A review on ecological response of coral reefs to global warming and oceanic acidification
-
摘要: 生物礁是由珊瑚虫、藻类等造礁生物组成、具有抗浪结构的海相碳酸盐岩,是全球主要碳库之一,也是观察热带海洋影响中-高纬度环境过程的重要窗口。近二、三十年以来,伴随着海洋水体的显著酸化和增温,全球热带海洋生物礁的主体——珊瑚礁系统遭受了不同程度的影响。其中,对于高温强迫而言,海水温度上升诱发珊瑚白化、抑制珊瑚的自我修复;海洋酸化可以显著改变珊瑚钙化率、抑制珊瑚幼虫发育、引发珊瑚礁的溶解;两大因素均可改变珊瑚礁的群落结构。针对这些环境要素的改变,珊瑚自身可以通过共生藻的种类转换以及调控基因表达等手段在一定程度上抵抗高温胁迫;但若温室气体的排放不受控制,绝大多数珊瑚礁到21世纪末都将遭受灾难性打击。为应对未来不同场景下的珊瑚礁变化,还需要对高温、酸化等关键因子响应特征进行更深入的研究;珊瑚礁长序列研究有可能为珊瑚的长周期演化特征提供关键认识,也为现代观测提供有益补充。Abstract: Tropical reefs are anti-wave structures composed of corals, algae and other reef-building organisms. They are one of the world's major carbon banks and an important window to observe the linkages and interactions between the mid- to high-latitude environmental processes and tropical oceans. In the past decades, with the significant acidification and warming of global oceans, the tropical coral reefs are seriously under threat. Ocean acidification is a factor which may significantly affect coral calcification rates, inhibit the development of coral larvae, and trigger the dissolution of coral reefs. And high temperature may cause the rising of sea temperature, coral bleaching and inhibit the self-repair of coral reefs. In addition, both of the two factors may induce changes in the community structure of coral reefs. In response to the changes in these environmental factors, corals can resist heat stress to a certain extent by changing the types of symbiotic algae and regulating gene expression. However, if the emission of greenhouse gases is not properly controlled in the near future, most coral reefs on the Earth may face complete elimination by the end of this century. A more comprehensive understanding of coral reefs’ response to the key factors in the climate system change, including higher temperature and acidification, is required to cope better with changes of coral reefs in different possible scenarios in the future. The study of reef depositional sequences may provide key insights into the long-term evolving patterns of coral reefs, and serve as a valuable supplement for modern observations.
-
Keywords:
- coral reefs /
- climate changes /
- global warming /
- ocean acidification /
- response mechanism
-
