全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展

李言达, 易亮

李言达, 易亮. 全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501
引用本文: 李言达, 易亮. 全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501
LI Yanda, YI Liang. A review on ecological response of coral reefs to global warming and oceanic acidification[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501
Citation: LI Yanda, YI Liang. A review on ecological response of coral reefs to global warming and oceanic acidification[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501

全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展

基金项目: 上海市自然科学基金“晚新近纪渤海盆地陆-海转换的环境过程”(19ZR1459800)
详细信息
    作者简介:

    李言达(1997―),男,本科生,主要从事古生物学研究,E-mail:ydli@pku.edu.cn

    通讯作者:

    易亮(1982―),男,副教授,主要从事海洋沉积与年代学研究,E-mail:yiliang@tongji.edu.cn

  • 中图分类号: P736

A review on ecological response of coral reefs to global warming and oceanic acidification

  • 摘要: 生物礁是由珊瑚虫、藻类等造礁生物组成、具有抗浪结构的海相碳酸盐岩,是全球主要碳库之一,也是观察热带海洋影响中-高纬度环境过程的重要窗口。近二、三十年以来,伴随着海洋水体的显著酸化和增温,全球热带海洋生物礁的主体——珊瑚礁系统遭受了不同程度的影响。其中,对于高温强迫而言,海水温度上升诱发珊瑚白化、抑制珊瑚的自我修复;海洋酸化可以显著改变珊瑚钙化率、抑制珊瑚幼虫发育、引发珊瑚礁的溶解;两大因素均可改变珊瑚礁的群落结构。针对这些环境要素的改变,珊瑚自身可以通过共生藻的种类转换以及调控基因表达等手段在一定程度上抵抗高温胁迫;但若温室气体的排放不受控制,绝大多数珊瑚礁到21世纪末都将遭受灾难性打击。为应对未来不同场景下的珊瑚礁变化,还需要对高温、酸化等关键因子响应特征进行更深入的研究;珊瑚礁长序列研究有可能为珊瑚的长周期演化特征提供关键认识,也为现代观测提供有益补充。
    Abstract: Tropical reefs are anti-wave structures composed of corals, algae and other reef-building organisms. They are one of the world's major carbon banks and an important window to observe the linkages and interactions between the mid- to high-latitude environmental processes and tropical oceans. In the past decades, with the significant acidification and warming of global oceans, the tropical coral reefs are seriously under threat. Ocean acidification is a factor which may significantly affect coral calcification rates, inhibit the development of coral larvae, and trigger the dissolution of coral reefs. And high temperature may cause the rising of sea temperature, coral bleaching and inhibit the self-repair of coral reefs. In addition, both of the two factors may induce changes in the community structure of coral reefs. In response to the changes in these environmental factors, corals can resist heat stress to a certain extent by changing the types of symbiotic algae and regulating gene expression. However, if the emission of greenhouse gases is not properly controlled in the near future, most coral reefs on the Earth may face complete elimination by the end of this century. A more comprehensive understanding of coral reefs’ response to the key factors in the climate system change, including higher temperature and acidification, is required to cope better with changes of coral reefs in different possible scenarios in the future. The study of reef depositional sequences may provide key insights into the long-term evolving patterns of coral reefs, and serve as a valuable supplement for modern observations.
  • 深海大洋沉积物的来源主要有生物碎屑、火山碎屑以及季风和洋流带来的陆源碎屑等[1-3]。由于深海大洋中的陆源沉积物粒径普遍偏细,故其粗粒沉积物主要来自于生物源、海底火山以及热液等。长期以来,人们普遍认识到粒度特征是沉积物的主要特征之一,不但可以作为研究沉积物输运方式和沉积环境的指标,还可以用来指示物源[4-9]。近年来,有关学者利用不同的函数模型和数学方法对沉积物粒度进行分析,探讨了其粒度特征、输运趋势、沉积环境和物源[10-13]。王汾连等[10]对马里亚纳海沟南部的柱状沉积物进行了粒度分析,发现该区域的沉积物粒径以4~63 μm为主,分选系数均值为1.77,分选较差,结合黏土矿物和稀土元素特征推测其物源主要为火山和陆源风尘物质。付峰等[11]对东太平洋CC区西区的12个表层沉积物样品进行了分析,指出沉积物平均粒径由南向北逐渐变粗,砂含量也逐渐增多,反映了其水动力条件从南到北逐渐增强,并结合黏土矿物和地球化学数据推测研究区物源为亚洲黄土和附近的火山物质。周宇等[12]利用Weibull函数对帕里西维拉海盆柱状沉积物进行了组分分离,分离出粒径范围为0.5~16 μm的细粒组分和1.6~32 μm的粗粒组分,其物源分别为亚洲大陆的风尘和当地海脊、岛弧的火山物质。周烨等[13]同样也利用此方法对菲律宾海西北部奄美三角盆地柱状沉积物的粒度特征进行了研究,提取出碎屑沉积物中的4个不同组分,其中超细粒组分粒度范围为0.04~0.9 μm,主要来源于海洋自生黏土;细粒组分粒度范围为0.2~32 μm,其物源主要为亚洲大陆的风尘;粗粒组分和超粗粒组分粒度范围分别为0.3~90 μm和3~160 μm,这两个组分的物源均为当地海脊和岛弧的火山物质。

    众所周知,太平洋板块在西太平洋边缘沿海沟俯冲于亚洲大陆和岛弧之下,形成了众多的沟弧系统,而雅浦海沟则是其中的代表。雅浦海沟地处西北太平洋暖池核心区,最大水深超过8000 m,沉积物来源及沉积环境复杂。目前国内外针对雅浦海沟附近海域的研究多集中在构造岩石学方面[14-17],缺乏详细的沉积物粒度资料。粒度分析作为海洋沉积物测试分析中一项最基本的指标,不但能够反映沉积物“源-汇”过程[5, 8],而且还蕴藏着海平面升降、构造运动和气候环境变化等方面的信息[18]

