中国近海新构造活动断裂调查与地震勘探方法

吴德城, 侯方辉, 祁江豪, 朱晓青

吴德城, 侯方辉, 祁江豪, 朱晓青. 中国近海新构造活动断裂调查与地震勘探方法[J]. 海洋地质与第四纪地质, 2020, 40(6): 121-132. DOI: 10.16562/j.cnki.0256-1492.2020091101
引用本文: 吴德城, 侯方辉, 祁江豪, 朱晓青. 中国近海新构造活动断裂调查与地震勘探方法[J]. 海洋地质与第四纪地质, 2020, 40(6): 121-132. DOI: 10.16562/j.cnki.0256-1492.2020091101
WU Decheng, HOU Fanghui, QI Jianghao, ZHU Xiaoqing. Seismic survey and exploration methods for Neotectonic active faults in the area off China continent[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 121-132. DOI: 10.16562/j.cnki.0256-1492.2020091101
Citation: WU Decheng, HOU Fanghui, QI Jianghao, ZHU Xiaoqing. Seismic survey and exploration methods for Neotectonic active faults in the area off China continent[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 121-132. DOI: 10.16562/j.cnki.0256-1492.2020091101

中国近海新构造活动断裂调查与地震勘探方法

基金项目: 国家自然科学基金 “琉球海沟俯冲带岩石圈结构与流体循环—海洋大地电磁与地震数据约束”(91958210);国家海洋地质专项项目(DD20190365,DD20190377);青岛海洋科学与技术国家实验室鳌山科技创新计划项目“亚洲大陆边缘地质过程与资源环境效应”(2015ASKJ03)
详细信息
    作者简介:

    吴德城(1995—),男,硕士研究生,主要从事海洋地质方面的研究,E-mail:wdch1234567@163.com

    通讯作者:

    侯方辉(1979—),男,博士,高级工程师,主要从事构造地质和海洋地球物理等研究,E-mail:houfanghui3993@163.com

  • 中图分类号: P714

Seismic survey and exploration methods for Neotectonic active faults in the area off China continent

  • 摘要: 中国近海处于大洋板块与大陆板块作用的关键区域,新构造运动频繁,活动断裂是其主要的表现形式之一。浅地层剖面仪测量、单道地震、多道地震和海底地震仪探测(OBS)等海洋地震勘探方法是调查研究海域活动断裂的主要地球物理手段,各自具有不同技术优势和探测功能,在海域活动断裂调查研究中发挥了重要作用。通过OBS广角反射/折射深地震探测和长排列多道地震勘探,获得了中国近海的区域深大断裂展布特征,深化了深大断裂形成与演化的深部动力学机理的认识,进而分析了其对活动断裂控制与约束关系。根据活动断裂时代新、埋藏浅的特点,综合利用浅地层剖面仪测量、单道地震和高分辨率多道地震方法,获得了中国近海海域活动断裂的分布、走向和差异升降等特征,分析了新构造运动的演化规律。本文综述了海洋地震勘探技术方法的主要特点和功能,及其在海域活动断裂调查中的功能和作用,总结了利用地震勘探技术方法在中国近海新构造活动断裂调查研究中取得的主要成果,提出了在未来的海域新构造运动地震调查研究中,应采用多技术方法组合系统调查与研究的思路,着力提高地震勘探的精度,探索应用横波地震勘探和海底可控震源等新技术的建议。
    Abstract: Located in the key area of land-ocean plate interaction, offshore China is an area frequently suffered from neotectonic movement-caused disasters, and active faults are one of their main triggers. Marine seismic exploration methods such as sub-bottom profiler, single channel seismic, multi-channel seismic and ocean bottom seismometer (OBS) are the main geophysical tools used to investigate active faults offshore. Each of them has its own technical advantages and detection ranges to play roles in the investigation and study of active faults offshore. Recently, through OBS wide-angle reflection/refraction deep seismic exploration and long spread multi-channel seismic exploration, we have been able to gain the distribution patterns of regional deep-large faults in China offshore area, and the understanding of deep dynamic mechanism of the formation and evolution of deep-large faults is greatly deepened. Upon the basis, we analyzed the control and constraint relationship of active faults in this paper. Newly buried active faults are young in age and shallow in burial depth. According to the features as such, we studied in this paper the distribution pattern, strike and differential rise and fall of active faults in China offshore area with such methods as sub-bottom profiler, single-channel seismic and high-resolution multi-channel seismic. And the main characteristics and functions of marine seismic exploration techniques and methods, as well as their functions and effects in the investigation of active faults in the sea area, are summarized in addition to the main achievements obtained in the researches. It is concluded that for future marine neotectonic seismic prospecting and research, it is necessary to insist on the idea of multi-technology methods and systematic investigation, focus more on improving the accuracy of seismic exploration, and explore the application of new technology such as S-wave seismic exploration and seabed vibrator.
  • 在海洋资料中,多次波干扰非常发育并且种类也较多,有海水的鸣震、强海底尤其是崎岖海底产生的海底相关多次波、强反射界面产生的层间和长周期多次波等,这些多次波会造成地震记录中有效反射能量被压制,信噪比降低。因此,多次波的压制一直是海洋地震数据处理中的难点问题,也是海上资料处理的主要任务[1]

