全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展

李言达, 易亮

李言达, 易亮. 全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501
引用本文: 李言达, 易亮. 全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501
LI Yanda, YI Liang. A review on ecological response of coral reefs to global warming and oceanic acidification[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501
Citation: LI Yanda, YI Liang. A review on ecological response of coral reefs to global warming and oceanic acidification[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 33-41. DOI: 10.16562/j.cnki.0256-1492.2020080501

全球变暖和海洋酸化背景下珊瑚礁生态响应的研究进展

基金项目: 上海市自然科学基金“晚新近纪渤海盆地陆-海转换的环境过程”(19ZR1459800)
详细信息
    作者简介:

    李言达(1997―),男,本科生,主要从事古生物学研究,E-mail:ydli@pku.edu.cn

    通讯作者:

    易亮(1982―),男,副教授,主要从事海洋沉积与年代学研究,E-mail:yiliang@tongji.edu.cn

  • 中图分类号: P736

A review on ecological response of coral reefs to global warming and oceanic acidification

  • 摘要: 生物礁是由珊瑚虫、藻类等造礁生物组成、具有抗浪结构的海相碳酸盐岩,是全球主要碳库之一,也是观察热带海洋影响中-高纬度环境过程的重要窗口。近二、三十年以来,伴随着海洋水体的显著酸化和增温,全球热带海洋生物礁的主体——珊瑚礁系统遭受了不同程度的影响。其中,对于高温强迫而言,海水温度上升诱发珊瑚白化、抑制珊瑚的自我修复;海洋酸化可以显著改变珊瑚钙化率、抑制珊瑚幼虫发育、引发珊瑚礁的溶解;两大因素均可改变珊瑚礁的群落结构。针对这些环境要素的改变,珊瑚自身可以通过共生藻的种类转换以及调控基因表达等手段在一定程度上抵抗高温胁迫;但若温室气体的排放不受控制,绝大多数珊瑚礁到21世纪末都将遭受灾难性打击。为应对未来不同场景下的珊瑚礁变化,还需要对高温、酸化等关键因子响应特征进行更深入的研究;珊瑚礁长序列研究有可能为珊瑚的长周期演化特征提供关键认识,也为现代观测提供有益补充。
    Abstract: Tropical reefs are anti-wave structures composed of corals, algae and other reef-building organisms. They are one of the world's major carbon banks and an important window to observe the linkages and interactions between the mid- to high-latitude environmental processes and tropical oceans. In the past decades, with the significant acidification and warming of global oceans, the tropical coral reefs are seriously under threat. Ocean acidification is a factor which may significantly affect coral calcification rates, inhibit the development of coral larvae, and trigger the dissolution of coral reefs. And high temperature may cause the rising of sea temperature, coral bleaching and inhibit the self-repair of coral reefs. In addition, both of the two factors may induce changes in the community structure of coral reefs. In response to the changes in these environmental factors, corals can resist heat stress to a certain extent by changing the types of symbiotic algae and regulating gene expression. However, if the emission of greenhouse gases is not properly controlled in the near future, most coral reefs on the Earth may face complete elimination by the end of this century. A more comprehensive understanding of coral reefs’ response to the key factors in the climate system change, including higher temperature and acidification, is required to cope better with changes of coral reefs in different possible scenarios in the future. The study of reef depositional sequences may provide key insights into the long-term evolving patterns of coral reefs, and serve as a valuable supplement for modern observations.
  • 硅质岩是一种SiO2含量大于70%的岩石,常形成于陆架、岛弧、洋盆及洋中脊等特定的沉积环境,对古地理、古海洋及古构造研究具有重要意义[-]。二叠纪时期,环太平洋和地中海、古特提斯洋及泛大陆西北缘发生了硅质沉积事件[-],在扬子板块北缘形成了一套中二叠统孤峰组层状硅质岩,厚度10~200 m[-]。关于该套硅质岩的成因认识一直存在热水成因[-]、生物成因[, ]、热水-生物混合成因[]、上升流成因[-]等争议。目前较为一致的认识是上扬子地区该套硅质岩主体为热水成因[-],中下扬子地区除同沉积断裂附近分布有热水成因硅质岩外[, ],主体为生物成因或热水-生物混合成因[-]。上升流成因作为生物成因硅质岩的一种解释,目前研究多局限在下扬子陆域范围较小的地区或单一剖面[-, ],尚未形成区域性分布特征。此外,已建立的上升洋流沉积识别标志以岩石学和古生物标志为主,如硅质岩与泥页岩组成韵律层[],富含磷结核[]、富含有机质[]和绿硫细菌[]以及富含放射虫、海绵骨针等生物化石[],但是在沉积地球化学方面研究较少,如何确切地识别古代上升流沉积物是一大难题[, ]

    近年来,扬子板块孤峰组页岩气勘探和研究逐渐引起关注,中扬子鄂西地区已有鹤地1井、鄂建页1井等探井取得孤峰组页岩气发现,下扬子皖江地区港地1井、皖宣页1井、WWD1井等也相继取得了孤峰组页岩气发现或气测显示[-]。南黄海盆地是扬子板块在海域的延伸,其中,古生界占据了下扬子板块的主体[],2016年位于该盆地崂山断隆带的科探井CSDP-2井钻遇了一套孤峰组硅质岩,但由于厚度较薄,一直未引起前人对其成因研究的关注[]。Chen等[]通过对孤峰组硅质岩进行元素地球化学特征分析,认为其形成于亚氧化和间歇性缺氧环境,高古生产力控制了有机质的富集,但并未识别硅质岩的沉积动力成因和高生产力的来源。下扬子陆域巢湖地区已在和县、平顶山、庵门口、东风石矿等剖面识别出上升流成因硅质岩[],并提出硅-泥韵律层沉积受米兰科维奇轨道力控制[],可作为二叠纪硅质沉积事件的典型剖面[]。因此,本文以南黄海地区孤峰组硅质烃源岩为研究对象,一方面通过与下扬子陆域孤峰组硅质烃源岩进行有机地球化学类比,评价其生烃潜力,另一方面通过与巢湖和县地区HX井上升流成因硅质岩和现代秘鲁上升洋流沉积物进行元素地球化学类比,分析孤峰组硅质烃源岩的元素地球化学特征以及成因。研究成果不仅对南黄海地区孤峰组硅质烃源岩资源潜力评价具有实践意义,而且对上升流成因硅质岩的地球化学识别具有科学意义。

    南黄海地区在区域构造上位于扬子板块的下扬子地块东部,北以嘉山-响水-千里岩断裂与苏鲁造山带及华北地台相接[],南以江山-绍兴断裂与华南板块相连,向东延伸到朝鲜半岛[],向西与下扬子陆域苏皖地块(含苏北盆地)[, ]相连。南黄海海域面积30×104 km2,盆地面积约18×104 km2[],已有4口探井钻遇二叠系,在崂山断隆带龙潭组、大隆组见油气显示但尚未发现商业性油气藏[-]。同属于下扬子板块的苏皖地块面积约17×104 km2[-],在二叠系见多处油气显示并发现了黄桥含烃CO2气藏[]

    二叠纪华南地块位于古赤道附近,东邻泛大洋,西邻古特提斯洋,呈现出陆海相间、台盆相间、台中有盆、盆中有台的古地理格局[]。该时期下扬子地块整体处于被动大陆边缘盆地演化阶段[, -],构造运动以板内裂谷作用和升降作用为主[, ],海水进退频繁[]。在经历了早二叠世栖霞期第一次海侵后,中二叠世孤峰组沉积时期下扬子地块发生了晚古生代以来最大规模的海侵[],形成了一套以黑色富有机质炭质硅质页岩、硅质岩为主的海相页岩[]。其下与栖霞组开阔台地相灰岩整合接触[-],其上在下扬子陆域与银屏组浅海台地相碎屑岩夹硅质页岩或武穴组浅海台地相碳酸盐岩呈整合接触[],在南黄海地区则与上覆龙潭组滨岸沼泽相煤系地层呈平行不整合接触[]。孤峰组岩性在下扬子陆域可分为3段:下段以含磷结核页岩为主,中段为含放射虫硅质岩和泥岩,上段为炭质泥页岩[, ],整体与上扬子茅口组灰岩为受同沉积断裂控制的同时异相沉积[-, , ]。根据前人对下扬子陆域孤峰组的岩相古地理和沉积相的研究[, , -],该时期下扬子陆域-南黄海地区总体地势南高北低,据此推测下扬子陆域-南黄海地区北部为盆地相,中部为深海陆棚相,往东南华夏地台古隆起方向逐渐过渡为浅水陆棚相、三角洲相沉积(图1)。

    图 1 下扬子陆域-南黄海地区中二叠统孤峰组沉积相及烃源岩厚度分布预测图
    图  1  下扬子陆域-南黄海地区中二叠统孤峰组沉积相及烃源岩厚度分布预测图
    Figure  1.  Prediction of sedimentary facies and thickness of hydrocarbon source rocks of the Mid-Permian Gufeng Formation in the Lower Yangtze – South Yellow Sea Area

