阿拉伯海北部马克兰增生楔G16站位地球化学特征及其对天然气水合物的指示

李强, 杨天邦, 庄畅, 邓希光, 王海峰, 于淼

李强, 杨天邦, 庄畅, 邓希光, 王海峰, 于淼. 阿拉伯海北部马克兰增生楔G16站位地球化学特征及其对天然气水合物的指示[J]. 海洋地质与第四纪地质, 2021, 41(3): 161-169. DOI: 10.16562/j.cnki.0256-1492.2020091802
引用本文: 李强, 杨天邦, 庄畅, 邓希光, 王海峰, 于淼. 阿拉伯海北部马克兰增生楔G16站位地球化学特征及其对天然气水合物的指示[J]. 海洋地质与第四纪地质, 2021, 41(3): 161-169. DOI: 10.16562/j.cnki.0256-1492.2020091802
LI Qiang, YANG Tianbang, ZHUANG Chang, DENG Xiguang, WANG Haifeng, YU Miao. Geochemical characteristics of the sediments at site G16 of the Makran accretionary wedge, the northern Arabian Sea, and their implications for gas hydrates[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 161-169. DOI: 10.16562/j.cnki.0256-1492.2020091802
Citation: LI Qiang, YANG Tianbang, ZHUANG Chang, DENG Xiguang, WANG Haifeng, YU Miao. Geochemical characteristics of the sediments at site G16 of the Makran accretionary wedge, the northern Arabian Sea, and their implications for gas hydrates[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 161-169. DOI: 10.16562/j.cnki.0256-1492.2020091802

阿拉伯海北部马克兰增生楔G16站位地球化学特征及其对天然气水合物的指示

基金项目: 中国地质调查局工作项目(DD20190582)
详细信息
    作者简介:

    李强(1984—),男,高级工程师,主要从事海洋地质样品的分析及地球化学研究,E-mail:lq28477697@163.com

    通讯作者:

    庄畅(1983—),男,高级工程师,主要从事海洋微体古生物研究,E-mail:zhchdatou@126.com

  • 中图分类号: P736.4

Geochemical characteristics of the sediments at site G16 of the Makran accretionary wedge, the northern Arabian Sea, and their implications for gas hydrates

  • 摘要: 阿拉伯海马克兰海域是具有天然气水合物勘查潜力的重要区域之一。对该海域G16站位沉积物样品的碎屑矿物、钼、有机碳和顶空气甲烷含量以及孔隙水总碱度和阴阳离子等地球化学特征进行综合分析。结果表明:Mg2+和Ca2+的浓度随深度明显降低,总碱度、Mg2+/Ca2+随深度显著增加;在硫酸盐-甲烷界面(SMI),SO42−的浓度线性降低至0.31 mmol/L,甲烷含量急剧增加至784 µmol/L,黄铁矿含量达到最大值并形成一个Mo峰。研究区硫酸根浓度线性降低和强烈亏损梯度以及Mg2+、Ca2+、总碱度和有机碳含量的变化特征,指示研究区存在强烈的甲烷厌氧氧化反应(AOM),并形成浅的SMI(估算深度4.62 mbsf)。孔隙水样品的地球化学异常与沉积物自生黄铁矿和Mo含量存在耦合现象,表明本站位深部沉积物中可能赋存有天然气水合物藏。
    Abstract: The Makran accretionary wedge in the northern Arabian Sea is one of the important areas with large gas hydrate potential. Sediment, headspace gas and pore water samples were collected from the sediment core at site G16 PC of the area. Comprehensive studies are conducted on organic carbon, molybdenum, methane concentrations in headspace gas, and total alkalinity, anions and cations in pore water and detrital sediments. It is revealed that concentrations of Mg2+ and Ca2+ decrease clearly with the increasing in depth, while the total alkalinity and the Mg2+/Ca2+ ratio increases sharply. Around the sulfate methane interface (SMI), the concentration of dissolved sulfate (SO42−) decreases linearly to 0.31 mmol/L, with a sharp increase in methane to 784 µmol/L. At the same time, the content of pyrite in sediments reaches its maximum together with a Mo peak. Combined with changing characteristics of total alkalinity and concentrations of Mg2+, Ca2+ and organic carbon, the concentration of sulfate decreased linearly and the high sulfate gradients suggest that there is strong anaerobic methane oxidation (AOM) occurred at the SMI, which is estimated in a depth of 4.62 mbsf. A coupling phenomenon exists between geochemical anomaly characteristics of sediment samples and pore water samples from the sediment core and the content of authigenic pyrite, which strongly indicate that gas hydrate reservoirs may occur in the deeper layer of the study area.
  • 1968年由Dan McKenzie,Jason Morgan与Xavier Le Pichon共同提出的板块构造理论是地球科学领域的一场革命,它从全球统一的角度,在一定程度上具备了定量和预测的性质,第一次以总领全球的气魄和高度的概括能力,成功地解释了地球运动和演化的许多重大问题,因此与相对论、量子力学和DNA双螺旋结构一起被称为20世纪自然科学四大进展。俯冲带是地表物质返回地球深部的主要通道,其俯冲动力与循环对流模式是板块构造理论的基石和经典。在全球三大类板块边界中,俯冲带一直是人类探索地球深部的重要目标,不仅动力机制复杂,对人类影响直接,也是火山带、地震带、矿产带和能源带的交汇[-]

