Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size
-
摘要: 为了研究粒径因素对于潮间带沉积物吸附多环芳烃(PAHs)的影响,基于索氏提取法、比值法、统计分析法和室内等温吸附实验以及0~31、32~64 μm和大于64 μm这三种不同粒径的沉积物对于16种多环芳烃各自吸附参数的反演计算,研究盐城潮滩沉积物PAHs赋存状态以及沉积物粒径对PAHs的吸附能力。结果表明,研究地点的潮滩沉积物中PAHs含量为49.67~141.90 ng·g−1,平均为74.92 ng·g−1。沉积物中的PAHs主要以3环、4环和5环为主, 其主要来源为高温燃烧源。在沉积物有机质含量极低时, 粒径对PAHs的吸附起主导作用。
-
关键词:
- 沉积物 /
- 多环芳烃(PAHs) /
- 吸附能力 /
- 粒径 /
- 盐城潮滩
Abstract: In order to study the adsorption behavior of the intertidal sediment adsorption of polycyclic aromatic hydrocarbons (PAHs), we use the Soxhlet extraction method, characteristic ratio method, statistical analysis, isothermal adsorption experiment, together with sediment adsorption parameter modeling and inverse calculations for three different particle size groups (i.e., 0~31 μm, 32~64 μm, and > 64 μm) to identify the influence of particle size on the adsorption parameter. The results reveal that the contents of PAHs varied from 49.67~141.90 ng·g−1, with an average of 74.92 ng·g−1. The PAHs were primarily trinuclear, tetracyclic or pentacyclic, and the surface sediment PAHs in the study area had a mixed origin of combustion. When the organic matter content in sediments is relatively low, particle size plays a major role in PAHs adsorption. -
天然气水合物是一种由水分子和气体分子在低温高压条件下形成的似冰状笼形结晶化合物,广泛赋存于海底沉积物和高原冻土带中,被公认为资源量巨大的潜在能源[1],得到了科技界和各国政府的关注。我国已于2017年5月在南海神狐海域成功进行了天然气水合物的试采[2]。
含天然气水合物沉积介质是赋存有天然气水合物的多孔介质。在自然条件下,外界温度和压力条件的改变会导致地层中的水合物分解。水合物的分解一方面降低了颗粒之间的胶结性,另一方面分解产生的液体会使地层液化,降低含水合物地层的稳定性,进而可能诱发海底地质灾害[3]。在水合物开采过程中,降压、热激等方法的应用以及钻井液的入侵都会改变含水合物沉积介质的力学性质,弱化沉积介质的强度,影响井壁稳定性和储层稳定性,可能诱发生产事故和地质灾害[4]。对含水合物沉积介质的力学性质进行研究,建立能有效描述含水合物沉积介质力学特性的力学模型,是研究含水合物地层井壁稳定性和储层稳定性的前提。
前期系列试验研究初步揭示了含水合物沉积介质的力学特性[5-16]。研究表明水合物饱和度[7, 9-11, 15]、围压[5, 6]、赋存模式[17]、剪切速率[8]、温度[8, 15]等都会影响含水合物沉积介质的力学性质。因此,在构建力学模型的过程中应该尽可能全面地考虑这些影响因素。在大量试验的基础上,一些学者建立了不同的含水合物沉积介质的力学模型。Klar等[18]将含水合物沉积介质的刚度、粘聚力和剪胀角看作水合物饱和度的函数,利用摩尔—库伦破坏准则,建立了含水合物沉积介质的弹塑性力学模型。该模型参数较少,能较好地描述含水合物沉积介质峰值强度及弹性模量与水合物饱和度之间的关系,但不能反映出应变软化特性。Uchida等[19]在传统临界状态模型的基础上通过修正屈服函数,建立了适用于降压开采过程的含水合物沉积介质的力学模型。该模型虽然可以描述沉积介质应力-应变的全过程,但参数多且部分参数物理意义不明确。吴二林等[20, 21]将含水合物沉积介质假定为线弹性材料,采用几何损伤理论建立了含水合物沉积介质的本构模型。但损伤模型假设材料破坏后完全失去承载力,这与实际情况不符[22]。在众多的岩土力学模型中,邓肯-张模型(Duncan-Chang)因其可以准确地描述含水合物沉积介质应力-应变的非线性弹性关系,且参数物理意义明确,得到了广泛应用。Miyazaki等[23]将水合物饱和度和有效围压引入经典的邓肯-张模型,建立了适用于含天然气水合物的非线性弹性模型。