    本文旨在通过对西太平洋雅浦海沟南缘西加洛林海盆北部表层沉积物样品的矿物碎屑进行粒度分析,并借鉴粒度组分分离方法,研究矿物碎屑粒度特征,并据此初步探讨矿物碎屑来源。

    本文研究区位于太平洋板块、菲律宾板块与加洛林板块的交界处(图1),为西太平洋暖池区的核心部位。处在西加洛林海盆北部,西部紧接帕劳群岛,西北部与菲律宾海相连,南端为赤道新几内亚大陆。西加洛林海槽穿过研究区南部,北部横跨雅浦海沟、西加洛林海脊和索罗尔海槽[17, 19-20]。研究区水深范围变化较大(2395~7837 m),平均水深为4015 m(图2)。

    图  1  研究区位置及地质背景图[26]
    图中红色箭头代表表层与次表层流,黄色箭头代表深层流,绿色箭头代表南极中层水;其中,AAIW:南极中层水,KC:黑潮,LCPW:绕极深层水,LUC:吕宋潜流,MC:棉兰老流,MUC:棉兰老潜流,NEC:北赤道流,NECC:北赤道逆流,NEUC:北赤道潜流,NGCC:新几内亚近岸流,NGCUC:新几内亚沿岸潜流,NPDW:北太平洋深层水,EAWM:东亚冬季风,EASM:东亚夏季风。
    Figure  1.  Study area and its geological background[26]
    Yellow arrows represent the bottom currents and undercurrents, Green arrows represent the Antarctic Intermediate Water, Red arrows represent the surface and sub-surface currents; AAIW: Antarctic Intermediate Water, KC: Kuroshio Current, LCPW: Lower Circumpolar Water, LUC: Luzon Undercurrent, MC: Mindanao Current, MUC: Mindanao Undercurrent, NEC: North Equatorial Current, NECC: North Equatorial Counter Current, NEUC: North Equatorial Undercurrent, NGCC: New Guinea Coastal Current, NGCUC: New Guinea Coastal Undercurrent, NPDW: North Pacific Deep Water, EAWM: East Asian Winter Monsoon, EASM: East Asian Summer Monsoon.
    图  2  取样站位分布图
    Figure  2.  Location of the sampling stations

    热带西太平洋是一个洋流十分复杂的海域,是许多水团的十字路口,从图1中可以看出影响到研究区的流场主要包括赤道流与西太平洋的边界流。影响到研究区的表层洋流包括北赤道流和棉兰老流[21-23],南部的新几内亚近岸流也会沿着西太平洋边界北上与南下的棉兰老流相遇,形成环流体系,影响到研究区[22]

    深层流方面,发源于吕宋岛的吕宋潜流会沿着吕宋近岸向南输运,与北向的棉兰老潜流相遇,汇入东向的北赤道潜流影响到研究区[22]。在新几内亚附近,南极中层水会有一个西北向的分支流向研究区[23]。在北纬13°附近,绕极深层水沿马里亚纳边界由东北向西南方向运输,并穿过马里亚纳和雅浦海沟之间的交界处流向西马里亚纳海盆,而在转向处还有一个向东的分支;同时,由北向南的北太平洋深层水可携带绕极底层水东向的分支一起流向西加洛林海盆,进而影响到研究区[24]

    由于研究区远离大陆,海底沉积物几乎不受河流输运物质的影响,其海底沉积物主要由当地的自生物质堆积形成,包括钙质和硅质生物遗体、火山和海底热液活动形成的物质,另外还有宇宙物质以及由东亚冬季风(EAWM)和高层西风(EASM)带来的亚洲风尘等外来物[25]。亚洲风尘粒径普遍偏细,形成了研究区沉积物中的细粒组分,而当地的生物源和火山源物质粒径较粗,是研究区沉积物中粗粒组分的主要来源。

    本文研究样品是基于“全球变化与海气相互作用”专项,于2017年4月至6月使用箱式取样器获得,所有表层样站位按40 km的间隔均匀布设,少数站位的取样位置根据现场条件有所偏移,共计112个站位,其站位分布见图2

    由于沉积物中发育大量钙质和硅质生物碎屑,为了尽可能地提取矿物碎屑的信息,粒度的前处理流程需要去除有机质、钙质和硅质生物。使用碳酸钠去除硅质生物是经过前人检验的方法,前人大量研究证明碳酸钠能去除沉积物中绝大部分的硅质生物[27-30]。实验的具体流程如下:

    因本研究区样品粒径均小于2 mm,故所有沉积物样品一律采用激光粒度分析仪进行粒度分析。取充分混匀的样品0.5~0.6 g,用过量的过氧化氢(H2O2)溶液充分去除有机质。之后加入过量10%盐酸去除钙质生物。处理完的样品离心清洗一次,再加入20 mL 1 mol/L的Na2CO3溶液于85 ℃水浴反应4 h,以去除硅质生物。之后上机测试,样品浓度(遮光度)一般控制在10%~20%之间,但最低不能低于5%,最高不能大于20%。本文使用Mastersize-2000激光粒度仪测试,该仪器的测试粒径范围是0.02~2 000 μm,重复测试误差<5%。鉴于矩值法具有更好的代表性和准确性[31-32],本文粒度参数的计算采用矩值法[33]

    平均粒径:$ \bar{X} $=$\displaystyle\frac{\sum {fM}_{\varPhi }}{100}$

    分选系数:$\delta $=$ \sqrt{{\sum f\left({M}_{\varPhi }-\bar{X}\right)}^{2}/100} $

    偏态:Sk=$ \displaystyle\frac{{\sum f\left({M}_{\varPhi }-\bar{X}\right)}^{3}}{100{\delta}^{3}} $

    峰态:Ku=$ \displaystyle\frac{{\sum f\left({M}_{{\varPhi }}-\bar{X}\right)}^{4}}{100{\delta}^{4}} $