    没有俯冲带就没有板块构造,俯冲带成因是理解板块构造的关键。然而,长期以来俯冲带的起始俯冲机制一直是板块构造理论中最为薄弱的部分。俯冲带如何从最初的非稳态破裂、下伏板块开始俯冲,到地幔对流逐步形成使岩石圈板块连续、稳态地俯冲,并又最终诱发小地幔楔内的地幔对流,进而形成岛弧和弧后构造活动,对这些过程的研究存在诸多争议[]。与被动大陆边缘的初始扩张相比,起始俯冲的研究刚刚起步。

    在地质历史中俯冲带如何产生是板块构造理论中最为重要的部分。地学界通过对于俯冲起始机制的研究认为大洋岩石圈由于挤压作用而发生破坏,从而产生俯冲带[],并由此形成了诱发被动型俯冲起始机制模型:板块的持续汇聚产生区域性挤压应力场,在特定区域,板块的隆升和下插形成了新的俯冲带。诱发性俯冲机制又分为两个亚类:迁移型和极性反转型。迁移型机制认为新的俯冲带会在老的俯冲带的外侧产生:由于印藏碰撞而导致的Mussau海沟以及印度西北板块边界的持续发展是迁移性机制的典型例子[]。极性反转机制也与汇聚作用相关,在该机制中持续的汇聚在岩浆岛弧后侧形成新的俯冲带,该机制的典型案例之一就是翁通-爪哇海台汇聚而形成的所罗门汇聚陆缘[]

    从20世纪90年代开始,对于板块起始机制开始有了新的观点,认为俯冲的起始更多的可能与大洋岩石圈的薄弱带,比如转换断层或断裂带相关。在薄弱带两侧老的大洋岩石圈的重力作用[,-],或者说岩石圈内部物质成分差异导致的密度差[],提供了俯冲作用和板块构造活动的主要驱动力,并进而提出了自发性俯冲机制的观点[]图1)。该观点基于古太平洋向西菲律宾海盆俯冲的研究,对于俯冲体系的地球动力学解释表明俯冲沿着先存断裂带自发形成[],也即始新世期间太平洋板块西侧新俯冲带的产生受控于转换断层坍塌而导致的自主诱发机制,该种类型的自主型俯冲以古太平洋冷而重的俯冲板片开始向下运动为标志[-]

    图 1 俯冲起始成因机制汇编
    图  1  俯冲起始成因机制汇编
    (据Stern[], Stern和Gerya[]改编)
    Figure  1.  Hypotheses for initiation of plate subduction
    (modified after Stern[], Stern and Gerya[])

    对板块俯冲起始机制理解,在地质与地球物理观测基础上离不开数值模拟对俯冲起始和过程的反演,尤其是近十几年计算机运算速度的飞速发展使得数值模拟的手段更为方便,地质与地球物理学家和构造动力学家们共同工作,使得不同的板块俯冲起始的假说得以验证。Gerya等[],Gerya[], Duretz等[]模拟了单向俯冲和双向俯冲对俯冲过程的影响,包括不同的俯冲角度,不同的相对运动速度,俯冲与上覆块体的不同岩石学、流变学特征等,俯冲板片年龄的变化等,对弧后发生伸展、挤压,以及俯冲体系的对称型变化的控制作用。不同的研究者均验证了全球板块运动绝大多数受到俯冲区较重的大洋岩石圈重力作用下沉的驱动,同时扩张作用的退积以及地幔对流的拖曳也是运动的重要因素[]。这些模拟工作既包括二维的软流圈尺度的数值模拟[],也包括三维全地幔尺度的数值模拟[]。但对于“传统”或者“新”的俯冲起始机制在数值模拟和实际观测中仍然有很多矛盾的问题尚未解决,比如自发性俯冲机制中岩浆、流体作用如何?是什么导致俯冲板片下沉和真正俯冲之间的转换过程?被动陆缘的崩塌是否会导致俯冲作用[]?而且对全球其他区域的研究依旧不能否认在有些区域的确存在诱发被动型的俯冲起始作用,比如区域挤压应力场[-],俯冲极性反转[,,],或者俯冲带迁移也会诱发俯冲带的产生[]图1)。

    九州-帕劳海脊位于菲律宾海的中部,北至南海海槽俯冲带,南至帕劳群岛的北部,纵贯南北约2 600 km。该脊曾经与现代IBM岛弧连为一体,在约30 Ma的海底扩张形成四国和帕尔西维拉盆地之前一起组成了古IBM岛弧[],是古太平洋板块向菲律宾海板块俯冲的产物。九州-帕劳海脊与东部火山岛弧带(现代伊豆-小笠原海脊和马里亚纳海脊),以及发育期间的多个边缘海盆,包括四国盆地、帕尔西维拉盆地、小笠原海槽、马里亚纳海槽等共同组成了作为地球汇聚边界的典型代表的伊豆-小笠原-马里亚纳(Izu-Bonin-Marina arc,以下简称IBM)俯冲体系(图2)。强烈的岩石圈变形和岩浆活动、典型沟-弧-盆体系、俯冲板块后撤形成的弧后扩张东向跃迁使得该区成为研究“俯冲工厂”(Subduction Factory)和震源带的典型海区[-,-]

