西太平洋弧后盆地火山岩中熔体包裹体研究进展

李晓辉, 杨慧心, 曾志刚

李晓辉, 杨慧心, 曾志刚. 西太平洋弧后盆地火山岩中熔体包裹体研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601
引用本文: 李晓辉, 杨慧心, 曾志刚. 西太平洋弧后盆地火山岩中熔体包裹体研究进展[J]. 海洋地质与第四纪地质, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601
LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601
Citation: LI Xiaohui, YANG Huixin, ZENG Zhigang. Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 166-179. DOI: 10.16562/j.cnki.0256-1492.2020072601

西太平洋弧后盆地火山岩中熔体包裹体研究进展

基金项目: 国家自然科学基金青年基金项目“橄榄石内熔体包裹体地球化学特征对马里亚纳海槽岩浆活动受俯冲作用影响的指示”(42006052);中国博士后科学基金面上项目“冲绳海槽南部玄武质火山岩橄榄石内熔体包裹体研究:俯冲作用对岩浆活动影响的指示”(2020M672018);中国科学院海洋地质与环境重点实验室开放基金项目“俯冲作用对冲绳海槽中部火山岩成因的影响:单斜辉石地球化学指示”(MGE2019KG07);青岛市应用研究项目“冲绳海槽伊平屋脊火山岩内单斜辉石地球化学特征及其地质意义”
详细信息
    作者简介:

    李晓辉(1990—),男,博士后,主要从事海底岩石学研究,E-mail:lixiaohui@qdio.ac.cn

  • 中图分类号: P736.3

Advances in melt inclusion studies in back-arc basin volcanic rocks in Western Pacific

  • 摘要: 熔体包裹体是在矿物生长过程中被包裹的硅酸盐小液滴,由于寄主矿物的保护,受最小程度的后期岩浆作用影响,可以有效的保留原始岩浆组成、地幔源区性质及岩浆演化过程等重要信息。熔体包裹体的研究可以弥补传统全岩因受后期复杂地质过程影响而导致部分信息失真的不足。文章简要总结了熔体包裹体的主要研究领域及分析测试技术,概述了国内外关于西太平洋典型弧后盆地火山岩中熔体包裹体研究的相关进展。冲绳海槽、劳海盆及北斐济海盆内熔体包裹体的研究证明了地幔源区不均一性的特征,明确了岩浆物质来源及俯冲物质在源区的加入;马里亚纳海槽和马努斯海盆熔体包裹体内挥发份研究指示了俯冲板片物质对弧后盆地岩浆源区挥发份组成的贡献;马努斯海盆熔体包裹体中金属元素浓度分析表明岩浆流体可为海底热液系统提供成矿金属;此外,马里亚纳海槽和冲绳海槽熔体包裹体测温实验反映出岩浆多期次的演化过程。尽管熔体包裹体在西太平洋弧后盆地岩浆活动的很多方面有了一定研究,但各弧后盆地研究参差不齐、综合研究程度低。将来在进一步完善熔体包裹体测试分析手段基础上,加大熔体包裹体在弧后盆地的研究力度,有助于我们更清晰地认识弧后盆地岩浆源区物质组成,明确俯冲作用下弧后盆地岩浆来源及物质转化机制。
    Abstract: Melt inclusions are small silicate droplets trapped in minerals during growth. Due to the protection of host minerals, they are little affected by the late magmatic process, and thus can effectively retain the important information such as the original magmatic composition, the nature of the mantle source and the magmatic evolution process. The study of melt inclusions may make up for the deficiencies in the partial information distortion of traditional whole rocks due to the influence of complex geological processes in the later period. This article briefly summarizes the main research fields and current status of melt inclusions. The current research progress of melt inclusions in volcanic rocks in the typical back-arc basins in the western Pacific is reviewed. The study of melt inclusions in the Okinawa Trough, the Lau Basin and the North Fiji Basin has proved the heterogeneity of the mantle source area, and clarified the source of magma material and the addition of subducted material in the source area. The study of volatiles in melt inclusions in Mariana Trough and Manus Basin indicates the contribution of subducted slab materials to the volatile composition of the magma source area in the back-arc basin. The analysis of the concentration of metal elements in the melt inclusions in the Manus Basin indicates that the magmatic fluid can provide metallogenic metals for the submarine hydrothermal system. In addition, the temperature measurement experiments of melt inclusions in the Mariana Trough and Okinawa Trough reflect the multi-phase evolution of magma. Although melt inclusions have been studied in many aspects of magmatic activity in the western Pacific back-arc basins, the researches in the back-arc basins are uneven and the degree of comprehensive research is low. In the future, on the basis of further development of the testing and analysis technology of melt inclusions, increasing the research intensity of melt inclusions in the back-arc basin will help us to clearly understand the material composition of the magma source in the back-arc basin and clarify source and transformation of magma material in the back-arc basin under subduction.
  • 硅酸盐熔体包裹体(Silicate melt inclusion)是在高温高压环境下被矿物斑晶包裹的硅酸盐液滴[1-2],在火山岩(尤其是基性岩)斑晶中广泛发育[3]图1)。按照被寄主矿物捕获的时间顺序和形成方式的差异,硅酸盐熔体包裹体可分为原生和次生两种[1, 3-4]。斑晶矿物在结晶的过程中可捕获周围的岩浆熔体并进一步演化为原生熔体包裹体[1],这些被捕获的岩浆液滴可以很好地指示寄主斑晶矿物形成时的物理化学条件及岩浆熔体的地球化学组成;次生熔体包裹体在寄主矿物结晶之后形成,与后期岩浆熔体的充填或交代相关[1],指示了寄主矿物结晶之后的岩浆组成特征。本文重点介绍原生熔体包裹体在反演原始熔体组成及岩浆演化过程中的重要作用,以下简称“熔体包裹体”。

    图  1  冲绳海槽火山岩橄榄石内代表性熔体包裹体镜下特征[5]
    a.玄武岩内熔体包裹体,b.安山岩内熔体包裹体。
    Figure  1.  Representative photomicrographs of olivine-hosted melt inclusions in Okinawa Trough basalts[5]
    a. melt inclusions in basalt, b. melt inclusions in andesite.

    利用熔体包裹体可以很好地确定地幔属性、岩浆物理化学状态等岩浆源区信息,识别分离结晶、同化混染等岩浆演化过程[1, 3, 6-11]。就目前火山岩研究而言,对岩浆源区组成的识别及对不同岩浆演化过程的判断还主要建立在全岩地球化学数据应用的基础上,而全岩仅仅是岩浆形成至喷出地表且经历了一系列复杂岩浆过程后的最终表现形式,代表的是一种“混合”成分,在一定程度上掩盖了可能存在的异常熔体组分及原始岩浆的成分特征[3, 10, 12-14]。相反,熔体包裹体受到寄主矿物的保护,一些后期岩浆作用(蚀变、去气、同化、混染、结晶分异等)[4, 7, 15]对熔体包裹体成分的改造有限,例如在岩浆体系内被早期结晶矿物橄榄石捕获的熔体包裹体往往保留了比寄主全岩更加原始的岩浆成分,因而被大量的应用于反演岩浆演化、地幔交代、部分熔融等早期岩浆作用过程中[3, 6-9, 12, 15-19]。熔体包裹体的特殊形成条件及区别于全岩研究的独特优势,使其成为全面系统研究原始岩浆组成、探讨岩浆演化过程的不可多得的有力工具[5, 13, 19-21]

    俯冲带是地球物质运移及循环的重要区域,也是地壳及俯冲物质输入地幔的关键场所[22-28]。弧后盆地作为沟−弧−盆俯冲体系的组成单元之一,对认识俯冲带区域岩浆源区物质组成及来源、明确俯冲作用下地球物质循环途径意义重大。西太平洋发育有全球约75%的弧后盆地,涵盖了从成熟的洋内(如马里亚纳海槽、劳海盆、北斐济海盆)到新生的陆缘(如冲绳海槽)等不同基底环境和发展阶段的弧后盆地,是认识弧后盆地形成及演化的理想区域。西太平洋弧后盆地岩浆地幔源区普遍存在Dupal异常[29],而这种地幔异常是西太平洋地幔固有特征还是受到板片俯冲物质混染的影响,目前还不明确[29-31]。大量研究表明西太平洋弧后盆地的岩浆演化受到了板片俯冲物质的影响,而俯冲带系统的物质循环,即俯冲物质的输入(俯冲板片、沉积物等)及输出(岛弧及弧后岩浆作用)一直是国际研究的热点[28, 32-33]。另外,由于复杂的俯冲构造环境,西太平洋不同弧后盆地的地幔源区均存在强烈的不均一性[34-37],这种不均一的源区地幔是在板块俯冲早期就已改造[35, 38]还是受到了俯冲作用多阶段的持续交代[39]还需要进一步探讨[31]。西太平洋弧后盆地还发育有强烈的海底热液活动,是海底热液硫化物产出的重要区域,尤其是那些年轻的弧后盆地,如马里亚纳海槽、冲绳海槽等[40]。熔体包裹体可对源区岩浆物质组成进行很好的指示,可反映弧后盆地地幔组成特征[1, 3, 6-11]。同时,熔体包裹体保留了母岩浆脱气前成矿金属元素的浓度,是研究岩浆作用对热液活动物质贡献的有力工具[41-43]。因此,本文将以西太平洋典型弧后盆地(马里亚纳海槽、马努斯海盆、劳海盆、北斐济海盆、冲绳海槽)为主要研究区域(图2),综述熔体包裹体研究对充分认识弧后盆地岩浆作用过程的贡献。