    其中,$ f $是各粒级范围的百分含量;$ {M}_{\varPhi } $是该粒级区间的粒径中间值,单位为Φ。

    研究区矿物碎屑按粒径大小可以分为黏土、粉砂和砂。各粒级的矿物碎屑百分含量分别为:砂0%~6.2%,平均含量为1.4%;粉砂27.1%~94.4%,平均含量为55.8%;黏土4.9%~72.9%,平均含量为42.9%。由于缺乏研究区附近沉积物相关粒度测试数据作对比,我们与明洁[34]在暖池区北部帕里西维拉海盆内测得的沉积物粒级组分进行了比较(处理流程与本文一致),测试结果非常接近,说明本文测试数据比较准确,能够真实反映研究区矿物碎屑的粒度特征。

    图3可以看出,研究区砂的含量非常小,大部分站位都小于5%,反映了研究区表层矿物碎屑粒径整体在砂粒级以下。

    图  3  表层沉积物中的矿物碎屑粒级组分(砂、粉砂与黏土)百分含量分布图
    Figure  3.  Map of grain size distribution of surface sediments

    研究区粉砂含量较其他两种组分的含量高,是主要的粒级组分,粉砂含量呈现出与构造环境明显相关的趋势,主要表现为在西加洛林海槽、雅浦海沟和西加洛林海盆等水深较深的区域为粉砂含量的高值区,粉砂平均含量在65%以上,而西加洛林海脊等水深相对较浅的区域为粉砂的低值区,这部分区域位于碳酸盐补偿深度以上,主要为钙质沉积区,粉砂含量为27%~40%。

    黏土和粉砂的分布特征有大致相反的趋势,即黏土含量高值区和低值区分别对应粉砂含量的低值区和高值区,黏土含量在研究区内呈现出随着水深的减小有上升的趋势。黏土含量高值区(>50%)主要位于西加洛林海脊处,而低值区(<10%)主要位于海沟、海槽和海盆等水深较深的区域。

    从矿物碎屑的粒级组分来看,在去除了钙质生物和硅质生物之后,研究区矿物碎屑的粒级组分以粉砂和黏土为主,整体分布趋势与研究区水深地形有很大的关系。

    采用福克-沃德提出的平均粒径、分选系数、偏态和峰态4种参数,反映沉积物来源和沉积环境。普遍认为,沉积物平均粒径和分选系数能反映沉积物的来源信息,偏态和峰态反映的是沉积环境对沉积物的改造作用[35]。研究区沉积物中的矿物碎屑粒度参数及分布见图4

    图  4  表层沉积物中的矿物碎屑粒度参数平面分布图
    Figure  4.  Distribution map of grain size parameters of surface sediments

    平均粒径指示了沉积物颗粒大小的总体分布趋势。研究区内矿物碎屑的平均粒径的变化范围为2.8~20.2 μm,平均为5.9 μm。在东北部水深小于3000 m的西加洛林海脊区域,平均粒径整体小于4 μm;而在中部和南部水深大于4000 m的区域,平均粒径几乎都在5.5 μm以上。整体来说,在西北部的雅浦海沟和南部的西加洛林海槽处,矿物碎屑的粒径普遍偏粗;而在东北部的西加洛林海脊处,矿物碎屑粒径则偏细。

    分选系数代表了沉积物的粒度分选程度,反映了颗粒大小的均匀性,能够表现出沉积物粒度分布的集中态势。若分选系数小,则说明分选较好,有突出的主要粒级,百分含量高;反之分选系数大,则说明粒级分布范围广,没有主要粒级。其影响因素除了水动力条件和沉积环境的自然地理条件外,物源也有很大的影响。从图4可以看出,研究区整体分选系数的变化范围为0.9~2,平均为1.5,分选性差。研究区东北部的西加洛林海脊处分选系数较其他区域低,约为1.3,分选性较好,说明该区域的矿物碎屑粒级比较集中。研究区水深较深的雅浦海沟、西加洛林海槽和深海平原处分选系数明显较大,普遍在1.5以上,说明这些水深较深的区域矿物碎屑物质组成复杂,优势粒级不明显。综上可以看出,研究区矿物碎屑粒度分选系数和区域构造地形密切相关。

    偏态代表频率曲线的对称程度,是沉积物中粗颗粒和细颗粒所占比例的反映,不仅可以表示沉积物频率曲线分布的对称程度,而且可以指示中值粒径和平均粒径的相对位置。偏态大于0时,代表沉积物粒度集中在粗粒部分;反之,偏态小于0时,则说明沉积物中细颗粒物质较多,粒度集中在细粒部分;偏态接近0时,则代表沉积物中粗细颗粒物质含量相当。从图中可以看出,表层矿物碎屑偏态的变化范围为–0.9~1.7,平均为0,属于对称型。从区域分布特征来看,研究区南部西加洛林海槽、西北部雅浦海沟和中部深海盆地的粗粒分布区为明显的正偏,而东北部西加洛林海脊附近以及大部分4300 m以上的海域为明显的负偏。

    峰态值反映的是沉积物粒度曲线中部和尾部的展形比,是度量沉积物粒度频率曲线尖锐程度的参数,能够指示沉积物颗粒粒径分布的集中趋势。一般认为峰态值可以反映环境对于沉积物粒度改造的情况,同时也可以反映沉积物来源的颗粒粒径集中情况。研究区表层矿物碎屑峰态值的变化范围为2.1~6.9,平均为3.5。在东北部西加洛林海脊附近矿物碎屑峰态值普遍较大,在4.6左右,矿物碎屑来源粒径范围比较集中,其中单一的来源优势明显。其他区域峰态则显示出尖锐或者中等,颗粒粒径范围相对分散。

    本区矿物碎屑物质来源具有多样化特点,对于同一个沉积体系来讲,多峰态的粒度特征一般指示不同来源的物质混合。本文用粒度组分分离的方法为本区矿物碎屑物源研究提供粒度方面的证据。