    深水海域地震资料数据处理是深水油气勘探的重要环节,其中多次波的压制又是重中之重,它直接影响到地震资料的品质,因此在偏移之前,尽可能地压制或衰减多次波。在深水海域,存在的多次波主要是自由表面多次波,该类多次波定义为地下介质反射的地震波到达自由表面后,至少发生一次下行反射,然后经一定传播路径后重新返回自由表面所接收的地震波[2-3]。可以说,在深水海域,如果能够压制自由表面多次波,也就压制了大部分的多次波干扰,因此自由表面多次波的压制是整个多次波压制的重点。针对此类多次波,学者们提出了很多压制的方法,有CMP叠加、f-k滤波法、Radon变换、聚束滤波法、预测反褶积和基于波动理论的多次波预测相减法等,其中目前最为广泛应用的是广义自由表面多次波预测技术(General-Surface Multiple Prediction,GSMP),相比于传统的二维自由表面多次波压制技术(Surface-Related Multiple Elimination,SRME),该技术预测的多次波模型更准确。同时,海上二维采集过程中电缆中—远偏移距难免受海流影响而偏离设计测线方向形成羽角,这是海上二维地震资料采集的固有特点。羽角的存在使共反射点发散无法满足SRME技术对规则化采集的要求,从而影响后续的多次波预测。因此,在本次多次波压制中,我们采用的是GSMP技术,但是在印度洋深水海域,海底相关多次波能量强,频带宽,常规的GSMP技术也不能得到很好的压制,因此,本文利用曲波变换,将多次波模型进一步优化,得到更加精确的多次波模型,从而使多次波的压制效果更好[4-9]

    广义自由表面多次波预测技术是近几年来逐渐兴起并广泛应用于海洋地震资料数据处理中的一项新技术。在理论上,该技术可以预测并衰减所有与地表相关的多次波,并且无需地下任何的先验信息,如速度、地层和构造等信息,是基于数据驱动的。广义自由表面多次波预测是通过模型建立和自适应减去法实现的,具体的实现途径为波动方程建模法,是在地表一致性褶积法的基础上进行改进的,通过波动方程外推来实现对多次波的模拟,该技术能适应任意观测系统,并且不受炮检点位置的约束。具体过程如下:首先对单炮数据进行时间反转,然后再向下外推,并与海底的反射系数进行褶积,再做向上的外推处理,最后完成整个单炮的多次波建模[6-8]

    广义自由表面多次波预测产生多次波模型,然后将地震数据和模型数据转换到曲波域,对多次波模型进一步优化,最后利用原始数据与多次波模型相减,对多次波进行压制。曲波变换使用的是第二代曲波变换,解决了第一代曲波变换大量数据冗余的问题,使曲波变换的实现更简单,运算效率更高。第二代曲波变换的公式为

    $$ {\rm{c}}\left( {j,k,l} \right) = \left\langle {f,{{\rm{\varphi }}_{j,k,l}}} \right\rangle = \mathop \int \nolimits_{{R^2}}^{} f\left( x \right)\overline {{{\rm{\varphi }}_{j,k,{{l}}}}\left( x \right)} {\rm{d}}x $$

    其中,fx)表示输入的原始地震信号或者多次波模型数据;φj,k,l为曲波函数,cj,k,l)为曲波系数,其中j为尺度,l为方向,k为尺度jl方向上的矩阵系数[10-13]

    具体的模型优化流程见图1,将地震数据和广义自由表面多次波预测产生的模型数据分为两部分,一部分是低频数据,一部分是高频数据,其中低频数据利用常规自适应减的方法得到低频多次波模型;高频数据动校后转换到曲波域,在曲波域中,比较不同尺度、不同角度的信号与多次波的振幅和相位差异(图2),具体的做法是:当信号与多次波的模型比较大于门槛值时,认为是信号,小于门槛值时,认为是多次波,依次来优化高频多次波模型,从而得到更加精确的多次波模型,再进行反动校(图3),最后用地震数据减去多次波模型,达到压制多次波的目的[14-17]。分高低频的主要原因是,在曲波域中,低频部分无法分角度和尺度对数据进行比较,见图4(分三个尺度)中Scale1,对低频模型无法进行优化,因此低频数据采用常规的自适应减,在高频数据中采用曲波变换对模型进行优化。高低频分界点的选取要稍大于Scale1的频率,低于Scale2的频率。

    图  1  模型优化及多次波压制流程
    Figure  1.  Model optimization and multiple suppression process
    图  2  多次波与有效波角度的差异
    Figure  2.  Angle difference between multiple and effective waves
    图  3  曲波域多次波模型优化思路
    Figure  3.  Optimization of multiple-wave model in curvelet domain
    图  4  曲波变换示意图
    ω为频率,KN为空间奈奎斯特频率,N为尺度。
    Figure  4.  Schematic diagram of curvelet transform
    ω is the frequency, KN is the space Nyquist frequency, N is the scale.

    选取印度洋某深水海域的地震资料,该地区海底地形总体较为平坦,最大水深为5258 m。从原始炮集(图5)上可以看出,多次波主要是海底相关的多次波,图6是有效波与多次波频谱图的对比,其中红色是有效波频谱图,蓝色是多次波的频谱图,从图中可以看出,多次波能量强,频带宽,与有效波频谱基本一致。首先利用常规的广义自由表面多次波压制方法对其压制,图7是利用广义自由表面多次波压制方法得到的多次波模型,图8是压制后的炮集,可以看出多次波压制不干净,仍有较多残留。图9是利用本文方法,分4个尺度进行曲波变换,计算Scale1的频率为15.75 Hz,因此本文将原始数据和模型数据以20 Hz为界分为高频数据和低频数据,低频数据利用常规的自适应减的方法优化低频多次波模型,高频数据转到曲波域,在曲波域中根据不同尺度不同角度的信号与多次波的振幅和相位差异来优化高频多次波模型,然后将低频模型和高频模型相加得到优化后的多次波模型。为了更清晰地比较优化前后的多次波模型,将原始炮集的多次波与优化前后的多次波模型放大并进行比较,图10可以明显地看出,由浅至深,优化后的多次波模型与原始炮集的多次波更吻合,多次波模型的精确度更高。最后利用原始数据直接减去多次波模型,得到压制后的炮集,可以看出压制后炮集更干净,信噪比更高(图11[18-21]