    图 2 菲律宾海板块及邻区主要构造单元图
    图  2  菲律宾海板块及邻区主要构造单元图
    黄色圆圈为IODP 351航次钻探井位;红色圆圈为IODP 352航次钻探井位;红色方框内为本次研究区
    Figure  2.  Major tectonic units of the Philippine Sea plate and adjacent area
    Red circles are the drilling sites of IODP Exp. 351, and yellow for IODP Exp. 352. Red square indicates the study area

    九州-帕劳海脊及周缘记录了俯冲如何起始的信息,是了解板块如何起始俯冲的关键场所。Stern[]认为九州-帕劳海脊是自主俯冲机制的典型代表:相对冷而重的太平洋岩石圈沿着转换断层/破裂带开始下沉,从而诱发了俯冲作用。数值模拟实验也表明板块的密度是控制俯冲起始的关键要素[,]。国际大洋发现计划(International Ocean Discovery Program,简称IODP)在该区先后开展了两个钻探航次—IODP 351和352,其中IODP 351航次目标为九州-帕劳海脊附近西菲律宾海盆的基底和沉积,IODP 352航次的目标是伊豆前弧区的火山岩。钻探为揭示板块的初始俯冲机制和模型提供了重要的证据,表明俯冲起始之后先形成弧前的海底扩张作用,形成弧前玄武岩,而古IBM弧是在弧前海底扩张形成的小洋盆中形成[-]。然而,对于初始俯冲如何发生,在何处发生,依然疑云重重。Hall等[]认为印度-澳大利亚板块与欧亚板块碰撞导致的挤压应力场是触发古太平洋板块向菲律宾海板块俯冲的机制,Stern和Gerya[]也指出不能完全忽略远程挤压应力的效应。Taylor和Goodliffe[]同样对古IBM岛弧起始沿着老的断裂带发育存疑,因为九州-帕劳海脊和西侧西菲律宾海盆地构造展布近乎正交,同时岩石圈的弯曲和剪切阻力会限制,甚至会阻碍俯冲作用的形成。Leng和Gurnis[]通过数值模拟认为与板块边界并置的残留岛弧的重新活动是俯冲起始的关键因素,而非转换断层。由此可以看出,对于俯冲起始机制的研究,尤其是作为俯冲起始机制研究经典的九州-帕劳海脊区依旧是板块构造学理论体系中的一个重点和难点。

    对于地球内部结构的认识,主要来自于地震观测,包括针对沉积层的多道地震探测,以及针对岩石圈的深反射/折射地震探测。在海域,后者主要依靠海底地震仪(Ocean Bottom Seismometer,简称OBS)实现,可以通过人工源地震或者天然地震获取地壳深部和地幔结构。地质学研究中最重要的一个思想是“将今论古”,现今九州-帕劳海脊及周缘区域深部结构,包含了不同地质历史时期形成的不同记录,比如九州-帕劳海脊西侧的西菲律宾海盆,代表了俯冲起始之前的结构;九州-帕劳海脊及周缘,则保留了俯冲起始阶段的结构信息;而九州帕劳海脊西侧的四国盆地-帕尔西维拉盆地则是俯冲后续发展进入弧后扩张阶段的结构。当然,现今的深部结构会受到后期构造-岩浆作用的改造。包括IODP 351&352航次钻探在内的最新研究表明,太平洋板块向古菲律宾海的起始俯冲会首先沿着转换断层发生弧前海底扩张作用,形成弧前洋盆,而之后随着后续俯冲作用弧前玄武岩中形成火山岛弧。对以上不同区域,不同地质历史时期形成的深部结构的解读,可以获知不同的构造单元相互之间的差异,以及弧前洋盆是否真的存在等关键信息,这对于解答板块俯冲的起始机制至关重要。

    在九州-帕劳海脊开展的深反射/折射地震探测工作主要由日本科学家完成,尤其是在2004—2008年,日本开始在九州-帕劳海脊进行了一系列地震实验来了解其结构变化,并与共轭的伊豆-小笠原-马里亚纳海脊进行对比。这些地震实验都是为日本外大陆架划界项目服务。相关的成果在2007年之后开始发表,对九州-帕劳海脊北侧区域海脊本身由北向南的岩石圈结构进行了刻画[-]。但是相关的OBS测线,尤其是九州-帕劳海脊南段的OBS测线均比较短,仅针对海脊本身,很少有区域性的结构断面将与海脊密切相关的西菲律宾海盆和四国-帕尔西维拉海盆统一进行考虑。对九州-帕劳海脊地壳结构相关工作也仅是将海脊的南北进行对比,对海脊本身与“前世”—西菲律宾海、“今生”—新形成的弧间盆地的结构的对比工作相对很少。