虽然有学者[10, 23, 24]借鉴Miyzaki[17]的研究对含水合物沉积介质抗剪强度与水合物饱和度和有效围压之间的数学关系进行了探索,但尚未建立细砂质含水合物沉积介质的非线性弹性模型。笔者以细砂质含水合物沉积介质的三轴力学试验实测数据为基础,结合Miyazaki等[23]提出的含水合物沉积介质邓肯-张模型,建立了适合南海含水合物沉积介质的非线性弹性模型,并对模型的准确性进行了验证。
1. 三轴试验
1.1 试验仪器和试验材料
本次试验采用的仪器为中国科学院广州能源研究所自建的含天然气水合物三轴力学试验装置。装置的技术指标为:反应釜为圆柱形,尺寸为φ50mm×100mm;三轴腔室的最大围压为30MPa,最大孔隙压力为30MPa,最大反压为20MPa,最大轴向压力为250KN,压力传感器的精度误差优于0.12%F.S。温度的控制范围为—30~50℃。
本文试验用沉积细砂由广州海洋地质调查局提供,由“海洋四号”地质调查船在南海北部海底钻取。沉积细砂经过标准检验筛(60~100目)筛选[25]。
试验步骤主要包括:(1)检漏;(2)制备沉积试样;(3)原位法生成水合物;(4)三轴剪切;(5)收集水合物分解气反算饱和度。试验装置和试验步骤的具体细节详见前期研究成果[25]。
1.2 试验结果
通过一系列试验,分别选取了单调加载和循环加载的试验结果进行研究,具体的试验结果如下:
图 1给出了本次试验的应力摩尔圆,并通过应力摩尔圆的公切线得到了强度包络线,强度包络线在应力轴的截距为粘聚力c,强度包络线与应变轴的交角为内摩擦角φ。
图 2给出了不含水合物沉积试样和水合物饱和度为35%时沉积试样的应力-应变关系。从图中可以看出,在有效围压不变的条件下,随着饱和度的增大,含水合物沉积介质的力学强度和刚度也明显增大。这与前人的试验结论[5, 26]一致。
图 3给出了循环加载试验的结果,循环加载主要是分2次降低了沉积介质中水合物饱和度。从图中可知,在水合物饱和度和有效围压同时改变的条件下,沉积介质的应力-应变曲线依然表现出非线性弹性关系。
2. 非线性弹性模型
2.1 邓肯-张双曲线关系
Duncan等[27]基于可以用双曲线拟合应力-应变关系的假设,提出了一种目前被广泛应用的增量弹性模型,称为邓肯-张模型。其应力-应变关系如下:
$$ \sigma_{1}-\sigma_{3}=\frac{\varepsilon_{a}}{a+b \varepsilon_{a}} $$ (1) 其中,σ1为轴向应力(MPa);σ3为围压(MPa);σ1-σ3为偏差应力(MPa);εa为轴向应变(%);a和b为试验常数。通过引入初始变形模量Ei、强度(σ1-σ′3)f和破坏比Rf,式(1)可以改写为(2):
$$ \sigma_{1}-\sigma_{3}^{\prime}=\frac{\varepsilon_{a}}{\frac{1}{E_{i}}+\frac{R_{f} \cdot \varepsilon_{a}}{\left(\sigma_{1}-\sigma_{3}^{\prime}\right)_{f}}} $$ (2) 需要说明的是:在含水合物沉积力学研究中,认为含水合物沉积介质的力学强度是轴向应力σ1与有效围压σ′3的差值,因此在公式(2)中将(1)中的σ3改为σ′3。
2.2 模型的构建
由2.1的公式推导可知,构建含水合物沉积介质的非线性弹性模型,需要建立沉积介质的破坏强度(σ1-σ′3)f、初始弹性模量Ei和破坏比Rf的数学关系。下面给出这3个参数的数学表达。
2.2.1 破坏强度
含水合物沉积介质的力学强度主要受水合物饱和度和有效围压的影响。沉积介质的粘聚力可视作饱和度的函数,内摩擦角可视为常量[22]。以摩尔-库伦强度准则为基础,考虑水合物饱和度的影响,含水合物沉积介质的力学强度(σ1-σ′3)f可以表示为[23]:
$$\left(\sigma_{1}-\sigma_{3}^{\prime}\right)_{f}=\frac{2 \cdot \cos \varphi}{1-\sin \varphi} c+\alpha \cdot S_{h}^{\beta}+\frac{2 \cdot \sin \varphi}{1-\sin \varphi} \sigma_{3}^{\prime} $$ (3) 其中,φ为内摩擦角(°);c为Sh=0条件下沉积物的粘聚力;σ′3为有效围压;α、β为试验参数。