    图  5  原始炮集
    Figure  5.  Original gun set
    图  6  有效波与多次波频谱图对比
    红色是有效波频谱,蓝色是多次波频谱。
    Figure  6.  The spectrum of the effective wave compared with that of the multiple wave
    where red is the spectrum of the effective wave and blue is the spectrum of the multiple wave.
    图  7  常规方法得到的多次波模型
    Figure  7.  Multi-wave model obtained by conventional method
    图  8  常规方法压制后的炮集
    Figure  8.  A shot set after suppression by conventional method
    图  9  曲波域优化后多次波模型
    Figure  9.  Optimized multiple wave model in curved wave domain
    图  10  多次波模型对比图
    从左到右依次为:原始数据多次波,常规方法得到的多次波模型,曲波域优化后的多次波模型。
    Figure  10.  Multiples model comparison chart
    From left to right: multiples of raw data, multiples model obtained by conventional method, multiples model obtained by curvelet transform.
    图  11  利用优化后模型多次波压制效果
    Figure  11.  Suppression of multiple waves using the optimized model

    下面从叠加剖面上看常规方法和本文方法的压制效果。选取印度洋该深水海域两条测线,图12是A测线原始剖面,图13是利用常规方法压制后的效果,可以看出压制效果不理想,多次波残留较为严重(图中箭头所指的地方);图14 是利用本文方法压制后的效果,可以看出,压制效果较好,多次波去除的较为干净,剖面信噪比高,并且未损害有效信号,时间10.2 s的位置波组特征更加清晰,有利于后期地震资料的偏移和解释[22-25]图1517是B测线的原始剖面及利用常规方法和本文方法压制后的效果图,同样可以看出,利用本文方法压制多次波的效果更好,压制后的剖面信噪比更高,说明本文方法更适用于深水海域海底相关多次波的压制。

    图  12  A测线原始叠加剖面
    Figure  12.  The original profile of line A
    图  13  A测线常规方法压制后的叠加剖面
    Figure  13.  The superimposed profile after conventional method of line A
    图  14  A测线利用曲波域优化模型压制的叠加剖面
    Figure  14.  The stacked profile after optimization model in curved wave domain of line A
    图  15  B测线原始叠加剖面
    Figure  15.  The original profile of line B
    图  17  B测线利用曲波域优化模型压制后的叠加剖面
    Figure  17.  The stacked profile after optimization model in curved wave domain of line B
    图  16  B测线常规方法压制后的叠加剖面
    Figure  16.  The superimposed profile after conventional method of line B

    本文通过在实际资料中的应用可以看出,多次波的压制效果较好,剖面的信噪比得到了较大的提高,同时压制后有效信号得到了凸显,波组特征更加清晰,有利于后期层位的识别和追踪。

    该技术适用于海底地形较为平坦的深水海域,同时值得注意的是,本文方法在曲波域中对高频模型进行优化时,是根据信号和模型数据在不同尺度、不同角度上的振幅和相位差异,即当信号与多次波的模型比大于门槛值时,认为是信号,小于门槛值时,认为是多次波,因此门槛值的选择非常重要,直接决定优化后模型的精确度。门槛值的选择是选取有代表性的炮集,计算不同尺度、不同角度的振幅和相位差异,从而确定门槛值。

  • 图  1   中国近海区域性深大断裂和活动断裂分布示意图[2-3]

    F1. 郯庐断裂带,F2. 滨海断裂带,F3. 五莲-青岛-荣成断裂,F4. 嘉山-响水-千里岩断裂,F5. 淄博-五莲-日照断裂,F6. 黄海中央断裂带,F7. 南黄海西缘断裂带,F8. 苏州-湖州断裂,F9. 江绍断裂,F10. 苏北滨海断裂。

    Figure  1.   Schematic diagram of the distribution of regional deep fracture and active faults in offshore China[2-3]

    F1. Tanlu Fault Zone, F2. Littoral Fault Zone, F3. Wulian-Qingdao-Rongcheng Fault, F4. Jiashan-Xiangshui-Qianliyan Fault, F5. Zibo-Wulian-Rizhao Fault, F6. South Yellow Sea Central Fault Zone, F7. South Yellow Sea West Marginal Fault Zone, F8. Suzhou-Huzhou Fault, F9. Jiangshao Fault, F10. Subei Littoral Fault.

    图  2   南黄海典型的浅部地层声学剖面

    Figure  2.   A typical sub-bottom profile in the South Yellow Sea

    图  3   过CSDP-2井典型的高分辨率多道地震剖面

    Figure  3.   A typical high resolution multichannel seismic section through well CSDP-2

    图  4   南黄海OBS-2013线纵波速度结构剖面[44]

    Figure  4.   P-wave velocity structure section of line OBS-2013 in the South Yellow Sea [44]

    图  5   渤海海峡调查区断裂分布示意图

    NW向断裂:1. 碧流河断裂,2. 长兴岛断裂,3. 大连湾断裂,4. 旅顺断裂,5. 老铁山水道断裂,6. 钦岛断裂,7. 桑沟湾断裂,8. 靖海湾断裂,9. 浪暖口断裂,10. 老龙头断裂,11. 田横岛断裂,12. 鳌山湾断裂;NE及NEE向断裂:13. 千里岩西部断裂,14. 千里岩东部断裂,15. 沙子口断裂,16. 荣成隆起南断裂,17. 荣成隆起北部断裂,18. 四十里湾断裂,19. 套子湾断裂,20. 蓬莱湾断裂,21. 庙岛陆坡断裂,22. 庙岛集束断裂,23. 渤中底劈断裂,24. 辽东湾中央东断裂,25. 辽东湾中央断裂,26. 辽东湾中央西断裂。

    Figure  5.   Schematic diagram of fault distribution in the survey area of Bohai Strait

    NW Fault:1. Biliuhe fault, 2. Changxing Island fault, 3. Dalian Bay fault, 4. Lushun fault, 5. Laotieshan waterway fault, 6. Qin Island fault, 7. Sangou Bay fault, 8. Jinghai Bay fault, 9. Langnuankou fault, 10. Laolongtou fault, 11. Tianheng Island fault, 12. Aoshan Bay fault; NE and NEE fracture: 13. Qianliyan western fault, 14. Qianliyan eastern fault, 15. Shazikou fault, 16. Rongcheng uplift south fault, 17. Rongcheng uplift northern fault, 18. Sishili Bay fault, 19. Taozi Bay fault, 20. Penglai Bay fault, 21. Miaodao continental slope fault, 22. Miaodao cluster fault, 23. Bozhong bottom split fault, 24. Liaodong Bay Central East Fault, 25. Liaodong Bay Central Fault, 26. Liaodong Bay Central West Fault.