    本文的样品取自3口陆域探井(CC1井、HC1井、HY1井)和2口海域探井(CSDP-2井、CZ35-2-1井)。其中,CC1井位于安徽省泾县昌桥镇,HC1井位于安徽省无为县何村,HY1井位于安徽省芜湖地区,CSDP-2井位于南黄海盆地崂山断隆带,CZ35-2-1井位于南黄海盆地青岛断褶带。探井的钻测井相关数据由青岛海洋地质研究所南黄海油气资源调查项目组提供。共选取48件(海域15件和陆域33件)硅质泥页岩样品进行地球化学分析,包括对48件样品进行有机碳分析和岩石热解分析,对13块样品进行干酪根碳同位素和干酪根显微组分分析,对11块样品(2块海域和9块陆域)进行镜质体反射率测试,对15块样品进行全岩矿物定量分析,对10块样品进行主微量元素分析。

    (1)岩石总有机碳分析采用干烧重量法在HIR-944B碳硫仪中进行测定,热解分析在Rock-Eval6热解仪中进行,分析参数主要包括气态烃含量S0、液态烃含量S1、热解烃含量S2、残余烃含量S4和最高热解峰温Tmax。采用化学分离法和重液浮选法分离出干酪根,然后在Axio Scope A1偏反光显微镜上利用反射光进行干酪根显微组分分析,在CRAIC20/20 PV 显微分光光度计上测定干酪根镜质体反射率,在MAT 253稳定同位素质谱仪上测定干酪根稳定碳同位素。

    (2)全岩矿物成分采用X射线衍射(XRD)分析法,将样品研磨至70~80 μm,然后与乙醇混合后用XRD内标物涂抹在载玻片上,在Panalytical X Pert PRO X射线衍射仪上获取X射线衍射谱图,通过与标准谱图数据进行对比确定矿物种类和含量。矿物组分含量大于40%时,测试相对偏差小于10%,矿物组分含量为5%~20%时,测试相对偏差小于30%。其中,CC1井和HY1井的全岩矿物数据引自文献[],HC1井的全岩矿物数据引自文献[]。

    (3)主量元素测试采用熔片法,称取的粉末样品使用马弗炉高温烘烤后计算烧失量,之后与混合溶剂经高温熔融制作成玻璃片,使用XRF-1800波长扫描X射线荧光光谱仪进行测试,测试数据相对误差为±5%。微量元素和稀土元素测试采用酸溶法和电感耦合等离子体质谱分析法(ICP-MS)。粉末样品在Teflon坩埚中依次经过HF、HNO3、HClO4溶解后,用去离子水将酸液转移至50 mL容量瓶并稀释至50 mL,在NexION300D等离子体质谱仪中进行元素含量测试。微量元素和稀土元素测试的相对标准偏差分别小于5%和10%。

    南黄海盆地CSDP-2井孤峰组硅质烃源岩以黑色硅质岩和硅质泥岩为主,二者呈厚层-块状不等厚互层,硅质岩中常见贝壳状断口和黄铁矿。全岩矿物分析显示(表1图4),CSDP-2井孤峰组硅质岩石英和长石含量为75%~89.3%,平均值为81.5%,黏土矿物含量7.1%~22%,平均值为14.7%,碳酸盐岩矿物含量为0~10.3%,平均值为1.4%;硅质泥岩的石英和长石含量为30%~68.3%,平均为52%,黏土矿物含量为12.4%~64.2%,平均值为36.2%,黄铁矿含量为2.6%~14.3%,平均值为6.5%。在页岩岩相划分三端元图上(图2),CSDP-2井孤峰组页岩主要为硅质岩和硅质页岩相。

    表  1  CSDP-2井孤峰组硅质烃源岩的有机碳、岩石热解及全岩矿物分析数据
    Table  1.  Analytical data of TOC, Rock-Eval, and whole-rock mineral composition of siliceous source rocks in the Gufeng Formation in Well CSDP-2
    样品号深度/m岩性TOC/%S1+S2
    /(mg/g)
    Tmax/℃矿物含量/%
    石英长石碳酸盐黄铁矿黏土矿物
    DP2-11633.9硅质岩11.41.18548.375.111.501.711.7
    DP2-21634.5硅质泥岩10.92.19504.710.319.206.364.2
    DP2-31635.1硅质岩11.51.62527.889.30.002.28.5
    DP2-41636.3硅质泥岩12.21.18514.724.111.5014.350.1
    DP2-51636.0硅质岩67.610.40022.0
    DP2-61637.0硅质岩142.18529.786.4001.811.8
    DP2-71638硅质岩77.3002.620.1
    DP2-81638.9硅质岩11.41.9553582.10.702.414.8
    DP2-91639.7硅质泥岩13.52.00533.144.616.303.435.7
    DP2-101640.4硅质岩7.921.11531.775.62.72.73.415.6
    DP2-111641.2硅质泥岩9.082.16529.662.13.9192.612.4
    DP2-121642.2硅质泥岩9.582.18520.866.81.544.523.2
    DP2-131642.5硅质岩13.32.23526.373.11.904.420.6
    DP2-141644.4硅质岩2.970.42540.577.12.310.33.27.1
    DP2-151645.7硅质泥岩16.32.03533.845.56.09.27.931.4
    下载: 导出CSV 
    | 显示表格
    图 4 下扬子-南黄海地区中二叠统孤峰组烃源岩连井对比图
    图  4  下扬子-南黄海地区中二叠统孤峰组烃源岩连井对比图
    井位见图1。
    Figure  4.  Inter-well comparison of source rocks in the Middle Permian Gufeng Formation in the Lower Yangtze–South Yellow Sea area
    See Fig.1 for locations of the wells.
    图 2 下扬子-南黄海地区孤峰组页岩矿物组成三端元图解
    图  2  下扬子-南黄海地区孤峰组页岩矿物组成三端元图解
    图版据文献[] 。
    Figure  2.  Ternary diagram of shale mineral composition
    Template is from reference [].

    下扬子陆域HY1井、HC1井、CC1井及巢湖和县地区HX井孤峰组页岩均可分为3段(图4),下段为黑色泥岩、黑色钙质泥岩或黑色含磷结核泥岩,中段为中层-块状硅质泥岩和硅质岩不等厚互层,上段为黑色泥岩、炭质泥岩。其中,HY1井孤峰组中段硅质岩和硅质泥岩的石英含量为36.9%~97.2%,平均为72.1%,黏土矿物含量0.5%~52.2%,平均为20.4%,碳酸盐岩矿物含量0~7.8%,平均为2.8%。HC1井孤峰组中段页岩的黏土矿物含量为24.5%~35.7%,平均为29%,石英和长石含量为52.5%~74.7%,平均为60.5%,碳酸盐岩矿物含量0.1%~17.4%,平均为9.9%。CC1井孤峰组页岩的碳酸盐岩矿物含量明显偏高,其上段和下段页岩的碳酸盐岩矿物含量14%~52.56%,平均值30%,中段页岩的碳酸盐岩矿物含量0.67%~29.4%,平均值7.6%,石英和长石含量为13.1%~92.4%(平均值66.3%),黄铁矿含量0.67%~36.3%,平均值7.62%。在页岩岩相划分三端元图上(图2),HY1井、HC1井孤峰组主要发育硅质岩相、硅质页岩相和黏土质页岩相,而CC1井孤峰组发育硅质岩相、硅质页岩相、钙质页岩相和钙质硅质页岩相。

    不同地区孤峰组页岩的矿物含量差异反映了沉积环境的差异。南黄海地区CSDP-2井孤峰组硅质岩的石英和长石含量高于下扬子陆域三口探井,反映出其沉积环境的水深或初级生产力大于陆域三口探井孤峰组页岩。下扬子陆域泾县地区CC1井碳酸盐岩含量偏高可能与该井更靠近南侧江南断隆带的碳酸盐岩台地有关,而HC1井孤峰组上段黏土含量偏高和HY1井上段白云岩夹层的出现可能与中二叠世末期海平面下降[]或初级生产力不足有关。不同探井孤峰组页岩有机质丰度与页岩岩相的关系研究显示(图2),孤峰组TOC>4%的样品主要分布在硅质岩相、硅质页岩相,少量分布在黏土质页岩相。

    南黄海地区CSDP-2井孤峰组烃源岩的有机碳含量2.97%~16.3%(平均值11.1%),生烃潜力指数(PG)为0.46~3.81 mg/g(平均值2.02 mg/g),按照古生界海相烃源岩生烃潜力评价标准[],属于很好烃源岩。CZ35-2-1井孤峰组黑色泥岩有机质丰度2.24%~2.58%,PG值1.82~2.47 mg/g(平均值2.14 mg/g),属于好烃源岩(图3)。下扬子陆域三口探井孤峰组硅质页岩的有机碳含量0.98%~18.8%(平均值7%),HC1井和HY1井孤峰组烃源岩的PG值为0.7~4.04 mg/g(平均值1.14 mg/g),热解氢指数为5.6~109 mg/g(平均值为38 mg/g),属于好-很好烃源岩。可见,下扬子-南黄海地区孤峰组硅质烃源岩是一套优质烃源岩。