    图  2  西太平洋典型弧后盆地位置图
    Figure  2.  The location map of typical back-arc basins in the western Pacific

    熔体包裹体最早由Sorby[2]提及,认为熔体包裹体具有与流体包裹体类似的形成过程。Roedder[1]的相关研究使熔体包裹体在地球科学领域得到进一步重视,并逐步成为解决关键科学问题的重要途径。熔体包裹体的重点研究领域及应用范围大致可归纳为以下几点:

    (1)代表原始岩浆初始状态的组成特征。主要针对基性矿物中的熔体包裹体,相比于火山岩全岩或火山玻璃,基性斑晶矿物内的熔体包裹体受到寄主矿物的保护,能较好地规避后期岩浆作用及蚀变对原始成分的改造,进而很好地反映出岩浆初始状态的组成特征[17, 21, 44-46]。例如,Ren等[44]对夏威夷火山岩橄榄石内熔体包裹体进行了系统的分析,发现熔体包裹体明显不同于全岩组成,表现出显著不均一性,从而提出了全新的成分不均一性地幔柱模型。

    (2)提供原始熔体中的挥发组分信息。在高温高压条件下被捕获的熔体包裹体可以得到寄主矿物的保护而免受蚀变及去气过程的影响,类似于对原始岩浆初始状态成分特征的指示,熔体包裹体可以最大限度地记录原始熔体的挥发份组成特征[3, 47-50]。因此,熔体包裹体研究在刻画原始熔体挥发份组成方面得到了普遍应用。例如,Saal等[49]对洋中脊玄武岩中橄榄石内熔体包裹体进行了挥发份(CO2、H2O、S、Cl、F等)含量分析,评估了亏损上地幔的挥发份组成,证明地幔的挥发份组成具有明显不均一性。

    (3)识别岩浆混合过程中的两种或多种混合熔体成分。火山岩在形成过程中可能发生多种成分的岩浆混合,这些混合熔体被矿物斑晶捕获后形成成分多样的熔体包裹体。相比于全岩“平均化”的物质组成,受寄主矿物保护的熔体包裹体可以很好地反演岩浆同化混染和岩浆混合等过程,进而揭露复杂岩浆组成特征[5, 51-54]。例如,Kent等[53]对俯冲带安山岩内熔体包裹体进行了成分分析,利用这种被捕获的熔体成分代表安山质熔体的组成,证明安山质岩浆的产生与镁铁质岩浆在长英质岩浆房内的岩浆再充填事件关系密切。

    (4)研究元素迁移和熔体交代。熔体交代现象在岩浆演化过程中广泛存在,岩浆发生交代作用时被斑晶矿物捕获的熔体包裹体可以很好地反映出交代熔体的成分特征[47, 55-58]。例如,Schiavi等[56]检测了意大利南部斯特隆博利岛橄榄石内熔体包裹体的元素和同位素(Pb–B–Li)组成,元素及同位素与全岩成分相比具有较大的变化范围,表明岩浆源区在小尺度范围内成分不均一,同时岩浆源区受到了俯冲板片物质及含水流体的交代作用。

    (5)应用于矿床成因的研究。熔−流体包裹体作为一类组成独特的包裹体,在花岗质岩石及伟晶岩中大量存在,被广泛用于不同地质条件下性质差异的熔体和流体间发生的不混溶作用以及不同成分熔体相中不同金属元素间可能存在的不混溶过程的研究[59-63]。例如,Kamenetsky等[60]对堪察加半岛橄榄石内的硅质和硫化物包裹体进行了元素组成研究,证明硅−硫不混溶熔体可在岛弧火山岩内存在。熔体包裹体中硫化物和硫酸盐并存支持了岩浆中硫化物的氧化与相关富硫流体的生成有关,并据此推测此类流体会积累硫化物熔体分解时释放的金属,促使浅成热液矿化作用的发生。

    (6)研究元素在熔体和矿物间的分配系数。寄主矿物和熔体包裹体之间有较大的接触面积,岩浆演化过程中元素在熔体和寄主矿物间较容易发生平衡,方便对特征元素成分及其地球化学行为进行检测[7, 64-65]。例如,Severs等[65]利用激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)对熔体包裹体进行了微量元素(Sc、Ti、V、Mn、Sr、Y、Zr、Nb、Ba、La、Nd、Sm、Eu、Gd、Dy、Ho、Yb、Hf和Pb)分析,探讨了不同元素在英安质硅酸盐熔体和单矿物间的分配系数。除Sr外,其余元素在斜长石内表现出不相容特征,除Mn外其余元素在斜方辉石内表现出不相容特征,在单斜辉石中,Sc、V、Mn具有相容性,而Y、Ti、HREE和MREE表现出轻微的不相容特征。研究表明这种原位的熔体包裹体−矿物元素分析方法是检测元素分配系数的有效手段。

    目前,熔体包裹体研究在国际上已处于蓬勃发展阶段。但是,因为熔体包裹体的复杂成因以及分析测试手段的制约,国内对熔体包裹体的详细研究及其在地学领域的应用还处于起步阶段,与国际水平相比差距明显[20]。2011年,张春来等[66]对辉石斑晶内的熔体包裹体微量元素的检测是国内科研人员借助LA-ICP-MS测试技术对熔体包裹体进行的开创性研究,打破了传统上熔体包裹体高温热台测温及主量元素分析的局限[67],为国内熔体包裹体在地球化学领域的进一步发展提供了借鉴。近年来,中国科学院广州地球化学研究所[20]、中国科学技术大学[68]等科研团队在熔体包裹体测试技术开发及应用方面做了大量工作,例如,利用大型离子探针(SIMS)和激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)快速便捷地分析熔体包裹体微量元素[69-70],利用激光剥蚀多接收器电感耦合等离子体质谱仪(LA-MC-ICP-MS)对熔体包裹体进行精确Pb同位素分析[71-72],相继开展了海南岛新生代玄武岩[73]、汉诺坝新生代玄武岩[74]、华北克拉通地区东南缘中生代玄武岩[75-78]、峨眉山大火成岩省[44]等一系列火山岩内熔体包裹体研究工作,这些工作无疑极大推动了熔体包裹体在国内研究的发展。将来,随着对熔体包裹体研究程度的重视,测试技术的革新,相信国内熔体包裹体的研究工作会快速兴起。

    在进行熔体包裹体分析前,需要对熔体包裹体进行一系列前处理工作。熔体包裹体的前处理工作较为精细、繁琐,主要包括:①将岩石磨制成可进行镜下观察的薄片并进行岩相学观察。确定熔体包裹体的大小、类型、结晶状态、气泡数量等,与可能存在的矿物包裹体(如尖晶石,图1a)区分,这是做好熔体包裹体研究的基础。②加热熔体包裹体使其达到均一化状态。熔体包裹体形成之后,内部的硅酸盐熔体往往会发生结晶分异,因此在分析熔体包裹体之前要加热熔体包裹体,使其成分均一[20, 79],尽可能还原熔体包裹体被捕获时的状态。显微热台和高温熔炉(马弗炉)是进行熔体包裹体加热处理的常用设备[1, 4, 20-21]。③制备熔体包裹体矿物靶。在制靶过程中需要将寄主矿物抛光并将熔体包裹体磨至表面,以满足指定仪器的测试分析要求。