    因此,受国家自然科学基金重大研究计划“西太平洋地球系统多圈层相互作用”的资助,自然资源部第二海洋研究所将在九州帕劳海脊南段及邻区开展综合地球物理剖面观测,该剖面西起西菲律宾海盆,穿越九州-帕劳海脊,东至帕尔西维拉海盆,剖面长度为1 260 km(图3)。探测手段包括利用主动源OBS的深反射/折射地震实验以及船载拖曳式多道地震实验,构建从海底表面,沉积与基底,到地壳上地幔结构不同尺度、高分辨率的岩石圈固体结构特征,比较代表俯冲前的西菲律宾海,代表起始俯冲的九州-帕劳海脊,以及俯冲后弧后扩张区的帕尔西维拉海盆深部结构特征的特点与差异。航次将于2019年9月份开始实施。

    图 3 九州-帕劳海脊南段及邻区地质与地球物理观测方案
    图  3  九州-帕劳海脊南段及邻区地质与地球物理观测方案
    黄色方框代表研究区, 黑色实线为计划布设的多道地震测线, 黑色圆点为OBS投放点, 黄色三角为拖网取样点
    Figure  3.  Map of geological and geophysical surveys in the southern Kyushu-Palau Ridge and adjacent region
    Yellow square indicates the survey area. Black line is planned multi-channel seismic profile. Black dots are the deploy positions of OBS. Yellow triangles are the dredged positions

    九州-帕劳海脊是研究板块俯冲起始机制的关键场所。以往几十年的研究主要集中在九州-帕劳海脊的北段(20°N以北),对于南段(20°N以南)的研究,尤其是15°N附近作为西菲律宾海盆地残留扩张脊的中央盆地断裂与九州-帕劳海脊的交汇区依旧存在大量的科学问题(Robert Stern, 2018, 私人通信),比如俯冲的起始位置与岩石圈结构、强度和内部变形有何联系?板块薄弱带(如转换断层、断裂带)如何转变为俯冲带?俯冲过程如何从初期的非稳态过程过渡到其后稳态的过程?俯冲系统形成及后续岛弧分裂-海底扩张的过程中壳幔如何相互作用?地幔对流模式如何变化?

    国际大洋发现计划(IODP)在设定未来十年(2013—2023)的科学目标中尤其指出:地球的深部过程及对地球表面环境的影响是其中非常关键的一部分,而俯冲带的形成、物质循环以及陆壳的初始形成是其中重要的挑战之一。九州-帕劳海脊在菲律宾海盆中扮演着关键的角色,对于它的深部结构及动力学机制的研究是认识整个菲律宾海板块动力学演化的关键,对解决太平洋向西菲律宾海板块俯冲如何发生和发展的科学问题具有重要意义。前文所述的诸多存在争议的科学问题给中国科学家提供了机遇和舞台,能否在新的俯冲起始、沟弧盆体系形成的这一国际前沿理论,取得属于中国科学家的突破,是中国科学家面临的重大挑战。

    因此,以西太平洋地球系统多圈层相互作用为视野,以九州-帕劳海脊南端及邻近区域为重点,以前期地球物理探测和后续动力学模拟为手段,深入探索各构造现象和构造阶段的结构、变形、物质循环特点,将有利于系统认识西太俯冲体系从初始俯冲-岛弧裂离-弧后伸展的完整演化历史,并在反复实验和对比的基础上,揭示板块俯冲作用的起始机制、动力学过程及其控制因素。该研究将会提升我们寻找资源、规避大的地质灾害的能力,也是完善全球动力学理论不可缺少的重要环节,将会对海洋科学的许多前沿领域产生巨大的推动作用。

  • 图  1   研究区位置及站位G16

    Figure  1.   Location of the study area and sampling site G16

    图  2   G16站位沉积物孔隙水中总碱度、Cl-和SO42−以及阳离子含量变化特征

    a.Na+、K+、Mg2+和SO42−,b.Ca2+、Mg2+/Ca2+、Cl-和TA。

    Figure  2.   Variation of TA, Cl, SO42− and cation concentrations with depth in pore water from the sediments at site G16

    a.Na+, K+, Mg2+ and SO42−, b. Ca2+, Mg2+/Ca2+, Cl and TA.

    图  3   G16站位沉积物中甲烷和孔隙水中硫酸根含量变化特征及SMI

    Figure  3.   Characteristics of methane content in sediments and SO42− concentration in pore water and their relation to SMI at site G16

    图  4   G16站位沉积物黄铁矿、Mo和有机碳含量变化特征

    Figure  4.   Characteristics of pyrite, Mo and organic carbon concentrations in the sediments at site G16

    图  5   G16站位沉积物孔隙水总碱度增量(经过Ca2+和Mg2+消耗量校正)与SO42−消耗量的变化关系

    Figure  5.   TA produced corrected for Ca2+ and Mg2+ loss and the relation to SO42− consumed in pore water at site G16

  • [1] 程聪, 姜涛, 匡增桂, 等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报, 2019, 38(4):30-40

    CHENG Cong, JIANG Tao, KUANG Zenggui, et al. Characteristics of gas hydrate system and its enlightenment to gas hydrate exploration in China [J]. Geological Science and Technology Information, 2019, 38(4): 30-40.

