秦亚超, 高飞, 苏大鹏, 朱晓青, 谢柳娟. 南黄海西部日照至连云港海域的春季温跃层和化学跃层[J]. 海洋地质与第四纪地质, 2021, 41(3): 22-32. DOI: 10.16562/j.cnki.0256-1492.2020080301
引用本文: 秦亚超, 高飞, 苏大鹏, 朱晓青, 谢柳娟. 南黄海西部日照至连云港海域的春季温跃层和化学跃层[J]. 海洋地质与第四纪地质, 2021, 41(3): 22-32. DOI: 10.16562/j.cnki.0256-1492.2020080301
QIN Yachao, GAO Fei, SU Dapeng, ZHU Xiaoqing, XIE Liujuan. Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 22-32. DOI: 10.16562/j.cnki.0256-1492.2020080301
Citation: QIN Yachao, GAO Fei, SU Dapeng, ZHU Xiaoqing, XIE Liujuan. Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 22-32. DOI: 10.16562/j.cnki.0256-1492.2020080301

南黄海西部日照至连云港海域的春季温跃层和化学跃层

Late spring thermocline and chemoclines in the area off the Rizhao–Lianyungang coast, western South Yellow Sea

  • 摘要: 利用2016年5月5个站位的温盐深(CTD)和海流(ADCP)同步测量资料,分析南黄海西部日照至连云港海域温跃层和化学跃层的日内生消过程及强度变化,探讨深层水温度、盐度的周期性变化及其与潮流的关系。结果表明:南黄海西部海域在5月已存在日内生消的温跃层和溶解氧(DO)、pH跃层。温跃层厚度为2~4 m,层位水深为4~7 m至7~10 m之间波动,跃层强度最大可达0.80 ℃/m。DO跃层和pH跃层位于温跃层之下,水深为10~14 m,两者的形成在时间上和深度上具有一定的同步性,且不受温跃层控制。在DO跃层之上,氧浓度在白天都保持在相当高的水平,甚至处于过饱和状态,但存在显著波动,其峰值并不出现在表层(0~2 m),而是位于次表层(2~14 m)。在DO跃层之下,氧浓度低且稳定,约为4 mg·L−1,向下呈缓慢降低的趋势。pH跃层表现为垂向上的快速跳变,包括向下的正跳变和负跳变,强度最大值可达0.03~0.04个pH单位。小潮期间,温跃层稳定,强度较大;大潮期间,温跃层强度明显减弱,稳定性变差;这表明潮流的增强对温跃层有明显的抑制和破坏作用。深层水的温度、盐度等参数存在日内周期性变化,与潮位变化同步,是潮流驱动下水体水平对流的结果。

     

    Abstract: Conductivity–temperature–depth (CTD) measurement and continuous current observation with an Acoustic Doppler Current Profiler (ADCP) were synchronously conducted in May, 2016, at five hydrographic stations off the Rizhao–Lianyungang coast, western South Yellow Sea. The intraday evolution of thermocline and chemoclines is analyzed and the relation of the periodical changes in temperature and salinity of the deep water with tidal currents is discussed. Results show that the thermocline and chemoclines of dissolved oxygen (DO) and pH have formed as early as in May. The thickness of thermocline usually varies between 2~4 m. It mostly dwells in the depth range from 4~7 m to 7~10 m. The maximum gradient reaches 0.80 °C/m. DO and pH chemoclines dwell at the depths of 10~14 m, which are deeper than the thermocline. To some degree, the chemoclines of DO and pH occur synchronously at the same depths and have no relations to the thermocline. Above the chemocline DO fluctuates markedly and maintains at a high level or even oversaturated in daytime. Its peak concentrations do not occur in the surface layer (0~2 m) but in the sub-surface layer (2~14 m). Below the chemocline it invariably remains about 4 mg·L−1 and slowly drops downward. The pH chemocline is characterized by vertical rapid jump, including downward positive and negative jumps with a maximum strength of 0.03~0.04 pH units. In the neap tides thermocline is stable with a large gradient, whereas in the spring tides the gradient and sustainability is reduced apparently. These results suggest that the enhancement of tidal currents undermines the sustainability of thermocline. The periodical changes in temperature and salinity of deep waters are consistent with that of the tidal level, indicating the consequence of advection driven by tidal currents.

     

/

返回文章
返回