    熔体包裹体组成分析是利用熔体包裹体解决科学问题的主要途径,也是进行熔体包裹体研究的基础。随着对熔体包裹体研究的重视以及近年来测试方法的开发和利用,熔体包裹体的成分分析取得了极大的进步。前人对熔体包裹体的研究方法有较多综述[20, 67-68, 71, 80-85],本文只作简要对比介绍。熔体包裹体的成分分析可以大致分为对均一玻璃中水及挥发份的定性及定量分析和对元素含量及同位素比值的定量分析[67, 80, 83]。对水及挥发份的分析目前的主流方法有傅里叶变换红外吸收光谱仪(FTIR)对H2O及CO2等组成及含量的测试,电子探针(EMPA)对少量挥发份(如F、CI、S等)的粗略分析及离子探针(SIMS)对挥发份组成的较高精度分析。在元素及同位素分析方面,电子探针(EMPA)可对熔体包裹体进行主量元素分析,激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)和离子探针(SIMS)可对熔体包裹体进行微量元素分析,而同位素的分析主要用到了激光剥蚀多接收电感耦合等离子体质谱仪(LA-MC-ICP-MS)和离子探针(SIMS)。

    熔体包裹体提供了母岩浆成分和演化的重要信息,是检测弧后盆地地幔源区组成的理想工具。在冲绳海槽区域,现有的全岩数据表明区域内存在多种成分的软流圈地幔,具有明显的地幔不均一性[5, 86-88],且岩浆源区受到板块俯冲作用影响[5, 89-96],玄武质岩浆的分离结晶是区域内岩浆演化的主要方式[93-94, 97-98],同时可能受到了部分陆壳物质的混染[90, 95]。冲绳海槽浮岩中辉石和斜长石内玻璃质熔体包裹体主量元素组成显示不同熔体包裹体代表的原始岩浆具有同源性,熔体包裹体成分的差异主要是由不同阶段的岩浆结晶演化或不同矿物结晶引起的[99]。随着分析技术的进步,Li等[5, 92, 100]对冲绳海槽火山岩橄榄石内熔体包裹体进行了系统的元素及Pb同位素分析(图1b)。熔体包裹体中不相容元素比值(Th/Ce、Th/Sm等),正Pb异常,负Nb、Ta、Ti异常及有机烃类(CnHm)的存在表明俯冲沉积组分在岩浆源区的加入[92, 100]。此外,研究发现在单一火山岩,甚至是在单个橄榄石中存在高207Pb/206Pb(>0.865)和低207Pb/206Pb(<0.865)两种同位素组成的熔体包裹体(图3),体现出岩浆源区成分的不均一性[5]。“太平洋”型地幔与来自循环下地壳的EMI组分以及来自俯冲沉积物的EMII组分混合可以解释低207Pb/206Pb熔体包裹体的存在,而安山岩中少量高207Pb/206Pb,高K2O、P2O5、Rb、U含量,低Pb和Cu含量的熔体包裹体则指示了安山质岩浆的产生受到不同元素和同位素组成熔体的混合,证明了不同性质岩浆的混合在冲绳海槽区域普遍存在[5]。相比之下,传统全岩数据对不同类型岩浆的混合缺乏很好的识别。

    图  3  冲绳海槽中部玄武岩和安山岩橄榄石内熔体包裹体Pb同位素组成[5]
    Figure  3.  Pb isotopic compositions in olivine-hosted melt inclusions from middle Okinawa Trough basalts and andesites[5]

    在洋内弧后盆地劳海盆的研究中,传统全岩地球化学数据显示在海盆尺度内存在明显的源区成分不均一性[33, 101-102],越靠近汤加弧,岩浆受俯冲组分的影响程度越高[38, 101, 103]。此外,地壳混染和结晶分异作用也在岩浆演化过程中扮演了重要角色[104-107]。对劳海盆瓦路法脊(Valu Fa Ridge)轴部海山小尺度范围内熔体包裹体研究发现岩浆源区存在两种组分差异明显的原始熔体,一种熔体表现出富H2O(约2.5 wt%)、高CaO(约14 wt%)、低Al2O3(约8 wt%)特征,且普遍存在于东部和西部海山,另一种熔体具有低CaO特点,仅出现在西部海山[108],这表明不仅在海盆的大尺度上,在单个海山的小尺度上源区岩浆也具有明显成分不均一性。熔体包裹体的微量元素特征表明岩浆源区存在富LILE、富Pb和富Cl的由俯冲洋壳在火山弧前脱水产生的超临界流体[108]。玄武岩玻璃和熔体包裹体的Cl同位素分析结果显示在受俯冲影响程度较低的中部和东部扩张中心δ37Cl接近于0,Cl主要来自于浅部陆壳的海水同化过程[109],而位于三联点处的低Cl玻璃具有负δ37Cl值,明显低于亏损地幔值,指示源区受到了来自蚀变洋壳的流体、沉积物和/或蛇纹石化地幔楔等物质的影响[109]。此外,劳海盆和马努斯海盆橄榄石内熔体包裹体研究发现未去气的玻璃质熔体具有高Re含量(高达2×10−3 μg/g),明显高于传统上全岩研究得到的陆壳Re的含量((0.2~0.4)×10−3 μg/g)[110]图4),其成因并非岩浆分异的结果,而可能是富Re的俯冲板片流体在岩浆源区的加入[111]

    图  4  马努斯海盆橄榄石内熔体包裹体Re与Yb含量及Yb/Re比值相关图[110]
    Figure  4.  Re abundance versus Yb abundance and Re abundance versus Yb/Re ratios in olivine-hosted melt inclusions in Manus basin[110]

    北斐济海盆位于太平洋西南部(图2),是现今仅存的高成熟度的活动边缘海盆[112-113]。全岩微量元素和同位素组成特征显示海盆的岩浆受富集的OIB型地幔和亏损的N-MORB型地幔物质的混合,并表现出明显的成分不均一性[37]。北斐济海盆坎达武(Kadavu)群岛高Mg埃达克岩橄榄石内熔体包裹体数据显示区域内存在一个复杂开放系统下形成的埃达克质岩浆系列,包括了地幔来源的低SiO2、高Mg埃达克质岩浆和高SiO2、低Mg埃达克质岩浆及两者之间的混合成分[114]图5),这也表明区域内存在成分特征差异的岩浆物质来源。熔体包裹体微量元素结合全岩地球化学数据研究表明,北斐济海盆内玄粗岩主要来自交代的弧下岩石圈地幔低程度部分熔融,同时受到了俯冲物质的影响[115]

    图  5  斐济海盆坎达武(Kadavu)群岛熔岩及熔体包裹体SiO2 (wt%)与K2O (wt%)、TiO2 (wt%)相关图[114]
    Figure  5.  K2O (wt%) and TiO2 (wt%) vs. SiO2 (wt%) in laves and olivine-hosted melt inclusions from Kadavu Island Group in Fiji basin[114]

    马里亚纳海槽火山岩微量元素及同位素组成特征均显示马里亚纳海槽的火山岩起源于受俯冲物质影响的地幔源区[35, 116-120],弧后扩张脊的不同部位,玄武岩的地球化学组成不同[34-36],表明地幔源区组成存在差异。马努斯海盆扩张中心的玄武质岩浆地球化学特征与MORB熔岩接近[104],但也表现出受一定程度俯冲组分影响的特征[121-122]。这两个弧后盆地关于岩浆源区组成及火山岩成因研究主要基于全岩地球化学展开,而熔体包裹体的研究主要体现在对岩浆挥发份及金属元素组成上,将在后文作主要概述。

    岩浆的演化受挥发份(H2O、CO2、F、Cl、S等)组成的影响显著,俯冲过程中板片发生脱水可导致岛弧及弧后盆地岩浆活动的产生。对挥发份在岩浆体系中的地球化学行为研究是了解俯冲带岩浆形成、运移、储存和喷发的关键。对此,Newman等[123]检测了马里亚纳海槽火山岩玻璃和斑晶内熔体包裹体的H2O和CO2成分,玻璃的挥发份含量变化较大(H2O为0.2~2.8 wt%,CO2为0~300 μg/g),斑晶内熔体包裹体H2O的含量与寄主玻璃类似,但其内CO2的含量可以高达875 μg/g。马里亚纳海槽玻璃内H2O和CO2的含量呈负相关关系(图6),表明岩浆在喷发的压力下其内部CO2-H2O气体是饱和的,这些岩浆在抬升和喷发过程中的去气作用导致CO2明显丢失,而对喷发前H2O含量的影响较小[123]。Parman等[124]通过结晶分馏实验分析了马里亚纳多个海岛和一个海山橄榄石内熔体包裹体H2O含量,发现马里亚纳岛弧熔岩喷发前H2O含量(2~3 wt%)相对稳定,与马里亚纳海槽熔岩H2O含量相似。高H2O含量的海山贯穿马里亚纳岛弧分布,但与俯冲参数(俯冲角度、倾斜度等)没有相关性,说明马里亚纳弧下地幔中的挥发份通量在本质上就是不均匀的[124]

    图  6  马里亚纳海槽火山岩和熔体包裹体H2O-CO2含量图[123]
    Figure  6.  CO2 versus H2O contents of laves and melt inclusions from the Mariana Trough[123]