    [2] 宋科余, 龙涛, 段红梅, 等. 未来我国气体能源发展动向研究[J]. 地球学报, 2020, 42(2):187-195

    SONG Keyu, LONG Tao, DUAN Hongmei, et al. Research on the development trend of China’s gas energy in the future [J]. Acta Geoscientica Sinica, 2020, 42(2): 187-195.

    [3] 王健, 邱文弦, 赵俐红. 天然气水合物发育的构造背景分析[J]. 地质科技情报, 2010, 29(2):100-106 doi: 10.3969/j.issn.1000-7849.2010.02.018

    WANG Jian, QIU Wenxian, ZHAO Lihong. Tectonic settings analysis of gas hydrate deposits development [J]. Geological Science and Technology Information, 2010, 29(2): 100-106. doi: 10.3969/j.issn.1000-7849.2010.02.018

    [4] 谢蕾, 王家生, 吴能友, 等. 南海北部神狐海域浅表层沉积物中自生黄铁矿及其泥火山指示意义[J]. 中国科学: 地球科学, 2013, 56(4):541-548 doi: 10.1007/s11430-012-4511-3

    XIE Lei, WANG Jiasheng, WU Nengyou, et al. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment [J]. Science China Earth Sciences, 2013, 56(4): 541-548. doi: 10.1007/s11430-012-4511-3

    [5] 苏明, 杨睿, 吴能友, 等. 南海北部陆坡区神狐海域构造特征及对水合物的控制[J]. 地质学报, 2014, 88(3):318-326

    SU Ming, YANG Rui, WU Nengyou, et al. Structural characteristics in the Shenhu area, northern continental slope of South China Sea, and their influences on gas hydrate [J]. Acta Geologica Sinica, 2014, 88(3): 318-326.

    [6] 张毅, 何丽娟, 徐行, 等. 南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究[J]. 地球物理学进展, 2009, 24(1):183-194

    ZHANG Yi, HE Lijuan, XU Xing, et al. The disagreement between BSRs and the base of methane hydrate stability zones in the Shenhu area north of the South China Sea [J]. Progress in Geophysics, 2009, 24(1): 183-194.

    [7] 张美, 孙晓明, 芦阳, 等. 南海台西南盆地自生管状黄铁矿矿物学特征及其对天然气水合物的示踪意义[J]. 矿床地质, 2011, 30(4):725-734

    ZHANG Mei, SUN Xiaoming, LU Yang, et al. Mineralogy of authigenic tube pyrite from the Southwest Taiwan Basin of South China Sea and its tracing significance for gas hydrates [J]. Mineral Deposits, 2011, 30(4): 725-734.

    [8] 张汉泉, 吴庐山, 张锦炜. 海底可视技术在天然气水合物勘查中的应用[J]. 地质通报, 2005, 24(2):185-188

    ZHANG Hanquan, WU Lushan, ZHANG Jinwei. Application of the sea-floor visualization technique in gas hydrate exploration [J]. Geological Bulletin of China, 2005, 24(2): 185-188.

    [9] 吴庐山, 杨胜雄, 梁金强, 等. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3):534-544

    WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at site HQ-48 PC in Qiongdongnan area, the north of the South China Sea, and their implication for gas hydrates [J]. Geoscience, 2010, 24(3): 534-544.

    [10] 龚建明, 廖晶, 张莉, 等. 印度洋北部马克兰增生楔泥火山分布及主控因素探讨[J]. 现代地质, 2018, 32(5):1025-1030

    GONG Jianming, LIAO Jing, ZHANG Li, et al. Discussion on the distribution and main controlling factors of mud volcanoes in Makran accretionary wedge, Northern Indian Ocean [J]. Geoscience, 2018, 32(5): 1025-1030.

    [11] 杨金秀, 宋朋霖, 何巍巍, 等. 尼日尔三角洲前缘挤压带的古今BSRs分布特征[J]. 石油与天然气地质, 2019, 40(6):1295-1307 doi: 10.11743/ogg20190613

    YANG Jinxiu, SONG Penglin, HE Weiwei, et al. Distribution pattern of paleo and present BSRs in the toe-thrust belt of Niger Delta front [J]. Oil & Gas Geology, 2019, 40(6): 1295-1307. doi: 10.11743/ogg20190613

    [12] 张美, 陆红锋, 邬黛黛, 等. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2017, 37(6):178-188

    ZHANG Mei, LU Hongfeng, WU Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188.

    [13] 赵洁, 王家生, 岑越, 等. 南海东北部GMGS2-16站位自生矿物特征及对水合物藏演化的指示意义[J]. 海洋地质与第四纪地质, 2018, 38(5):144-155

    ZHAO Jie, WANG Jiasheng, CEN Yue, et al. Authigenic minerals at site GMGS2-16 of northeastern South China Sea and its implications for gas hydrate evolution [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 144-155.

    [14] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.