根据摩尔-库伦强度理论,通过摩尔圆的公切线可以得到内摩擦角和粘聚力的值(图 1)。利用不同饱和度下沉积介质的强度值(图 2、图 3),通过最小二乘法可以回归得到α和β的值。公式(3)中的参数值见表 1:
表 1 细砂质含水合物沉积介质强度的基本参数Table 1. Basic parameter for strength of fine sandy hydrate-bearing sediments试样 α(-) β(-) φ/(°) c0/MPa 含水合物沉积介质 0.003 2.1 9.54 1.414 2.2.2 初始弹性模量
Miyazaki等[23]研究认为,含水合物沉积介质的初始弹性模量受饱和度和有效围压的影响,与有效围压之间呈幂关系变化。初始弹性模量:
$$E_{i}=\left(1+\gamma \cdot S_{h}^{\delta}\right) \cdot e_{i 0} \cdot\left(\sigma_{3}^{\prime}\right)^{n} $$ (4) 其中,ei0为饱和度为零时(Sh=0),沉积介质的初始弹性模量;γ、δ和n为试验参数。公式(4)的等号两边物理量纲有差异,在未来的研究中可以进一步改进。
通过含水合物沉积介质应力-应变关系曲线(图 2、图 3),在图 2中可以获得2组初始切线模量,在图 3中可以获得3组不同饱和度下的初始切线模量,利用饱和度为零的初始切线模量ei0和另外4组切线模量,利用最小二乘法回归得到的公式(4)中参数的数值(表 2)。
表 2 细砂质含水合物沉积介质初始弹性模量公式的基本参数Table 2. Basic parameters for initial tangent elastic modulus of fine sandy hydrate-bearing sediments试样 γ(-) δ(-) ei0/MPa n(-) 含水合物沉积介质 0.0015 2.01 395 0.7 2.2.3 破坏比
Duncan等[20]在总结大量的土力学试验数据的基础上,给出了破坏比Rf的经验公式,一般取值范围为0.7~0.9。Miyazaki等[17]通过对利用浦丰砂以及7号、8号硅砂合成的水合物沉积介质的三轴试验,总结发现破坏比Rf的取值范围同样为0.7~0.9,但尚未给出破坏比Rf与有效围压和饱和度的关系。本文以Duncan的经验公式为基础,推导了含水合物沉积介质破坏比的计算公式,具体方法如下:
结合公式(2)和公式(3),可以得到破坏比Rf的经验表达式:
$$ R_{f}=\frac{\frac{2 \cdot \cos \varphi}{1-\sin \varphi}\left(c_{0}+\sigma_{3}^{\prime}\right)+\alpha \cdot S_{h}^{\beta}}{\left(\sigma_{1}-\sigma_{3}\right)_{u l t}} $$ (5) Duncan等[26]给出了求取极限偏差应力(σ1-σ3)ult的经验公式:
$$\left(\sigma_{1}-\sigma_{3}\right)_{u l t}=\frac{\left(\varepsilon_{a}\right)_{95 \%}-\left(\varepsilon_{a}\right)_{70 \%}}{\left(\frac{\varepsilon_{a}}{\sigma_{1}-\sigma_{3}}\right)_{95 \%}-\left(\frac{\varepsilon_{a}}{\sigma_{1}-\sigma_{3}}\right)_{70 \%}} $$ (6) 其中,$\left(\varepsilon_{a}\right) _{70 \% / 95 \%}$和$\left(\frac{\varepsilon_{a}}{\sigma_{1}-\sigma_{3}}\right)_{70 \% / 95 \%}$为(σ1-σ3)达到70%/95%(σ1-σ3)f时的试验值。该公式是总结常规土力学试验得到的,考虑到含水合物沉积介质与常规土的不同,公式的准确度还需要大量含水合物沉积介质的力学试验数据的检验和校正。
因此,由公式(5)和公式(6)可以计算含水合物沉积介质的破坏比Rf。本研究只是通过理论推导得到破坏比Rf的表达式,该公式的适用范围还有待更多的试验数据进一步的验证。
由前文的推导可知,含水合物沉积介质的应力-应变关系可以表示为:
$$ \sigma_{1}-\sigma_{3}=\\ \frac{{{\varepsilon _a}}}{{\frac{1}{{\left[ {1 + \gamma \cdot S_h^\delta } \right] \cdot {e_{i0}} \cdot {{\left( {\sigma _3^\prime } \right)}^n}}} + \frac{{{R_f} \cdot {\varepsilon _a}}}{{\frac{{2 \cdot \cos \varphi }}{{1 - \sin \varphi }}{c_0} + \alpha \cdot S_h^\beta + \frac{{2 \cdot \cos \varphi }}{{1 - \sin \varphi }}\sigma _3^\prime }}}} $$ (7) 其中,破坏比Rf取0.86(取值范围为0.7~0.9),其他参数取值参见表 1和表 2。
由公式(7)可知,含水合物沉积介质的应力-应变关系受水合物饱和度和有效围压的影响,但试验结果表明,应力-应变关系还受剪切速率和温度的影响,该模型并未体现出二者的影响。因此模型还有进一步改进的空间。
3. 模型验证
为了说明本文给出的细砂质含水合物沉积介质非线性弹性力学模型的有效性,将模型的计算结果与试验结果进行了对比(图 2、图 3),发现模型计算值与试验值符合度较好。
由图 2和图 3可以看出本文给出的非线性弹性模型不仅能够描述细砂质含水合物沉积介质在常规三轴剪切条件下的非线性弹性应力-应变关系,还能够描述在水合物饱和度和有效围压同时改变的条线下,沉积介质应力-应变的非线性弹性关系。但是本文给出的模型和参数只能描述符合双曲线特征的应力-应变关系,无法描述应变软化特征。
4. 结论
(1) 以细砂质含水合物沉积介质力学三轴试验数据为基础,结合前人的研究成果,给出适合细砂质含水合物沉积介质的非线性弹性模型及其参数。该模型形式简单,参数物理意义明确。通过将模型的计算结果与试验结果进行对比验证了模型的适用性。
(2) 通过理论推导给出了计算破坏比的公式,但该公式的适用性还需要更多的试验数据进一步的检验。初始弹性模量的表达式存在量纲不一致的问题,未来可以做进一步修正。
(3) 给出的模型中含水合物沉积介质应力-应变关系只受饱和度和有效围压的影响,但应力-应变关系还受到剪切速率和温度等因素的影响,后续研究将对模型进行进一步改进,使其能考虑更多的影响因素。
-
特征分子比 石油燃烧 煤炭燃烧 草木燃烧 石油源 荧蒽/(荧蒽+芘) 0.4~0.5 >0.5 >0.5 <0.4 苯并[a]蒽/(苯并[a]蒽+䓛) >0.35 >0.35 >0.35 <0.2 茚并芘/(茚并芘+苯并苝) 0.2~0.5 >0.5 >0.5 <0.2 表 2 沉积物中PAHs分子比值
Table 2 Isomeric ratios of PAHs in sediments
特征分子比 范围 平均值 指示意义 荧蒽/(荧蒽+芘) 0.44~0.55 0.51 燃烧源 苯并[a]蒽/(苯并[a]蒽+䓛) 0.27~0.49 0.41 燃烧源 茚并芘/(茚并芘+苯并苝) 0.41~0.53 0.49 石油燃烧源 表 3 PAHs组分在主成分上的因子载荷和累积方差
Table 3 The components load of PAHs (PC1) in sediment and the variance of PCA (PC2)
PAHs组分 PC1 PC2 萘 0.484 0.743 苊烯 0.798 0.435 苊 0.902 0.375 芴 0.905 0.105 菲 0.946 −0.053 蒽 0.955 −0.053 荧蒽 0.959 −0.227 芘 0.906 −0.301 苯并[a]蒽 0.986 −0.152 䓛 0.953 −0.278 苯并[b]荧蒽 0.957 −0.219 苯并[k]荧蒽 0.924 0.189 苯并[a]芘 0.983 −0.079 二苯并[a,h]蒽 0.946 0.104 茚并[1,2,3-cd]芘 0.969 −0.005 苯并[g,h,i]苝 0.967 −0.128 累积方差% 84.696 92.468 表 4 Freundlich模型下盐城潮滩三种粒径物质颗粒吸附能力参数
Table 4 Freundlich sorption parameters of PAHs with different sediment sizes from the Yancheng tidal flat