古潜山是我国油气勘探的重点领域,具有良好的油气资源前景。古潜山的形成经历了多期次构造运动改造,被断裂、褶皱及岩性复杂化,加大了此类油气藏的勘探难度。潜山油气藏储集特征普遍存在储集空间复杂、规律差、非均质性强、物性变化快等特征[1-2]。因此,对潜山的形成演化过程、基底断裂体系的展布、岩溶的改造期次等控制储层发育的关键地质问题的研究至关重要[3]。
北部湾盆地涠西南凹陷经过近四十年的勘探,常规领域勘探潜力越来越小,灰岩潜山占涠西南剩余资源潜力比例大,且不受埋深限制。通过区域地质调研及钻探揭示北部湾盆地的灰岩潜山主要分布在北部坳陷带涠西南断裂下降盘及南部坳陷带乌石凹陷。目前,北部湾盆地围绕涠西南凹陷1,2号断裂带及周缘已发现涠洲A、涠洲B、涠洲C、涠洲D等多个灰岩潜山油田或含油构造,其中涠洲A油田开发获得良好的经济效益,已经累产约130多万方,展示了灰岩潜山良好的勘探前景,因此,将是下一步重要勘探扩展领域。
1. 潜山地质概况
涠西南凹陷是北部湾盆地北部坳陷的二级构造单元,其北临粤桂隆起,西与海中凹陷、涠西南低凸起相接,东、东南紧接乐民凹陷、企西隆起(图1)。北部湾盆地是中、新生代叠合盆地,经历了多期拉张与挤压交替作用过程,构造变形复杂,盆地基底属于云开地块西段在北部湾海区的延伸[4-5]。早古生代云开地块褶皱隆起,形成云开复式背斜带,从志留纪末至早二叠世晚期,云开地块处于稳定状态,云开大山及其邻区泛华夏褶皱造山经过晚志留世至早泥盆世长期剥蚀,形成中泥盆世初期近平原状的广大海侵面,为碳酸盐台地发育提供条件。早二叠世晚期东吴运动使云开大山至十万大山连成一片山地,云开大山成为相对隆升的剥蚀区[6]。晚二叠世海侵,云开大山被淹没,整体沦为海域。晚三叠世开始,云开地块不断隆升遭受风化剥蚀,导致整个北部湾盆地隆升为陆地,一直处于长期隆升剥蚀状态。中生代沉积岩呈孤岛状零星分布[7],直至早古近纪,由于受板块相互挤压及南海扩张和边界断裂活动[8],形成控制北部湾盆地发育的NE向涠西南大断裂,盆地开始裂陷发育。始新世,盆地发生强烈的右行拉分断陷作用,产生了走向近东—西、具控凹作用的1号断层,北部湾地区进入成盆高峰期,此时沉积了流沙港组巨厚层沉积。渐新世进入断拗转换期,在涠西南形成近东—西向2号断层,控制涠洲组沉积。渐新世未发生区域隆升运动,涠西南凹陷抬升,导致涠洲组遭受强烈剥蚀,并伴有次级的走滑断层和张性断层的发育。新近纪,整个北部坳陷区进入裂后热沉降阶段(拗陷阶段),整体下沉接受新近纪和第四纪海相沉积。
2. 储层岩石学特征
涠西南凹陷灰岩潜山经历了长期的风化剥蚀,与上覆古、新近系呈不整合接触,钻井揭示,表层风化带内的溶蚀孔洞多被砂砾岩充填,并伴随严重的井漏。在涠洲A区构造共300片薄片观察基础上,根据三端元矿物成分统计,潜山内部岩石类型以灰岩、白云岩为主,少量硅质岩(图2)。强烈的白云岩化及硅化导致灰岩原始结构破坏,部分颗粒仅残存外部轮廓,白云岩以粉—极细晶为特征(图3a),晶间孔隙发育,部分白云石晶间孔被后期亮晶方解石充填,灰岩硅化所形成燧石由隐晶硅质及粉—极细粒较自形石英组成,还可见少量细晶方解石残余在硅化燧石中,可见少量石英晶间孔。
碳酸盐岩结构与岩石成因密切相关,是沉积环境的重要标志,根据颗粒、亮晶、泥晶三端元结构组分分类可见,主要以颗粒灰岩为主,泥晶灰岩次之(图2)。
颗粒灰岩中颗粒类型主要为内碎屑、有孔虫、藻、棘皮等,颗粒呈圆—次圆,分选较好—中等,颗粒含量50%以上,可见有孔虫等体腔孔被亮晶方解石充填(图3b),局部重结晶导致颗粒内部结构模糊,依稀可辨棘皮等生物碎屑(图3b),强胶结作用导致粒间孔隙不发育。泥晶基质或亮晶方解石胶结物充填于颗粒间,进一步分为亮晶颗粒灰岩(图3b)及泥晶颗粒灰岩(图3c),前者水动力条件强,由于水体的反复搅动,泥晶基质难以沉积下来。后者泥晶含量大于亮晶,泥晶基质分布于生屑间,颗粒支持结构,水动力较强,但稍弱于亮晶生屑灰岩。
图 3 典型岩石类型显微照片a. WZA-1,1 581 m,粉晶云岩,强烈白云岩化,粒间溶孔及晶间孔发育,单偏光,岩屑;b. WZA-2,1 748 m,亮晶生屑灰岩,有孔虫体腔孔及生物碎屑间被亮晶方解石充填,单偏光,岩屑;c. WZA-1,1 776 m,泥晶生屑灰岩,生物碎屑破碎严重,分选差,单偏光,岩屑;d. WZA-1,1 750 m,泥晶灰岩,亮晶方解石充填裂缝,单偏光,岩屑;e. WZA-2,1 690 m,生屑泥晶灰岩,有孔虫生物碎屑,泥晶方解石充填于粒屑间,单偏光,岩屑;f. WZA-1井,1 556.7 m,泥晶灰岩,半充填方解石脉,残余孔隙,单偏光,岩屑。Figure 3. Microphotographs of the typical rocks泥晶灰岩主要由粒径小于0.01 mm的泥级碳酸盐矿物组成,含少量或不含生物碎屑,反映水动力弱(图3d,f)。
颗粒泥晶灰岩属两者过渡类型,泥晶含量大于50%,颗粒含量25%~50%,泥晶方解石充填于颗粒间,一般不含同沉积亮晶(图3e),粒间孔无或较少。该类岩石为基质支撑,水动力条件介于上述两者间,较弱的水体条件使泥晶得以大量沉积。
潜山内幕局部可见洞穴砂砾岩,在WZA-1/2灰岩潜山内幕录井中均见到浅灰色灰质砂岩,距潜山顶面近200 m,推测为溶洞暗河内沉积。
3. 储集体特征
涠西南凹陷石炭系灰岩潜山储层在长期的地质演化过程中,经历抬升剥蚀和埋藏成岩改造,潜山表层风化带内由于长期的淋滤、溶蚀,发育众多溶洞、裂缝、砂砾岩充填物,钻厚一般约3~10 m,局部(4井)厚达26 m,据岩心物性分析风化带内孔隙度为4%~29%,测井解释油层平均孔隙度21%;潜山内幕被断层复杂化,储集空间类型丰富多样,各种规模和产状的孔、洞、缝均有发育,储层具有非均质性强、纵横向物性变化大的特点。综合岩心观察、薄片鉴定、地震、测井、钻井等解释结果,1号断裂带周缘钻探揭示灰岩潜山储层储集空间可划分为以下4种类型:①溶洞型;②裂缝型;③缝、洞复合型;④孔隙型。
