mn4+O2,Fe倾向于氧化为Fe3+OOH[48-49],这两种不溶的胶体颗粒都具有非常大的比表面积(>300 m2/g[1])和强烈的吸附作用;δ-MnO2具有强负表面电荷,而FeOOH具有中性或微正表面电荷,因此,δ-MnO2倾向于吸附带正电的轻稀土离子,FeOOH倾向于吸附带负电的重稀土离子[49-50],最终沉淀在基底表面形成结壳。但重稀土倾向于在海水中形成稳定的碳酸盐络合物REE(CO32,与氧化物表面的亲和力低于轻稀土,因而相较于轻稀土更不易进入结壳[51-53],分配系数普遍低于轻稀土,因此,这种选择性吸附是造成结壳中轻稀土富集,重稀土相对亏损的主要原因。

    与麦哲伦海山区、马尔库斯–威克海山区和西北太平洋海山相比,Kocebu海山铁锰结壳的ΣREY含量较低(图2)。铁锰结壳的地球化学特征与其周围海水的化学环境有直接联系[2, 55],根据前人研究结果,我们认为影响Kocebu海山铁锰结壳样品稀土元素含量的因素主要有3个:

    (1)结壳中碎屑矿物对REY的稀释作用。连续淋滤实验和原位LA-ICP-MS面扫描分析结果显示,在铁锰结壳中,δ-MnO2和FeOOH分别可吸附约23%和67%的REY,在面扫描图像下Mn、Fe和REY的微区分布也有非常好的对应关系。但碎屑矿物中REY的含量非常少,仅占结壳ΣREY 10%左右,并不是REY的主要赋存相[8]。因此,结壳中的REY会被碎屑矿物所稀释,碎屑含量偏高会导致REY含量降低[29, 56]。Al是碎屑矿物的主要组成元素,结壳中Al/(Fe+Mn)比值可以指示铁锰结壳中碎屑组分变化[18],本文使用该指标来对比结壳中碎屑矿物的相对含量。Kocebu、MD、MK海山的铁锰结壳生长于西太平洋开阔大洋环境中,只有较少的陆源物质能输运到该区域;而南海结壳生长于大陆边缘环境中,受陆源物质影响较大[57]。从图6可以看出,MD、MK海山和南海结壳中Al/(Fe+Mn)比值逐渐增加,其REY含量显著降低,二者呈强烈的负相关关系,体现了上述海山(区)结壳中碎屑矿物对REY稀释作用。Kocebu海山铁锰结壳的Al/(Fe+Mn)平均值为0.027,明显低于MD、MK海山和南海(平均值分别为0.050、0.066、0.095),证明该海山表层结壳中碎屑矿物含量相对较低,且结壳中碎屑矿物含量与REY含量相关性很差(R2=0.021 3),因此可以断定,Kocebu海山铁锰结壳中的碎屑矿物未对其REY含量产生显著的稀释作用。

    图  6  不同海山(区)铁锰结壳Al/(Fe+Mn)与REY含量的关系
    Figure  6.  Bivariate diagram of Al/(Fe+Mn) and REY content of the hydrogenetic Fe–Mn crusts in different areas

    (2)受海水中稀土元素含量的影响。本次调查在Kocebu海山采集的铁锰结壳样品赋存深度较浅(1 314~1 652 m),明显小于其他海山样品。本文收集的来自麦哲伦海山区MD、ME、MK海山和马尔库斯–威克海山区Takuyo-Daigo 海山70件铁锰结壳样品的采样水深为800~5 500 m,其分析结果显示结壳的ΣREY含量随水深增加而增大(图7)。已有研究显示,在不同水深,海水中REY的络合作用和结壳中REY的配位数保持不变,四分组效应的程度也无明显变化[29];分步淋滤实验也表明在铁锰结壳-海水分配体系中,海水中的La进入锰相和铁相中的比例随水深保持恒定,不受结壳中铁锰矿物比值的影响[58]。因此,结壳中REY随水深变化不是由铁锰比值导致的,而是受周围海水中REY元素含量控制的结果[40]。海水中稀土元素的垂直分布表现为表层缺乏型特征[59]。文献中的实测数据显示(图7),麦哲伦海山区MC海山MCCTD1504站位和Pigafetta Basin CTD1站位(位置见图1)海水中溶解REY的含量均随水深增大呈逐渐增加趋势,其在表层海水中含量最低且波动较大,在近底层海水中含量最高[42, 60]。据此推断,因为本文使用的Kocebu海山铁锰结壳样品的采样深度较浅,受限于海山区浅层海水中较低的REY含量,导致出现结壳样品REY含量较低的现象。