PAHs组分 粒径/μm K n R2 萘 0~31 8.09 1.22 0.96 32~64 6.00 1.24 0.94 >64 5.80 1.25 0.97 苊烯 0~31 25.87 1.02 0.94 32~64 20.46 1.02 0.97 >64 18.77 1.03 0.95 苊 0~31 27.07 1.00 0.96 32~64 22.27 1.01 0.94 >64 17.27 1.02 0.95 芴 0~31 16.73 1.04 0.94 32~64 14.41 1.05 0.97 >64 14.90 1.04 0.96 菲 0~31 22.38 1.07 0.95 32~64 21.07 1.07 0.94 >64 16.91 1.10 0.96 蒽 0~31 29.12 1.07 0.96 32~64 22.61 1.09 0.97 >64 23.94 1.06 0.96 荧蒽 0~31 26.29 1.06 0.94 32~64 21.04 1.10 0.95 >64 24.32 1.09 0.96 芘 0~31 20.26 1.15 0.95 32~64 19.47 1.15 0.95 >64 16.81 1.15 0.95 苯并[a]蒽 0~31 26.46 1.14 0.96 32~64 18.96 1.14 0.94 >64 14.45 1.17 0.94 䓛 0~31 27.28 1.10 0.95 32~64 21.23 1.08 0.97 >64 23.33 1.06 0.96 苯并[b]荧蒽 0~31 23.11 1.20 0.98 32~64 19.42 1.21 0.96 >64 21.74 1.19 0.94 苯并[k]荧蒽 0~31 24.78 1.22 0.97 32~64 21.27 1.23 0.98 >64 18.23 1.24 0.98 苯并[a]芘 0~31 23.69 1.09 0.95 32~64 16.57 1.08 0.96 >64 14.63 1.11 0.96 二苯并[a,h]蒽 0~31 38.33 1.08 0.96 32~64 33.05 1.10 0.95 >64 28.15 1.09 0.95 茚并[1,2,3-cd]芘 0~31 18.01 1.34 0.94 32~64 15.68 1.38 0.96 >64 16.12 1.37 0.96 苯并[g,h,i]苝 0~31 10.25 1.20 0.96 32~64 9.50 1.20 0.95 >64 9.52 1.18 0.96 -
[1] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5
[2] Zhang Y X, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004 [J]. Atmospheric Environment, 2009, 43(4): 812-819. doi: 10.1016/j.atmosenv.2008.10.050
[3] Kim G B, Maruya K A, Lee R F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea [J]. Marine Pollution Bulletin, 1999, 38(1): 7-15. doi: 10.1016/S0025-326X(99)80006-X
[4] Lin C, Liu J L, Wang R M, et al. Polycyclic aromatic hydrocarbons in surface soils of Kunming, China: concentrations, distribution, sources, and potential risk [J]. Soil and Sediment Contamination: An International Journal, 2013, 22(7): 753-766. doi: 10.1080/15320383.2013.768201
[5] Gao S, Collins M B. Holocene sedimentary systems on continental shelves [J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021
[6] 毕丽姣, 周岩梅, 张林林, 等. 太子河中游河段有机污染物分布特征研究[J]. 环境科学与技术, 2016, 39(S1):164-168 BI Lijiao, ZHOU Yanmei, ZHANG Linlin, et al. Distribution characteristics of organic contaminant in middle reaches of Taizihe river [J]. Environmental Science & Technology, 2016, 39(S1): 164-168.