    本文采用Qin等[36]提出的对数正态分布函数识别并拟合各站位多峰分布的粒度组分。对数正态分布函数的分离结果表明,研究区各站位矿物碎屑粒度可以分离出4个组分(M1、M2、M3、M4),其中M2、M3为两个主要的组分(图5)。按照粒径从细到粗的顺序依次为:M1组分,粒度众数约为0.7 μm,粒度分布范围约为0.3~1.5 μm,百分含量范围为1.3%~18.8%;M2组分,粒度众数为4 μm,粒度分布范围约为1.6~15 μm,百分含量范围为14.5%~88.3%;M3组分,粒度众数约为30 μm,粒度分布范围约为16~100 μm,百分含量范围为1.5%~84.3%;M4组分,粒度众数约为200 μm,粒度分布范围为101~300 μm,百分含量范围为0.2%~5.2%。

    图  5  研究区代表性站位表层沉积物中的矿物碎屑粒度组分分离图
    Figure  5.  Grain size distribution of the surface sediments in representative stations

    结合前人研究可知,西北太平洋深海碎屑沉积物中细粒组分的来源主要是亚洲大陆的风尘物质[37-38],粗粒组分则主要来自于周围海脊和岛弧的火山物质[2]。Jiang等[25]对西菲律宾海的柱状沉积物进行了粒度和Sr-Nd同位素分析,通过Weibull函数拟合出了两个组分,其粒度范围分别为0.3~16 μm和0.5~60 μm,物源分别为来自于中国西部和中部的黄土以及来自于吕宋岛附近的火山物质;同时指出亚洲大陆在22万年以来的冰期干旱程度不断加深,使研究区沉积物冰期的沙尘含量高于间冰期。于兆杰等[39]也对西菲律宾海的柱状沉积物进行了粒度分析,提取出了3个对环境敏感的粒度组分,2.4~4.6 μm组分主要来自于吕宋岛河流输运的细颗粒物质,14~22 μm组分主要来源于亚洲的风尘,36~50 μm组分主要为火山物质和吕宋岛河流输运来的粗颗粒物质;通过对14~22 μm组分堆积速率、伊利石/蒙脱石和石英平均粒径等指标的分析,指出相比于1~0.6 Ma,亚洲内陆干旱程度和冬季风强度自0.6 Ma以来显著增强。周宇和周烨等[12-13]在菲律宾海通过组分分离出的亚洲大陆风尘的粒级组分分别为0.5~16 μm(众数2 μm)、0.2~32 μm(众数3.5 μm),通过对沉积物中不同年代的风尘组分含量进行对比,指出近2 Ma以来亚洲内陆干旱化程度加大以及东亚大气环流系统逐渐增强。

    本文沉积物的组分分离结果显示,M1(0.3~1.5 μm,众数为0.7 μm)和M2(1.6~15 μm,众数为4 μm)两个细粒组分符合亚洲风尘的粒度特征,且二者表现出较好的相关性(图6),表明二者很可能为同一物质来源。对比粒径范围可知,M1和M2两个组分可能均来自亚洲风尘,只是二者的输运方式不一样。研究区受东亚冬季风和高层西风的影响,东亚冬季风搬运的风尘粒径通常比高层西风搬运的风尘粒径要粗,两者搬运的风尘源区均为中亚/东亚/中国北部沙漠[25, 38, 40-41]。据此推测M1组分是由高层西风搬运到研究区,而M2组分则是由东亚冬季风输运而来。本研究中M2组分百分含量范围为14.5%~88.3%,平均值为65.45%,而M1的百分含量范围为1.3%~18.8%,平均值仅为9.42%,沉积物中M2组分含量明显高于M1组分,这说明东亚冬季风比高层西风对研究区的影响更明显。

    图  6  表层沉积物粒度M1和M2组分含量相关性
    Figure  6.  Correlation diagram of components M1 and M2

    研究区附近的奄美三角盆地沉积物组分分离的结果指示0.3~90 μm(众数10 μm)的粗粒组分和3~160 μm(众数40 μm)的超粗粒组分主要来源于当地海底火山物质[13],其粒度范围与本区沉积物M3组分(16~100 μm,众数为30 μm)和M4组分(101~300 μm,众数为200 μm)接近。扫描电镜下观察的结果显示,M3和M4粗粒组分主要为火山碎屑及残留的硅质生物碎屑(图7)。

    图  7  火山碎屑颗粒的SEM照片
    Figure  7.  SEM photomicrographs of the pyroclasts

    田举[26]对本研究区的表层沉积物常量元素(硅铝比值和铁铝比值)、微量元素(Sc-La-Th三角图)和稀土元素(比较了本研究区沉积物与潜在物源区物质的配分模式差别)进行了分析,指出本研究区除生物源以外,当地的火山物质和亚洲风尘是其主要物源,这与本文对物源分析的结果一致。

    物源和沉积环境是影响沉积物粒度分布特征的主要因素[9]。研究区的粒度分布特征主要受物源、构造环境和水动力条件等的影响。

    粒度组分分离结果中的M1和M2组成了研究区的细粒组分,M3和M4则构成了研究区的粗粒组分,将所有站位中M1和M2的百分含量之和大于或等于50%的站位划分为A类,反之则划分为B类,两类站位的分布见图8。其中,A类站位遍布于整个研究区,尤其是在西加洛林海脊的平坦地带全部为此类;B类站位集中在雅浦海沟、西加洛林海槽和深海盆地等水深较深的地带,尤其是集中在西加洛林海槽周边。

    图  8  矿物碎屑细粒和粗粒组分相对百分含量分类图
    A类表示细粒组分百分含量≥50%,B类表示细粒组分百分含量<50%。
    Figure  8.  Map of percentage contents of fine and coarse components of mineral debris
    Class A and B indicates that the percentage content of fine-grained component is greater and less than 50%, respectively.