    图  7  表层铁锰结壳与海水中的REY含量剖面图
    MC海山MCCTD 1504站位海水数据来自文献[42];皮嘉费他海盆CTD1站位海水数据来自文献[60]。
    Figure  7.  Profile of REY content in surface layer of Fe-Mn crusts and seawater
    The data of REY content in seawater from MCCTD1504 station of MC Guyot, 1 978 m, from reference [42]; the datas of CTD1 station are from reference[60].

    (3)受海山周围海水氧化还原环境的限制。尽管近年来也在5 000 m以深发现了深水结壳(如Takuyo-Daigo 海山[29]),但铁锰结壳主要分布在最低含氧带(OMZ)以深、碳酸盐溶跃面(CCD)以浅的深度范围内[4, 61]。在西太平洋海山区最低含氧带以下,受富氧南极底层水(AABW)的补充,海水中的溶解氧含量逐渐增加(图8),为铁锰结壳的生长提供了良好的氧化环境[1, 62]。在这种氧化条件下,海水中溶解的Ce3+可以被氧化为Ce4+价而被无定形的氧化物所络合,与+3价稀土元素(3+REY)分离[63],表现出明显的正异常特征,因此,结壳中的Ce异常(δCe)可以反映结壳形成环境的氧化还原程度[17, 64-65];在最低含氧带以下,随着水深逐渐增加,水体中的溶解氧含量逐渐增大,氧化性随之增强,氧化了更多的Ce3+,导致最外层结壳的δCe也明显增大(图8)。

    图  8  表层铁锰结壳中δCe与海水中溶解氧含量剖面图
    海水溶解氧含量曲线来源于文献[8]。
    Figure  8.  Profile of δCe in surface layer of Fe-Mn crusts and dissolved oxygen in seawater
    The curve of dissolved oxygen content in seawater is from reference [8].

    不同于可变价的Ce元素,3+REY在铁锰结壳中富集很大程度受控于铁锰氧化物的表面化学吸附作用,而受氧化还原条件影响较小[66],因此,3+REY含量主要受海水中稀土元素含量的控制,与δCe之间并无相关性(图9),与水深变化的相关性也不大(R2=0.0114)。海山环境的氧化性与结壳中REY含量呈正相关关系(图9),这主要受Ce元素富集的影响。Kocebu海山铁锰结壳的δCe平均值为1.50,低于MK海山、Takuyo-Daigo海山和西北太平洋结壳(δCe平均值分别为1.50、1.85、2.77),表明其生长处于氧化性相对较弱的环境中,不利于海水中Ce3+的氧化,导致被铁锰氧化物吸附的Ce4+减少,但这对3+REY的含量没有明显影响。而从稀土元素含量分析结果可知,Ce元素最高含量可占稀土总量的47%,所以Ce含量的减少可导致结壳中稀土总量明显降低。因此可以判断,因为本研究采集的Kocebu海山铁锰结壳水深相对较浅,生长环境中溶解氧含量较低,氧化性较弱,不利于Ce的富集,从而导致出现总稀土元素含量偏低的结果。

    图  9  不同海山(区)表层铁锰结壳δCe与3+REY、REY含量的关系
    Figure  9.  Bivariate diagram of δCe and 3+REY, REY content of the surface layer of hydrogenetic Fe–Mn crusts in different areas

    综上分析,海水中稀土元素含量和溶解氧含量是控制海山区结壳生长的关键环境参数,二者分布与赋存结壳的海山水深环境密切相关,因此,Kocebu海山铁锰结壳中稀土元素含量较低与本研究采集样品的赋存水深较浅直接相关。同时可以合理推断,Kocebu海山区的深水结壳样品中可能具有更高的稀土元素含量和更大的资源价值,这个推断有待进一步的调查研究分析进行验证。另外,考虑到铁锰结壳中稀土元素含量随水深变化有显著差异,在开展铁锰结壳地球化学特征研究和资源勘探评价时应尽可能扩大采样点的水深分布范围,提高样品地球化学特征的代表性,采用局部水深范围样品的分析结果可能对评价认识带来较大偏差。