    马努斯海盆熔体包裹体富含挥发份和流体活动性元素的特征表明板块俯冲对岩浆成分的影响强烈[41]。东马努斯海盆PACMANUS热液区火山岩内熔体包裹体普遍具有1~2个气泡,且气泡的体积占比较大(>5.5 vol%),在辉石和橄榄石斑晶中气泡比例更高(80~>95 vol%),表明气泡是由挥发物的剧烈释放或岩浆房内的岩浆沸腾形成的[125]。熔体包裹体中的高H2O含量(1.0~2.5 wt%)、高Cl含量(0.45 wt%)等富挥发份组成特征,说明岩浆房内挥发份饱和[126]。S、Cl、F与H2O具有正相关性(图7),暗示这些挥发份来自于岩浆的结晶脱气及熔体出溶,且岩浆在结晶过程中会丢失高达65 vol%的挥发组分[125]。此外,Sun等[127]对马努斯海盆熔体包裹体分析发现Cl与非挥发性且高度不相容的微量元素具有很好的相关性,说明岩浆内Cl并没有强烈挥发性且不存在明显的海水混染,熔岩玻璃中约80%的Cl可能直接来自于俯冲板片流体[127]

    图  7  PACMANUS安山岩内橄榄石和辉石斑晶中的熔体包裹体内H2O含量(wt%)与S、Cl和F(wt%)的关系[125]
    Figure  7.  H2O contents (wt %) vs. S, Cl, and F (wt %) in the glass of melt inclusions in olivine and pyroxene phenocrysts of andesite from PACMANUS[125]

    现代海底构造环境是许多热液系统和多金属硫化物矿床的宿主,金属元素的运输和沉淀是通过岩浆过程控制的,例如喷发前的脱气和热液循环[41]。在特定背景下,成矿金属的含量取决于其在原始岩浆源区或其他富集过程中相关金属的浓度,而熔体包裹体的研究可提供母岩浆中成矿金属的浓度信息,是研究岩浆作用对热液活动物质贡献的重要手段[41]

    马努斯海盆中熔体包裹体和基质玻璃中成矿金属类型在不同岩相中有所不同(玄武岩和玄武质安山岩为Ni+Cu+Zn+Fe、安山岩中为Cu+Zn+Fe、英安岩中为Cu+Fe、英安质流纹岩中为Fe、流纹岩中为Fe+Zn(+Pb?))(图8),表明岩浆流体可能是不同岩相中金属的主要来源[126]。岩浆流体在浅部岩浆房聚集并沿着构造薄弱带喷出,将为海底热液系统提供大量的挥发份和成矿金属,这种过程可以解释硫化物烟囱体中Fe、Cu、Zn、Pb的富集,即火山成因的块状硫化物矿床中成矿金属主要来自于岩浆流体[126]。此外,Kamenetsky等[43]在东马努斯海盆玄武岩橄榄石斑晶(Fo82-92)内的熔融包裹体中发现Cu含量从玄武岩到英安岩逐渐减少,而Pb含量在英安岩中达到最高,Zn含量在安山岩中最高,并随结晶分离作用的进行而降低。分馏的岩浆中Cu含量的降低表明金属元素进入CO2-H2O流体相中会发生显著脱气反应[43]。岩浆系统中的热液可以直接携带岩浆中的含金属流体,这些流体是从马努斯弧后盆地中岛弧型岩浆内溶解出来,并迁移和浓缩了大量的成矿金属元素,特别是Cu[43]。随岩浆演化,熔体包裹体和火山玻璃中Au和Cu的浓度显著下降,这可能是因为fO2的缓冲作用及S含量的降低,进而增加了Cu-Au氢硫化物络合物的形成[128]。东马努斯海盆熔体包裹体的相关研究还指示在浅部岩浆房内的结晶过程中,大量的岩浆流体也会发生去气反应,且至少1.7 wt% H2O从岩浆中出溶[126]。该去气过程可持续至少5~48 a,结合黑烟囱2~10 a的寿命,可推测硫化物烟囱生长过程中的成矿金属主要来自于岩浆流体,即岩浆可以在很长一段时间内向热液系统提供大量成矿金属和挥发份,从而在海底形成大量块状硫化物矿床[125]

    图  8  PACMANUS代表性样品熔体包裹体中沉积金属元素变化与代表性岩石的多孔度和SiO2含量有关[126]
    Figure  8.  Variation of metal species in the precipitates in melt inclusions of representative samples from PACMANUS, as related to the vesicularity and SiO2 content of the representative rocks[126]

    熔体包裹体的测温实验可以明确熔体包裹体被捕获时的均一温度,对熔体产生时岩浆房的温度状态及不同批次岩浆熔体的混合具有较好的指示意义。孙海青等[129]对马里亚纳海槽玄武岩斜长石和橄榄石斑晶中的熔融包裹体进行了镜下观察和均一化测温实验。结果显示熔体包裹体在橄榄石和斜长石斑晶中的均一化温度分别为1 035~1 100 ℃和1 050~1 145 ℃,反映了矿物结晶的多期性[129]。类似的,冲绳海槽浮岩中熔体包裹体的测温结果和成分数据显示熔体包裹体在长石内具有910~1 250 ℃和高于1 250 ℃的均一温度,表明斜长石在岩浆房内经历了两个阶段的演化[130]

    上文简要总结了目前国内外学者在西太平洋弧后盆地火山岩中熔体包裹体的主要研究工作,尽管研究工作涉及到了源区地幔不均一性、俯冲组分对岩浆源区的贡献、源区挥发份组成、岩浆热液流体来源、岩浆演化过程以及岩浆房的温度条件等多方面研究,但不同弧后盆地的研究现状参差不齐。例如,作为典型“洋―洋”俯冲作用代表的马里亚纳俯冲带,尽管国际上对其火山岩全岩已经开展了较全面的工作,但是对海槽内熔体包裹体的研究却寥寥无几[123, 129],多数工作还是集中在马里亚纳岛弧及弧前区域。岛弧和弧后盆地存在明显的构造差异,对马里亚纳海槽内基底火山岩熔体包裹体的研究可使我们明确全岩所显示的地幔不均一性是在板块俯冲早期就已改造还是受到后期俯冲过程多阶段持续作用的影响。这可为解决俯冲作用下弧后盆地岩浆物质来源及演化过程等科学问题提供重要指示。与此对应的典型“洋−陆”俯冲作用下的冲绳海槽内熔体包裹体的研究则主要集中在浮岩、安山岩及玄武质安山岩等演化程度较高的火山岩上[5, 95, 100, 130]。由于冲绳海槽发育于陆壳基底之上,陆壳混染对冲绳海槽不同区域火山岩岩浆源区的影响一直存在争议[88, 91-93],海槽内不同区域基底岩石熔体包裹体的研究可为明确陆壳物质对岩浆源区的贡献程度提供理论依据。同样的,构造特征差异的马努斯海盆、劳海盆及北斐济海盆内熔体包裹体的研究程度也各不相同。在今后的工作中可以对不同弧后盆地火山岩内熔体包裹体进行针对性的系统研究,结合区域内已发表全岩数据,可获取对基底岩石形成及岩浆演化过程的更全面的认识。此外,可以对多个弧后盆地进行熔体包裹体对比研究,明确不同演化阶段及地质构造特征的弧后盆地岩浆组成对板块俯冲作用的指示,进一步完善板块构造理论。

    经过近半个多世纪的发展,熔体包裹体研究无论是在分析技术手段方面还是在地球科学应用方面均已取得了长足的进步。熔体包裹体具有全岩研究所无法比拟的优势,是明确原始岩浆组成特征、揭示岩浆源区地幔属性、探讨岩浆演化过程的重要工具,在地球科学发展过程中发挥了举足轻重的作用。尽管如此,熔体包裹体的研究还有一些亟待解决的问题。首先,熔体包裹体样品制备过程复杂,受分析测试仪器的限制,样品制备需要精确挑选合适的单矿物并将熔体包裹体进行均一化处理,此过程中熔体包裹体可能受外界影响而发生破裂或者熔融,导致成分改变,需要对其成分进行仔细评估。为了进行精确的成分分析还需要将熔体包裹体抛光打磨至样品靶表面。这些流程加大了熔体包裹体样品制备的难度。其次,由于熔体包裹体与寄主矿物接触,在演化过程中不同元素或者挥发份与寄主矿物之间可能存在成分交换,使得分析获得的熔体包裹体数据需要经过一系列复杂过程的校正处理,加大了数据解释的难度及可信度。再次,熔体包裹体标样的制备比较困难,限制了对熔体包裹体元素、同位素及挥发份等分析技术的开发。最后,由于测试技术的限制,对熔体包裹体的分析需要熔体包裹体大小及目标元素含量满足要求,这些都阻碍了熔体包裹体在地球科学不同领域的广泛应用。未来,需要科研工作者进一步加强新设备、新技术的研发,优化熔体包裹体的制样及测试流程,提高熔体包裹体测试分析的精度及准确度,拓宽熔体包裹体的应用领域,有望实现熔体包裹体研究质的飞跃。