    雅浦海沟和西加洛林海槽区域的矿物碎屑粒径较粗,分选性差,偏态为正偏(图4),反映其物质来源复杂,包括亚洲风尘、火山碎屑和硅质生物碎屑等。雅浦海沟最初形成于始新世或渐新世,当时的火山作用形成了大量的火山物质,Ohara等发现雅浦海沟的斜坡上裸露有火山岩、辉长岩和变质岩[42]。有研究表明,雅浦海沟仍处于活动状态,某些区域也会发生海底滑坡[43]。本文发现雅浦海沟和西加洛林海槽区火山碎屑含量相对较高,反映构造活动相对强烈。

    西加洛林海盆区的矿物碎屑粒径较海沟和海槽处要偏细,分选较差,偏态为对称型,峰态为中等峰型(图4),反映物质来源较复杂,个别站位含有较多火山碎屑。东北部的西加洛林海脊主要粒级组分为黏土,矿物碎屑粒径最细,分选较好,偏态值普遍小于0,为细粒沉积区,峰态为尖锐峰型,反映物质来源相对单一,以亚洲风尘为主。

    研究区附近流系复杂,特别是深层与底层流可导致沉积物在海底再分配,对沉积过程和沉积特征有重要影响。研究区深层流主要包括北赤道潜流、绕极深层水和北太平洋深层水等,其分布主要受海底地形控制[24]。在复杂的构造背景与海底地形影响下,西太平洋底层流具有极其复杂的空间结构,但目前对西太平洋底层流条件知之甚少。少量的研究表明,海沟边缘流速强,流向多变,沉积物可能被侵蚀和再悬浮[44-45];海沟处“漏斗”状地形和内潮等因素,导致沉积物向海沟横向输运,并在海沟轴部堆积,使海沟成为沉积物的沉降中心[45-46]。海槽接受周围岛弧输送的火山物质[47-49],从而影响沉积物类型和沉积特征。总之,海沟、海槽、深海平原、海岭等不同环境下的沉积物类型和沉积特征差别明显,这可能与底层流对沉积物的再分配有关,但目前对不同环境下的底层动力环境及其对沉积过程的影响机制有待于加强调查、观测与研究。

    综上所述,构造环境对粒度分布特征有明显控制作用,不同构造环境下的底层流有很大差异,从而影响沉积物的再分配。总的来说,从海脊、海盆到海槽与海沟,矿物碎屑粒径变粗,分选变差,反映物源逐渐变得复杂。

    (1)粒度组分分离方法由细到粗共分离出4个组分:M1(众数为0.7 μm,粒度范围为0.3~1.5 μm)、M2(众数为4 μm,粒度范围为1.6~15 μm)、M3(众数为30 μm,粒度范围为16~100 μm)和M4(众数为200 μm,粒度范围为101~300 μm),其中M1、M2主要为风尘物质,分别由高层西风和东亚冬季风搬运,遍布整个研究区;M3和M4为火山碎屑及残留的硅质生物碎屑,主要分布在雅浦海沟和西加洛林海槽附近。

    (2)根据细粒与粗粒组分相对百分含量的多少将研究区站位划分为A、B两类,A类站位遍布于整个研究区,尤其是在西加洛林海脊的平坦地带全部为此类;B类站位集中在雅浦海沟、西加洛林海槽和深海盆地等水深较深的地带,尤其是集中在西加洛林海槽周边。

    (3)研究区表层沉积物矿物碎屑的粒度分布特征主要受构造环境的控制。西加洛林海槽和雅浦海沟表层矿物碎屑粒径明显偏粗,分选系数高,偏态为正偏,峰态值普遍偏小,物质来源复杂,包括亚洲风尘、火山碎屑和硅质生物碎屑等;深海盆地表层矿物碎屑粒径次之,以粉砂为主,分选系数较高,偏态值接近于0,峰态值较大,个别站位含有较多火山碎屑;西加洛林海脊表层矿物碎屑粒径最细,以黏土为主,分选系数最低,峰态值最大,主要粒级突出,物质来源相对单一,以亚洲风尘为主。

  • 图  1   2015—2016年白化事件中全球珊瑚礁的白化程度统计[9]

    Figure  1.   Global coral bleaching in 2015 and 2016[9]

    图  2   海表温度上升对珊瑚礁群落的影响[3]

    Figure  2.   Effects of sea surface temperature increases on coral reefs[3]

    图  3   海洋酸化对珊瑚礁的影响[3]

    Figure  3.   Effects of ocean acidification on coral reefs[3]

    图  4   海底火山通风口处CO2排放量对生物礁群落的影响[82]

    Figure  4.   The influence of CO2 released from submarine volcanic vent on coral reef taxa[82]

  • [1]

    IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge, United Kingdom: Cambridge University Press, 2013.

    [2]

    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects[M]. Cambridge: Cambridge University Press, 2014.

    [3]

    Hoegh-Guldberg O, Andréfouët S, Fabricius K E, et al. Vulnerability of coral reef ecosystems in the tropical pacific to climate change[M]//Bell J D, Johnson J E, Hobday A. Vulnerability of tropical pacific fisheries and aquaculture to climate chang. Noumea: Secretariat of the Pacific Community, 2011: 251-296.

    [4]

    Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318(5857): 1737-1742. doi: 10.1126/science.1152509

    [5]

    Pandolfi J M. Incorporating uncertainty in predicting the future response of coral reefs to climate change [J]. Annual Review of Ecology, Evolution, and Systematics, 2015, 46: 281-303. doi: 10.1146/annurev-ecolsys-120213-091811

    [6]

    Hughes T P, Barnes M L, Bellwood D R, et al. Coral reefs in the Anthropocene [J]. Nature, 2017, 546(7656): 82-90. doi: 10.1038/nature22901

    [7]

    Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming [J]. Nature, 2018, 560(7718): 360-364. doi: 10.1038/s41586-018-0383-9

    [8]

    Smale D A, Wernberg T, Oliver E C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services [J]. Nature Climate Change, 2019, 9(4): 306-312. doi: 10.1038/s41558-019-0412-1

    [9]

    Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene [J]. Science, 2018, 359(6371): 80-83. doi: 10.1126/science.aan8048

    [10]

    Weis V M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis [J]. Journal of Experimental Biology, 2008, 211(19): 3059-3066. doi: 10.1242/jeb.009597

    [11]

    Oakley C A, Davy S K. Cell biology of coral bleaching[M]//Van Oppen M J H, Lough J M. Coral Bleaching. Cham: Springer, 2018: 189-211.