    (1)本研究采集的西太平洋Kocebu海山铁锰结壳样品ΣREY含量平均为1 366 mg/kg,低于前人在邻近的麦哲伦海山区和马尔库斯–威克海山区分析结果;其轻重稀土平均比值为3.61,总体呈现轻稀土富集特征;稀土元素标准化图解表现出明显的Ce正异常和Y负异常,配分曲线呈平缓状,δCe平均值为1.45,表明结壳在较弱氧化条件下形成。

    (2)结壳样品的稀土元素成因图解、配分模式和分配系数图解等均表明Kocebu海山铁锰结壳属于水成成因,结壳的成矿物质主要来自于海水;铁锰矿物对海水中轻、重稀土的选择性吸附是造成结壳中轻稀土富集的主要原因。

    (3)海水中稀土元素含量和溶解氧含量是控制结壳生长的关键环境参数,二者在Kocebu海山所在海区的浅水环境中含量较低,且随水深增大逐渐升高。本研究使用的Kocebu海山铁锰结壳样品的采样水深较浅,海水中相对较低的稀土元素含量和溶解氧含量是其稀土元素含量偏低的主要原因。结壳中碎屑矿物含量较低,未对其稀土元素含量产生显著稀释作用。

    (4)考虑到铁锰结壳中稀土元素含量随赋存环境水深变化有显著差异,在开展铁锰结壳地球化学特征研究和资源勘探评价时应尽可能扩大采样水深的分布范围,提高样品的代表性。使用局部水深范围样品的分析结果可能对研究和评价结果带来较大偏差。

    致谢:中国科学院海洋研究所“科学”号科学考察船麦哲伦海山航次全体科考队员、船员对本研究海上调查取样工作提供了大力支持和帮助,在此谨致谢忱。

  • 图  1   Kocebu海山区域位置与采样位置图

    十字代表文献中的CTD站位;水深数据来源于:GEBCO 2020 Gridded Bathymetry Data,https://www.gebco.net/;地形图来源于http://guyot.ocean.ru/

    Figure  1.   Location of Kocebu Guyot on GEBCO-based bathymetric map and sampling locations on topographic map

    The crosses represent the CTD stations from the literatures; bathymetry datas are from GEBCO 2020 Gridded Bathymetry Data, https://www.gebco.net/; Topographic map from http://guyot.ocean.ru/

    图  2   Kocebu海山与附近海山铁锰结壳表层稀土元素含量对比

    Figure  2.   REY content variation in surface layer of crusts from Kocebu Guyot and nearby seamounts

    图  3   Kocebu海山铁锰结壳样品北美页岩标准化REY图解

    麦哲伦海山区包含MA、MD、ME、MK海山与麦哲伦其他海山数据;马尔库斯威克海山包含Lamont海山与Takuyo-Daigo海山数据;北美页岩稀土元素数据来源于文献[31]。

    Figure  3.   NASC shale-normalized REY plots for the Fe-Mn crust samples from Kocebu Guyot

    Magellan Seamounts include MA, MD, ME, MK Guyots and other guyots in Magellan; Marcus-Wake Seamounts include Lamont Guyot and Takuyo-Daigo Seamount; NASC REE data from reference[31].

    图  4   Kocebu海山铁锰结壳成因类型判别图解[34]

    Figure  4.   Ternary diagram for the genetic classification of oceanic ferromanganese deposits[34]

    图  5   结壳-海水体系中稀土元素的分配系数

    a. 分配系数的倒数(1/Kd)与平均滞留时间(t)对数的关系,b. Kocebu海山铁锰结壳REY分配系数(Kd)配分曲线。海水中的稀土元素数据使用MC海山MCCTD1504测站1 978 m的海水样品数据,来源于文献[42];稀土元素平均滞留时间数据来源于文献[54]。

    Figure  5.   The partition coefficient of REY in crust-seawater system

    a. plot of logarithm of the residence time(t) of REY in seawater versus logarithm of the inverse distribution coefficient(1/Kd) between Fe-Mn crusts and seawater,b. patterns of REY partition coefficients(Kd) between Fe–Mn crusts and seawater.The datas of REY content in seawater are from MCCTD1504 station of MC Guyot, 1 978 m, from reference [42]; the datas of average residence time of REY are from reference [54].