    近年来,国内学者在熔体包裹体研究方面已经有了较大进步,并取得了可喜的成果,但是众多研究主要集中在陆地之上,而在与陆地构造特征差异明显的海洋领域,国内熔体包裹体研究相对滞后,发展空间广阔。未来,在不断开发熔体包裹体测试分析手段,提高熔体包裹体元素及同位素测试精度及准确度,完善熔体包裹体测试分析流程的前提下,加大弧后盆地火山岩熔体包裹体研究,有望在俯冲作用下弧后盆地岩浆源区地幔性质及岩浆来源、岩浆活动对弧后盆地热液过程的物质贡献等重大科学问题上取得突破。希望本文能起到抛砖引玉的作用,提高国内学者在海洋地质领域熔体包裹体的研究兴趣,推动我国海洋地质研究的更大进步。

  • 图  1   冲绳海槽火山岩橄榄石内代表性熔体包裹体镜下特征[5]

    a.玄武岩内熔体包裹体,b.安山岩内熔体包裹体。

    Figure  1.   Representative photomicrographs of olivine-hosted melt inclusions in Okinawa Trough basalts[5]

    a. melt inclusions in basalt, b. melt inclusions in andesite.

    图  2   西太平洋典型弧后盆地位置图

    Figure  2.   The location map of typical back-arc basins in the western Pacific

    图  3   冲绳海槽中部玄武岩和安山岩橄榄石内熔体包裹体Pb同位素组成[5]

    Figure  3.   Pb isotopic compositions in olivine-hosted melt inclusions from middle Okinawa Trough basalts and andesites[5]

    图  4   马努斯海盆橄榄石内熔体包裹体Re与Yb含量及Yb/Re比值相关图[110]

    Figure  4.   Re abundance versus Yb abundance and Re abundance versus Yb/Re ratios in olivine-hosted melt inclusions in Manus basin[110]

    图  5   斐济海盆坎达武(Kadavu)群岛熔岩及熔体包裹体SiO2 (wt%)与K2O (wt%)、TiO2 (wt%)相关图[114]

    Figure  5.   K2O (wt%) and TiO2 (wt%) vs. SiO2 (wt%) in laves and olivine-hosted melt inclusions from Kadavu Island Group in Fiji basin[114]

    图  6   马里亚纳海槽火山岩和熔体包裹体H2O-CO2含量图[123]

    Figure  6.   CO2 versus H2O contents of laves and melt inclusions from the Mariana Trough[123]

    图  7   PACMANUS安山岩内橄榄石和辉石斑晶中的熔体包裹体内H2O含量(wt%)与S、Cl和F(wt%)的关系[125]

    Figure  7.   H2O contents (wt %) vs. S, Cl, and F (wt %) in the glass of melt inclusions in olivine and pyroxene phenocrysts of andesite from PACMANUS[125]

    图  8   PACMANUS代表性样品熔体包裹体中沉积金属元素变化与代表性岩石的多孔度和SiO2含量有关[126]

    Figure  8.   Variation of metal species in the precipitates in melt inclusions of representative samples from PACMANUS, as related to the vesicularity and SiO2 content of the representative rocks[126]

  • [1]

    Roedder E. Origin and significance of magmatic inclusions [J]. Bulletin de Minéralogie, 1979, 102(5): 487-510. doi: 10.3406/bulmi.1979.7299

    [2]

    Sorby H C. On the microscopical, structure of crystals, indicating the origin of minerals and rocks [J]. Quarterly Journal of the Geological Society, 1858, 14(1-2): 453-500. doi: 10.1144/GSL.JGS.1858.014.01-02.44

    [3]

    Kent A J R. Melt inclusions in basaltic and related volcanic rocks [J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 273-331. doi: 10.2138/rmg.2008.69.8

    [4]

    Roedder E. Fluid inclusions[M]//Ribbe H P. Review in Mineralogy. Washington DC: Mineralogical Society of America, 1984, 12: 644.

    [5]

    Li X H, Ren Z Y, Zeng Z G, et al. Petrogenesis of middle Okinawa Trough volcanic rocks: Constraints from lead isotopes in olivine-hosted melt inclusions[J] Chemical Geology, 2020, 543: 119600.

    [6]

    Zajacz Z, Kovács I, Szabó C, et al. Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary [J]. Journal of Petrology, 2007, 48(5): 853-883. doi: 10.1093/petrology/egm004

    [7]

    Zajacz Z, Halter W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning [J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 1021-1040. doi: 10.1016/j.gca.2006.11.001

    [8]

    Pettke T, Halter W E, Webster J D, et al. Accurate quantification of melt inclusion chemistry by LA-ICPMS: a comparison with EMP and SIMS and advantages and possible limitations of these methods [J]. Lithos, 2004, 78(4): 333-361. doi: 10.1016/j.lithos.2004.06.011

    [9]

    Halter W E, Pettke T, Heinrich C A, et al. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification [J]. Chemical Geology, 2002, 183(1-4): 63-86. doi: 10.1016/S0009-2541(01)00372-2

    [10]

    Sobolev A V, Hofmann A W, Nikogosian I K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas [J]. Nature, 2000, 404(6781): 986-990. doi: 10.1038/35010098

    [11]

    Saal A E, Hart S R, Shimizu N, et al. Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia [J]. Science, 1998, 282(5393): 1481-1484. doi: 10.1126/science.282.5393.1481

    [12]

    Sobolev A V, Chaussidon M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle [J]. Earth and Planetary Science Letters, 1996, 137(1-4): 45-55. doi: 10.1016/0012-821X(95)00203-O

    [13]

    Ren Z Y, Ingle S, Takahashi E, et al. The chemical structure of the Hawaiian mantle plume [J]. Nature, 2005, 436(7052): 837-840. doi: 10.1038/nature03907

    [14]

    Hauri E H, Kent A J R, Arndt N. Melt inclusions at the millennium: toward a deeper understanding of magmatic processes [J]. Chemical Geology, 2002, 183(1-4): 1-3. doi: 10.1016/S0009-2541(01)00368-0

    [15]

    Andersen T, O'Reilly S Y, Griffin W L. The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism [J]. Contributions to Mineralogy and Petrology, 1984, 88(1-2): 72-85. doi: 10.1007/BF00371413

    [16]

    Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9

    [17]

    Frezzotti M L. Silicate-melt inclusions in magmatic rocks: applications to petrology [J]. Lithos, 2001, 55(1-4): 273-299. doi: 10.1016/S0024-4937(00)00048-7

    [18]

    Hansteen T H, Andersen T, Neumann E R, et al. Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: implications for mantle metasomatism [J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 242-254. doi: 10.1007/BF00310710

    [19]

    Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals [J]. Earth-Science Reviews, 2003, 63(1-2): 121-144. doi: 10.1016/S0012-8252(03)00034-5

    [20] 任钟元, 张乐, 吴亚东, 等. 熔体包裹体在镁铁质火山岩成因研究中的应用[J]. 矿物岩石地球化学通报, 2018, 37(3):395-413. [REN Zhongyuan, ZHANG Le, WU Yadong, et al. Melt inclusions and their applications on the origin of mafic volcanic rocks [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 395-413.
    [21]

    Danyushevsky L V, Sokolov S, Falloon T J. Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks [J]. Journal of Petrology, 2002, 43(9): 1651-1671. doi: 10.1093/petrology/43.9.1651

    [22] 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 62(9):1340-1350. [ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton [J]. Science China: Earth Sciences, 2019, 62(9): 1340-1350. doi: 10.1007/s11430-018-9356-y
    [23]

    Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38.

    [24]

    Zheng Y F, Chen Y X. Continental versus oceanic subduction zones [J]. National Science Review, 2016, 3(4): 495-519. doi: 10.1093/nsr/nww049

    [25]

    Turcotte D L, Schubert G. Geodynamics[M]. 3rd ed. Cambridge: Cambridge University Press, 2014: 626.