    [12]

    Bieri T, Onishi M, Xiang T T, et al. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching [J]. PLoS One, 2016, 11(4): e0152693. doi: 10.1371/journal.pone.0152693

    [13]

    Nielsen D A, Petrou K, Gates R D. Coral bleaching from a single cell perspective [J]. The ISME Journal, 2018, 12(6): 1558-1567. doi: 10.1038/s41396-018-0080-6

    [14]

    Tong H Y, Cai L, Zhou G W, et al. Temperature shapes coral-algal symbiosis in the South China Sea [J]. Scientific Reports, 2017, 7: 40118. doi: 10.1038/srep40118

    [15]

    Baker A C. Reef corals bleach to survive change [J]. Nature, 2001, 411(6839): 765-766. doi: 10.1038/35081151

    [16]

    Baker A C, Starger C J, McClanahan T R, et al. Corals' adaptive response to climate change [J]. Nature, 2004, 430(7001): 741. doi: 10.1038/430741a

    [17]

    Jones A M, Berkelmans R, Van Oppen M J H, et al. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization [J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1641): 1359-1365. doi: 10.1098/rspb.2008.0069

    [18]

    Silverstein R N, Cunning R, Baker A C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals [J]. Global Change Biology, 2015, 21(1): 236-249. doi: 10.1111/gcb.12706

    [19]

    Oliver T A, Palumbi S R. Do fluctuating temperature environments elevate coral thermal tolerance? [J]. Coral Reefs, 2011, 30(2): 429-440. doi: 10.1007/s00338-011-0721-y

    [20]

    Palumbi S R, Barshis D J, Traylor-Knowles N, et al. Mechanisms of reef coral resistance to future climate change [J]. Science, 2014, 344(6186): 895-898. doi: 10.1126/science.1251336

    [21]

    Bay R A, Palumbi S R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals [J]. Genome Biology and Evolution, 2015, 7(6): 1602-1612. doi: 10.1093/gbe/evv085

    [22]

    Mayfield A B, Fan T Y, Chen C S. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment [J]. Coral Reefs, 2013, 32(4): 909-921. doi: 10.1007/s00338-013-1067-4

    [23]

    Ainsworth T D, Heron S F, Ortiz J C, et al. Climate change disables coral bleaching protection on the Great Barrier Reef [J]. Science, 2016, 352(6283): 338-342. doi: 10.1126/science.aac7125

    [24]

    Tanzil J T I, Brown B E, Tudhope A W, et al. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, south Thailand between 1984 and 2005 [J]. Coral Reefs, 2009, 28(2): 519-528. doi: 10.1007/s00338-008-0457-5

    [25]

    Cantin N E, Cohen A L, Karnauskas K B, et al. Ocean warming slows coral growth in the central Red Sea [J]. Science, 2010, 329(5989): 322-325. doi: 10.1126/science.1190182

    [26]

    Steiner Z, Turchyn A V, Harpaz E, et al. Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea [J]. Nature Communications, 2018, 9: 3615. doi: 10.1038/s41467-018-06030-6

    [27]

    McCulloch M T, D’Olivo J P, Falter J, et al. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation [J]. Nature Communications, 2017, 8: 15686. doi: 10.1038/ncomms15686

    [28]

    Burt J A, Bauman A G. Suppressed coral settlement following mass bleaching in the southern Persian/Arabian Gulf [J]. Aquatic Ecosystem Health & Management, 2019, 23(2): 166-174.

    [29]

    Hughes T P, Kerry J T, Baird A H, et al. Global warming impairs stock–recruitment dynamics of corals [J]. Nature, 2019, 568(7752): 387-390. doi: 10.1038/s41586-019-1081-y

    [30]

    Loya Y, Sakai K, Yamazato K, et al. Coral bleaching: the winners and the losers [J]. Ecology Letters, 2001, 4(2): 122-131. doi: 10.1046/j.1461-0248.2001.00203.x

    [31]

    Harii S, Hongo C, Ishihara M, et al. Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey [J]. Marine Ecology Progress Series, 2014, 509: 171-180. doi: 10.3354/meps10890

    [32]

    Van Oppen M J H, Blackall L L. Coral microbiome dynamics, functions and design in a changing world [J]. Nature Reviews Microbiology, 2019, 17(9): 557-567. doi: 10.1038/s41579-019-0223-4

    [33]

    McDevitt-Irwin J M, Baum J K, Garren M, et al. Responses of coral-associated bacterial communities to local and global stressors [J]. Frontiers in Marine Science, 2017, 4: 262. doi: 10.3389/fmars.2017.00262

    [34]

    Keith S A, Baird A H, Hobbs J P A, et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching [J]. Nature Climate Change, 2018, 8(11): 986-991. doi: 10.1038/s41558-018-0314-7

    [35]

    Richardson L E, Graham N A J, Pratchett M S, et al. Mass coral bleaching causes biotic homogenization of reef fish assemblages [J]. Global Change Biology, 2018, 24(7): 3117-3129. doi: 10.1111/gcb.14119

    [36]

    Wilson S K, Robinson J P W, Chong-Seng K, et al. Boom and bust of keystone structure on coral reefs [J]. Coral Reefs, 2019, 38(4): 625-635. doi: 10.1007/s00338-019-01818-4

    [37]

    Hughes T P, Kerry J T, Baird A H, et al. Global warming transforms coral reef assemblages [J]. Nature, 2018, 556(7702): 492-496. doi: 10.1038/s41586-018-0041-2

    [38]

    Stuart-Smith R D, Brown C J, Ceccarelli D M, et al. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching [J]. Nature, 2018, 560(7716): 92-96. doi: 10.1038/s41586-018-0359-9

    [39]

    Van Woesik R, Sakai K, Ganase A, et al. Revisiting the winners and the losers a decade after coral bleaching [J]. Marine Ecology Progress Series, 2011, 434: 67-76. doi: 10.3354/meps09203