    图 3 下扬子-南黄海地区孤峰组烃源岩生烃潜力、有机质成熟度及有机质类型评价
    图  3  下扬子-南黄海地区孤峰组烃源岩生烃潜力、有机质成熟度及有机质类型评价
    Figure  3.  Evaluation of hydrocarbon generation potential, organic matter type, and organic matter maturity of source rocks in the Gufeng Formation of the Lower Yangtze – South Yellow Sea area

    南黄海地区两口探井的孤峰组硅质烃源岩的镜质体反射率Ro为2.1%~3.11%,热解峰温Tmax值为375~543 ℃,其中CZ35-2-1井孤峰组烃源岩Tmax受到了非烃+沥青质含量的影响而呈现异常低值[]。下扬子陆域孤峰组烃源岩的Ro为1.02%~2.65%,Tmax值为360~639 ℃,其中HC1井也出现有Tmax异常低的现象。结合Tmax和镜质体反射率Ro对烃源岩的成熟度评价认为,海域和陆域孤峰组烃源岩均属于高过成熟烃源(图3)。利用高过成熟烃源岩显微组分类型指数(TI)和干酪根稳定碳同位素相结合的方法进行有机质类型评价[],结果显示南黄海地区孤峰组烃源岩的有机质类型以II2型为主,而陆域孤峰组烃源岩为II2-III型(图3)。因此,综合评价认为南黄海地区孤峰组烃源岩为一套很好的偏腐殖型高过成熟烃源岩,且有机质类型略优于下扬子陆域孤峰组烃源岩。

    海域与陆域孤峰组硅质烃源岩的连井对比显示(图4),南黄海地区CSDP-2井孤峰组烃源岩厚13.4 m,CZ35-2-1井孤峰组烃源岩厚22 m,陆域泾县地区CC1井孤峰组烃源岩厚41.5 m,HC1井和HY1井硅质烃源岩厚约75 m,而巢湖和县HX1井硅质烃源岩厚19 m。因此,孤峰组烃源岩分布呈现出陆域厚度明显大于海域,且由南向北厚度逐渐增大再逐渐减小的趋势。依据前人对陆域孤峰组烃源岩的分布研究[-],并结合沉积相展布及探井实测数据,预测下扬子-南黄海地区孤峰组烃源岩整体呈SWW-NEE向展布,陆域厚度中心在芜湖和溧水地区,最大厚度大于150 m,向西至安庆-铜陵一带快速收敛成窄条状,向北、向南均匀递减;海域孤峰组烃源岩厚度中心在青岛断褶带南部,预测最大厚度大于100 m。

    硅质岩的MnO/TiO2值、Fe2O3/TiO2值、Al2O3/(Al2O3+Fe2O3)值、LaN/CeN值均可用于判断其形成的大地构造环境。开阔大洋中硅质沉积物的MnO/TiO2可达0.5~1.5,陆缘海和大陆坡沉积的硅质岩MnO/TiO2一般小于0.5[, ]。靠近大陆边缘的硅质岩受陆源碎屑影响其Al2O3/(Al2O3+Fe2O3)大于0.5、Fe2O3/TiO2小于50,而大洋中脊附近的硅质岩Al2O3/(Al2O3+Fe2O3)小于0.5、Fe2O3/TiO2大于50[, ]。大陆边缘的硅质岩LaN/CeN值平均约0.5~1.5,深海盆地硅质岩的LaN/CeN值为1.0~2.5,在洋脊附近的硅质岩LaN/CeN值≥3.5[, ]。CSDP-2井和巢湖地区HX井孤峰组硅质岩、硅质页岩的MnO/TiO2值明显小于0.5,Fe2O3/TiO2值为2.2~38.4,Al2O3/(Al2O3+Fe2O3)值为0.41~0.93,LaN/CeN值为1.1~2.6(表2表3)。在Al2O3/(Al2O3+Fe2O3)与Fe2O3/TiO2、Al2O3/(Al2O3+Fe2O3)与LaN/CeN散点图上(图5)主要分布于大陆边缘区域。因此,可以确定南黄海地区CSDP-2井和HX井孤峰组硅质烃源岩形成的构造环境类似,主要形成于大陆边缘环境。

    表  2  HX井与CSDP-2井孤峰组硅质岩的主量元素百分含量
    Table  2.  Mass percentage fractions of the main elements of siliceous rocks in the Gufeng Formation in Wells HX and CSDP-2
    井位样品号岩性深度/mTOC
    /%
    主量元素/%
    SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5
    CDSP-2井DP2-3硅质岩1635.111.581.620.112.851.150.0050.340.330.260.390.148
    DP2-6硅质岩1637.01482.330.102.541.050.0030.310.390.270.350.21
    DP2-8硅质岩1638.911.476.330.143.621.330.0040.300.280.280.500.174
    DP2-9硅质泥岩1639.713.564.530.149.451.760.0322.713.170.820.770.11
    DP2-10硅质岩1640.47.9273.860.205.171.880.0050.520.530.540.750.138
    DP2-11硅质泥岩1641.29.0866.780.164.451.510.0343.094.380.890.530.104
    DP2-12硅质泥岩1642.29.5867.370.225.692.700.0091.061.700.691.000.31
    DP2-13硅质岩1642.513.372.010.215.702.500.0050.370.470.580.980.109
    DP2-14硅质岩1644.42.9775.190.123.781.970.0090.493.970.380.720.19
    DP2-15硅质泥岩1645.716.354.710.369.083.880.020.864.260.841.690.34
    DP2-16硅质泥岩1644.010.451.990.268.542.780.017.0310.701.440.890.10
    DP2-17硅质泥岩1644.21262.540.256.533.500.001.837.801.350.930.25
    HX井HX0-12硅质岩1320.410.385.310.0842.350.30.0020.330.50.130.210.043
    HX0-8硅质岩1320.111.480.290.1062.721.230.0010.220.760.090.310.212
    HX0-7硅质岩1320.011.974.530.2114.71.880.0020.460.420.130.690.057
    HX0-3硅质岩1319.514.763.780.1895.131.820.0040.564.910.140.640.069
    HX0-1硅质岩1319.311.972.550.0792.220.270.0070.339.230.150.240.043
    HX1-2硅质岩1319.03.982.120.0461.350.10.0010.355.550.120.110.035
    HX1-13硅质岩1317.33.382.670.0521.560.50.0021.4540.120.130.037
    HX1-15硅质岩1317.06.173.380.0661.80.410.0052.535.950.070.170.041
    HX1-25硅质岩1315.5767.40.051.481.510.0083.598.950.110.130.039
    HX1-28硅质岩1315.02.481.940.0781.981.880.0030.824.410.180.220.049
    HX1-1硅质泥岩1319.212.369.640.2075.931.410.0080.533.520.060.580.065
    HX1-3硅质泥岩1318.812.465.940.1414.510.870.0020.56.080.150.460.062
    HX1-6硅质泥岩1318.412.656.810.2347.227.950.0080.633.370.090.750.084
    HX1-8硅质泥岩1318.11366.380.1443.931.940.0040.476.30.10.470.075
    HX1-9硅质泥岩1317.915.559.630.1926.143.70.0040.753.90.170.650.08
    HX1-10硅质泥岩1317.811.654.660.3069.214.040.0131.754.950.121.160.207
    HX1-11硅质泥岩1317.512650.1374.823.120.0040.664.90.10.450.079
    HX1-14硅质泥岩1317.215.165.910.2137.193.060.0040.71.840.120.710.086
    HX1-17硅质泥岩1316.715.763.80.2837.923.240.0070.91.320.130.970.102
    HX1-21硅质泥岩1316.114.352.790.2747.3310.530.0110.651.440.110.920.14
    HX1-23硅质泥岩1315.813.664.580.1835.742.060.0020.683.830.070.620.083
    HX1-27硅质泥岩1315.211.564.810.1987.045.480.0030.661.220.130.70.077
    HX1-31硅质泥岩1314.614.955.220.249.162.960.0071.114.990.1410.155
    注:HX井样品数据引自文献[];DP2-16、DP2-17号样品数据引自文献[]。
    下载: 导出CSV 
    | 显示表格
    表  3  HX井与CSDP-2井孤峰组硅质岩的微量元素含量
    Table  3.  Mass fractions of the trace elements of siliceous rocks in the Gufeng Formation from Wells HX and CSDP-2
    井位样品号微量元素/×10−6Cd/MoLaN/CeNCIAC
    VCrCoNiCuZnUMoCdThSrZrRb
    CSDP-2井DP2-37863913.6218635.236940.376.251.61.6675.444.316.50.681.4468.920.97
    DP2-610044234.2121843.339866.611065.51.810135.316.70.601.4766.570.92
    DP2-816726495.4730466.265437.42201142.4362.762.722.50.521.5071.311.17
    DP2-910933653.31564125719.411859.614.440368.329.80.511.1672.810.27
    DP2-1010593836.5727952.526428.221884.74.4778.571.531.30.391.1866.660.86
    DP2-118003174.9418937.726519.610856.33.5317768.122.60.521.2355.870.20
    DP2-1211917758.5824380.531710511479.95.281587439.30.701.3563.030.66
    DP2-1311266978.8829185.53371490.566.54.3379.850.638.60.731.2566.641.08
    DP2-142891935.9510135.211933.147.425.72.122545.619.30.541.0664.980.36
    DP2-15107376314.424715129227.812495.86.6634311061.60.771.4966.400.52
    DP2-166.057.075.616.335.959.960.14
    DP2-175.083.0154.015.976.354.500.29
    HX井HX0-12191.3264.51.7115.334.9168.37.218.214.81.5748.540.920.70.811.3178.190.32
    HX0-8619.2386.84.5164.658.9210.220.462.450.772.3665.074.331.90.811.4581.130.96
    HX0-7917.7857.35.5198.776.6401.715.249.243.863.1881.343.030.80.891.2779.981.20
    HX0-31324.5419.47.7213.066.6237.918.192.781.843.45261.052.131.50.881.5381.620.33
    HX0-1399.5146.81.882.127.4136.52.621.934.421.6347.228.171.571.2674.650.04
    HX1-2293.1119.70.957.914.854.03.922.615.581.0319.560.691.4772.420.03
    HX1-13337.7104.42.356.816.895.64.432.816.231.31148.521.17.20.491.2074.430.10
    HX1-15504.8192.51.685.121.7210.54.744.837.371.32110.724.18.50.831.3281.270.06
    HX1-25950.9114.68.480.428.8120.16.250.825.191.3222.163.817.60.501.3274.630.13
    HX1-28325.8115.57.475.723.4105.58.2948.722.991.6232.628.111.30.471.2370.440.34
    HX1-11382.1371.85.6135.460.8195.37.644.776.974.54198.263.562.21.722.6287.760.35
    HX1-31081.1450.44.1177.551.5136.611.357.146.353.83244.243.822.70.811.5781.960.15
    HX1-61486.8373.228.7273.395.7225.221.1140.349.466.18228.453.836.60.351.2186.681.65
    HX1-81569.4233.08.2170.556.1161.18.066.470.652.55300.785.849.91.061.8882.410.29
    HX1-91465.0463.216.1286.0115.5679.522.4151.4121.894.51247.255.831.90.811.4382.920.72
    HX1-101300.9361.610219.993.6362.043.2109.2119.567.1348.976.752.61.091.3684.780.53
    HX1-112233.9313.210.2193.866.5241.37.475.883.853.83270.583.349.11.111.3485.500.56
    HX1-143299.3607.711.1216.581268.59.276.699.266.3156.665.556.61.301.1986.051.05
    HX1-173086.0488.411.323792.8361.610.373.2116.775.62155.491.050.41.601.2584.251.10
    HX1-2131105454.940173105.8407.711.7150.1119.776.86151.782.448.70.801.1884.353.38
    HX1-231256.0523.95.7218.678.6572314.280.31074.27225.255.031.21.331.2686.410.44
    HX1-271277.5423.722.0252.688.6394.621.4104.968.487.22128.855.335.20.651.1685.572.05
    HX1-314403.5488.79.8236.388.8259.415.59196.369.27317.972.748.91.061.4285.560.50
    注:LaN/CeN是样品经过北美上地壳页岩组合的元素含量[]标准化后计算的比值,计算公式为LaN/CeN=(Las样品/LaAUCC)/(Ce样品/CeAUCC);元素富集系数按照XEF=(X/Al)样品/(X/Al)AUCC公式计算,过剩Cuxs=Cu样品−Al样品×(Cu/Al)AUCC;CIA指数计算方法见文献[];C指数计算方法见文献[]。
    下载: 导出CSV 
    | 显示表格
    图 5 下扬子-南黄海地区中二叠统孤峰组硅质岩沉积环境判别图解
    图  5  下扬子-南黄海地区中二叠统孤峰组硅质岩沉积环境判别图解
    图版据文献[] 。
    Figure  5.  Discrimination of sedimentary environment of siliceous rocks in the Middle Permian Gufeng Formation in Lower Yangtze – South Yellow Sea area
    Template is from reference [].