    [26]

    Kerrick D M, Connolly J A D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle [J]. Nature, 2001, 411(6835): 293-296. doi: 10.1038/35077056

    [27]

    Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust [J]. Earth and Planetary Science Letters, 1994, 121(1-2): 227-244. doi: 10.1016/0012-821X(94)90042-6

    [28]

    Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Nature, 1993, 362(6422): 739-743. doi: 10.1038/362739a0

    [29]

    Hickey-Vargas R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes [J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B9): 20963-20979. doi: 10.1029/98JB02052

    [30]

    Miyazaki T, Kimura J I, Senda R, et al. Missing western half of the Pacific Plate: geochemical nature of the Izanagi-Pacific Ridge interaction with a stationary boundary between the Indian and Pacific mantles [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3309-3332. doi: 10.1002/2015GC005911

    [31] 张国良, 罗青, 陈立辉. 大洋地幔化学组成不均一性成因研究回顾及展望[J]. 海洋地质与第四纪地质, 2017, 37(1):1-13. [ZHANG Guoliang, LUO Qing, CHEN Lihui. Geochemical heterogeneity of oceanic mantle: a review [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 1-13.
    [32]

    Castillo P R, Lonsdale P F, Moran C L, et al. Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga-Kermadec Trench: Implications for the generation of arc lavas [J]. Lithos, 2009, 112(1-2): 87-102. doi: 10.1016/j.lithos.2009.03.041

    [33]

    Yan Q S, Castillo P R, Shi X F. Geochemistry of basaltic lavas from the southern Lau Basin: Input of compositionally variable subduction components [J]. International Geology Review, 2012, 54(12): 1456-1474. doi: 10.1080/00206814.2012.664031

    [34]

    Hawkins J W, Lonsdale P F, Macdougall J D, et al. Petrology of the axial ridge of the Mariana Trough backarc spreading center [J]. Earth and Planetary Science Letters, 1990, 100(1-3): 226-250. doi: 10.1016/0012-821X(90)90187-3

    [35]

    Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: Evidence for heterogeneity and a recycled component in backarc basin mantle [J]. Earth and Planetary Science Letters, 1990, 100(1-3): 251-264. doi: 10.1016/0012-821X(90)90188-4

    [36]

    Martinez F, Taylor B. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin [J]. Marine Geophysical Researches, 1996, 18(2-4): 203-224. doi: 10.1007/BF00286078

    [37]

    Nohara M, Hirose K, Eissen J P, et al. The North Fiji Basin basalts and their magma sources: Part II. Sr-Nd isotopic and trace element constraints [J]. Marine Geology, 1994, 116(1-2): 179-195. doi: 10.1016/0025-3227(94)90175-9

    [38]

    Hawkins J W, Melchior J T. Petrology of Mariana Trough and Lau basin basalts [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B13): 11431-11468.

    [39]

    Sinton J M, Fryer P. Mariana Trough lavas from 18°N: Implications for the origin of back arc basin basalts [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B12): 12782-12802. doi: 10.1029/JB092iB12p12782

    [40] 曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造、岩浆作用与热液活动[J]. 海洋科学集刊, 2016:3-36. [ZENG Zhigang, ZHANG Yuxiang, CHEN Zuxing, et al. Geological tectonics, magmatism and seafloor hydrothermal activity in the back-arc basins of the Western Pacific [J]. Studia Marina Sinica, 2016: 3-36. doi: 10.12036/hykxjk20160725003
    [41]

    Beaudoin Y, Scott S D, Gorton M P, et al. Pb and other ore metals in modern seafloor tectonic environments: Evidence from melt inclusions [J]. Marine Geology, 2007, 242(4): 271-289. doi: 10.1016/j.margeo.2007.04.004

    [42]

    Yang K H, Scott S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system [J]. Nature, 1996, 383(6599): 420-423. doi: 10.1038/383420a0

    [43]

    Kamenetsky V S, Binns R A, Gemmell J B, et al. Parental basaltic melts and fluids in eastern Manus backarc basin: Implications for hydrothermal mineralisation [J]. Earth and Planetary Science Letters, 2001, 184(3-4): 685-702. doi: 10.1016/S0012-821X(00)00352-6

    [44]

    Ren Z Y, Wu Y D, Zhang L, et al. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions [J]. Geochimica et Cosmochimica Acta, 2017, 208: 63-85. doi: 10.1016/j.gca.2017.01.054

    [45]

    Metrich N, Clocchiatti R, Mosbah M, et al. The 1989–1990 activity of Etna magma mingling and ascent of H2O-Cl-S rich basaltic magma. Evidence from melt inclusions [J]. Journal of Volcanology and Geothermal Research, 1993, 59(1-2): 131-144. doi: 10.1016/0377-0273(93)90082-3

    [46]

    Kamenetsky V S, Grütter H, Kamenetsky M B, et al. Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate [J]. Chemical Geology, 2013, 353: 96-111. doi: 10.1016/j.chemgeo.2012.09.022

    [47]

    Marske J P, Hauri E H, Garcia M O, et al. A potential link between magmatic volatiles and mantle source lithology in the Hawaiian Plume: a view from olivine-hosted melt inclusions and osmium isotopes[C]//AGU Fall Meeting Abstracts. AGU, 2013.

    [48]

    Head E M, Shaw A M, Wallace P J, et al. Insight into volatile behavior at Nyamuragira volcano (D. R. Congo, Africa) through olivine‐hosted melt inclusions [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(10): Q0AB11.

    [49]

    Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle [J]. Nature, 2002, 419(6906): 451-455. doi: 10.1038/nature01073

    [50]

    Sisson T W, Bronto S. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia [J]. Nature, 1998, 391(6670): 883-886. doi: 10.1038/36087

    [51]

    Kilgour G, Blundy J, Cashman K, et al. Small volume andesite magmas and melt–mush interactions at Ruapehu, New Zealand: evidence from melt inclusions [J]. Contributions to Mineralogy and Petrology, 2013, 166(2): 371-392. doi: 10.1007/s00410-013-0880-7

    [52]

    Witham F. Conduit convection, magma mixing, and melt inclusion trends at persistently degassing volcanoes [J]. Earth and Planetary Science Letters, 2011, 301(1-2): 345-352. doi: 10.1016/j.jpgl.2010.11.017

    [53]

    Kent A J R, Darr C, Koleszar A M, et al. Preferential eruption of andesitic magmas through recharge filtering [J]. Nature Geoscience, 2010, 3(9): 631-636. doi: 10.1038/ngeo924

    [54]

    Halter W E, Heinrich C A, Pettke T. Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions [J]. Mineralium Deposita, 2005, 39(8): 845-863.

    [55]

    Harvey J, Yoshikawa M, Hammond S J, et al. Deciphering the trace element characteristics in Kilbourne Hole peridotite xenoliths: melt–rock interaction and metasomatism beneath the Rio Grande Rift, SW USA [J]. Journal of Petrology, 2012, 53(8): 1709-1742. doi: 10.1093/petrology/egs030

    [56]

    Schiavi F, Kobayashi K, Nakamura E, et al. Trace element and Pb–B–Li isotope systematics of olivine-hosted melt inclusions: insights into source metasomatism beneath Stromboli (southern Italy) [J]. Contributions to Mineralogy and Petrology, 2012, 163(6): 1011-1031. doi: 10.1007/s00410-011-0713-5

    [57]

    Johnson E R, Wallace P J, Granados H D, et al. Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models [J]. Journal of Petrology, 2009, 50(9): 1729-1764. doi: 10.1093/petrology/egp051

    [58]

    Araújo D P, Griffin W L, O'Reilly S Y. Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave Craton [J]. Lithos, 2009, 112(S2): 675-682.

    [59]

    Zelenski M, Kamenetsky V S, Mavrogenes J A, et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts [J]. Chemical Geology, 2018, 478: 102-111. doi: 10.1016/j.chemgeo.2017.09.013

    [60]

    Kamenetsky V S, Zelenski M, Gurenko A, et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt [J]. Chemical Geology, 2017, 471: 92-110. doi: 10.1016/j.chemgeo.2017.09.019

    [61]

    Borisova A Y, Thomas R, Salvi S, et al. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite–leucogranite melt and fluid inclusions: new evidence for melt–melt–fluid immiscibility [J]. Mineralogical Magazine, 2012, 76(1): 91-113. doi: 10.1180/minmag.2012.076.1.91

    [62]

    Hidas K, Guzmics T, Szabó C, et al. Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary) [J]. Chemical Geology, 2010, 274(1-2): 1-18. doi: 10.1016/j.chemgeo.2010.03.004

    [63]

    Zajacz Z, Halter W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile) [J]. Earth and Planetary Science Letters, 2009, 282(1-4): 115-121. doi: 10.1016/j.jpgl.2009.03.006

    [64]

    Lowenstern J B, Audétat A. Using melt inclusions and fluid inclusions to track ore-metal behavior in magma-hydrothermal systems[C]//AGU Fall Meeting Abstracts. AGU, 2013.