    [15] 蒲晓强, 钟少军, 于雯泉, 等. 南海北部陆坡NH-1孔沉积物中自生硫化物及其硫同位素对深部甲烷和水合物存在的指示[J]. 科学通报, 2007, 52(3):401-407 doi: 10.1007/s11434-007-0043-1

    PU Xiaoqiang, ZHONG Shaojun, YU Wenquan, et al. Authigenic sulfide minerals and their sulfur isotopes in sediments of the northern continental slope of the South China Sea and their implications for methane flux and gas hydrate formation [J]. Chinese Science Bulletin, 2007, 52(3): 401-407. doi: 10.1007/s11434-007-0043-1

    [16] 程俊, 王淑红, 黄怡, 等. 天然气水合物赋存区甲烷渗漏活动的地球化学响应特征[J]. 海洋科学, 2019, 43(5):110-122

    CHENG Jun, WANG Shuhong, HUANG Yi, et al. Geochemical response characteristics of methane seepage activities in gas hydrate zones [J]. Marine Sciences, 2019, 43(5): 110-122.

    [17] 杨涛, 蒋少涌, 杨竞红, 等. 孔隙水中NH4+和HPO42-浓度异常: 一种潜在的天然气水合物地球化学勘查新指标[J]. 现代地质, 2005, 19(1):55-60

    YANG Tao, JIANG Shaoyong, YANG Jinghong, et al. Anomaly of ammonia and phosphate concentration in pore waters: a potential geochemical indicator for prospecting marine gas hydrate [J]. Geoscience, 2005, 19(1): 55-60.

    [18] 杨涛, 蒋少涌, 葛璐, 等. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 科学通报, 2010, 55(8):752-760 doi: 10.1007/s11434-009-0312-2

    YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence [J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2

    [19] 丛晓荣, 曹运诚, 苏正, 等. 南海北部东沙海域浅层沉积物孔隙水地球化学示踪深部水合物发育特征[J]. 地球化学, 2017, 46(3):292-300

    CONG Xiaorong, CAO Yuncheng, SU Zheng, et al. Gas hydrate occurrence in subsurface near the Dongsha area at northern South China Sea inferred from the pore water geochemistry of shallow sediments [J]. Geochimica, 2017, 46(3): 292-300.

    [20] 杨涛, 叶鸿, 赖亦君. 南海北部陆坡天然气水合物的沉积物孔隙水地球化学研究进展[J]. 海洋地质与第四纪地质, 2017, 37(5):48-58

    YANG Tao, YE Hong, LAI Yijun. Pore water geochemistry of the gas hydrate bearing zone on northern slope of the South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 48-58.

    [21] 赖亦君, 杨涛, 梁金强, 等. 南海北部陆坡珠江口盆地东南海域GMGS2-09井孔隙水地球化学特征及其对天然气水合物的指示意义[J]. 海洋地质与第四纪地质, 2018, 39(3):135-142

    LAI Yijun, YANG Tao, LIANG Jinqiang, et al. Geochemistry of sediment pore water from Well GMGS2-09 in the southeastern Pearl River Mouth Basin, South China Sea: An indication of gas hydrate occurrence [J]. Marine Geology & Quaternary Geology, 2018, 39(3): 135-142.

    [22] 王家生, Suess E. 天然气水合物伴生的沉积物碳、氧稳定同位素示踪[J]. 科学通报, 2002, 47(19):1659-1663

    WANG Jiasheng, Suess E. Indicators of δ13C and δ18O of gas hydrate-associated sediments [J]. Chinese Science Bulletin, 2002, 47(19): 1659-1663.

    [23] 杨涛, 薛紫晨, 杨竞红, 等. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J]. 地球学报, 2003, 24(6):511-514

    YANG Tao, XUE Zichen, YANG Jinghong, et al. Oxygen and hydrogen isotopic compositions of pore water from marine sediments in the northern South China Sea [J]. Acta Geoscientica Sinica, 2003, 24(6): 511-514.

    [24] 邬黛黛, 吴能友, 付少英, 等. 南海北部东沙海域水合物区浅表层沉积物的地球化学特征[J]. 海洋地质与第四纪地质, 2010, 30(5):41-51

    WU Daidai, WU Nengyou, FU Shaoying, et al. Geochemical characteristics of shallow sediments in the gas hydrate distribution area of Dongsha, the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(5): 41-51.

    [25] 王竣雅, 邬黛黛, 陈雪刚. 南海神狐海域Site 4B沉积物地球化学特征及其对甲烷渗漏的指示意义[J]. 沉积学报, 2019, 37(3):648-660

    WANG Junya, WU Daidai, CHEN Xuegang. Geochemical characteristics of site-4B sediments from the Shenhu area of the South China Sea: implications for methane seepage [J]. Acta Sedimentologica Sinica, 2019, 37(3): 648-660.