    在贫氧条件下,沉积物中U的富集早于Mo,其MoEF/UEF为正常海水的0.1~0.3倍,而在厌氧条件下沉积物对Mo的吸收速率大于U,其MoEF/UEF增大为正常海水的1~3倍[-]。此外,由于厌氧的滞留海盆限制了海水中Mo和U的补给,其沉积物中MoEF/UEF一般小于1倍海水值,而在受铁、锰氢氧化物颗粒载体吸附作用影响的弱滞留环境中沉积物的MoEF/UEF为正常海水值的3~10倍[-]。CSDP-2井和HX井孤峰组硅质岩、硅质泥岩的MoEF/UEF为正常海水值的1~3倍,在UEF-MoEF协变图上(图6)主要位于缺氧-静水硫化环境和颗粒载体区域,且CSDP-2井硅质岩的UEF明显偏高(表3)。这反映出两口井孤峰组硅质岩、硅质泥岩主要形成于缺氧-静水硫化环境,且CSDP-2井硅质岩沉积时期的还原性更强。Algeo等[]通过对比不同海洋环境中沉积物的Mo/TOC值,建立了Mo-TOC水体滞留程度的判别图(图6),滞留海盆沉积物的Mo/TOC呈现极低值。Scott和Lyons[]指出间歇性静水环境的沉积物Mo含量为(25~100)×10-6,持续性静水环境的Mo含量大于100×10-6。CSDP-2井孤峰组硅质岩、硅质泥岩的Mo/TOC值介于3.5~27.5,Mo含量为(35~220)×10−6(平均值111.5×10−6),指示中等滞留程度的静水硫化环境;而HX井硅质岩、硅质泥岩的Mo/TOC值为1.8~11,Mo含量为(18~151)×10−6(平均值72.4×10−6),指示为中等—强滞留程度的间歇性静水环境。值得指出的是缺氧-静水硫化环境并不是区分海水是否受上升流影响的标志,在长期受上升洋流影响的大陆边缘海环境,由于初级生产力、有机碳沉降量和底栖生物耗氧量的增加,在水深200~1000 m的大陆坡环境中常形成最小含氧带(OMZ),带内水柱自上而下依次出现氧跃层(20 μmol/L≤氧含量<65 μmol/L)、最小含氧带核心层(1 μmol/L<氧含量<20 μmol/L)和下氧跃层(20 μmol/L≤氧含量<100 μmol/L),因而也表现为缺氧-静水硫化环境[-, ]

    图 6 下扬子-南黄海地区中二叠统孤峰组硅质岩的UEF-MoEF协变及Mo-TOC相关关系图解
    图  6  下扬子-南黄海地区中二叠统孤峰组硅质岩的UEF-MoEF协变及Mo-TOC相关关系图解
    底图据文献[, ]。
    Figure  6.  Covariant diagram of UEF vs MoEF and correlation diagram of Mo vs TOC of siliceous rocks in the Mid-Permian Gufeng Formation in the Lower Yangtze – South Yellow Sea area
    Template is from references [, ].

    Al-Fe-Mn三角图解常用来判别硅质岩的热水成因和非热水成因。一般认为,纯生物成因硅质岩沉积物的Al/(Al+Fe+Mn)比值为0.6,而纯热液成因的硅质岩该比值为0.01,受热水作用的影响其比值小于0.35[, ]。CSDP-2井、HX井孤峰组硅质岩和硅质泥岩的Al/(Al+Fe+Mn)分别为0.6~0.8、0.34~0.91,与纯生物成因的硅质岩比值接近,在Al-Fe-Mn三角图上全集中于生物成因区(图7A)。因此,可以确定南黄海地区CSDP-2井和巢湖地区HX井孤峰组硅质岩和硅质泥岩主要为生物成因。

    图 7 下扬子-南黄海地区中二叠统孤峰组硅质岩的成因判别图解
    图  7  下扬子-南黄海地区中二叠统孤峰组硅质岩的成因判别图解
    图版据文献[]。
    Figure  7.  Ternary discrimination of Al-Fe-Mn and Al2O3-SiO2 for siliceous rocks in the Mid-Permian Gufeng Formation in the Lower Yangtze-Southern Yellow Sea area
    Template is from reference[].