3.1 溶洞
大中型溶洞洞穴系统是涠西南灰岩潜山的主要储集空间,根据区域构造调研,涠西南凹陷灰岩潜山至少经历了早二叠世末、晚三叠世两期大规模构造抬升,遭受暴露剥蚀,石炭系碳酸盐岩被抬升到地表或近地表,古潜山形成,在经历大规模的表层岩溶和顺层岩溶后,形成了厚层的风化壳和复杂的地下溶洞系统。
洞穴型储层洞径较大,一般大于1 m,测井曲线上常表现为双侧向电阻率急剧下降;井径异常增大,显示扩径;密度降低、中子增大、声波时差异常增大(图4),在钻进过程中发生钻具放空、井涌和泥浆漏失等现象[9-10],反映潜山内幕大型溶洞体系发育。如WZA-2井1 600~1 930 m纵向上发育六套溶洞,放空漏失量最大,合计放空16 m,漏失14.275×103 m3泥浆液(表1);WZA-1井1 627~1 638 m发育近10 m溶洞;WZA-3井1 678~1 680 m(TVD1 556.18~1 557.89 m)钻具放空,风化带内钻井取心可见岩心为褐灰色油浸含砾砂岩,推测是风化带内大型溶洞的充填物。
表 1 放空漏失量统计Table 1. The statistics table of drilling break and leakage井号 石炭系厚度/m 风化壳深度(TVD)/m 厚度/m 漏失深度(TVD)/m 漏失量/m3 放空段(TVD)/m 放空长度/m WZA-1 312.5 1 487.5~1 491 3.5 1 487.69 468 1 628~1 631 3 1 510 341 1 535 299 1 598 498 1 683 502 1 768~1 771 3 1 777 154 合计 2 262 合计 6 WZA-2 341 1 589~1 612 23 1 820 1 581 1 820~1 823 3 1 829~1 830 1 1 847~1 849 2 1 902 8 458 1 918~1 928 10 1 918 4 236 合计 14 275 合计 16 WZA-3 46.37 1 556.18~1 560.46 4.28 1 556.18 97 1 556.18~1 557.89 1.71 1 560.46 443 1 596.46 671 1 602.41 1 673 合计 2 884 合计 1.71 3.2 裂缝型
裂缝是碳酸盐岩储层的重要储集空间,是沟通溶蚀孔洞及洞穴之间的桥梁,为酸性流体溶蚀提供通道,为后期扩溶形成溶洞和洞穴提供条件。对于碳酸盐岩储层而言,裂缝的重要性甚至超过孔隙,许多致密碳酸盐岩由于裂缝的发育变得极具潜力。涠洲A区取心段内可见多组裂缝相互切割(图5a、b),根据产状进一步分为低角度裂缝、高角度裂缝,晚期的高角度缝半充填状,切过早期方解石脉。岩心薄片观察也可见多组裂缝发育,呈充填、半充填状(图3d、f),方解石晶体沿裂缝边缘呈马牙状向内生长。
图 5 典型岩心照片a. WZA-1,1 553.7 m,多组裂缝相互切割,充填-半充填,岩心;b. WZA-1,1 553.8 m,晚期半充填高角度缝切过早期方解石脉,岩心;c. WZA-1,1 551.7~1 551.9 m,缝、洞体见明显油侵,岩心;d. WZA-1,1 553.55 m,裂缝溶蚀扩大,岩心;e. WZA-3,1 678~1 678.45 m(TVD1 556.18~1 678.45 m)发育方解石脉,方解石结晶较好,呈自形马牙状晶簇;f. WZA-1,1 551.25~1 552.07 m,高角度开启缝,岩心。Figure 5. Photographs of selected cores3.3 缝、洞复合型
缝、洞复合型储层是涠西南灰岩潜山的主要储集空间,酸性流体沿裂缝溶蚀扩大形成缝、洞复合型储层。钻井揭示,当钻入石炭系灰岩潜山常发生严重的泥浆漏失(表1),推测主要存在大型缝洞体,录井岩性主要为与剥蚀面伴生的风化残积层,通常为风化土及砂砾质溶洞充填物。WZA-3井钻进至1 678 m(TVD1 556.18 m)发生放空,放空段垂直高度1.7 m左右,在井深1 678~1 682.4 m(TVD1 556.18~1 559.95 m)取心,心长仅1.4 m,收获率37%,岩心均为褐灰色油浸含砾砂岩,顶部1 678~1 678.3 m(TVD1 556.18~1 556.4 m)取心段内可见宽度约7 cm的方解石脉发育,方解石自形晶簇呈马牙状(图5e),推测应为碳酸盐岩风化壳内充填物,实测显示,风化壳内充填物物性好,实测孔隙度平均值16.1%,渗透率233.6 mD。WZA-2井录井岩屑显示石炭系风化壳主要由棕红色铁质风化土及浅灰色油斑砂砾岩组成的风化壳。WZA-1井在钻至井深1 487.7 m发生严重泥浆漏失,录井岩屑为浅绿灰色含砾砂岩,推测为风化壳溶洞内充填物。潜山内幕1 551.25~1 556.4 m取心段内规模不一,缝、洞体发育,沿裂缝周缘溶蚀孔洞发育,缝、洞体内可见明显油侵(图5c),可见方解石自形晶簇沿缝、洞壁多期生长,半充填溶洞(图5d)。垂直裂缝可贯穿整个岩心,长达40 cm,宽2~5 mm,沿裂缝周缘,溶蚀孔洞发育(图5f)。
3.4 孔隙型