    [26]

    März C, Hoffmann J, Bleil U, et al. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean) [J]. Marine Geology, 2008, 255(3-4): 118-130. doi: 10.1016/j.margeo.2008.05.013

    [27]

    Pierre C, Blanc-Valleron M M, Caquineau S, et al. Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343-U1345) [J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2016, 125-126: 133-144. doi: 10.1016/j.dsr2.2014.03.011

    [28]

    Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea [J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012

    [29] 邬黛黛, 吴能友, 张美, 等. 东沙海域SMI与甲烷通量的关系及对水合物的指示[J]. 地球科学—中国地质大学学报, 2013, 38(6):1309-1320 doi: 10.3799/dqkx.2013.128

    WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in Dongsha area, northern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(6): 1309-1320. doi: 10.3799/dqkx.2013.128

    [30] 吴庐山, 杨胜雄, 梁金强, 等. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义[J]. 中国科学: 地球科学, 2013, 56(4):530-540 doi: 10.1007/s11430-012-4545-6

    WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area, the South China Sea [J]. Science China Earth Sciences, 2013, 56(4): 530-540. doi: 10.1007/s11430-012-4545-6

    [31]

    Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [32]

    Borowski W S. Pore-water sulfate concentration gradients, isotopic compositions, and diagenetic processes overlying continental margin, methane-rich sediments associated with gas hydrates[D]. Doctor Dissertation of University of North Carolina, 998.

    [33] 李学刚, 宋金明, 袁华茂, 等. 深海大洋最小含氧带(OMZ)及其生态环境效应[J]. 海洋科学, 2017, 41(12):127-138

    LI Xuegang, SONG Jinming, YUAN Huamao, et al. The oxygen minimum zones (OMZs) and its eco-environmental effects in ocean [J]. Marine Sciences, 2017, 41(12): 127-138.

    [34] 龚建明, 廖晶, 孙晶, 等. 巴基斯坦马克兰增生楔天然气水合物的主控因素[J]. 海洋地质前沿, 2016, 32(12):10-15

    GONG Jianming, LIAO Jing, SUN Jing, et al. Factors controlling gas hydrate accumulation in makran accretionary wedge off Pakistan [J]. Marine Geology Frontiers, 2016, 32(12): 10-15.

    [35]

    Grando G, McClay K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran [J]. Sedimentary Geology, 2007, 196(1-4): 157-179. doi: 10.1016/j.sedgeo.2006.05.030

    [36]

    Von Rad U, Berner U, Delisle G, et al. Gas and fluid venting at the Makran accretionary wedge off Pakistan [J]. Geo-Marine Letters, 2000, 20(1): 10-19. doi: 10.1007/s003670000033

    [37] 龚建明, 廖晶, 尹维翰, 等. 北印度洋马克兰增生楔天然气水合物的成藏模式[J]. 海洋地质与第四纪地质, 2018, 38(2):148-155

    GONG Jianming, LIAO Jing, YIN Weihan, et al. Gas hydrate accumulation models of Makran accretionary wedge, northern Indian Ocean [J]. Marine Geology & Quaternary Geology, 2018, 38(2): 148-155.

    [38] 栾锡武. 天然气水合物的上界面-硫酸盐还原-甲烷厌氧氧化界面[J]. 海洋地质与第四纪地质, 2009, 29(2):91-102

    LUAN Xiwu. Sulfate-methane interface: the upper boundary of gas hydrate zone [J]. Marine Geology & Quaternary Geology, 2009, 29(2): 91-102.

    [39]

    Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3

    [40] 方银霞, 初凤友. 硫酸盐-甲烷界面与甲烷通量及下伏天然气水合物赋存的关系[J]. 海洋学研究, 2007, 25(1):1-9

    FANG Yinxia, CHU Fengyou. The relationship of sulfate-methane interface with the methane flux and the underlying gas hydrate [J]. Journal of Marine Sciences, 2007, 25(1): 1-9.

    [41]

    Borowski W S, Hoehler T M, Alperin M J, et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164: 87-99.

    [42]

    Zheng Y, Anderson R F, Van Geen A, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin [J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178. doi: 10.1016/S0016-7037(00)00495-6

    [43]

    Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: what have we learned in the past decade? [J]. Earth-Science Reviews, 2003, 61(1-2): 149-179. doi: 10.1016/S0012-8252(02)00117-4

    [44]

    Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323) [J]. Chemical Geology, 2011, 284(3-4): 251-261. doi: 10.1016/j.chemgeo.2011.03.002

    [45]

    Mazurenko L L, Soloviev V A, Gardner J M, et al. Gas hydrates in the Ginsburg and Yuma mud volcano sediments (Moroccan Margin): results of chemical and isotopic studies of pore water [J]. Marine Geology, 2003, 195(1-4): 201-210. doi: 10.1016/S0025-3227(02)00688-6

    [46]

    Wang M, Li Q, Cai F, et al. Formation of authigenic carbonates at a methane seep site in the middle Okinawa Trough, East China Sea [J]. Journal of Asian Earth Sciences, 2019, 185: 104028. doi: 10.1016/j.jseaes.2019.104028

    [47]

    Luo M, Chen L Y, Wan S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea [J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018

    [48]

    Mazumdar A, João H M, Peketi A, et al. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits [J]. Marine and Petroleum Geology, 2012, 38(1): 35-52. doi: 10.1016/j.marpetgeo.2012.07.004

    [49] 李清, 蔡峰, 梁杰, 等. 东海冲绳海槽西部陆坡甲烷渗漏发育的孔隙水地球化学证据[J]. 中国科学: 地球科学, 2015, 58(6):986-995 doi: 10.1007/s11430-014-5034-x

    LI Qing, CAI Feng, LIANG Jie, et al. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough, the East China Sea [J]. Science China Earth Sciences, 2015, 58(6): 986-995. doi: 10.1007/s11430-014-5034-x

    [50]

    Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton NJ: Princeton University Press, 1980.