    生物成因硅质岩即通过生物的固硅作用形成的硅质岩,其形成的必备条件是需要有大量的生物为硅质提供物质来源,海侵、上升洋流、陆源营养盐输入等因素均能促使海水的化学条件发生改变而造成生物繁盛[-]。因此,需要对硅质生物的来源作进一步的分析。如图7B所示,两口井孤峰组硅质烃源岩的SiO2和Al2O3存在明显的负相关性,说明两个地区的陆源硅对硅质岩成因影响极小。硅质泥岩的Al2O3含量明显高于硅质岩,反映其陆源碎屑输入量较大。

    为判别孤峰组硅质岩的上升洋流成因,本文利用现代秘鲁洋流沉积物的元素地球化学数据[, ]与CSDP-2井、和县地区HX井硅质岩和硅质泥岩的数据进行类比。选用北美上地壳页岩组合的元素含量[]作为标准,按XEF=(X/Al)样品/(X/Al)AUCC的计算公式对CSDP-2井硅质岩样品的元素富集系数进行计算。结果显示(图8),CSDP-2井和HX井孤峰组硅质岩、硅质泥岩与秘鲁洋流沉积物的元素富集系数表现出良好的一致性。主量元素均表现为Ca、Si、P、Mg元素相对富集,K、Ti元素相对亏损(图8A),说明CSDP-2井孤峰组硅质来源中生物硅贡献较大而陆源硅贡献较少;微量元素均表现为还原性敏感元素(Cr,U,V,Mo)和生产力敏感元素(Cd,Cu,Zn,Ni)相对富集,Mn相对亏损(图8B),反映出CSDP-2井、HX井孤峰组硅质烃源岩与秘鲁洋流沉积物的沉积环境类似,均形成于高生产力和还原环境,Mn的亏损可能与其在还原环境中的活动性有关。

    图 8 下扬子-南黄海地区孤峰组硅质岩与秘鲁洋流沉积物的元素富集系数、元素含量类比
    图  8  下扬子-南黄海地区孤峰组硅质岩与秘鲁洋流沉积物的元素富集系数、元素含量类比
    Figure  8.  Comparison in elemental enrichment coefficient and content between the siliceous rocks of Gufeng Formation in Lower Yangtze–South Yellow Sea area and the deposits of Peru upwelling

    通过统计CSDP-2井孤峰组硅质岩的主微量元素含量的平均值,并与和县地区HX井的硅质岩及现代秘鲁上升流沉积物的主微量元素含量进行对比。结果显示,CSDP-2井和HX井孤峰组硅质岩、硅质泥岩的主微量元素含量与秘鲁上升洋流沉积物的主微量元素含量具有明显的正相关性(图8C-D)。主量元素整体均表现出Si>Al>Ca>Fe>K>Mg>P>Ti的特征,且CSDP-2井和HX井硅质泥岩的Al、K、Ti元素含量均略高于硅质岩(图8C),反映出硅质泥岩的陆源碎屑输入量大于硅质岩。CSDP-2井硅质岩、硅质泥岩的P含量与HX井硅质岩都表现出显著低于秘鲁洋流沉积物的特征,可能与还原环境下P元素的再矿化作用有关[]。两口井孤峰组硅质烃源岩的微量元素含量均表现出V>Zn>Cr>Ni>Cu>Mo>Cd>Pb>U>Co的特征,且CSDP-2井硅质岩、硅质泥岩的Co、U、Cd、Mo、Cu、Ni、Zn、Cr、V元素含量略大于秘鲁洋流沉积物(图8D),说明南黄海地区孤峰组页岩沉积时期的海洋古生产力和水体还原性可能比现代秘鲁洋流更强。

    受最小含氧带(OMZ)、“Mn传送带”和高生产力等水化学条件影响,上升洋流沉积物中的Mn或Co大量亏损、Cd和Mo大量富集[, ]。Sweere等[]通过对不同滞留程度水体沉积物的元素地球化学研究,提出Co×Mn<0.4、CoEF×MnEF<0.5、Cd/Mo>0.1是上升流沉积的典型特征,且上升流活动越强烈,沉积物中的Co×Mn或CoEF×MnEF越低、Cd/Mo越高[, -]。季节性上升流环境中沉积物的Cd/Mo一般为0.1~0.6,常年性上升流环境中沉积物的Cd/Mo>0.6[]。如图9表3所示,CSDP-2井孤峰组硅质岩、硅质泥岩的Co×Mn值分别为0.01~0.04(平均值0.02)、0.02~0.22(平均值0.1),CoEF×MnEF值分别为0.22~0.66(平均值0.36)、0.12~1.49(平均值0.5),Cd/Mo值为0.39~0.77(平均值0.6)。HX井孤峰组硅质岩、硅质泥岩的Co×Mn值分别为0.002~0.07(平均值0.02)、0.01~0.39(平均值0.11),CoEF×MnEF值分别为0.17~0.79(平均值0.47)、0.15~1.64(平均值0.57),Cd/Mo为0.35~1.72(平均值0.94)。两口井硅质烃源岩的Co×Mn<0.4、CoEF×MnEF<0.5、Cd/Mo>0.6,说明硅质烃源岩沉积时期存在常年性上升洋流活动。此外,两口井硅质岩的Co×Mn值和CoEF×MnEF值均小于硅质泥岩,说明硅质岩沉积时的上升流活动强度大于硅质泥岩。

    图 9 下扬子-南黄海地区孤峰组硅质岩Co×Mn和Al含量、CoEF×MnEF和Al含量相关关系
    图  9  下扬子-南黄海地区孤峰组硅质岩Co×Mn和Al含量、CoEF×MnEF和Al含量相关关系
    底图据文献[] 。
    Figure  9.  Relationship between Co×Mn or CoEF×MnEF and Al in siliceous rocks of the Gufeng Formation in the Lower Yangtze–South Yellow Sea areas
    Template is from reference[].

    中二叠世孤峰组沉积时期,古特提斯洋处于初始扩张期[],扬子板块的构造运动以南北向大规模的拉张活动为主[, ],在板块内部和边缘形成了一系列NE、NW或EW向的裂谷性深水盆地和同沉积断裂[]。这些裂谷盆地的形成对硅质烃源岩的分布起到了控制作用,扬子板块中二叠统层状硅质岩集中分布的三个大区可分别对应于裂陷形成的北部盆地、湘桂盆地和钦防盆地[]

    气候变化是影响海洋通风量和海洋环流的重要因素,上升洋流作为海洋环流的一种形式,对气候变暖及温室效应等现象具有潜在的敏感性[],典型实例是现代秘鲁上升洋流受到厄尔尼诺作用抑制[]。化学蚀变指数(CIA)可用于衡量大陆地壳化学风化作用强度[]和古气候条件[],但CIA值易受物质来源、沉积地形、沉积循环等因素影响[],气候指数C值和Sr/Cu比值在指示古气候条件时相对稳定。如图10所示,CSDP-2井孤峰组硅质烃源岩的CIA指数为55~73,HX井孤峰组硅质烃源岩的CIA指数为70~88,分别指示了弱—中等风化程度的冷湿气候和中等—强风化程度的热湿气候特征。但两口井大多数硅质烃源岩样品的古气候指数C值>0.2,Sr/Cu比值<0.5,且二者呈现出较好的负相关性,较一致地指示了潮湿或半干旱-半潮湿的古气候特征,这与两口井纬度相近的古地理特征是一致的。因此推测CSDP-2井硅质烃源岩偏低的CIA指数可能受到了气候之外的其他因素影响。HX井硅质岩的CIA指数为70~82,而硅质泥岩的CIA指数为82~88,指示硅质岩主要形成于暖湿气候而硅质泥岩形成于热湿气候。结合CSDP-2井和HX井硅质岩的陆源碎屑输入少、上升流活动强度大,而硅质泥岩的陆源碎屑输入较多、上升流活动强度较弱的特征,推断气温升高可能造成了孤峰组上升洋流活动减弱和陆源风化强度增大,进而形成了硅质泥岩和硅质岩的韵律性沉积特征。此外,早—中二叠世为全球巨型季风气候的鼎盛时期[],这也为上升洋流的形成和生物的繁盛创造了良好条件。

    图 10 下扬子-南黄海地区孤峰组硅质岩的A-CN-K图解 [72]、Sr/Cu、气候指数C值判别古气候
    图  10  下扬子-南黄海地区孤峰组硅质岩的A-CN-K图解 []、Sr/Cu、气候指数C值判别古气候
    Figure  10.  Discrimination of paleoclimate by A-CN-K ternary diagram [], Sr/Cu ratio, and value of climate index C during the deposition of siliceous rocks in the Gufeng Formation in the Lower Yangtze–South Yellow Sea area

    海相高有机质丰度烃源岩的形成受保存条件和古生产力条件控制[]。现代海洋溶解的Cd的浓度主要受控于浮游植物的吸收和释放,因此较高的初级生产力可导致沉积物中Cd的富集[]。据此,Sweere等[]通过对比不同滞留程度海盆沉积物的Cd/Mo值,提出将控制有机质富集的古生产力因素和保存条件因素之间的界限定在Cd/Mo值为0.1,Cd/Mo>0.1指示沉积物中的有机质富集受生产力主控,Cd/Mo<0.1则指示沉积物中的有机质富集受保存条件主控。CSDP-2井和HX井孤峰组硅质岩、硅质页岩的Cd/Mo>0.1(图11A),说明两口井孤峰组硅质烃源岩的有机质富集受生产力条件主控。结合Co×Mn<0.4的上升流环境指示特征,可以推断孤峰组硅质岩形成的高生产力条件与上升流环境有关。