孔隙型储层是涠西南凹陷灰岩潜山的重要储集空间,主要类型有晶间孔、粒间孔等。通过薄片分析,研究区广泛发育重结晶作用、白云岩化作用,这就为晶间孔发育提供了良好的条件(图3a)。WZA-2井石炭系测井孔隙度为0.1%~27.9%,平均孔隙度为4.2%,测井渗透率为0.1~800 mD,平均渗透率为30.9 mD(图4)。WZA-1井测井孔隙度普遍小于5%。通过储层物性分布(图6)可见,白云岩储层物性好于亮晶生屑灰岩和泥晶生屑灰岩,孔隙度集中分布于4%~12%,局部高达20%。
4. 储集物性主控因素
涠西南石炭系灰岩潜山储层经过多期构造活动影响,经过长期风化暴露溶蚀,储层非均质性强,储集条件受岩溶及白云岩化控制。地层岩石成分、结构等岩相特征是控制岩溶发育的物质基础,而构造活动导致的地貌差异、裂缝性质及展布、古潜水面波动等最终决定岩溶规模及影响深度。白云岩化形成的晶间孔隙明显改善孔隙型储层物性,良好的孔渗条件也可为后期岩溶提供渗流通道。
4.1 沉积环境和岩石类型
沉积环境是影响储层物性最基本的因素,不同沉积环境下形成的岩相不仅决定储层的空间展布,还影响着储层所经历的成岩作用类型和强度,进而影响储层储集性能。泥盆纪中晚期开始大规模的海侵,早石炭世云开古陆仍然局部暴露为剥蚀区[9],北部湾盆地为云开古陆与钦防盆地间呈北东向延伸的碳酸盐岩开阔台地;晚石炭世威宁期(黄龙组)由于海侵的持续,整个云开古陆与古特提斯洋沟通,淹没水下,形成开阔台地相,生物繁盛,碳酸盐礁滩相储层发育[9]。研究区位于钦防盆地边缘,发育碳酸盐台地边缘滩相储层,取心段岩心观察结合显微薄片,涠洲A区以浅灰色颗粒灰岩为主(图5a-d),受强水动力条件的影响,颗粒分选较好—中等(图3b,c),原始粒间孔隙发育,岩性纯,脆性大,泥质夹层少,这些特点决定了岩层易受构造破裂作用和岩溶作用的改造,出现较好的储层发育段。
4.2 不整合面附近及古潜水面波动控制储层展布
涠西南凹陷碳酸盐台地经历早二叠世晚期东吴运动抬升剥蚀,中二叠世海侵淹没,晚三叠世受印支—燕山期陆内造山运动影响[10-11],整个云开地块不断隆升剥蚀[12]。北部湾盆地在隆升背景下,受控于合浦-北流、吴川-四会断裂左旋压扭[13],在涠西南凹陷形成复式向斜,其核部大致沿1号断裂带(廉江-信宜断裂向海延伸)。直至早古近纪,涠西南大断裂发育,北部湾盆地进入裂陷发育阶段,形成上石炭统黄龙组与古新统长流组不整合接触,纵向上依次发育表层岩溶带、垂直渗流带及水平潜流带(图7)。
长期的暴露剥蚀,表层岩溶发育,风化面凹凸不平,主要以缝、洞型储层为主,并且沿不整合面大面积分布。钻探揭示涠洲A构造顶部风化壳发育(图4),风化壳厚度3.5~23 m,钻入石炭系灰岩潜山常发生严重的泥浆漏失,录井岩性主要为与剥蚀面伴生的风化残积层,通常为风化土及砂砾质溶洞充填物。古潜水面波动受构造运动阶段性及晚石炭世以来全球海平面多次升降影响[14-15],导致研究区纵向上发育多个洞穴层序次。电测曲线显示低电阻、钻速快、钻井放空和井漏等现象。放空漏失段跨度大,0~330 m范围内均有分布。
4.3 构造裂缝发育显著改善储集性能
北部湾盆地的发育受控于合浦-北流、信宜-廉江、吴川-四会和阳江-河源四条先存的深大断裂带[12]。而研究区介于合浦-北流(涠西南断裂带)、信宜-廉江(1号断裂带)两大断裂向北部湾海域延伸范围内[12](图1),经历了中生代早期的左旋挤压抬升、中生代晚期右行张扭及岩浆热活动,新生代时期盆地受强烈的右行拉分作用及先存断裂体系的影响,控凹1号断层发育,强烈的断层活动形成断层崖(图8)。复杂的构造演变导致研究区内多期次裂缝发育,早期主要以压扭性裂缝为主,晚期以张性裂缝为主,结合显微观察,压扭性裂缝多被方解石充填,其对储层的改善有限,结合区域构造演化背景,晚白垩世时期开始形成张扭性裂缝,呈半充填或不充填(图5a,b)。酸性流体沿此类裂缝不断溶蚀改造,一方面,有利于风化壳岩溶储层发育,使储层向着更有利的方向进行;另一方面,裂缝和断裂的发育直接影响岩溶发育的深度。涠西南地区钻井已证实,断裂的展布对岩溶形成、高产油气富集区和油气的分布有明显的控制作用。近1号断裂带的涠洲A裂缝发育,纵向上裂缝发育段距风化壳顶面0~250 m均有分布,测试产量高,单井日产原油高达一千多方,通过涠洲A地区的开放井生产历史发现,油田开发多年,油藏生产压差小,采油指数高,说明裂缝与缝洞沟通,压力供给充足。涠洲E构造位置与涠洲A类似(图8),近1号断裂带,具有相同的应力背景,中生代晚期右行张扭作用下信宜-廉江(1号断裂)周缘张性断裂体系发育为不整合岩溶及潜山内幕溶蚀提供了良好的通道,加速了溶蚀进程。新生代时期在强烈的伸展作用下,1号断层发育,北部湾盆地进入成盆高峰期,断层下降盘沉积巨厚流沙港组地层,上升盘隆升形成断层崖。涠洲E区断层落差较涠洲A区大,流沙港组一段及涠洲组超覆于断层面上,上升盘为下石炭统与中新统下洋组呈不整合接触,潜山顶部及断崖处暴露淋滤时间更长,推测储层较涠洲A区发育。
4.4 白云岩化作用明显改善孔隙型储层
研究区纵向上发育三套明显白云岩化(图3),平面上白云岩展布受断裂控制,近1号断裂带涠洲A区白云岩化作用较强,远离断裂涠洲B区白云岩化较弱,推测白云岩化主要受燕山期岩浆热活动影响,先期断裂沟通深部热流体导致潜山内部发生白云岩化及强烈的硅化。显微薄片观察可见强烈白云岩化破坏原始组构,晶间孔隙发育,当方解石被白云石交代时,Mg2+进入矿物晶格,而将Ca2+离子析出,由于Mg2+和Ca2+的摩尔体积差别,反应后将引起矿物体积的收缩,进而导致反应后孔隙度增加。理论上,如果交代文石,孔隙度将增加5.76%;如果交代方解石,孔隙度将增加12.96%,物性较好,晶间孔隙发育利于后期溶蚀作用改造,而研究区内亮晶生屑灰岩及泥晶生屑灰岩由于经过强烈的胶结作用,岩性致密不利于后期溶蚀作用改造。因此,白云岩化明显改善孔隙型储层,可发育有利储层。