    图  6   不同海山(区)铁锰结壳Al/(Fe+Mn)与REY含量的关系

    Figure  6.   Bivariate diagram of Al/(Fe+Mn) and REY content of the hydrogenetic Fe–Mn crusts in different areas

    图  7   表层铁锰结壳与海水中的REY含量剖面图

    MC海山MCCTD 1504站位海水数据来自文献[42];皮嘉费他海盆CTD1站位海水数据来自文献[60]。

    Figure  7.   Profile of REY content in surface layer of Fe-Mn crusts and seawater

    The data of REY content in seawater from MCCTD1504 station of MC Guyot, 1 978 m, from reference [42]; the datas of CTD1 station are from reference[60].

    图  8   表层铁锰结壳中δCe与海水中溶解氧含量剖面图

    海水溶解氧含量曲线来源于文献[8]。

    Figure  8.   Profile of δCe in surface layer of Fe-Mn crusts and dissolved oxygen in seawater

    The curve of dissolved oxygen content in seawater is from reference [8].

    图  9   不同海山(区)表层铁锰结壳δCe与3+REY、REY含量的关系

    Figure  9.   Bivariate diagram of δCe and 3+REY, REY content of the surface layer of hydrogenetic Fe–Mn crusts in different areas

    表  1   Kocebu海山铁锰结壳采样信息

    Table  1   The sampling information of Fe-Mn crusts from Kocebu Guyot

    样品编号北纬东经水深/m
    1-3-117.393°153.125°1 327
    1-3-217.393°153.125°1 327
    2-517.472°153.168°1 318
    3-117.493°153.237°1 370
    3-217.493°153.237°1 368
    4-317.332°153.214°1 652
    4-517.336°153.207°1 314
    6-217.346°153.138°1 382
    7-117.341°152.698°1 570
    7-417.346°152.697°1 572
    7-517.346°152.697°1 572
    下载: 导出CSV

    表  2   Kocebu海山与附近其他海山(区)铁锰结壳表层稀土元素含量

    Table  2   Mean concentrations of rare earth elements and yttrium(REY) in surface layer of crusts from Kocebu Guyot and other areas nearby

    样品编号LaCePrNdSmEuGdTbDyYHoErTmYbLuΣREYΣ3+REYΣLREEΣHREEδCe
    1-3-120447939.916734.78.5741.06.3236.81547.8720.93.0819.12.801 2247459332921.22
    1-3-222358243.918538.39.5245.77.0141.51728.7923.33.5121.83.161 4098271 0823261.36
    2-523064946.619241.210.046.77.2241.91708.7222.83.3920.92.991 4938441 1683241.45
    3-122166246.419241.19.8347.07.2341.51628.6022.63.3120.62.931 4888261 1723161.51
    3-223060146.319440.39.7747.37.2141.91668.7823.13.3921.03.061 4448421 1223211.34
    4-323271446.419240.69.8646.37.1440.41518.2821.83.1920.12.881 5358211 2343011.59
    4-523871546.219341.09.9848.17.4543.01779.0223.83.5522.13.271 5808651 2433371.57
    6-214847928.912326.36.5231.44.7928.11125.9515.72.3315.12.221 0295508122181.69
    7-116749230.012525.96.2831.24.7928.71206.2717.02.5917.02.561 0785858472301.59
    7-424556849.920743.610.449.47.5943.51638.9423.53.4521.63.071 4488801 1243241.19
    7-520956740.616935.18.4440.66.2736.31397.5820.02.9618.72.771 3047361 0292741.42
    平均21359242.317637.19.0243.16.6438.51538.0721.33.1619.82.881 3667751 0702971.45
    MA(Pallada) 海山[24]22065147.819739.310.146.76.6639.51598.1822.23.1120.43.061 4748231 1653091.48
    MD(Govorov) 海山[12, 25-26]3051 06161.126354.113.662.39.2153.418811.129.54.2628.04.112 05910721 7483851.81
    ME(Il'ichev) 海山[12, 25]3651 19870.830160.915.271.510.158.222212.533.44.6631.04.592 16411631 9274341.77
    MK(Skornyakov) 海山[15-16, 25]27573749.422246.211.656.07.9647.815810.027.73.9425.43.931 7049671 3403641.50
    麦哲伦其他海山[13, 17]31696159.626154.413.362.99.2953.211.330.44.4327.64.321 8669071 6652031.84
    Lamont 海山[14]26483250.221646.011.050.28.0246.19.4025.93.9225.63.761 5927601 4191731.66
    Takuyo-Daigo Smt.[27]24993355.223451.412.453.37.9947.11459.1525.23.5822.23.291 8539191 5353171.85
    西北太平洋[28-29]2131 17947.521848.511.553.57.5143.81437.6922.93.0120.22.871 8948431 7173042.77
    中国南海[30]1911 14939.216036.39.2338.2 5.7933.41276.2017.92.5514.92.411 8316821 5855063.16
      注:Σ3+REY为不包含Ce的ΣREY含量,ΣLREE为La—Eu,ΣHREE为Gd—Lu,δCe=2×CeSN/(LaSN+PrSN),La—ΣHREE的单位为mg/kg;−表示无数据。
    下载: 导出CSV
  • [1]

    Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [2]

    Lusty P A J, Hein J R, Josso P. Formation and occurrence of ferromanganese crusts: earth's storehouse for critical metals [J]. Elements, 2018, 14(5): 313-318. doi: 10.2138/gselements.14.5.313

    [3]

    Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions [J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011

    [4]

    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier Ltd., 2014.

    [5]

    Pak S J, Seo I, Lee K Y, et al. Rare earth elements and other critical metals in deep seabed mineral deposits: Composition and implications for resource potential [J]. Minerals, 2019, 9(1): 3.

    [6]

    Li D F, Fu Y, Sun X M, et al. Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility [J]. Ore Geology Reviews, 2020, 118: 103371. doi: 10.1016/j.oregeorev.2020.103371

    [7]

    Guan Y, Sun X M, Shi G Y, et al. Rare earth elements composition and constraint on the genesis of the polymetallic crusts and nodules in the South China Sea [J]. Acta Geologica Sinica-English Edition, 2017, 91(5): 1751-1766. doi: 10.1111/1755-6724.13409

    [8]

    Ren Y Z, Sun X M, Guan Y, et al. Distribution of rare earth elements plus yttrium among major mineral phases of marine Fe–Mn crusts from the South China Sea and Western Pacific Ocean: A comparative study [J]. Minerals, 2019, 9(1): 8.

    [9]

    Smith W H F, Staudigel H, Watts A B, et al. The Magellan seamounts: early cretaceous record of the South Pacific isotopic and thermal anomaly [J]. Journal of Geophysical Research: Atmospheres, 1989, 94(B8): 10501-10523. doi: 10.1029/JB094iB08p10501

    [10]

    Koppers A A P, Staudigel H, Wijbrans J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion [J]. Earth and Planetary Science Letters, 1998, 163(1-4): 53-68. doi: 10.1016/S0012-821X(98)00175-7

    [11]

    Hein J R, Conrad T A, Dunham R E. Seamount characteristics and mine-site model applied to exploration-and mining-lease-block selection for cobalt-rich ferromanganese crusts [J]. Marine Georesources & Geotechnology, 2009, 27(2): 160-176.

    [12] 朱克超, 赵祖斌, 李扬. 麦哲伦海山区MD、ME、MF海山富钴结壳特征[J]. 海洋地质与第四纪地质, 2001, 21(1):33-38. [ZHU Kechao, ZHAO Zubin, LI Yang. Cobalt-rich ferromanganese crusts from the MA, ME and MF seamounts of the Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2001, 21(1): 33-38.
    [13] 卜文瑞. 太平洋富钴结壳稀有气体地球化学特征及其成矿指示意义[D]. 中国科学院研究生院(海洋研究所)博士学位论文, 2008.