    图 11 下扬子-南黄海地区孤峰组硅质烃源岩的Cd/Mo-Co×Mn联合图版 [78]及Cuxs、U/Th、Zr/Rb与TOC的相关关系
    图  11  下扬子-南黄海地区孤峰组硅质烃源岩的Cd/Mo-Co×Mn联合图版 []及Cuxs、U/Th、Zr/Rb与TOC的相关关系
    Figure  11.  Cd/Mo-Co×Mn joint chart [] and correlation among Cuxs, U/Th, Zr/Rb, and TOC of the siliceous source rocks of Gufeng Formation in the Lower Yangtze–South Yellow Sea area

    为验证Cd/Mo指标对于区分富有机质页岩形成主控因素的有效性,选取Cuxs(过剩Cu)和U/Th分别作为古生产力指标[]和保存力指标[]与TOC进行相关性分析。如图11B-C所示,CSDP-2井和HX井孤峰组硅质烃源岩的Cuxs与TOC呈明显正相关且相关系数达到了0.62,而硅质烃源岩的U/Th值虽然指示了缺氧的水化学环境,但与TOC无明显相关关系。这说明CSDP-2井和HX井孤峰组上升流成因硅质烃源岩的有机质富集主要受高生产力控制,缺氧环境对TOC的控制作用不明显,这与通过Cd/Mo指标判断的结果一致。

    水动力条件是水深、浪基面等的综合反映,海相优质烃源岩形成于浪基面以下的静水环境[]。全岩Zr/Rb值可用于水动力条件的定量表征,腾格尔等[]对鄂尔多斯盆地海相烃源岩发育环境的无机地球化学研究表明,Zr/Rb>2指示浅水高能环境,而Zr/Rb<2指示深水低能环境。CSDP-2井和HX井孤峰组硅质泥岩的Zr/Rb值为1.02~2.29,而硅质岩的Zr/Rb值为1.31~3.63,且硅质烃源岩的Zr/Rb值与TOC呈现出一定的负相关性(图11D)。这说明硅质岩沉积时期的水动力状况以高能环境为主,而硅质泥岩沉积时期的水动力状况以低能环境为主,且动荡的水流带走了硅质岩中的一部分含有机质的细碎屑,造成了硅质岩的TOC值相对于硅质泥岩偏低。

    中二叠世孤峰组沉积时期,扬子板块位于古特提斯洋东缘近赤道附近,处于热带或亚热带潮湿气候[],受赤道信风和海洋表层暖水与底层冷水对流影响,上升洋流在古特提斯洋东岸活动强烈。彼时,下扬子-南黄海地区为被动大陆边缘盆地[-],具有南高北低[]、北部与古特提斯洋相连的古地理特征[],这为盆地相或深水陆棚相上升流成因硅质岩、硅质泥岩的沉积提供了理想环境。在硅质岩沉积时期,古气候以中等风化强度的暖湿气候为主,陆源碎屑物输入有限,强烈的上升流活动携带了大量的Cu、Zn、Ni等营养元素至浅表层水体,使得海洋表层及底栖生物大量繁盛并消耗了海水中的氧气,进而造成海水分层或在大陆坡环境形成最小含氧带(OMZ),带内水柱表现为缺氧-硫化特征,有利于有机质富集。但高能动荡的上升流水体活动会带走OMZ内部分含有机质的细碎屑,形成硅质矿物对有机质富集的稀释效应。因此,CSDP-2井和HX井硅质岩烃源岩的TOC值波动较大(2.4%~14.7%)(图12A)。在硅质泥岩沉积时期,古气候以强风化的炎热潮湿气候为主,海平面相对硅质岩沉积时期下降,陆源碎屑输入相对增加。虽然气温的升高减弱了上升洋流的活动,使得上升洋流带来的营养盐减少,但陆源营养物质供给使得海洋生产力维持在较高水平,为有机质的富集提供了物质基础。此外,减弱的上升洋流造成海水中溶解的氧含量减少,进而造成OMZ的扩大和水体的滞留性增强。这与硅质泥岩具有较高的Co×Mn或CoEF×MnEF值、较低的Mo/TOC值和Zr/Rb的特征相符。因此,CSDP-2井和HX井硅质泥岩烃源岩的TOC处于稳定高值(9.6%~16.3%)(图12B)。

    图 12 南黄海地区孤峰组硅质烃源岩成因模式图
    图  12  南黄海地区孤峰组硅质烃源岩成因模式图
    Figure  12.  Genesis model of siliceous source rocks in Gufeng Formation of South Yellow Sea area

    (1)南黄海地区与下扬子陆域孤峰组均具有硅质岩和硅质泥岩不等厚互层的特征,且南黄海地区孤峰组硅质岩的石英含量更高,在平面上呈SWW-NEE向分布于青岛断褶带南部,是一套很好的高过成熟II2型烃源岩。

    (2)南黄海地区CSDP-2井孤峰组硅质烃源岩与下扬子陆域HX井硅质岩、秘鲁上升流沉积物均表现出Ca、Si、P、Mg、Cr、U、V、Mo、Cd、Cu、Zn、Ni相对富集,K、Ti、Mn相对亏损,Co×Mn<0.4,Cd/Mo>0.1,结合Al-Fe-Mn三角图等图版可以判断CSDP-2井孤峰组硅质岩为大陆边缘上升流成因。

    (3)南黄海地区CSDP-2井和下扬子陆域HX井孤峰组硅质烃源岩的MoEF/UEF为1~3倍海水值,且Cuxs与TOC呈明显正相关、Zr/Rb与TOC呈负相关、U/Th与TOC无明显相关性,说明CSDP-2井孤峰组硅质烃源岩形成于缺氧-静水硫化环境,其有机质富集受生产力主控,但也受水动力条件影响。

    (4)南黄海地区CSDP-2井和下扬子陆域HX井孤峰组硅质岩的陆源碎屑输入和Co×Mn低于硅质泥岩、而Zr/Rb值高于硅质泥岩。结合HX井硅质岩较低的CIA值,推测认为气候变化是造成孤峰组上升流活动强度变化和硅-泥韵律性沉积的主要原因。

  • 图  1   2015—2016年白化事件中全球珊瑚礁的白化程度统计[9]

    Figure  1.   Global coral bleaching in 2015 and 2016[9]

    图  2   海表温度上升对珊瑚礁群落的影响[3]

    Figure  2.   Effects of sea surface temperature increases on coral reefs[3]

    图  3   海洋酸化对珊瑚礁的影响[3]

    Figure  3.   Effects of ocean acidification on coral reefs[3]

    图  4   海底火山通风口处CO2排放量对生物礁群落的影响[82]

    Figure  4.   The influence of CO2 released from submarine volcanic vent on coral reef taxa[82]

  • [1]

    IPCC. Climate Change 2013: The Physical Science Basis[M]. Cambridge, United Kingdom: Cambridge University Press, 2013.

    [2]

    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects[M]. Cambridge: Cambridge University Press, 2014.

    [3]

    Hoegh-Guldberg O, Andréfouët S, Fabricius K E, et al. Vulnerability of coral reef ecosystems in the tropical pacific to climate change[M]//Bell J D, Johnson J E, Hobday A. Vulnerability of tropical pacific fisheries and aquaculture to climate chang. Noumea: Secretariat of the Pacific Community, 2011: 251-296.

    [4]

    Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318(5857): 1737-1742. doi: 10.1126/science.1152509

    [5]

    Pandolfi J M. Incorporating uncertainty in predicting the future response of coral reefs to climate change [J]. Annual Review of Ecology, Evolution, and Systematics, 2015, 46: 281-303. doi: 10.1146/annurev-ecolsys-120213-091811

    [6]

    Hughes T P, Barnes M L, Bellwood D R, et al. Coral reefs in the Anthropocene [J]. Nature, 2017, 546(7656): 82-90. doi: 10.1038/nature22901

    [7]

    Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming [J]. Nature, 2018, 560(7718): 360-364. doi: 10.1038/s41586-018-0383-9

    [8]

    Smale D A, Wernberg T, Oliver E C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services [J]. Nature Climate Change, 2019, 9(4): 306-312. doi: 10.1038/s41558-019-0412-1

    [9]

    Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene [J]. Science, 2018, 359(6371): 80-83. doi: 10.1126/science.aan8048

    [10]

    Weis V M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis [J]. Journal of Experimental Biology, 2008, 211(19): 3059-3066. doi: 10.1242/jeb.009597

    [11]

    Oakley C A, Davy S K. Cell biology of coral bleaching[M]//Van Oppen M J H, Lough J M. Coral Bleaching. Cham: Springer, 2018: 189-211.