5. 结论
(1)涠西南地区灰岩潜山主要为碳酸盐岩台地边缘滩相储层,强水动力影响,以颗粒灰岩为主,岩性纯,脆性大,为后期构造破裂作用和岩溶作用提供了良好的物质基础。储层储集空间以缝、洞型为主,局部发育孔隙型储层。
(2)灰岩潜山纵向分为表层岩溶、垂直渗流及水平潜流带,1号断裂周缘晚期的张扭型裂缝可为岩溶提供良好的渗流通道,加速了风化淋滤的进程,形成沟通良好的溶蚀孔洞,控制了优质储层的展布,古潜水面波动形成纵向上多个洞穴层序次。
(3)受燕山岩浆热活动影响,发生强烈白云岩化及硅化,白云岩化受断裂展布的控制,强烈的白云岩化晶间孔隙发育,明显改善孔隙型储层。涠洲E构造位置与涠洲A构造类似,近1号断裂且处于强应力区,断层落差大,裂缝发育,暴露剥蚀时间更久,利于溶蚀改造和白云岩化进行。预测涠洲E储集岩性主要为白云岩、灰质白云岩与生屑灰岩,风化壳型溶洞+裂缝+孔隙型储集空间发育,纵向上可发育多个缝洞层序次。
-
[1] IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge, United Kingdom: Cambridge University Press, 2013.
[2] IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects[M]. Cambridge: Cambridge University Press, 2014.
[3] Hoegh-Guldberg O, Andréfouët S, Fabricius K E, et al. Vulnerability of coral reef ecosystems in the tropical pacific to climate change[M]//Bell J D, Johnson J E, Hobday A. Vulnerability of tropical pacific fisheries and aquaculture to climate chang. Noumea: Secretariat of the Pacific Community, 2011: 251-296.
[4] Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318(5857): 1737-1742. doi: 10.1126/science.1152509
[5] Pandolfi J M. Incorporating uncertainty in predicting the future response of coral reefs to climate change [J]. Annual Review of Ecology, Evolution, and Systematics, 2015, 46: 281-303. doi: 10.1146/annurev-ecolsys-120213-091811
[6] Hughes T P, Barnes M L, Bellwood D R, et al. Coral reefs in the Anthropocene [J]. Nature, 2017, 546(7656): 82-90. doi: 10.1038/nature22901
[7] Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming [J]. Nature, 2018, 560(7718): 360-364. doi: 10.1038/s41586-018-0383-9
[8] Smale D A, Wernberg T, Oliver E C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services [J]. Nature Climate Change, 2019, 9(4): 306-312. doi: 10.1038/s41558-019-0412-1
[9] Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene [J]. Science, 2018, 359(6371): 80-83. doi: 10.1126/science.aan8048
[10] Weis V M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis [J]. Journal of Experimental Biology, 2008, 211(19): 3059-3066. doi: 10.1242/jeb.009597
[11] Oakley C A, Davy S K. Cell biology of coral bleaching[M]//Van Oppen M J H, Lough J M. Coral Bleaching. Cham: Springer, 2018: 189-211.