    图  6   多道地震呈现的千里岩断裂活动特征

    上:成像剖面,下:解释剖面。

    Figure  6.   The active characteristics of Qianliyan fault showed by multichannel seismic section

    up:imaging section,down: interpreted section.

    图  7   东海陆架盆地多道地震显示继承深大断裂的活动断层

    Figure  7.   Active faults inheriting deep faults show by multichannel seismic section in East China Sea Shelf Basin

    表  1   主要地震勘探方法对比

    Table  1   Comparison of main seismic exploration methods

    探测方法分辨率勘探深度工作方式主要用途
    浅地层剖面20~50 cm100 m左右电火花震源激发,拖曳式单道接收用于全新世地质特征和活动断裂探查
    单道地震2~5 m(和震源的激发能量有关)500~1000 m(和震源的激发能量有关)电火花震源或小容量气枪激发,拖曳式单道接收用于第四纪地质特征和活动断裂探查与成岩基底相关的活动断裂探查
    高分辨率多道地震1~3 m1000~1500 m大能量电火花或相干气枪激发,小间距多道接收用于新生代地质特征和活动断裂探查与成岩基底相关的活动断裂探查
    长排列多道地震几十米到几百米几千米到上万米大能量气枪阵列震源激发,长排列多道接收,道数可达几百道用于区域地质和探查盆地基底
    海底地震仪(OBS)分辨率低,只反映地层宏观速度结构可达莫霍面大能量气枪枪阵激发,单点独立式接收用于探查地壳构造、深部断裂和中到深大断裂
    下载: 导出CSV
  • [1] 郭玉贵, 王红霞, 邓志辉, 等. 山东沿海及近海地震分形分析[J]. 地球物理学进展, 2005, 20(1):155-159. [GUO Yugui, WANG Hongxia, DENG Zhihui, et al. The fractal analysis on seism in the coastal and Offshore areas of Shandong province [J]. Progress in Geophysics, 2005, 20(1): 155-159. doi: 10.3969/j.issn.1004-2903.2005.01.028
    [2] 曹敬贺, 孙金龙, 徐辉龙, 等. 珠江口海域滨海断裂带的地震学特征[J]. 地球物理学报, 2014, 57(2):498-508. [CAO Jinghe, SUN Jinlong, XU Huilong, et al. Seismological features of the littoral fault zone in the Pearl River Estuary [J]. Chinese Journal of Geophysics, 2014, 57(2): 498-508. doi: 10.6038/cjg20140215
    [3] 李旭东, 刘绍文, 王丽. 江苏—南黄海地区地震活动时空分布特征及其孕震构造分析[J]. 高校地质学报, 2018, 24(4):551-562. [LI Xundong, LIU Shaowen, WANG Li. Spatiotemporal pattern of earthquake activities and seismotectonics in Jiangsu and adjacent southern Yellow Sea Area [J]. Geological Journal of China Universities, 2018, 24(4): 551-562.
    [4] 吴中海. 活断层的术语、研究进展及问题思考[J]. 地球科学与环境学报, 2018, 40(6):706-726. [WU Zhonghai. Active faults: Terminology, research advance, and thinking on some problems [J]. Journal of Earth Sciences and Environment, 2018, 40(6): 706-726. doi: 10.3969/j.issn.1672-6561.2018.06.002
    [5] 王志才, 邓起东, 晁洪太, 等. 山东半岛北部近海海域北西向蓬莱-威海断裂带的声波探测[J]. 地球物理学报, 2006, 49(4):1092-1101. [WANG Zhicai, DENG Qidong, CHAO Hongtai, et al. Shallow-depth sonic reflection profiling studies on the active Penglai-Weihai Fault zone offshore of the Northern Shandong Peninsula [J]. Chinese Journal of Geophysics, 2006, 49(4): 1092-1101. doi: 10.3321/j.issn:0001-5733.2006.04.022
    [6] 李西双, 裴彦良, 刘保华, 等. 1969年渤海MS7.4地震发震断层的声学探测[J]. 地球物理学报, 2009, 52(9):2291-2301. [LI Xishuang, PEI Yanliang, LIU Baohua, et al. Acoustic detection of the causative fault of 1969 MS7.4 earthquake in Bohai Sea [J]. Chinese Journal of Geophysics, 2009, 52(9): 2291-2301. doi: 10.3969/j.issn.0001-5733.2009.09.013
    [7] 陆凯, 侯方辉, 李日辉, 等. 利用单道地震研究黄、渤海海域的活动断裂[J]. 海洋地质前沿, 2012, 28(8):27-30. [LU Kai, HOU Fanghui, LI Rihui, et al. Using single-channel seismics for active faults investigation in Yellow Sea and Bohai Sea [J]. Marine Geology Frontiers, 2012, 28(8): 27-30.
    [8] 吴志强, 肖国林, 林年添, 等. 基于南黄海区域地质调查的地震关键技术和成果[J]. 海洋地质与第四纪地质, 2014, 34(6):119-126. [WU Zhiqiang, XIAO Guolin, LIN Niantian, et al. The key seismic technology and results based on the regional geological survey of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(6): 119-126.
    [9] 郝天珧, 游庆瑜. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报, 2011, 54(12):3352-3361. [HAO Tianyao, YOU Qingyu. Progress of homemade OBS and its application on ocean bottom structure survey [J]. Chinese Journal of Geophysics, 2011, 54(12): 3352-3361. doi: 10.3969/j.issn.0001-5733.2011.12.033
    [10] 刘保华, 丁继胜, 裴彦良, 等. 海洋地球物理探测技术及其在近海工程中的应用[J]. 海洋科学进展, 2005, 23(3):374-384. [LIU Baohua, DING Jisheng, PEI Yanliang, et al. Marine geophysical survey techniques and their applications to offshore engineering [J]. Advances in Marine Science, 2005, 23(3): 374-384. doi: 10.3969/j.issn.1671-6647.2005.03.019
    [11] 张训华, 赵铁虎. 海洋地质调查技术[M]. 北京: 海洋出版社, 2017.