    BU Wenrui. Noble Gas geochemistry of ferromanganese crusts form pacific ocean and their significations for the formation of crusts[D]. Doctor Dissertation of Graduate University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2008.

    [14] 李江山, 石学法, 刘季花, 等. 古海洋环境演化对富钴结壳稀土元素富集的制约[J]. 中国稀土学报, 2011, 29(5):622-629. [LI Jiangshan, SHI Xuefa, LIU Jihua, et al. Constraints of paleoceanographic environmental evolution on REEs enrichment in co-rich crust [J]. Journal of the Chinese Society of Rare Earths, 2011, 29(5): 622-629.
    [15] 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报: 地球科学版, 2011, 41(3):707-714. [REN Xiangwen, SHI Xuefa, ZHU Aimei, et al. Existing phase of rare earth elements in Co-Rich Fe-Mn crusts from seamount MK of magellan seamount cluster [J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 707-714.
    [16] 杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征: 以麦哲伦海山和马尔库斯-威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2):105-116. [YANG Shengxiong, LONG Xiaojun, QI Qi, et al. The mineralogical and geochemical characteristics of co-rich crusts from the western pacific: Taking the co-rich crusts from Magellan and Marcus-wake seamounts as an example [J]. Periodical of Ocean University of China, 2016, 46(2): 105-116.
    [17] 薛婷, 孙晓明, 张美, 等. 西太平洋海山富钴结壳稀土元素(REE)组成原位LA-ICPMS测定[J]. 岩石学报, 2008, 24(10):2423-2432. [XUE Ting, SUN Xiaoming, ZHANG Mei, et al. In-situ LA-ICPMS analysis of rare earth elements of ferromanganese crusts from west Pacific Ocean seamounts [J]. Acta Petrologica Sinica, 2008, 24(10): 2423-2432.
    [18] 王晓红, 周力平, 王毅民, 等. 太平洋富钴结壳高密度环境记录解读[J]. 中国科学 D辑: 地球科学, 2008, 51(10):1460-1469. [WANG Xiaohong, ZHOU Limin, WANG Yimin, et al. Paleoenvironmental implications of high-density records in Co-rich seamount crusts from the Pacific Ocean [J]. Science in China Series D: Earth Sciences, 2008, 51(10): 1460-1469. doi: 10.1007/s11430-008-0092-6
    [19]

    Lee T G, Hein J R, Lee K, et al. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(10): 1932-1956. doi: 10.1016/j.dsr.2005.04.009

    [20]

    Clouard V, Bonneville A. Ages of seamounts, islands, and plateaus on the Pacific plate[M]//Foulger G R, Natland J H, Presnall D C, et al. Plates, plumes and paradigms. Geological Society of America, 2005, 388: 71.

    [21]

    Rashidov V A. Geologic-geophysical investigations of Magellan Seamount Guyots, Pacific Ocean. Vestnik KRAUNC (Bulletin of Kamchanka Regional Association "Educational-Scientific Center") [J]. Earth Sciences, 2003(1): 103-126.

    [22]

    Pringle M S. Radiometric ages of basaltic basement recovered at Sites 800, 801, and 802, Leg 129, western Pacific Ocean [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992, 129: 389-404.

    [23] 赵俐红, 金翔龙, 高金耀, 等. 麦哲伦海山链漂移史及可能的来源[J]. 海洋学报, 2010, 32(3):60-66. [ZHAO Lihong, JIN Xianglong, GAO Jinyao, et al. The research on the drifting history and possible origin of the Magellan seamount trail [J]. Acta Oceanologica Sinica, 2010, 32(3): 60-66.
    [24] 王嘹亮, 钟和贤, 曾繁彩, 等. 麦哲伦海山区MA、MC海山富钴结壳元素间关系及成因意义[J]. 南海地质研究, 1999, 11:26-46. [WANG Liaoliang, ZHONG Hexian, ZENG Fancai, et al. Interelement relationships and their implications for crust genesis in cobalt-rich ferromanganese crusts from the MA and MC seamounts of the Magellan seamounts [J]. Gresearch of Eological South China Sea, 1999, 11: 26-46.
    [25] 任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院海洋研究所博士学位论文, 2005.