[12] Bieri T, Onishi M, Xiang T T, et al. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching [J]. PLoS One, 2016, 11(4): e0152693. doi: 10.1371/journal.pone.0152693
[13] Nielsen D A, Petrou K, Gates R D. Coral bleaching from a single cell perspective [J]. The ISME Journal, 2018, 12(6): 1558-1567. doi: 10.1038/s41396-018-0080-6
[14] Tong H Y, Cai L, Zhou G W, et al. Temperature shapes coral-algal symbiosis in the South China Sea [J]. Scientific Reports, 2017, 7: 40118. doi: 10.1038/srep40118
[15] Baker A C. Reef corals bleach to survive change [J]. Nature, 2001, 411(6839): 765-766. doi: 10.1038/35081151
[16] Baker A C, Starger C J, McClanahan T R, et al. Corals' adaptive response to climate change [J]. Nature, 2004, 430(7001): 741. doi: 10.1038/430741a
[17] Jones A M, Berkelmans R, Van Oppen M J H, et al. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization [J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1641): 1359-1365. doi: 10.1098/rspb.2008.0069
[18] Silverstein R N, Cunning R, Baker A C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals [J]. Global Change Biology, 2015, 21(1): 236-249. doi: 10.1111/gcb.12706
[19] Oliver T A, Palumbi S R. Do fluctuating temperature environments elevate coral thermal tolerance? [J]. Coral Reefs, 2011, 30(2): 429-440. doi: 10.1007/s00338-011-0721-y
[20] Palumbi S R, Barshis D J, Traylor-Knowles N, et al. Mechanisms of reef coral resistance to future climate change [J]. Science, 2014, 344(6186): 895-898. doi: 10.1126/science.1251336
[21] Bay R A, Palumbi S R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals [J]. Genome Biology and Evolution, 2015, 7(6): 1602-1612. doi: 10.1093/gbe/evv085
[22] Mayfield A B, Fan T Y, Chen C S. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment [J]. Coral Reefs, 2013, 32(4): 909-921. doi: 10.1007/s00338-013-1067-4
[23] Ainsworth T D, Heron S F, Ortiz J C, et al. Climate change disables coral bleaching protection on the Great Barrier Reef [J]. Science, 2016, 352(6283): 338-342. doi: 10.1126/science.aac7125
[24] Tanzil J T I, Brown B E, Tudhope A W, et al. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, south Thailand between 1984 and 2005 [J]. Coral Reefs, 2009, 28(2): 519-528. doi: 10.1007/s00338-008-0457-5
[25] Cantin N E, Cohen A L, Karnauskas K B, et al. Ocean warming slows coral growth in the central Red Sea [J]. Science, 2010, 329(5989): 322-325. doi: 10.1126/science.1190182
[26] Steiner Z, Turchyn A V, Harpaz E, et al. Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea [J]. Nature Communications, 2018, 9: 3615. doi: 10.1038/s41467-018-06030-6
[27] McCulloch M T, D’Olivo J P, Falter J, et al. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation [J]. Nature Communications, 2017, 8: 15686. doi: 10.1038/ncomms15686
[28] Burt J A, Bauman A G. Suppressed coral settlement following mass bleaching in the southern Persian/Arabian Gulf [J]. Aquatic Ecosystem Health & Management, 2019, 23(2): 166-174.
[29] Hughes T P, Kerry J T, Baird A H, et al. Global warming impairs stock–recruitment dynamics of corals [J]. Nature, 2019, 568(7752): 387-390. doi: 10.1038/s41586-019-1081-y
[30] Loya Y, Sakai K, Yamazato K, et al. Coral bleaching: the winners and the losers [J]. Ecology Letters, 2001, 4(2): 122-131. doi: 10.1046/j.1461-0248.2001.00203.x
[31] Harii S, Hongo C, Ishihara M, et al. Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey [J]. Marine Ecology Progress Series, 2014, 509: 171-180. doi: 10.3354/meps10890
[32] Van Oppen M J H, Blackall L L. Coral microbiome dynamics, functions and design in a changing world [J]. Nature Reviews Microbiology, 2019, 17(9): 557-567. doi: 10.1038/s41579-019-0223-4
[33] McDevitt-Irwin J M, Baum J K, Garren M, et al. Responses of coral-associated bacterial communities to local and global stressors [J]. Frontiers in Marine Science, 2017, 4: 262. doi: 10.3389/fmars.2017.00262
[34] Keith S A, Baird A H, Hobbs J P A, et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching [J]. Nature Climate Change, 2018, 8(11): 986-991. doi: 10.1038/s41558-018-0314-7
[35] Richardson L E, Graham N A J, Pratchett M S, et al. Mass coral bleaching causes biotic homogenization of reef fish assemblages [J]. Global Change Biology, 2018, 24(7): 3117-3129. doi: 10.1111/gcb.14119
[36] Wilson S K, Robinson J P W, Chong-Seng K, et al. Boom and bust of keystone structure on coral reefs [J]. Coral Reefs, 2019, 38(4): 625-635. doi: 10.1007/s00338-019-01818-4
[37] Hughes T P, Kerry J T, Baird A H, et al. Global warming transforms coral reef assemblages [J]. Nature, 2018, 556(7702): 492-496. doi: 10.1038/s41586-018-0041-2
[38] Stuart-Smith R D, Brown C J, Ceccarelli D M, et al. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching [J]. Nature, 2018, 560(7716): 92-96. doi: 10.1038/s41586-018-0359-9
[39] Van Woesik R, Sakai K, Ganase A, et al. Revisiting the winners and the losers a decade after coral bleaching [J]. Marine Ecology Progress Series, 2011, 434: 67-76. doi: 10.3354/meps09203