    [12]

    Bieri T, Onishi M, Xiang T T, et al. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching [J]. PLoS One, 2016, 11(4): e0152693. doi: 10.1371/journal.pone.0152693

    [13]

    Nielsen D A, Petrou K, Gates R D. Coral bleaching from a single cell perspective [J]. The ISME Journal, 2018, 12(6): 1558-1567. doi: 10.1038/s41396-018-0080-6

    [14]

    Tong H Y, Cai L, Zhou G W, et al. Temperature shapes coral-algal symbiosis in the South China Sea [J]. Scientific Reports, 2017, 7: 40118. doi: 10.1038/srep40118

    [15]

    Baker A C. Reef corals bleach to survive change [J]. Nature, 2001, 411(6839): 765-766. doi: 10.1038/35081151

    [16]

    Baker A C, Starger C J, McClanahan T R, et al. Corals' adaptive response to climate change [J]. Nature, 2004, 430(7001): 741. doi: 10.1038/430741a

    [17]

    Jones A M, Berkelmans R, Van Oppen M J H, et al. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization [J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1641): 1359-1365. doi: 10.1098/rspb.2008.0069

    [18]

    Silverstein R N, Cunning R, Baker A C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals [J]. Global Change Biology, 2015, 21(1): 236-249. doi: 10.1111/gcb.12706

    [19]

    Oliver T A, Palumbi S R. Do fluctuating temperature environments elevate coral thermal tolerance? [J]. Coral Reefs, 2011, 30(2): 429-440. doi: 10.1007/s00338-011-0721-y

    [20]

    Palumbi S R, Barshis D J, Traylor-Knowles N, et al. Mechanisms of reef coral resistance to future climate change [J]. Science, 2014, 344(6186): 895-898. doi: 10.1126/science.1251336

    [21]

    Bay R A, Palumbi S R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals [J]. Genome Biology and Evolution, 2015, 7(6): 1602-1612. doi: 10.1093/gbe/evv085

    [22]

    Mayfield A B, Fan T Y, Chen C S. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment [J]. Coral Reefs, 2013, 32(4): 909-921. doi: 10.1007/s00338-013-1067-4

    [23]

    Ainsworth T D, Heron S F, Ortiz J C, et al. Climate change disables coral bleaching protection on the Great Barrier Reef [J]. Science, 2016, 352(6283): 338-342. doi: 10.1126/science.aac7125

    [24]

    Tanzil J T I, Brown B E, Tudhope A W, et al. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, south Thailand between 1984 and 2005 [J]. Coral Reefs, 2009, 28(2): 519-528. doi: 10.1007/s00338-008-0457-5

    [25]

    Cantin N E, Cohen A L, Karnauskas K B, et al. Ocean warming slows coral growth in the central Red Sea [J]. Science, 2010, 329(5989): 322-325. doi: 10.1126/science.1190182

    [26]

    Steiner Z, Turchyn A V, Harpaz E, et al. Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea [J]. Nature Communications, 2018, 9: 3615. doi: 10.1038/s41467-018-06030-6

    [27]

    McCulloch M T, D’Olivo J P, Falter J, et al. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation [J]. Nature Communications, 2017, 8: 15686. doi: 10.1038/ncomms15686

    [28]

    Burt J A, Bauman A G. Suppressed coral settlement following mass bleaching in the southern Persian/Arabian Gulf [J]. Aquatic Ecosystem Health & Management, 2019, 23(2): 166-174.

    [29]

    Hughes T P, Kerry J T, Baird A H, et al. Global warming impairs stock–recruitment dynamics of corals [J]. Nature, 2019, 568(7752): 387-390. doi: 10.1038/s41586-019-1081-y

    [30]

    Loya Y, Sakai K, Yamazato K, et al. Coral bleaching: the winners and the losers [J]. Ecology Letters, 2001, 4(2): 122-131. doi: 10.1046/j.1461-0248.2001.00203.x

    [31]

    Harii S, Hongo C, Ishihara M, et al. Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey [J]. Marine Ecology Progress Series, 2014, 509: 171-180. doi: 10.3354/meps10890

    [32]

    Van Oppen M J H, Blackall L L. Coral microbiome dynamics, functions and design in a changing world [J]. Nature Reviews Microbiology, 2019, 17(9): 557-567. doi: 10.1038/s41579-019-0223-4

    [33]

    McDevitt-Irwin J M, Baum J K, Garren M, et al. Responses of coral-associated bacterial communities to local and global stressors [J]. Frontiers in Marine Science, 2017, 4: 262. doi: 10.3389/fmars.2017.00262

    [34]

    Keith S A, Baird A H, Hobbs J P A, et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching [J]. Nature Climate Change, 2018, 8(11): 986-991. doi: 10.1038/s41558-018-0314-7

    [35]

    Richardson L E, Graham N A J, Pratchett M S, et al. Mass coral bleaching causes biotic homogenization of reef fish assemblages [J]. Global Change Biology, 2018, 24(7): 3117-3129. doi: 10.1111/gcb.14119

    [36]

    Wilson S K, Robinson J P W, Chong-Seng K, et al. Boom and bust of keystone structure on coral reefs [J]. Coral Reefs, 2019, 38(4): 625-635. doi: 10.1007/s00338-019-01818-4

    [37]

    Hughes T P, Kerry J T, Baird A H, et al. Global warming transforms coral reef assemblages [J]. Nature, 2018, 556(7702): 492-496. doi: 10.1038/s41586-018-0041-2

    [38]

    Stuart-Smith R D, Brown C J, Ceccarelli D M, et al. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching [J]. Nature, 2018, 560(7716): 92-96. doi: 10.1038/s41586-018-0359-9

    [39]

    Van Woesik R, Sakai K, Ganase A, et al. Revisiting the winners and the losers a decade after coral bleaching [J]. Marine Ecology Progress Series, 2011, 434: 67-76. doi: 10.3354/meps09203

    [40]

    Graham N A J, Jennings S, MacNeil M A, et al. Predicting climate-driven regime shifts versus rebound potential in coral reefs [J]. Nature, 2015, 518(7537): 94-97. doi: 10.1038/nature14140

    [41]

    Tambutté E, Venn A A, Holcomb M, et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification [J]. Nature Communications, 2015, 6: 7368. doi: 10.1038/ncomms8368

    [42]

    Crook E D, Cohen A L, Rebolledo-Vieyra M, et al. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(27): 11044-11049. doi: 10.1073/pnas.1301589110

    [43]

    Fantazzini P, Mengoli S, Pasquini L, et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation [J]. Nature Communications, 2015, 6: 7785. doi: 10.1038/ncomms8785

    [44]

    Mollica N R, Guo W F, Cohen A L, et al. Ocean acidification affects coral growth by reducing skeletal density [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1754-1759. doi: 10.1073/pnas.1712806115

    [45]

    Foster T, Falter J, McCulloch M, et al. Ocean acidification causes structural deformities in juvenile coral skeletons [J]. Science Advances, 2016, 2(2): e1501130. doi: 10.1126/sciadv.1501130

    [46]

    Al-Horani F A, Al-Moghrabi S M, De Beer D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis [J]. Marine Biology, 2003, 142(3): 419-426. doi: 10.1007/s00227-002-0981-8

    [47]

    Ries J B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification [J]. Geochimica et Cosmochimica Acta, 2011, 75(14): 4053-4064. doi: 10.1016/j.gca.2011.04.025

    [48]

    Venn A, Tambutté E, Holcomb M, et al. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater [J]. PLoS One, 2011, 6(5): e20013. doi: 10.1371/journal.pone.0020013

    [49]

    McCulloch M, Falter J, Trotter J, et al. Coral resilience to ocean acidification and global warming through pH up-regulation [J]. Nature Climate Change, 2012, 2(8): 623-627. doi: 10.1038/nclimate1473

    [50]

    Biscéré T, Zampighi M, Lorrain A, et al. High pCO2 promotes coral primary production [J]. Biology Letters, 2019, 15(7): 20180777. doi: 10.1098/rsbl.2018.0777

    [51]

    Cooper T F, O'Leary R A, Lough J M. Growth of Western Australian corals in the Anthropocene [J]. Science, 2012, 335(6068): 593-596. doi: 10.1126/science.1214570

    [52]

    Morita M, Suwa R, Iguchi A, et al. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates [J]. Zygote, 2009, 18(2): 103-107.

    [53]

    Nakamura M, Morita M. Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes [J]. Aquatic Biology, 2012, 15(3): 299-302. doi: 10.3354/ab00436

    [54]

    Albright R, Mason B, Miller M, et al. Ocean acidification compromises recruitment success of the threatened caribbean coral Acropora palmata [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20400-20404. doi: 10.1073/pnas.1007273107

    [55]

    Albright R, Mason B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success [J]. PLoS One, 2013, 8(2): e56468. doi: 10.1371/journal.pone.0056468

    [56]

    Albright R, Langdon C. Ocean acidification impacts multiple early life history processes of the caribbean coral Porites astreoides [J]. Global Change Biology, 2011, 17(7): 2478-2487. doi: 10.1111/j.1365-2486.2011.02404.x

    [57]

    Nakamura M, Ohki S, Suzuki A, et al. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis [J]. PLoS One, 2011, 6(1): e14521. doi: 10.1371/journal.pone.0014521

    [58]

    Caroselli E, Gizzi F, Prada F, et al. Low and variable pH decreases recruitment efficiency in populations of a temperate coral naturally present at a CO2 vent [J]. Limnology and Oceanography, 2019, 64(3): 1059-1069. doi: 10.1002/lno.11097

    [59]

    Heyward A J, Negri A P. Natural inducers for coral larval metamorphosis [J]. Coral Reefs, 1999, 18(3): 273-279. doi: 10.1007/s003380050193

    [60]

    Morse J W, Andersson A J, Mackenzie F T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5814-5830. doi: 10.1016/j.gca.2006.08.017

    [61]

    Kuffner I B, Andersson A J, Jokiel P L, et al. Decreased abundance of crustose coralline algae due to ocean acidification [J]. Nature Geoscience, 2008, 1(2): 114-117. doi: 10.1038/ngeo100

    [62]

    Vásquez-Elizondo R M, Enríquez S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH [J]. Scientific Reports, 2016, 6: 19030. doi: 10.1038/srep19030

    [63]

    Cornwall C E, Comeau S, McCulloch M T. Coralline algae elevate pH at the site of calcification under ocean acidification [J]. Global Change Biology, 2017, 23(10): 4245-4256. doi: 10.1111/gcb.13673

    [64]

    Cornwall C E, Comeau S, DeCarlo T M, et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability [J]. Proceedings. of the Royal Society B:Biological Sciences, 2018, 285(1884): 20181168.