    ZHANG Xunhua, ZHAO Tiehu. Survey Technologies of Marine Geology[M]. Beijing: China Ocean Press, 2017.

    [12]

    Marsset T, Marsset B, Thomas Y, et al. Very high resolution 3D seismic: a new imaging tool for sub-bottom profiling [J]. Comptes Rendus Geoscience, 2002, 334(6): 403-408. doi: 10.1016/S1631-0713(02)01766-2

    [13]

    Chiocci F L, Cattaneo A, Urgeles R. Seafloor mapping for geohazard assessment: state of the art [J]. Marine Geophysical Research, 2011, 32(1): 1-11.

    [14]

    Petersen C J, Bünz S, Hustoft S, et al. High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift [J]. Marine and Petroleum Geology, 2010, 27(9): 1981-1994. doi: 10.1016/j.marpetgeo.2010.06.006

    [15] 褚宏宪, 杨源, 张晓波, 等. 高分辨率单道地震调查数据采集技术方法[J]. 海洋地质前沿, 2012, 28(12):70-74. [CHU Hongxian, YANG Yuan, ZHANG Xiaobo, et al. Data acquisition techenique for high resolution single-channel seismic survey [J]. Marine Geology Frontiers, 2012, 28(12): 70-74.
    [16] 王舒畋. 浅层物探技术在近海灾害地质与工程地质调查中的应用[J]. 海洋石油, 2008, 28(1):6-12. [Wang Shutian. Application of shallow bed geophysical exploration technique to offshore hazard geology and engineering geology [J]. Offshore Oil, 2008, 28(1): 6-12. doi: 10.3969/j.issn.1008-2336.2008.01.002
    [17] 杨文达, 刘望军. 海洋高分辨率地震技术在浅部地质勘探中的运用[J]. 海洋石油, 2007, 27(2):18-25. [YANG Wenda, LIU Wangjun. Marine high-resolution seismic techniques applying in the geological exploration of shallow strata [J]. Offshore Oil, 2007, 27(2): 18-25. doi: 10.3969/j.issn.1008-2336.2007.02.005
    [18] 裴彦良, 赵月霞, 刘保华, 等. 近海高分辨率多道地震拖缆系统及其在海洋工程中的应用[J]. 地球物理学进展, 2010, 25(1):331-336. [PEI Yanliang, ZHAO Yuexia, LIU Baohua, et al. The offshore high-resolution multi-channel seismic streamer and its application to the ocean engineering [J]. Progress in Geophysics, 2010, 25(1): 331-336.
    [19] 孟庆生, 楚贤峰, 郭秀军, 等. 高分辨率数据处理技术在近海工程地震勘探中的应用[J]. 地球物理学进展, 2007, 22(3):1006-1010. [MENG Qingsheng, CHU Xianfeng, GUO Xiujun, et al. The application of high resolution seismic data processing technique in multi-channel shallow offshore engineering seismic surveys [J]. Progress in Geophysics, 2007, 22(3): 1006-1010. doi: 10.3969/j.issn.1004-2903.2007.03.053
    [20]

    Verschuur D J, Berkhout A J. Estimation of multiple scattering by iterative inversion, Part Ⅱ: Practical aspects and examples [J]. Geophysics, 1997, 62(5): 1596-1611. doi: 10.1190/1.1444262

    [21]

    Trad D O, Ulrych T J, Sacchi M D. Accurate interpolation with high-resolution time-variant Radon transforms [J]. Geophysics, 2002, 67(2): 644-656. doi: 10.1190/1.1468626

    [22]

    Abbad B, Ursin B, Porsani M J. A fast, modified parabolic Radon transform [J]. Geophysics, 2011, 76(1): V11-V24. doi: 10.1190/1.3532079

    [23] 骆迪, 蔡峰, 吴志强, 等. 海洋短排列高分辨率多道地震高精度成像关键技术[J]. 地球物理学报, 2019, 62(2):730-742. [LUO Di, CAI Feng, WU Zhiqiang, et al. The key technologies of marine small scale high resolution multichannel seismic high-precision imaging [J]. Chinese Journal of Geophysics, 2019, 62(2): 730-742. doi: 10.6038/cjg2019M0178
    [24] 王海平, 李春雷, 焦叙明, 等. 海底及浅层地质灾害的高分辨率地震预测技术[J]. 工程地球物理学报, 2016, 13(6):694-700. [WANG Haiping, LI Chunlei, JIAO Xuming, et al. High-resolution seismic prediction technology of seafloor and shallow geohazards [J]. Chinese Journal of Engineering Geophysics, 2016, 13(6): 694-700. doi: 10.3969/j.issn.1672-7940.2016.06.002
    [25] 吴志强, 郝天珧, 张训华, 等. 扬子块体与华北块体在海区的接触关系: 来自上下源、长排列多道地震剖面的新认识[J]. 地球物理学报, 2015, 58(5):1692-1705. [WU Zhiqiang, HAO Tianyao, ZHANG Xunhua, et al. Contact relationships between the North China block and the Yangtze block: new constraints from upper/lower-source and long spread multi-channel seismic profiles [J]. Chinese Journal of Geophysics, 2015, 58(5): 1692-1705. doi: 10.6038/cjg20150520
    [26] 吴志强, 郝天珧, 唐松华, 等. 立体气枪阵列延迟激发震源特性及在浅海区OBS探测中的应用[J]. 地球物理学报, 2016, 59(7):2573-2586. [WU Zhiqiang, HAO Tianyao, TANG Songhua, et al. Tridimensional air-gun array with delay fired source signal characteristics and the application in OBS exploration in shallow sea [J]. Chinese Journal of Geophysics, 2016, 59(7): 2573-2586. doi: 10.6038/cjg20160722
    [27]