[40] Graham N A J, Jennings S, MacNeil M A, et al. Predicting climate-driven regime shifts versus rebound potential in coral reefs [J]. Nature, 2015, 518(7537): 94-97. doi: 10.1038/nature14140
[41] Tambutté E, Venn A A, Holcomb M, et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification [J]. Nature Communications, 2015, 6: 7368. doi: 10.1038/ncomms8368
[42] Crook E D, Cohen A L, Rebolledo-Vieyra M, et al. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(27): 11044-11049. doi: 10.1073/pnas.1301589110
[43] Fantazzini P, Mengoli S, Pasquini L, et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation [J]. Nature Communications, 2015, 6: 7785. doi: 10.1038/ncomms8785
[44] Mollica N R, Guo W F, Cohen A L, et al. Ocean acidification affects coral growth by reducing skeletal density [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1754-1759. doi: 10.1073/pnas.1712806115
[45] Foster T, Falter J, McCulloch M, et al. Ocean acidification causes structural deformities in juvenile coral skeletons [J]. Science Advances, 2016, 2(2): e1501130. doi: 10.1126/sciadv.1501130
[46] Al-Horani F A, Al-Moghrabi S M, De Beer D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis [J]. Marine Biology, 2003, 142(3): 419-426. doi: 10.1007/s00227-002-0981-8
[47] Ries J B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification [J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 4053-4064. doi: 10.1016/j.gca.2011.04.025
[48] Venn A, Tambutté E, Holcomb M, et al. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater [J]. PLoS One, 2011, 6(5): e20013. doi: 10.1371/journal.pone.0020013
[49] McCulloch M, Falter J, Trotter J, et al. Coral resilience to ocean acidification and global warming through pH up-regulation [J]. Nature Climate Change, 2012, 2(8): 623-627. doi: 10.1038/nclimate1473
[50] Biscéré T, Zampighi M, Lorrain A, et al. High pCO2 promotes coral primary production [J]. Biology Letters, 2019, 15(7): 20180777. doi: 10.1098/rsbl.2018.0777
[51] Cooper T F, O'Leary R A, Lough J M. Growth of Western Australian corals in the Anthropocene [J]. Science, 2012, 335(6068): 593-596. doi: 10.1126/science.1214570
[52] Morita M, Suwa R, Iguchi A, et al. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates [J]. Zygote, 2009, 18(2): 103-107.
[53] Nakamura M, Morita M. Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes [J]. Aquatic Biology, 2012, 15(3): 299-302. doi: 10.3354/ab00436
[54] Albright R, Mason B, Miller M, et al. Ocean acidification compromises recruitment success of the threatened caribbean coral Acropora palmata [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20400-20404. doi: 10.1073/pnas.1007273107
[55] Albright R, Mason B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success [J]. PLoS One, 2013, 8(2): e56468. doi: 10.1371/journal.pone.0056468
[56] Albright R, Langdon C. Ocean acidification impacts multiple early life history processes of the caribbean coral Porites astreoides [J]. Global Change Biology, 2011, 17(7): 2478-2487. doi: 10.1111/j.1365-2486.2011.02404.x
[57] Nakamura M, Ohki S, Suzuki A, et al. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis [J]. PLoS One, 2011, 6(1): e14521. doi: 10.1371/journal.pone.0014521
[58] Caroselli E, Gizzi F, Prada F, et al. Low and variable pH decreases recruitment efficiency in populations of a temperate coral naturally present at a CO2 vent [J]. Limnology and Oceanography, 2019, 64(3): 1059-1069. doi: 10.1002/lno.11097
[59] Heyward A J, Negri A P. Natural inducers for coral larval metamorphosis [J]. Coral Reefs, 1999, 18(3): 273-279. doi: 10.1007/s003380050193
[60] Morse J W, Andersson A J, Mackenzie F T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5814-5830. doi: 10.1016/j.gca.2006.08.017
[61] Kuffner I B, Andersson A J, Jokiel P L, et al. Decreased abundance of crustose coralline algae due to ocean acidification [J]. Nature Geoscience, 2008, 1(2): 114-117. doi: 10.1038/ngeo100
[62] Vásquez-Elizondo R M, Enríquez S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH [J]. Scientific Reports, 2016, 6: 19030. doi: 10.1038/srep19030
[63] Cornwall C E, Comeau S, McCulloch M T. Coralline algae elevate pH at the site of calcification under ocean acidification [J]. Global Change Biology, 2017, 23(10): 4245-4256. doi: 10.1111/gcb.13673
[64] Cornwall C E, Comeau S, DeCarlo T M, et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability [J]. Proceedings. of the Royal Society B:Biological Sciences, 2018, 285(1884): 20181168.
[65] Doropoulos C, Ward S, Diaz-Pulido G, et al. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions [J]. Ecology Letters, 2012, 15(4): 338-346. doi: 10.1111/j.1461-0248.2012.01743.x
[66] Webster N S, Uthicke S, Botté E S, et al. Ocean acidification reduces induction of coral settlement by crustose coralline algae [J]. Global Change Biology, 2013, 19(1): 303-315. doi: 10.1111/gcb.12008
[67] Albright R. Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals [J]. Journal of Marine Biology, 2011, 2011: 473615.
[68] Kline D I, Teneva L, Okamoto D K, et al. Living coral tissue slows skeletal dissolution related to ocean acidification [J]. Nature Ecology & Evolution, 2019, 3(10): 1438-1444.