    [65]

    Severs M J, Beard J S, Fedele L, et al. Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions [J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2123-2141. doi: 10.1016/j.gca.2009.01.009

    [66] 张春来, 刘勇胜, 高山, 等. 四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示[J]. 地球化学, 2011, 40(2):109-125. [ZHANG Chunlai, LIU Yongsheng, GAO Shan, et al. Chemical compositions of phenocryst-hosted melt inclusions from the Sihetun basalt: Implications for the magma evolution [J]. Geochimica, 2011, 40(2): 109-125.
    [67] 李霓, 孙嘉祥. 火山岩中熔体包裹体研究进展[J]. 矿物岩石地球化学通报, 2018, 37(3):414-423. [LI Ni, SUN Jiaxiang. A review on research progress of melt inclusion in volcanic rocks [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 414-423.
    [68] 孙贺. 熔体包裹体和Li同位素在地球科学研究中的应用[D]. 合肥: 中国科学技术大学博士学位论文, 2014.

    SUN He. Application of melt inclusions and Li isotope in earth sciences[D]. Hefei: Doctor Dissertation of University of Science and Technology of China, 2014.

    [69] 张乐, 夏小平, 杨晴, 等. 大型离子探针分析熔体包裹体微量元素组成[J]. 地球化学, 2019, 48(1):1-8. [ZHANG Le, XIA Xiaoping, YANG Qing, et al. Determination of trace elements in melt inclusions by secondary ion mass spectrometry [J]. Geochimica, 2019, 48(1): 1-8.
    [70]

    Zhang L, Ren Z Y, Xia X P, et al. In situ determination of trace elements in melt inclusions using laser ablation inductively coupled plasma sector field mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2019, 33(4): 361-370.

    [71] 张乐, 任钟元, 钱生平, 等. LA-MC-ICPMS分析古老熔体包裹体Pb同位素组成中的误差评价[J]. 岩矿测试, 2015, 34(4):399-407. [ZHANG Le, REN Zhongyuan, QIAN Shengping, et al. Evaluation of Error propagation in lead isotope analysis of ancient melt inclusions by LA-MC-ICP-MS [J]. Rock and Mineral Analysis, 2015, 34(4): 399-407.
    [72]

    Zhang L, Ren Z Y, Nichols A R L, et al. Lead isotope analysis of melt inclusions by LA-MC-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2014, 29(8): 1393-1405. doi: 10.1039/C4JA00088A

    [73]

    Liu J Q, Ren Z Y, Nichols A R L, et al. Petrogenesis of late cenozoic basalts from North Hainan Island: constraints from melt inclusions and their host olivines [J]. Geochimica et Cosmochimica Acta, 2015, 152: 89-121. doi: 10.1016/j.gca.2014.12.023

    [74]

    Qian S P, Ren Z Y, Zhang L, et al. Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: Implications for petrogenesis and mantle source [J]. Chemical Geology, 2015, 401: 111-125. doi: 10.1016/j.chemgeo.2015.02.018

    [75]

    Duan X Z, Sun H, Yang W, et al. Melt–peridotite interaction in the shallow lithospheric mantle of the North China Craton: evidence from melt inclusions in the quartz-bearing orthopyroxene-rich websterite from Hannuoba [J]. International Geology Review, 2014, 56(4): 448-472. doi: 10.1080/00206814.2013.873357

    [76]

    Qian S P, Ren Z Y, Richard W, et al. Petrogenesis of Early Cretaceous basaltic lavas from the North China Craton: Implications for cratonic destruction [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(3): 1900-1918.

    [77]

    Sun H, Xiao Y L, Gao Y J, et al. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction [J]. Contributions to Mineralogy and Petrology, 2013, 165(5): 885-901. doi: 10.1007/s00410-012-0840-7

    [78]

    Zhang Y H, Ren Z Y, Hong L B, et al. Differential partial melting process for temporal variations of Shandong basalts revealed by melt inclusions and their host olivines [J]. Gondwana Research, 2017, 49: 205-221. doi: 10.1016/j.gr.2017.05.019

    [79]

    Nielsen R L, Michael P J, Sours-Page R. Chemical and physical indicators of compromised melt inclusions [J]. Geochimica et Cosmochimica Acta, 1998, 62(5): 831-839. doi: 10.1016/S0016-7037(98)00024-6

    [80] 丁一, 刘吉强, 宗统, 等. 熔体包裹体挥发分应用的研究进展[J]. 岩石矿物学杂志, 2019, 38(6):897-913. [DING Yi, LIU Jiqiang, ZONG Tong, et al. A review on the application of volatiles in melt inclusions [J]. Acta Petrologica et Mineralogical, 2019, 38(6): 897-913. doi: 10.3969/j.issn.1000-6524.2019.06.018
    [81] 李晓辉. 冲绳海槽岩浆的演化过程及其俯冲组分特征: 熔体包裹体指示[D]. 青岛: 中国科学院大学(中国科学院海洋研究所) 博士学位论文, 2019.

    LI Xiaohui. Evolution process of magma in the Okinawa Trough and its subduction composition characteristics: melt inclusion indication[D]. Qingdao: Doctor Dissertation of University of Chinese Academy of Sciences, Institute of Oceanology, Chinese Academy of Sciences, 2019.

    [82] 王蝶, 卢焕章, 单强. 岩浆熔体包裹体研究进展[J]. 岩石学报, 2017, 33(2):653-666. [WANG Die, LU Huanzhang, SHAN Qiang. Advances on melt inclusion studies [J]. Acta Petrologica Sinica, 2017, 33(2): 653-666.
    [83] 张道涵, 魏俊浩, 付乐兵, 等. 熔体包裹体的形成、改造和分析方法及其矿床学应用[J]. 地球科学——中国地质大学学报, 2017, 42(6):990-1007. [ZHANG Daohan, WEI Junhao, FU Lebing, et al. Formation, modification and analytical techniques of melt inclusion, and their applications in economic geology [J]. Earth Science——Journal of China University of Geosciences, 2017, 42(6): 990-1007. doi: 10.3799/dqkx.2017.079
    [84] 赵令浩, 詹秀春, 胡明月, 等. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用[J]. 岩矿测试, 2013, 32(1):1-14. [ZHAO Linghao, ZHAN Xiuchun, HU Mingyue, et al. Laser ablation-inductively coupled plasma-mass spectrometric analysis methods of melt inclusions and its geological applications [J]. Rock and Mineral Analysis, 2013, 32(1): 1-14. doi: 10.3969/j.issn.0254-5357.2013.01.002
    [85] 郭玲利, 魏俊浩, 周圣华. 单矿物中熔体包裹体研究进展及地质指示意义[J]. 地质与勘探, 2009, 45(1):36-40. [GUO Lingli, WEI Junhao, ZHOU Shenghua. Research progress and geological significance of melt inclusions in single mineral [J]. Geology and Exploration, 2009, 45(1): 36-40.
    [86] 石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7):737-750. [SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific [J]. Advances in Earth Science, 2013, 28(7): 737-750. doi: 10.11867/j.issn.1001-8166.2013.07.0737
    [87]

    Hoang N, Uto K. Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB mantle [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 229-240. doi: 10.1016/j.jpgl.2006.07.021

    [88]

    Guo K, Zhai S K, Yu Z H, et al. Sr–Nd–Pb isotopic geochemistry of phenocrysts in pumice from the central Okinawa Trough [J]. Geological Journal, 2016, 51(S1): 368-375.

    [89]

    Shu Y C, Nielsen S G, Zeng Z G, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa trough system: Evidence from thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2017, 217: 462-491. doi: 10.1016/j.gca.2017.08.035

    [90]

    Guo K, Zhai S K, Yu Z H, et al. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: Implications for the influence of subduction components and the contamination of crustal materials [J]. Journal of Marine Systems, 2018, 180: 140-151. doi: 10.1016/j.jmarsys.2016.11.009

    [91]

    Pi J L, You C F, Wang K L. The influence of Ryukyu subduction on magma genesis in the Northern Taiwan Volcanic Zone and Middle Okinawa Trough—Evidence from boron isotopes [J]. Lithos, 2016, 260: 242-252. doi: 10.1016/j.lithos.2016.06.007

    [92]

    Li X H, Zeng Z G, Yang H X, et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: Implications for petrogenesis and variable subducted sediment component injection [J]. Geological Journal, 2019, 54(3): 1160-1189. doi: 10.1002/gj.3217

    [93]

    Li X H, Zeng Z G, Chen S, et al. Geochemical and Sr–Nd–Pb isotopic compositions of volcanic rocks from the Iheya Ridge, the middle Okinawa Trough: implications for petrogenesis and a mantle source [J]. Acta Oceanologica Sinica, 2018, 37(1): 73-88. doi: 10.1007/s13131-017-1118-8