    Aleman A, Heimbach J, Medina E, et al. Broadband processing for Campeche Basin: Improved seismic resolution and attribute derivation[C]//2017 SEG International Exposition and Annual Meeting. Houston, Texas: SEG, 2017: 4881-4886.

    [28]

    Lee G S, Kim D C, Yoo D G, et al. Stratigraphy of late Quaternary deposits using high resolution seismic profile in the southeastern Yellow Sea [J]. Quaternary International, 2014, 344: 109-124.

    [29]

    Gray S H. Seismic imaging and inversion: what are we doing, how are we doing, and where are we going?[C]//2014 SEG Annual Meeting. Denver, Colorado, USA: SEG, 2014: 4416-4420.

    [30]

    Lu S M, McMechan G A. Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas [J]. Geophysics, 2004, 69(1): 164-179. doi: 10.1190/1.1649385

    [31]

    Chen Q, Sidney S. Seismic attribute technology for reservoir forecasting and monitoring [J]. The Leading Edge, 1997, 16(5): 445-456. doi: 10.1190/1.1437657

    [32] 王开燕, 徐清彦, 张桂芳, 等. 地震属性分析技术综述[J]. 地球物理学进展, 2013, 28(2):815-823. [WANG Kaiyan, XU Qingyan, ZHANG Guifang, et al. Summary of seismic attribute analysis [J]. Progress in Geophysics, 2013, 28(2): 815-823. doi: 10.6038/pg20130231
    [33] 赵维娜, 张训华, 吴志强, 等. 三瞬属性在南黄海第四纪地震地层分析中的应用[J]. 海洋学报, 2016, 38(7):117-125. [ZHAO Weina, ZHANG Xunhua, WU Zhiqiang, et al. Application of three instantaneous attributes in the analysis of Quaternary seismic strata in the southern Yellow Sea [J]. Haiyang Xuebao, 2016, 38(7): 117-125.
    [34]

    Zhao W N, Zhang X H, Wang Z B, et al. Quaternary high-resolution seismic sequence based on instantaneous phase of single-channel seismic data in the South Yellow Sea, China [J]. Quaternary International, 2018, 468: 4-13. doi: 10.1016/j.quaint.2018.01.014

    [35] 吴中海, 张岳桥, 胡道功. 新构造、活动构造与地震地质[J]. 地质通报, 2014, 33(4):391-402. [WU Zhonghai, ZHANG Yueqiao, HU Daogong. Neotectonics, active tectonics and earthquake geology [J]. Geological Bulletin of China, 2014, 33(4): 391-402. doi: 10.3969/j.issn.1671-2552.2014.04.001
    [36] 阮爱国, 李家彪, 冯占英, 等. 海底地震仪及其国内外发展现状[J]. 东海海洋, 2004, 22(2):19-27. [RUAN Aiguo, LI Jiabiao, FENG Zhanying, et al. Ocean bottom seismometer and its development in the world [J]. Donghai Marine Science, 2004, 22(2): 19-27.
    [37]

    Zhao W N, Zhang X H, Meng X J, et al. S-wave velocity structures and Vp/Vs ratios beneath the South Yellow Sea from ocean bottom seismograph data [J]. Journal of Applied Geophysics, 2017, 139: 211-222. doi: 10.1016/j.jappgeo.2017.02.015

    [38] 赵维娜, 张训华, 邹志辉, 等. 基于OBS数据的南黄海沉积地层速度结构特征[J]. 地球物理学报, 2019, 62(1):183-196. [ZHAO Weina, ZHANG Xunhua, ZOU Zhihui, et al. Velocity structure of sedimentary formation in the South Yellow Sea Basin based on OBS data [J]. Chinese Journal of Geophysics, 2019, 62(1): 183-196. doi: 10.6038/cjg2018L0623
    [39] 黄忠贤, 胥颐, 郝天珧, 等. 中国东部海域岩石圈结构面波层析成像[J]. 地球物理学报, 2009, 52(3):653-662. [HUANG Zhongxian, XU Yi, HAO Tianyao, et al. Surface wave tomography of lithospheric structure in the seas of east China [J]. Chinese Journal of Geophysics, 2009, 52(3): 653-662.
    [40] 秦晶晶, 袁洪克, 何银娟, 等. 层析成像技术在城市活断层探测中的应用[J]. 地球物理学进展, 2018, 33(5):2153-2158. [QIN Jingjing, YUAN Hongke, HE Yinjuan, et al. Application of tomography inversion method in detecting active fault [J]. Progress in Geophysics, 2018, 33(5): 2153-2158. doi: 10.6038/pg2018BB0383
    [41] 余景锋, 江为为, 郝天珧, 等. 中国东部海区及其邻域岩石层结构与地球动力学特征研究[J]. 地球物理学进展, 2015, 30(3):1100-1109. [YU Jingfeng, JIANG Weiwei, HAO Tiaoyao, et al. Lithosphere structure and geodynamics characteristics of China eastern seas and adjacent region [J]. Progress in Geophysics, 2015, 30(3): 1100-1109. doi: 10.6038/pg20150314
    [42] 赵明辉, 丘学林, 夏少红, 等. 南海东北部三分量海底地震仪记录中横波的识别和分析[J]. 自然科学进展, 2007, 17(11):1516-1523. [ZHAO Minghui, QIU Xuelin, XIA Shaohong, et al. Identification and analysis of shear waves records by three-component OBSs in northeastern South China Sea [J]. Progress in Natural Science, 2007, 17(11): 1516-1523. doi: 10.3321/j.issn:1002-008x.2007.11.008
    [43] 赵维娜, 张训华, 孟祥君, 等. 南黄海OBS数据转换横波分析及其地质意义[J]. 地球物理学报, 2017, 60(4):1479-1490. [ZHAO Weina, ZHANG Xunhua, MENG Xiangjun, et al. Analysis of converted shear-waves based on OBS data in the South Yellow Sea and its geological implications [J]. Chinese Journal of Geophysics, 2017, 60(4): 1479-1490. doi: 10.6038/cjg20170421
    [44]