[7] 王喆, 卢丽. 南宁市清水泉地下河水中多环芳烃分布特征[J]. 环境科学与技术, 2016, 39(4):132-136 WANG Zhe, LU Li. Distribution characteristics of polycyclic aromatic hydrocarbons in water from Qingshuiquan underground river in Nanning [J]. Environmental Science & Technology, 2016, 39(4): 132-136.
[8] Müller S, Wilcke W, Kanchanakool N, et al. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in particle-size separates of urban soils in Bangkok, Thailand [J]. Soil Science, 2000, 165(5): 412-419. doi: 10.1097/00010694-200005000-00005
[9] Wang B, Wang C, Huang Q Y, et al. Adsorption of PAHs on the sediments from the Yellow River delta as a function of particle size and salinity [J]. Soil and Sediment Contamination: An International Journal, 2015, 24(2): 103-115. doi: 10.1080/15320383.2014.920292
[10] Wang X C, Zhang Y X, Chen R F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States [J]. Marine Pollution Bulletin, 2001, 42(11): 1139-1149. doi: 10.1016/S0025-326X(01)00129-1
[11] 李锐龙, 刘贝贝, 朱亚先, 等. 芘在不同粒径红树林沉积物团聚体上的吸附/解吸行为[J]. 环境化学, 2014, 33(3):423-431 doi: 10.7524/j.issn.0254-6108.2014.03.012 LI Ruilong, LIU Beibei, ZHU Yaxian, et al. Sorption/desorption behaviors of pyrene on mangrove sediment aggregates with different sizes [J]. Environmental Chemistry, 2014, 33(3): 423-431. doi: 10.7524/j.issn.0254-6108.2014.03.012
[12] 李杨帆, 朱晓东, 邹欣庆, 等. 江苏盐城海岸湿地景观生态系统研究[J]. 海洋通报, 2005, 24 (4):46-51 doi: 10.3969/j.issn.1001-6392.2005.04.008 LI Yangfan, ZHU Xiaodong, ZOU Xinqing, et al. Study on landscape ecosystem of coastal wetlands in Yancheng, Jiangsu Province [J]. Marine Science Bulletin, 2005, 24 (4): 46-51. doi: 10.3969/j.issn.1001-6392.2005.04.008
[13] Du J B, Shi B W, Li J S, et al. Muddy coast off Jiangsu, China: physical, ecological, and anthropogenic processes[M]//. Wang X H. Sediment Dynamics of Chinese Muddy Coasts and Estuaries. Boston: Academic Press, 2019.
[14] 成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1978. North Shaanxi Team of Chengdu University of Geology. Analysis and application of grain size[M]. Beijing: Geological Publishing House, 1978.