    [40]

    Graham N A J, Jennings S, MacNeil M A, et al. Predicting climate-driven regime shifts versus rebound potential in coral reefs [J]. Nature, 2015, 518(7537): 94-97. doi: 10.1038/nature14140

    [41]

    Tambutté E, Venn A A, Holcomb M, et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification [J]. Nature Communications, 2015, 6: 7368. doi: 10.1038/ncomms8368

    [42]

    Crook E D, Cohen A L, Rebolledo-Vieyra M, et al. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(27): 11044-11049. doi: 10.1073/pnas.1301589110

    [43]

    Fantazzini P, Mengoli S, Pasquini L, et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation [J]. Nature Communications, 2015, 6: 7785. doi: 10.1038/ncomms8785

    [44]

    Mollica N R, Guo W F, Cohen A L, et al. Ocean acidification affects coral growth by reducing skeletal density [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1754-1759. doi: 10.1073/pnas.1712806115

    [45]

    Foster T, Falter J, McCulloch M, et al. Ocean acidification causes structural deformities in juvenile coral skeletons [J]. Science Advances, 2016, 2(2): e1501130. doi: 10.1126/sciadv.1501130

    [46]

    Al-Horani F A, Al-Moghrabi S M, De Beer D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis [J]. Marine Biology, 2003, 142(3): 419-426. doi: 10.1007/s00227-002-0981-8

    [47]

    Ries J B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification [J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 4053-4064. doi: 10.1016/j.gca.2011.04.025

    [48]

    Venn A, Tambutté E, Holcomb M, et al. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater [J]. PLoS One, 2011, 6(5): e20013. doi: 10.1371/journal.pone.0020013

    [49]

    McCulloch M, Falter J, Trotter J, et al. Coral resilience to ocean acidification and global warming through pH up-regulation [J]. Nature Climate Change, 2012, 2(8): 623-627. doi: 10.1038/nclimate1473

    [50]

    Biscéré T, Zampighi M, Lorrain A, et al. High pCO2 promotes coral primary production [J]. Biology Letters, 2019, 15(7): 20180777. doi: 10.1098/rsbl.2018.0777

    [51]

    Cooper T F, O'Leary R A, Lough J M. Growth of Western Australian corals in the Anthropocene [J]. Science, 2012, 335(6068): 593-596. doi: 10.1126/science.1214570

    [52]

    Morita M, Suwa R, Iguchi A, et al. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates [J]. Zygote, 2009, 18(2): 103-107.

    [53]

    Nakamura M, Morita M. Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes [J]. Aquatic Biology, 2012, 15(3): 299-302. doi: 10.3354/ab00436

    [54]

    Albright R, Mason B, Miller M, et al. Ocean acidification compromises recruitment success of the threatened caribbean coral Acropora palmata [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20400-20404. doi: 10.1073/pnas.1007273107

    [55]

    Albright R, Mason B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success [J]. PLoS One, 2013, 8(2): e56468. doi: 10.1371/journal.pone.0056468

    [56]

    Albright R, Langdon C. Ocean acidification impacts multiple early life history processes of the caribbean coral Porites astreoides [J]. Global Change Biology, 2011, 17(7): 2478-2487. doi: 10.1111/j.1365-2486.2011.02404.x

    [57]

    Nakamura M, Ohki S, Suzuki A, et al. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis [J]. PLoS One, 2011, 6(1): e14521. doi: 10.1371/journal.pone.0014521

    [58]

    Caroselli E, Gizzi F, Prada F, et al. Low and variable pH decreases recruitment efficiency in populations of a temperate coral naturally present at a CO2 vent [J]. Limnology and Oceanography, 2019, 64(3): 1059-1069. doi: 10.1002/lno.11097

    [59]

    Heyward A J, Negri A P. Natural inducers for coral larval metamorphosis [J]. Coral Reefs, 1999, 18(3): 273-279. doi: 10.1007/s003380050193

    [60]

    Morse J W, Andersson A J, Mackenzie F T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5814-5830. doi: 10.1016/j.gca.2006.08.017

    [61]

    Kuffner I B, Andersson A J, Jokiel P L, et al. Decreased abundance of crustose coralline algae due to ocean acidification [J]. Nature Geoscience, 2008, 1(2): 114-117. doi: 10.1038/ngeo100

    [62]

    Vásquez-Elizondo R M, Enríquez S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH [J]. Scientific Reports, 2016, 6: 19030. doi: 10.1038/srep19030

    [63]

    Cornwall C E, Comeau S, McCulloch M T. Coralline algae elevate pH at the site of calcification under ocean acidification [J]. Global Change Biology, 2017, 23(10): 4245-4256. doi: 10.1111/gcb.13673

    [64]

    Cornwall C E, Comeau S, DeCarlo T M, et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability [J]. Proceedings. of the Royal Society B:Biological Sciences, 2018, 285(1884): 20181168.

    [65]

    Doropoulos C, Ward S, Diaz-Pulido G, et al. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions [J]. Ecology Letters, 2012, 15(4): 338-346. doi: 10.1111/j.1461-0248.2012.01743.x

    [66]

    Webster N S, Uthicke S, Botté E S, et al. Ocean acidification reduces induction of coral settlement by crustose coralline algae [J]. Global Change Biology, 2013, 19(1): 303-315. doi: 10.1111/gcb.12008

    [67]

    Albright R. Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals [J]. Journal of Marine Biology, 2011, 2011: 473615.

    [68]

    Kline D I, Teneva L, Okamoto D K, et al. Living coral tissue slows skeletal dissolution related to ocean acidification [J]. Nature Ecology & Evolution, 2019, 3(10): 1438-1444.