[69] Eyre B D, Andersson A J, Cyronak T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean [J]. Nature Climate Change, 2014, 4(11): 969-976. doi: 10.1038/nclimate2380
[70] Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, et al. Coral and mollusc resistance to ocean acidification adversely affected by warming [J]. Nature Climate Change, 2011, 1(6): 308-312. doi: 10.1038/nclimate1200
[71] Eyre B D, Cyronak T, Drupp P, et al. Coral reefs will transition to net dissolving before end of century [J]. Science, 2018, 359(6378): 908-911. doi: 10.1126/science.aao1118
[72] Cyronak T, Eyre B D. The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments [J]. Marine Chemistry, 2016, 183: 1-12. doi: 10.1016/j.marchem.2016.05.001
[73] Albright R, Takeshita Y, Koweek D A, et al. Carbon dioxide addition to coral reef waters suppresses net community calcification [J]. Nature, 2018, 555(7697): 516-519. doi: 10.1038/nature25968
[74] Albright R, Caldeira L, Hosfelt J, et al. Reversal of ocean acidification enhances net coral reef calcification [J]. Nature, 2016, 531(7594): 362-365. doi: 10.1038/nature17155
[75] Comeau S, Edmunds P J, Spindel N B, et al. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations [J]. Limnology and Oceanography, 2014, 59(3): 1081-1091. doi: 10.4319/lo.2014.59.3.1081
[76] Comeau S, Cornwall C E, McCulloch M T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification [J]. Scientific Reports, 2017, 7: 7573. doi: 10.1038/s41598-017-08003-z
[77] Bove C B, Ries J B, Davies S W, et al. Common caribbean corals exhibit highly variable responses to future acidification and warming [J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1900): 20182840. doi: 10.1098/rspb.2018.2840
[78] Comeau S, Cornwall C E, DeCarlo T M, et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization [J]. Nature Climate Change, 2019, 9(6): 477-483. doi: 10.1038/s41558-019-0486-9
[79] Comeau S, Carpenter R C, Nojiri Y, et al. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1790): 20141339. doi: 10.1098/rspb.2014.1339
[80] Clements C S, Hay M E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae [J]. Nature Ecology & Evolution, 2019, 3(2): 178-182.
[81] Meron D, Atias E, Kruh L I, et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma [J]. The ISME Journal, 2011, 5(1): 51-60. doi: 10.1038/ismej.2010.102
[82] Enochs I C, Manzello D P, Donham E M, et al. Shift from coral to macroalgae dominance on a volcanically acidified reef [J]. Nature Climate Change, 2015, 5(12): 1083-1088. doi: 10.1038/nclimate2758
[83] Inoue S, Kayanne H, Yamamoto S, et al. Spatial community shift from hard to soft corals in acidified water [J]. Nature Climate Change, 2013, 3(7): 683-687. doi: 10.1038/nclimate1855
[84] Fabricius K E, Langdon C, Uthicke S, et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations [J]. Nature Climate Change, 2011, 1(3): 165-169. doi: 10.1038/nclimate1122
[85] Barkley H C, Cohen A L, Golbuu Y, et al. Changes in coral reef communities across a natural gradient in seawater pH [J]. Science Advances, 2015, 1(5): e1500328. doi: 10.1126/sciadv.1500328
[86] Kroeker K J, Micheli F, Gambi M C, et al. Divergent ecosystem responses within a benthic marine community to ocean acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14515-14520. doi: 10.1073/pnas.1107789108
[87] Fabricius K, De'ath G, Noonan S, et al. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1775): 20132479. doi: 10.1098/rspb.2013.2479
[88] Smith J N, De’ath G, Richter C, et al. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs [J]. Nature Climate Change, 2016, 6(12): 1124-1129. doi: 10.1038/nclimate3122
[89] Frieler K, Meinshausen M, Golly A, et al. Limiting global warming to 2°C is unlikely to save most coral reefs [J]. Nature Climate Change, 2013, 3(2): 165-170. doi: 10.1038/nclimate1674
[90] Van Hooidonk R, Maynard J A, Planes S. Temporary refugia for coral reefs in a warming world [J]. Nature Climate Change, 2013, 3(5): 508-511. doi: 10.1038/nclimate1829
[91] Van Woesik R, Köksal S, Ünal A, et al. Predicting coral dynamics through climate change [J]. Scientific Reports, 2018, 8: 17997. doi: 10.1038/s41598-018-36169-7
[92] Kubicek A, Breckling B, Hoegh-Guldberg O, et al. Climate change drives trait-shifts in coral reef communities [J]. Scientific Reports, 2019, 9: 3721. doi: 10.1038/s41598-019-38962-4
[93] DeCarlo T M, Cohen A L, Wong G T F, et al. Mass coral mortality under local amplification of 2 ℃ ocean warming [J]. Scientific Reports, 2017, 7: 44586. doi: 10.1038/srep44586
[94] Quattrini A M, Rodríguez E, Faircloth B C, et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time [J]. Nature Ecology & Evolution, 2020, 4(11): 1531-1538.
[95] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412
[96] Wu S G, Yang Z, Wang D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016
[97] Yi L, Jian Z M, Liu X Y, et al. Astronomical tuning and magnetostratigraphy of neogene biogenic reefs in Xisha Islands, South China Sea [J]. Science Bulletin, 2018, 63(9): 564-573. doi: 10.1016/j.scib.2018.04.001