    REN Xiangwen. The Metallogenic system of co-rich manganese crusts in western pacific[D]. Doctor Dissertation of Institute of oceanology, Chinese Academy of Sciences, 2005.

    [26] 任向文, 刘季花, 石学法, 等. 麦哲伦海山群M海山富钴结壳成因与成矿时代: 来自地球化学和Co地层学的证据[J]. 海洋地质与第四纪地质, 2011, 31(6):65-74. [REN Xiangwen, LIU Jihua, SHI Xuefa, et al. Genesis and Ore-forming stages of Co-rich ferromanganese crusts from seamount M of magellan seamounts: evidence from geochemistry and Co Chronology [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 65-74.
    [27]

    Usui A, Nishi K, Sato H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500 m [J]. Ore Geology Reviews, 2017, 87: 71-87. doi: 10.1016/j.oregeorev.2016.09.032

    [28]

    Hein J R, Conrad T A, Frank M, et al. Copper‐nickel‐rich, amalgamated ferromanganese crust‐nodule deposits from Shatsky Rise, NW Pacific [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10022.

    [29]

    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [30]

    Guan Y, Sun X M, Ren Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea [J]. Ore Geology Reviews, 2017, 89: 206-227. doi: 10.1016/j.oregeorev.2017.06.020

    [31]

    Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: its compilation, major and trace element characteristics [J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482. doi: 10.1016/0016-7037(84)90298-9

    [32]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [33]

    Menendez A, James R H, Roberts S, et al. Controls on the distribution of rare earth elements in deep-sea sediments in the North Atlantic Ocean [J]. Ore Geology Reviews, 2017, 87: 100-113. doi: 10.1016/j.oregeorev.2016.09.036

    [34]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [35] 赵广涛, 何雨旸, 陈淳, 等. 太平洋铁锰结核与富Co结壳的矿物地球化学比较研究[J]. 中国海洋大学学报, 2011, 41(5):85-93. [ZHAO Guangtao, HE Yuyang, CHEN Chun, et al. Comparison of the mineral and geochemistry characteristics between co-rich crusts and ferromanganese nodules from the Pacific ocean [J]. Periodical of Ocean University of China, 2011, 41(5): 85-93.
    [36]

    Marino E, González F J, Kuhn T, et al. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island Seamounts and their influence in the metal recovery rate with hydrometallurgical methods [J]. Minerals, 2019, 9(7): 439. doi: 10.3390/min9070439

    [37]

    Fitzgerald C E, Gillis K M. Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean [J]. Marine Geology, 2006, 225(1-4): 145-156. doi: 10.1016/j.margeo.2005.09.005

    [38]

    Pelleter E, Fouquet Y, Etoubleau J, et al. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific) [J]. Ore Geology Reviews, 2017, 87: 126-146. doi: 10.1016/j.oregeorev.2016.09.014

    [39]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [40]

    De Carlo E H, McMurtry G M. Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific [J]. Chemical Geology, 1992, 95(3-4): 235-250. doi: 10.1016/0009-2541(92)90014-V

    [41]

    Lécuyer C. Seawater residence times of some elements of geochemical interest and the salinity of the oceans [J]. Bulletin de la Société Géologique de France, 2016, 187(6): 245-260.

    [42] 任江波, 邓希光, 邓义楠, 等. 中国富钴结壳合同区海水的稀土元素特征及其意义[J]. 地球科学, 2019, 44(10):3529-3540. [REN Jiangbo, DENG Xiguang, DENG Yi’nan, et al. Rare earth element characteristics and its geological implications for seawater from cobalt-rich ferromanganese crust exploration contract area of China [J]. Earth Science, 2019, 44(10): 3529-3540.
    [43]

    Bau M, Koschinsky A. Hafnium and neodymium isotopes in seawater and in ferromanganese crusts: the “element perspective” [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 952-961. doi: 10.1016/j.jpgl.2005.09.067

    [44]

    Ohta A, Kawabe I. Rare earth element partitioning between Fe oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO3: Determinations of rare earth element complexation constants with carbonate ions [J]. Geochemical Journal, 2000, 34(6): 439-454. doi: 10.2343/geochemj.34.439