    Zhao M H, Qiu X L, Xia S H, et al. Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data [J]. Tectonophysics, 2010, 480(1-4): 183-197. doi: 10.1016/j.tecto.2009.10.004

    [45]

    Zhao W N, Wang H G, Shi H C, et al. Crustal structure from onshore-offshore wide-angle seismic data: Application to Northern Sulu Orogen and its adjacent area [J]. Tectonophysics, 2019, 770: 228220. doi: 10.1016/j.tecto.2019.228220

    [46]

    Ruan A G, Li J B, Lee C S, et al. Passive seismic experiment and ScS wave splitting in the southwestern subbasin of South China Sea [J]. Chinese Science Bulletin, 2012, 57(25): 3381-3390. doi: 10.1007/s11434-012-5132-0

    [47] 王应斌, 黄雷, 刘廷海. 渤海新构造运动主要特征与构造型式[J]. 中国海上油气, 2012, 24(S1):6-10. [WANG Yingbin, HUANG Lei, LIU Yanhai. The main characteristics and structural styles of Bohai newtectonism [J]. China Offshore Oil and Gas, 2012, 24(S1): 6-10.
    [48] 陈江欣, 侯方辉, 李日辉, 等. 渤海海域中西部新构造运动特征[J]. 海洋地质与第四纪地质, 2018, 38(4):83-91. [CHEN Jiangxin, HOU Fanghui, LI Rihui, et al. Neotectonics in the western and central Bohai Sea [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 83-91.
    [49] 周斌, 邓志辉, 徐杰, 等. 渤海新构造运动及其对晚期油气成藏的影响[J]. 地球物理学进展, 2009, 24(6):2135-2144. [ZHOU Bin, DENG Zhihui, XU Jie, et al. Characteristics of neotectonism and their relationship with late hydrocarbon accumulation in the Bohai sea [J]. Progress in Geophysics, 2009, 24(6): 2135-2144. doi: 10.3969/j.issn.1004-2903.2009.06.028
    [50] 吴德城, 朱晓青, 王庆良, 等. 南黄海西北部与深大断裂相关的活动断层特征[J]. 海洋地质前沿, 2020, 36(2):12-18. [WU Decheng, ZHU Xiaoqing, WANG Qingliang, et al. Characteristics of active faults related to deep faults in the northwestern part of the South Yellow Sea [J]. Marine Geology Frontiers, 2020, 36(2): 12-18.
    [51] 王志才, 邓起东, 杜宪宋, 等. 莱州湾海域郯庐断裂带活断层探测[J]. 地震学报, 2006, 28(5):493-503. [WANG Zhicai, DENG Qidong, DU Xiansong, et al. Active fault survey on the Tanlu fault zone in Laizhou Bay [J]. Acta Seismologica Sinica, 2006, 28(5): 493-503. doi: 10.3321/j.issn:0253-3782.2006.05.006
    [52] 侯方辉, 王保军, 孙建伟, 等. 渤海海峡跨海通道新构造运动特征及其工程地质意义[J]. 海洋地质前沿, 2016, 32(5):25-30. [HOU Fanghui, WANG Baojun, SUN Jianwei, et al. Neotectonic movement across the Bohai Strait and its engineering geologic significance [J]. Marine Geology Frontiers, 2016, 32(5): 25-30.
    [53] 李西双, 赵月霞, 刘保华, 等. 郯庐断裂带渤海段晚更新世以来的浅层构造变形和活动性[J]. 科学通报, 2010, 55(18):1908-1916. [LI Xishuang, ZHAO Yuexia, LIU Baohua, et al. Structural deformation and fault activity of the Tan-Lu Fault zone in the Bohai Sea since the Late Pleistocene [J]. Chinese Science Bulletin, 2010, 55(18): 1908-1916. doi: 10.1007/s11434-010-3073-z
    [54]

    Kim H J, Kim C H, Hao T Y, et al. Crustal structure of the Gunsan Basin in the SE Yellow Sea from ocean bottom seismometer (OBS) data and its linkage to the South China Block [J]. Journal of Asian Earth Sciences, 2019, 180: 103881. doi: 10.1016/j.jseaes.2019.103881