[15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. Methods of soil agricultural chemistry analyses[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[16] 中华人民共和国环境保护局. HJ 805-2016, 土壤和沉积物多环芳烃的测定 气相色谱-质谱法[S]. 北京: 中国环境科学出版社, 2016. Environmental Protection Bureau of the People's Republic of China. HJ 805-2016, Soil and sediment–determination of polycyclic aromatic hydrocarbon by gas chromatography-mass spectrometry method[S]. Beijing: China Environmental Science Press, 2016.
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 26411-2010, 海水中16种多环芳烃的测定 气相色谱-质谱法[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China GB/T 26411-2010, Determination of 16 polynuclear aromatic hydrocarbons in seawater by GC-MS[S]. Beijing: Standards Press of China, 2011.
[18] Wang Y, Shen C C, Shen Z Y, et al. Spatial variation and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Yangtze Estuary, China [J]. Environmental Science: Processes & Impacts, 2015, 17(7): 1340-1347.
[19] Mead, J. A. A comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate adsorption properties of soils [J]. Australian Journal of Soil Research, 1981, 19(3): 333-342. doi: 10.1071/SR9810333
[20] Baumard P, Budzinski H, Garrigues P. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea [J]. Environmental Toxicology and Chemistry, 1998, 17(5): 765-776. doi: 10.1002/etc.5620170501
[21] Bjørseth A, Ramdahl T. Handbook of Polycyclic Aromatic Hydrocarbons, Volume 2, Emission Sources and Recent Progress in Analytical Chemistry[M]. New York: Marcel Dekker, 1985.
[22] 郭俊丽, 杨旸, 高建华, 等. 浙闽沿岸泥质区南部表层沉积物中多环芳烃的分布、来源及生态风险评价[J]. 海洋环境科学, 2017, 36(6):826-831 GUO Junli, YANG Yang, GAO Jianhua, et al. The distribution, sources and ecological risk assessment of surficial sediment in the south coastal mud Area off Zhejiang-Fujian [J]. Marine Environmental Science, 2017, 36(6): 826-831.
[23] Wilcke W. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review [J]. Journal of Plant Nutrition and Soil Science, 2000, 163(3): 229-248. doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6
[24] Fernandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary [J]. Marine Pollution Bulletin, 1997, 34(11): 857-867. doi: 10.1016/S0025-326X(97)00063-5
[25] Yan B Z, Abrajano T A, Bopp R F, et al. Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City [J]. Environmental Science & Technology, 2005, 39(18): 7012-7019.
[26] Sofowote U M, McCarry B E, Marvin C H. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods [J]. Environmental Science & Technology, 2008, 42(16): 6007-6014.
[27] Wang C H, Wu S H, Zhou S L, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk [J]. Science of the Total Environment, 2015, 527-528: 375-383. doi: 10.1016/j.scitotenv.2015.05.025
[28] Simoneit B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0
[29] 范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价[J]. 环境科学, 2019, 40(5):2101-2114 FAN Bo, WANG Xiaonan, HUANG Yun, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China [J]. Environmental Science, 2019, 40(5): 2101-2114.
[30] 丁爱芳. 江苏省部分地区农田土壤中多环芳烃(PAHs)的分布与生态风险[D]. 南京农业大学博士学位论文, 2007. DING Aifang. Distribution of polycyclic aromatic hydrocarbons (PAHs) in farm-land of parts of Jiangsu Province and its ecological risk[D]. Doctor Dissertation of Nanjing Agricultural University, 2007.
-
期刊类型引用(3)
1. 赵亚鹏,刘乐乐,孔亮,刘昌岭,吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报. 2021(08): 2119-2140 . 百度学术
2. 李淑霞,郭尚平,陈月明,张宁涛,武迪迪. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议. 力学学报. 2020(03): 828-842 . 百度学术
3. 董林,廖华林,李彦龙,刘昌岭. 天然气水合物沉积物力学性质测试与评价. 海洋地质前沿. 2020(09): 34-43 . 百度学术
其他类型引用(2)