    [45]

    Patten J T, Byrne R H. Assessment of Fe (III) and Eu (III) complexation by silicate in aqueous solutions [J]. Geochimica et Cosmochimica Acta, 2017, 202: 361-373. doi: 10.1016/j.gca.2016.12.004

    [46]

    Ohta A, Kawabe I. REE (III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce (III) oxidation by δ-MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0

    [47]

    Luo Y R, Byrne R H. Carbonate complexation of yttrium and the rare earth elements in natural waters [J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 691-699. doi: 10.1016/S0016-7037(03)00495-2

    [48]

    Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1

    [49]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R, ed. Deep-sea Mining. Cham: Springer, 2017: 23-63.

    [50]

    Langmuir D. Aqueous environmental geochemistry[M]. Englewood Cliffs: Prentice-Hall, Inc., 1997.

    [51]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [52]

    Byrne R H, Kim K H. Rare earth element scavenging in seawater [J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2645-2656. doi: 10.1016/0016-7037(90)90002-3

    [53]

    Cantrell K J, Byrne R H. Rare earth element complexation by carbonate and oxalate ions [J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 597-605. doi: 10.1016/0016-7037(87)90072-X

    [54]

    Alibo D S, Nozaki Y. Dissolved rare earth elements in the eastern Indian Ocean: chemical tracers of the water masses [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(4): 559-576. doi: 10.1016/j.dsr.2003.11.004

    [55]

    Mizell K, Hein J R, Lam P J, et al. Geographic and oceanographic influences on ferromanganese crust composition along a pacific ocean meridional transect, 14 N to 14S [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008716.

    [56]

    Mizell K, Hein J R. Ferromanganese crusts and nodules, rocks that grow[M]. Springer International Publishing, 2016.

    [57]

    Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    [58]

    Prakash L S, Ray D, Paropkari A L, et al. Distribution of REEs and yttrium among major geochemical phases of marine Fe–Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits [J]. Chemical Geology, 2012, 312-313: 127-137. doi: 10.1016/j.chemgeo.2012.03.024

    [59]

    Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    [60]

    Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7: 16539. doi: 10.1038/s41598-017-16379-1

    [61]

    Conrad T, Hein J R, Paytan A, et al. Formation of Fe-Mn crusts within a continental margin environment [J]. Ore Geology Reviews, 2017, 87: 25-40. doi: 10.1016/j.oregeorev.2016.09.010

    [62]

    Kawabe M, Fujio S, Yanagimoto D, et al. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(10): 1675-1687. doi: 10.1016/j.dsr.2009.06.003

    [63]

    Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005

    [64] 韩杰, 武光海, 叶瑛, 等. 铁锰结壳中底层洋流活动的地球化学研究[J]. 矿床地质, 2006, 25(5):620-628. [HAN Jie, WU Guanghai, YE Ying, et al. Geochemical record of bottom water in ferromanganese crusts [J]. Mineral Deposits, 2006, 25(5): 620-628. doi: 10.3969/j.issn.0258-7106.2006.05.009
    [65]

    De Carlo E H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean [J]. Marine Geology, 1991, 98(2-4): 449-467. doi: 10.1016/0025-3227(91)90116-L

    [66] 姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学: 地球科学, 2011, 54(2):197-203. [JIANG Xuejun, LIN Xuehui, YAO De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 54(2): 197-203. doi: 10.1007/s11430-010-4070-4
  • 期刊类型引用(2)

    1. Jingjing Gao,Jihua Liu,Hui Zhang,Shijuan Yan,Xiangwen Ren,Quanshu Yan. The occurrence phases and enrichment mechanism of rare earth elements in cobalt-rich crusts from Marcus-Wake Seamounts. Acta Oceanologica Sinica. 2024(08): 58-68 . 必应学术
    2. 丁雪,刘佳,杨慧良,赵京涛,黄威,李攀峰,宋维宇,郭建卫,虞义勇,崔汝勇,胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制. 海洋地质与第四纪地质. 2023(04): 105-115 . 本站查看

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  3400
  • HTML全文浏览量:  421
  • PDF下载量:  57
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-09-20
  • 修回日期:  2020-11-10
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

/

返回文章
返回