    [51] 吴自军, 周怀阳, 彭晓彤. 珠江口及其邻近海域沉积物甲烷-硫酸根界面分布深度及影响因素[J]. 海洋与湖沼, 2009, 40(3):249-260

    WU Zijun, ZHOU Huaiyang, PENG Xiaotong. Depth of sulfate-methane interface (SMI) in sediment and affecting factors in the pearl river estuary and vicinal south china sea [J]. Oceanologia et Limnologia Sinica, 2009, 40(3): 249-260.

    [52] 陆红锋, 刘坚, 陈芳, 等. 南海东北部硫酸盐还原-甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录[J]. 海洋地质与第四纪地质, 2012, 32(1):93-98

    LU Hongfeng, LIU Jian, CHEN Fang, et al. Shallow sulfate-methane interface in northeastern South China Sea: An indicator of strong methane seepage on seafloor [J]. Marine Geology & Quaternary Geology, 2012, 32(1): 93-98.

    [53]

    Fang Y X, Chu F Y. The relationship of sulfate-methane interface, the methane flux and the underlying gas hydrate [J]. Marine Science Bulletin, 2008, 10(1): 28-37.

    [54]

    Kvenvolden K A. Comparison of marine gas hydrates in sediments of an active and passive continental margin [J]. Marine and Petroleum Geology, 1985, 2(1): 65-71. doi: 10.1016/0264-8172(85)90049-2

    [55] 陈祈, 王家生, 魏清, 等. 综合大洋钻探计划311航次沉积物中自生黄铁矿及其硫稳定同位素研究[J]. 现代地质, 2008, 22(3):402-406 doi: 10.3969/j.issn.1000-8527.2008.03.009

    CHEN Qi, WANG Jiasheng, WEI Qing, et al. Study on the authigenic pyrites and their sulfur stable isotopes in recovered sediments during IODP 311 expedition [J]. Geoscience, 2008, 22(3): 402-406. doi: 10.3969/j.issn.1000-8527.2008.03.009

    [56] 陈翰, 陈忠, 颜文, 等. 神狐海域08CF7岩心沉积物的自生矿物特征及其对甲烷渗漏的指示[J]. 天然气工业, 2014, 34(2):154-162

    CHEN Han, CHEN Zhong, YAN Wen, et al. Characteristics of authigenic minerals in sediments of core 08CF7 in Shenhu area in northern South China Sea: Implications for methane seepage [J]. Natural Gas Industry, 2014, 34(2): 154-162.

    [57] 陈惠昌, 赖勇, 卢海龙, 等. 南海神狐天然气水合物系统沉积物中自生黄铁矿的特征研究[J]. 海洋学报, 2018, 40(7):116-133

    CHEN Huichang, LAI Yong, LU Hailong, et al. Study on authigenic pyrite in sediments of gas hydrate geo-system in the Shenhu area, South China Sea [J]. Acta Oceanologica Sinica, 2018, 40(7): 116-133.

    [58]

    Sato H, Hayashi K, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane [J]. Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013

    [59]

    Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea [J]. Chemical Geology, 2016, 443: 173-181. doi: 10.1016/j.chemgeo.2016.09.029

  • 期刊类型引用(6)

    1. 黄子强,吴招才,方银霞,许明炬,张家岭. 菲律宾海板块地壳结构特征:基于地震约束的重力反演. 地球科学. 2025(01): 234-245 . 百度学术
    2. 于传海,刘思青,高维,曾信,赵旭,徐敏. 莫克兰俯冲带巨厚沉积层速度结构及含水量分布特征. 地球物理学报. 2025(03): 1054-1068 . 百度学术
    3. 刘振轩,鄢全树,刘焱光,杨刚,石学法. 九州-帕劳脊南段基底玄武岩的单斜辉石矿物化学及成因意义. 海洋学报. 2023(06): 75-92 . 百度学术
    4. Tian-yu Zhang,Pan-feng Li,Lu-ning Shang,Jing-yi Cong,Xia Li,Yong-jian Yao,Yong Zhang. Identification and evolution of tectonic units in the Philippine Sea Plate. China Geology. 2022(01): 96-109 . 必应学术
    5. 侯方辉,秦轲,陆凯,赵京涛,李攀峰,孟祥君,黄威,胡刚,孙军,龚小晗. 九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始:多道反射地震综合研究. 海洋地质与第四纪地质. 2022(05): 187-198 . 本站查看
    6. 杨慧良,尉佳,李攀峰,刘长春,董凌宇. 九州-帕劳海脊两侧深海盆地浅部地层结构特征与分析. 海洋地质与第四纪地质. 2021(01): 14-21 . 本站查看

    其他类型引用(4)

图(5)
计量
  • 文章访问数:  1550
  • HTML全文浏览量:  404
  • PDF下载量:  26
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2021-03-06
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-06-27

目录

YU Miao

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回