    [69]

    Eyre B D, Andersson A J, Cyronak T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean [J]. Nature Climate Change, 2014, 4(11): 969-976. doi: 10.1038/nclimate2380

    [70]

    Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, et al. Coral and mollusc resistance to ocean acidification adversely affected by warming [J]. Nature Climate Change, 2011, 1(6): 308-312. doi: 10.1038/nclimate1200

    [71]

    Eyre B D, Cyronak T, Drupp P, et al. Coral reefs will transition to net dissolving before end of century [J]. Science, 2018, 359(6378): 908-911. doi: 10.1126/science.aao1118

    [72]

    Cyronak T, Eyre B D. The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments [J]. Marine Chemistry, 2016, 183: 1-12. doi: 10.1016/j.marchem.2016.05.001

    [73]

    Albright R, Takeshita Y, Koweek D A, et al. Carbon dioxide addition to coral reef waters suppresses net community calcification [J]. Nature, 2018, 555(7697): 516-519. doi: 10.1038/nature25968

    [74]

    Albright R, Caldeira L, Hosfelt J, et al. Reversal of ocean acidification enhances net coral reef calcification [J]. Nature, 2016, 531(7594): 362-365. doi: 10.1038/nature17155

    [75]

    Comeau S, Edmunds P J, Spindel N B, et al. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations [J]. Limnology and Oceanography, 2014, 59(3): 1081-1091. doi: 10.4319/lo.2014.59.3.1081

    [76]

    Comeau S, Cornwall C E, McCulloch M T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification [J]. Scientific Reports, 2017, 7: 7573. doi: 10.1038/s41598-017-08003-z

    [77]

    Bove C B, Ries J B, Davies S W, et al. Common caribbean corals exhibit highly variable responses to future acidification and warming [J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1900): 20182840. doi: 10.1098/rspb.2018.2840

    [78]

    Comeau S, Cornwall C E, DeCarlo T M, et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization [J]. Nature Climate Change, 2019, 9(6): 477-483. doi: 10.1038/s41558-019-0486-9

    [79]

    Comeau S, Carpenter R C, Nojiri Y, et al. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1790): 20141339. doi: 10.1098/rspb.2014.1339

    [80]

    Clements C S, Hay M E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae [J]. Nature Ecology & Evolution, 2019, 3(2): 178-182.

    [81]

    Meron D, Atias E, Kruh L I, et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma [J]. The ISME Journal, 2011, 5(1): 51-60. doi: 10.1038/ismej.2010.102

    [82]

    Enochs I C, Manzello D P, Donham E M, et al. Shift from coral to macroalgae dominance on a volcanically acidified reef [J]. Nature Climate Change, 2015, 5(12): 1083-1088. doi: 10.1038/nclimate2758

    [83]

    Inoue S, Kayanne H, Yamamoto S, et al. Spatial community shift from hard to soft corals in acidified water [J]. Nature Climate Change, 2013, 3(7): 683-687. doi: 10.1038/nclimate1855

    [84]

    Fabricius K E, Langdon C, Uthicke S, et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations [J]. Nature Climate Change, 2011, 1(3): 165-169. doi: 10.1038/nclimate1122

    [85]

    Barkley H C, Cohen A L, Golbuu Y, et al. Changes in coral reef communities across a natural gradient in seawater pH [J]. Science Advances, 2015, 1(5): e1500328. doi: 10.1126/sciadv.1500328

    [86]

    Kroeker K J, Micheli F, Gambi M C, et al. Divergent ecosystem responses within a benthic marine community to ocean acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14515-14520. doi: 10.1073/pnas.1107789108

    [87]

    Fabricius K, De'ath G, Noonan S, et al. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1775): 20132479. doi: 10.1098/rspb.2013.2479

    [88]

    Smith J N, De’ath G, Richter C, et al. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs [J]. Nature Climate Change, 2016, 6(12): 1124-1129. doi: 10.1038/nclimate3122

    [89]

    Frieler K, Meinshausen M, Golly A, et al. Limiting global warming to 2°C is unlikely to save most coral reefs [J]. Nature Climate Change, 2013, 3(2): 165-170. doi: 10.1038/nclimate1674

    [90]

    Van Hooidonk R, Maynard J A, Planes S. Temporary refugia for coral reefs in a warming world [J]. Nature Climate Change, 2013, 3(5): 508-511. doi: 10.1038/nclimate1829

    [91]

    Van Woesik R, Köksal S, Ünal A, et al. Predicting coral dynamics through climate change [J]. Scientific Reports, 2018, 8: 17997. doi: 10.1038/s41598-018-36169-7

    [92]

    Kubicek A, Breckling B, Hoegh-Guldberg O, et al. Climate change drives trait-shifts in coral reef communities [J]. Scientific Reports, 2019, 9: 3721. doi: 10.1038/s41598-019-38962-4

    [93]

    DeCarlo T M, Cohen A L, Wong G T F, et al. Mass coral mortality under local amplification of 2 ℃ ocean warming [J]. Scientific Reports, 2017, 7: 44586. doi: 10.1038/srep44586

    [94]

    Quattrini A M, Rodríguez E, Faircloth B C, et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time [J]. Nature Ecology & Evolution, 2020, 4(11): 1531-1538.

    [95]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    [96]

    Wu S G, Yang Z, Wang D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016

    [97]

    Yi L, Jian Z M, Liu X Y, et al. Astronomical tuning and magnetostratigraphy of neogene biogenic reefs in Xisha Islands, South China Sea [J]. Science Bulletin, 2018, 63(9): 564-573. doi: 10.1016/j.scib.2018.04.001

  • 期刊类型引用(2)

    1. 周尚,徐继尚,刘勇,李广雪,李安龙,曹立华,翟科,徐继正,权永峥. 西太暖池区生物组分对海底表层沉积物物理力学性质的影响. 地学前缘. 2022(05): 119-132 . 百度学术
    2. 侯啸林,徐继尚,姜兆霞,曹立华,张强,李广雪,王双,翟科. 热带西太平洋沉积物的环境磁学特征对东亚冬季风的响应. 地学前缘. 2022(05): 23-34 . 百度学术

    其他类型引用(2)

图(4)
计量
  • 文章访问数:  2495
  • HTML全文浏览量:  604
  • PDF下载量:  97
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-11-05
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

/

返回文章
返回