    [65]

    Doropoulos C, Ward S, Diaz-Pulido G, et al. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions [J]. Ecology Letters, 2012, 15(4): 338-346. doi: 10.1111/j.1461-0248.2012.01743.x

    [66]

    Webster N S, Uthicke S, Botté E S, et al. Ocean acidification reduces induction of coral settlement by crustose coralline algae [J]. Global Change Biology, 2013, 19(1): 303-315. doi: 10.1111/gcb.12008

    [67]

    Albright R. Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals [J]. Journal of Marine Biology, 2011, 2011: 473615.

    [68]

    Kline D I, Teneva L, Okamoto D K, et al. Living coral tissue slows skeletal dissolution related to ocean acidification [J]. Nature Ecology & Evolution, 2019, 3(10): 1438-1444.

    [69]

    Eyre B D, Andersson A J, Cyronak T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean [J]. Nature Climate Change, 2014, 4(11): 969-976. doi: 10.1038/nclimate2380

    [70]

    Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, et al. Coral and mollusc resistance to ocean acidification adversely affected by warming [J]. Nature Climate Change, 2011, 1(6): 308-312. doi: 10.1038/nclimate1200

    [71]

    Eyre B D, Cyronak T, Drupp P, et al. Coral reefs will transition to net dissolving before end of century [J]. Science, 2018, 359(6378): 908-911. doi: 10.1126/science.aao1118

    [72]

    Cyronak T, Eyre B D. The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments [J]. Marine Chemistry, 2016, 183: 1-12. doi: 10.1016/j.marchem.2016.05.001

    [73]

    Albright R, Takeshita Y, Koweek D A, et al. Carbon dioxide addition to coral reef waters suppresses net community calcification [J]. Nature, 2018, 555(7697): 516-519. doi: 10.1038/nature25968

    [74]

    Albright R, Caldeira L, Hosfelt J, et al. Reversal of ocean acidification enhances net coral reef calcification [J]. Nature, 2016, 531(7594): 362-365. doi: 10.1038/nature17155

    [75]

    Comeau S, Edmunds P J, Spindel N B, et al. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations [J]. Limnology and Oceanography, 2014, 59(3): 1081-1091. doi: 10.4319/lo.2014.59.3.1081

    [76]

    Comeau S, Cornwall C E, McCulloch M T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification [J]. Scientific Reports, 2017, 7: 7573. doi: 10.1038/s41598-017-08003-z

    [77]

    Bove C B, Ries J B, Davies S W, et al. Common caribbean corals exhibit highly variable responses to future acidification and warming [J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1900): 20182840. doi: 10.1098/rspb.2018.2840

    [78]

    Comeau S, Cornwall C E, DeCarlo T M, et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization [J]. Nature Climate Change, 2019, 9(6): 477-483. doi: 10.1038/s41558-019-0486-9

    [79]

    Comeau S, Carpenter R C, Nojiri Y, et al. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1790): 20141339. doi: 10.1098/rspb.2014.1339

    [80]

    Clements C S, Hay M E. Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae [J]. Nature Ecology & Evolution, 2019, 3(2): 178-182.

    [81]

    Meron D, Atias E, Kruh L I, et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma [J]. The ISME Journal, 2011, 5(1): 51-60. doi: 10.1038/ismej.2010.102

    [82]

    Enochs I C, Manzello D P, Donham E M, et al. Shift from coral to macroalgae dominance on a volcanically acidified reef [J]. Nature Climate Change, 2015, 5(12): 1083-1088. doi: 10.1038/nclimate2758

    [83]

    Inoue S, Kayanne H, Yamamoto S, et al. Spatial community shift from hard to soft corals in acidified water [J]. Nature Climate Change, 2013, 3(7): 683-687. doi: 10.1038/nclimate1855

    [84]

    Fabricius K E, Langdon C, Uthicke S, et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations [J]. Nature Climate Change, 2011, 1(3): 165-169. doi: 10.1038/nclimate1122

    [85]

    Barkley H C, Cohen A L, Golbuu Y, et al. Changes in coral reef communities across a natural gradient in seawater pH [J]. Science Advances, 2015, 1(5): e1500328. doi: 10.1126/sciadv.1500328

    [86]

    Kroeker K J, Micheli F, Gambi M C, et al. Divergent ecosystem responses within a benthic marine community to ocean acidification [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(35): 14515-14520. doi: 10.1073/pnas.1107789108

    [87]

    Fabricius K, De'ath G, Noonan S, et al. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1775): 20132479. doi: 10.1098/rspb.2013.2479

    [88]

    Smith J N, De’ath G, Richter C, et al. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs [J]. Nature Climate Change, 2016, 6(12): 1124-1129. doi: 10.1038/nclimate3122

    [89]

    Frieler K, Meinshausen M, Golly A, et al. Limiting global warming to 2°C is unlikely to save most coral reefs [J]. Nature Climate Change, 2013, 3(2): 165-170. doi: 10.1038/nclimate1674

    [90]

    Van Hooidonk R, Maynard J A, Planes S. Temporary refugia for coral reefs in a warming world [J]. Nature Climate Change, 2013, 3(5): 508-511. doi: 10.1038/nclimate1829

    [91]

    Van Woesik R, Köksal S, Ünal A, et al. Predicting coral dynamics through climate change [J]. Scientific Reports, 2018, 8: 17997. doi: 10.1038/s41598-018-36169-7

    [92]

    Kubicek A, Breckling B, Hoegh-Guldberg O, et al. Climate change drives trait-shifts in coral reef communities [J]. Scientific Reports, 2019, 9: 3721. doi: 10.1038/s41598-019-38962-4

    [93]

    DeCarlo T M, Cohen A L, Wong G T F, et al. Mass coral mortality under local amplification of 2 ℃ ocean warming [J]. Scientific Reports, 2017, 7: 44586. doi: 10.1038/srep44586

    [94]

    Quattrini A M, Rodríguez E, Faircloth B C, et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time [J]. Nature Ecology & Evolution, 2020, 4(11): 1531-1538.

    [95]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    [96]

    Wu S G, Yang Z, Wang D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 350: 71-83. doi: 10.1016/j.margeo.2013.12.016

    [97]

    Yi L, Jian Z M, Liu X Y, et al. Astronomical tuning and magnetostratigraphy of neogene biogenic reefs in Xisha Islands, South China Sea [J]. Science Bulletin, 2018, 63(9): 564-573. doi: 10.1016/j.scib.2018.04.001

  • 期刊类型引用(5)

    1. 袁勇,陈建文,骆迪,李清,梁杰,蓝天宇,王建强,曹珂,赵化淋. 南黄海盆地烟台坳陷新生界二氧化碳封存地质条件与封存前景. 海洋地质前沿. 2025(03): 35-47 . 百度学术
    2. 张逍姬,胡修棉,李娟,许艺炜. 下扬子地区早二叠世末期碳酸盐台地死亡事件的沉积学与碳同位素记录. 高校地质学报. 2024(04): 379-396 . 百度学术
    3. 王嘉伟,谢通,金思丁,曹海洋. 鄂西地区晚二叠世温室期轨道控制下的有机质富集机制. 第四纪研究. 2024(05): 1108-1126 . 百度学术
    4. 王琦,苗迪. 白山市上青沟石英砂岩矿地球化学特征及成矿环境. 吉林地质. 2024(03): 70-77 . 百度学术
    5. 吴飘,陈建文,赵青芳,张银国,梁杰,蓝天宇,薛路,可行. 南黄海盆地二叠系高-过成熟烃源岩的生物标志化合物特征及其地质意义. 海洋地质与第四纪地质. 2023(04): 150-166 . 本站查看

    其他类型引用(2)

图(4)
计量
  • 文章访问数:  2505
  • HTML全文浏览量:  604
  • PDF下载量:  102
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2020-11-05
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

Corresponding author: YI Liang, yiliang@tongji.edu.cn

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回