    [55] 王志才, 晁洪太, 杜宪宋, 等. 南黄海北部千里岩断裂活动性初探[J]. 地震地质, 2008, 30(1):176-186. [WANG Zhicai, CHAO Hongtai, DU Xiansong, et al. Preliminary survey on the Quaternary activities of the Qianliyan fault in the northern part of the South Yellow Sea [J]. Seismology and Geology, 2008, 30(1): 176-186. doi: 10.3969/j.issn.0253-4967.2008.01.012
    [56] 李官保, 刘保华, 赵月霞, 等. 南黄海千里岩附近海域第四纪构造活动特征[J]. 地球科学—中国地质大学学报, 2011, 36(6):977-984. [LI Guanbao, LIU Baohua, ZHAO Yuexia, et al. Quaternary tectonic activity near the Qianliyan Island of Southern Yellow Sea [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(6): 977-984.
    [57] 沈中延, 周建平, 高金耀, 等. 南黄海北部千里岩隆起带的第四纪活动断裂[J]. 地震地质, 2013, 31(1):64-74. [SHEN Zhongyan, ZHOU Jianping, GAO Jinyao, et al. Quaternary faults of the Qianliyan Uplift in the northern South Yellow Sea [J]. Seismology and Geology, 2013, 31(1): 64-74. doi: 10.3969/j.issn.0253-4967.2013.01.005
    [58] 王舒畋, 李斌. 东海新构造与新构造运动[J]. 海洋地质与第四纪地质, 2010, 30(4):141-150. [WANG Shutian, LI Bin. Neotectonic features and movement in the east China Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150.
    [59] 侯方辉, 张志珣, 张训华, 等. 东海陆架盆地北部新构造运动特征[J]. 海洋地质动态, 2010, 26(11):1-6. [HOU Fanghui, ZHANG Zhixun, ZHANG Xunhua, et al. Neotectonic Movement of The northern East China Sea shelf basin [J]. Marine Geology Letters, 2010, 26(11): 1-6.
    [60] 孙金龙, 徐辉龙, 李亚敏. 南海东北部新构造运动及其动力学机制[J]. 海洋地质与第四纪地质, 2009, 29(3):61-68. [SUN Jinlong, XUN Huilong, LI Yamin. Neotectonics in the northeastern South China Sea and its dynamic mechanism [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 61-68.
    [61] 赵明辉, 丘学林, 夏戡原, 等. 南海东北部滨海断裂带的研究现状与展望[J]. 华南地震, 2013, 23(1):20-27. [ZHAO Minghui, QIU Xuelin, XIA Kanyuan, et al. The situation and prospect of the research on the Binhai fault of NE South China Sea [J]. South China Journal of Seismology, 2013, 23(1): 20-27.
    [62] 赵明辉, 丘学林, 叶春明, 等. 南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析[J]. 地球物理学报, 2004, 47(5):845-852. [ZHAO Minghui, QIU Xuelin, YE Chunming, et al. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (Littoral) Fault Zone in northeastern South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(5): 845-852. doi: 10.3321/j.issn:0001-5733.2004.05.016
    [63] 徐辉龙, 丘学林, 赵明辉, 等. 南海东北部南澳大地震(M=7.5)震中区的地壳结构特征与震源构造[J]. 科学通报, 2006, 51(增刊 2):83-91. [XU Huilong, QIU Xuelin, ZHAO Minghui, et al. Nanao earthquake (M=7.5) epicentral area structure characteristics of crust and the source structure in northeast of South China sea [J]. Chinese Science Bulletin, 2006, 51(Suppl. 2): 83-91.
    [64] 陈晓辉, 李日辉. 中国东部海域活动构造定量研究若干问题探讨[J]. 海洋地质与第四纪地质, 2017, 37(3):102-110. [CHEN Xiaohui, LI Rihui. A review on Quantitative studies of active tectonics in Eastern China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 102-110.
    [65] 赵富有, 王世煜, 王典. 横波地震勘查技术在长春市活断层探测中的应用[J]. 地球物理学进展, 2008, 23(1):284-288. [ZHAO Fuyou, WANG Shiyu, WANG Dian. Application of seismic shear wave prospecting in detection of active faults in Changchun city [J]. Progress in Geophysics, 2008, 23(1): 284-288.
    [66]

    Barr F J. Dual-sensor OBC technology [J]. The Leading Edge, 1997, 16(1): 45-51. doi: 10.1190/1.1437427

    [67]

    Ronen S, Rokkan A, Bouraly R, et al. Imaging shallow gas drilling hazards under three Forties oil field platforms using ocean-bottom nodes [J]. The Leading Edge, 2012, 31(4): 465-469. doi: 10.1190/tle31040465.1

    [68]

    Roy D A, Rekos R, Brideau C, et al. A marine vibrator to meet the joint industry project specification[C]//SEG Technical Program Expanded Abstracts. SEG, 2018: 97-101.

  • 期刊类型引用(5)

    1. 刘鸿,徐华宁,刘欣欣,陈江欣,张菲菲,王小杰,颜中辉,杨佳佳,杨睿. 海洋地球物理数据处理现状及展望. 海洋地质与第四纪地质. 2024(03): 40-52 . 本站查看
    2. 王小杰,刘欣欣,颜中辉,刘鸿,杨佳佳. 基于曲波域模型优化的多次波压制方法在浅地层剖面的应用. 石油物探. 2024(06): 1155-1162 . 百度学术
    3. 颜中辉,杨睿,冯京,刘欣欣,刘鸿,王小杰,姜春涛. 高分辨率小道距处理技术及属性分析在水合物识别中的应用. 海洋地质与第四纪地质. 2024(06): 46-59 . 本站查看
    4. 冯晟,郑勋,王沛,宋峙潮. 基于预测反褶积理论的多次波压制技术研究. 黑龙江科学. 2023(04): 136-138 . 百度学术
    5. 李森,梁杰,龚建明,廖晶,陈建文,张银国,王建强,杨传胜,袁勇,雷宝华. 巴基斯坦东部海域中-新生代沉积研究进展. 海洋地质前沿. 2022(02): 1-13 . 百度学术

    其他类型引用(1)

图(7)  /  表(1)
计量
  • 文章访问数:  2293
  • HTML全文浏览量:  505
  • PDF下载量:  18
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-01
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2020-11-30

目录

/

返回文章
返回