    [94]

    Li X H, Zeng Z G, Yang H X, et al. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component [J]. Lithos, 2020, 352-353: 105320. doi: 10.1016/j.lithos.2019.105320

    [95]

    Li X H, Zeng Z G, Dan W, et al. Source lithology and crustal assimilation recorded in low δ18O olivine from Okinawa Trough, back-arc basin [J]. Lithos, 2020, 360-361: 105444. doi: 10.1016/j.lithos.2020.105444

    [96]

    Shinjo R. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system [J]. Chemical Geology, 1999, 157(1-2): 69-88. doi: 10.1016/S0009-2541(98)00199-5

    [97]

    Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2

    [98]

    Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin [J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7

    [99] 于增慧, 翟世奎, 赵广涛. 冲绳海槽浮岩中岩浆包裹体岩石化学成分特征[J]. 海洋与湖沼, 2001, 32(5):474-482. [YU Zenghui, ZHAI Shikui, ZHAO Guangtao. The petrochemical feature of melt inclusion in acid pumice in the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 2001, 32(5): 474-482. doi: 10.3321/j.issn:0029-814X.2001.05.002
    [100]

    Li X H, Zeng Z G, Wang X Y, et al. Petrogenesis of basalt from the middle Okinawa Trough: New insights from olivine-hosted melt inclusions [J]. Geological Journal, 2018, 53(6): 3129-3146. doi: 10.1002/gj.3150

    [101]

    Tian L Y, Castillo P R, Hawkins J W, et al. Major and trace element and Sr–Nd isotope signatures of lavas from the Central Lau Basin: implications for the nature and influence of subduction components in the back-arc mantle [J]. Journal of Volcanology and Geothermal Research, 2008, 178(4): 657-670. doi: 10.1016/j.jvolgeores.2008.06.039

    [102] 鄢全树, 石学法, 李乃胜. 西南太平洋劳海盆地质学研究进展[J]. 海洋地质与第四纪地质, 2010, 30(1):131-140. [YAN Quanshu, SHI Xuefa, LI Naisheng. Geology of Lau basin in the southwest Pacific Ocean [J]. Marine Geology & Quaternary Geology, 2010, 30(1): 131-140.
    [103]

    Falloon T J, Malahoff A, Zonenshaina L P, et al. Petrology and geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°S [J]. Mineralogy and Petrology, 1992, 47(1): 1-35. doi: 10.1007/BF01165295

    [104]

    Hilton D R, Hammerschmidt K, Loock G, et al. Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of crust/mantle interactions in a back-arc basin [J]. Geochimica et Cosmochimica Acta, 1993, 57(12): 2819-2841. doi: 10.1016/0016-7037(93)90392-A

    [105]

    Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within the Tonga–Kermadec–Lau arc–back-arc systems: the role of varying mantle wedge composition in space and time [J]. Journal of Petrology, 1998, 39(3): 331-368. doi: 10.1093/petroj/39.3.331

    [106]

    Pearce J A, Ernewein M, Bloomer S H, et al. Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity [J]. Geological Society, London, Special Publications, 1994, 81(1): 53-75. doi: 10.1144/GSL.SP.1994.081.01.04

    [107]

    Macpherson C G, Mattey D P. Oxygen isotope variations in Lau Basin lavas [J]. Chemical Geology, 1998, 144(3-4): 177-194. doi: 10.1016/S0009-2541(97)00130-7

    [108]

    Kamenetsky V S, Crawford A J, Eggins S, et al. Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components [J]. Earth and Planetary Science Letters, 1997, 151(3-4): 205-223. doi: 10.1016/S0012-821X(97)81849-3

    [109]

    Layne G D, Kent A J R, Bach W. δ37Cl systematics of a backarc spreading system: the Lau Basin [J]. Geology, 2009, 37(5): 427-430. doi: 10.1130/G25520A.1

    [110]

    Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas [J]. Nature, 2003, 422(6929): 294-297. doi: 10.1038/nature01482

    [111]

    Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: evidence from Lau Basin basaltic glasses and primitive melt inclusions [J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.jpgl.2004.02.011

    [112]

    Auzende J M, Rissen J P, Lafoy Y, et al. Seafloor spreading in the north Fiji basin (Southwest Pacific) [J]. Tectonophysics, 1988, 146(1-4): 317-352. doi: 10.1016/0040-1951(88)90098-4

    [113]

    Auzende J M, Pelletier B, Lafoy Y. Twin active spreading ridges in the North Fiji Basin (southwest Pacific) [J]. Geology, 1994, 22(1): 63-66. doi: 10.1130/0091-7613(1994)022<0063:TASRIT>2.3.CO;2

    [114]

    Danyushevsky L V, Falloon T J, Crawford A J, et al. High-Mg adakites from Kadavu Island Group, Fiji, southwest Pacific: Evidence for the mantle origin of adakite parental melts [J]. Geology, 2008, 36(6): 499-502. doi: 10.1130/G24349A.1

    [115]

    Leslie R A J, Danyushevsky L V, Crawford A J, et al. Primitive shoshonites from Fiji: Geochemistry and source components [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07001.

    [116]

    Zhao G T, Luo W Q, Lai Z Q, et al. Influence of subduction components on magma composition in back‐arc basins: a comparison between the Mariana and Okinawa troughs [J]. Geological Journal, 2016, 51(S1): 357-367.

    [117]

    Pearce J A, Stern R J. Origin of back-arc basin magmas: trace element and isotope perspectives [J]. Geophysical Monograph-American Geophysical Union, 2006, 166: 63-86.

    [118]

    Tian L Y, Zhao G T, Zhao G C, et al. Geochemistry of basaltic lavas from the Mariana Trough: evidence for influence of subduction component on the generation of backarc basin magmas [J]. International Geology Review, 2005, 47(4): 387-397. doi: 10.2747/0020-6814.47.4.387

    [119]

    Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin [J]. Geochimica et Cosmochimica Acta, 1996, 60(12): 2153-2166. doi: 10.1016/0016-7037(96)00078-6

    [120]

    Yan Q S, Zhang P Y, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes [J]. Mineralogy and Petrology, 2019, 113(6): 803-820. doi: 10.1007/s00710-019-00683-x

    [121]

    Park S H, Lee S M, Kamenov G D, et al. Tracing the origin of subduction components beneath the South East Rift in the Manus basin, Papua New Guinea [J]. Chemical Geology, 2010, 269(3-4): 339-349. doi: 10.1016/j.chemgeo.2009.10.008

    [122]

    Sinton J M, Ford L L, Chappell B, et al. Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea [J]. Journal of Petrology, 2003, 44(1): 159-195. doi: 10.1093/petrology/44.1.159

    [123]

    Newman S, Stolper E, Stern R. H2O and CO2 in magmas from the Mariana arc and back arc systems [J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1013.

    [124]

    Parman S W, Grove T L, Kelley K A, et al. Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths [J]. Journal of Petrology, 2011, 52(2): 257-278. doi: 10.1093/petrology/egq079

    [125]

    Yang K H, Scott S D. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: Evidence from melt inclusions [J]. Economic Geology, 2005, 100(6): 1085-1096. doi: 10.2113/gsecongeo.100.6.1085

    [126]

    Yang K H, Scott S D. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific [J]. Economic Geology, 2002, 97(5): 1079-1100. doi: 10.2113/gsecongeo.97.5.1079

    [127]

    Sun W D, Binns R A, Fan A C, et al. Chlorine in submarine volcanic glasses from the eastern Manus basin [J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1542-1552. doi: 10.1016/j.gca.2006.12.003

    [128]

    Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization [J]. Nature, 2004, 431(7011): 975-978. doi: 10.1038/nature02972

    [129] 孙海青, 高爱国, 倪培, 等. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展, 2004, 22(3):292-298. [SUN Haiqing, GAO Aiguo, NI Pei, et al. A preliminary study on melt inclusions in basalts from the mariana trough [J]. Advances in Marine Science, 2004, 22(3): 292-298. doi: 10.3969/j.issn.1671-6647.2004.03.005
    [130] 翟世奎, 张杰, 张明书, 等. 冲绳海槽浮岩包裹体的测温试验[J]. 海洋与湖沼, 2001, 32(1):67-73. [ZHAI Shikui, ZHANG Jie, ZHANG Shuming, et al. Temperature measuring test on inclusions in pumice in the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 2001, 32(1): 67-73. doi: 10.3321/j.issn:0029-814X.2001.01.011
图(8)
计量
  • 文章访问数:  2179
  • HTML全文浏览量:  495
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-25
  • 修回日期:  2020-10-16
  • 网络出版日期:  2021-02-28
  • 刊出日期:  2021-02-27

目录

/

返回文章
返回