潮滩环境沉积物吸附多环芳烃的粒径因素影响

杨达, 高抒, 李家彪, 邹欣庆, 盛辉

杨达, 高抒, 李家彪, 邹欣庆, 盛辉. 潮滩环境沉积物吸附多环芳烃的粒径因素影响[J]. 海洋地质与第四纪地质, 2021, 41(3): 54-61. DOI: 10.16562/j.cnki.0256-1492.2020071401
引用本文: 杨达, 高抒, 李家彪, 邹欣庆, 盛辉. 潮滩环境沉积物吸附多环芳烃的粒径因素影响[J]. 海洋地质与第四纪地质, 2021, 41(3): 54-61. DOI: 10.16562/j.cnki.0256-1492.2020071401
YANG Da, GAO Shu, LI Jia-biao, ZOU Xin-qing, SHENG Hui. Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 54-61. DOI: 10.16562/j.cnki.0256-1492.2020071401
Citation: YANG Da, GAO Shu, LI Jia-biao, ZOU Xin-qing, SHENG Hui. Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 54-61. DOI: 10.16562/j.cnki.0256-1492.2020071401

潮滩环境沉积物吸附多环芳烃的粒径因素影响

基金项目: 海洋局专项计划“海岸带动力作用”(GASI-04-CEOGE-01);中央高校基本科研业务费项目(14380001)
详细信息
    作者简介:

    杨达(1991—),男,硕士,主要从事海洋海岸环境方面的研究。E-mail:849583923@qq.com

    通讯作者:

    高抒(1956—),教授,主要从事河口海洋沉积动力学和沉积地质学。E-mail:shugao@nju.edu.cn

  • 中图分类号: P76

Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size

  • 摘要: 为了研究粒径因素对于潮间带沉积物吸附多环芳烃(PAHs)的影响,基于索氏提取法、比值法、统计分析法和室内等温吸附实验以及0~31、32~64 μm和大于64 μm这三种不同粒径的沉积物对于16种多环芳烃各自吸附参数的反演计算,研究盐城潮滩沉积物PAHs赋存状态以及沉积物粒径对PAHs的吸附能力。结果表明,研究地点的潮滩沉积物中PAHs含量为49.67~141.90 ng·g−1,平均为74.92 ng·g−1。沉积物中的PAHs主要以3环、4环和5环为主, 其主要来源为高温燃烧源。在沉积物有机质含量极低时, 粒径对PAHs的吸附起主导作用。
    Abstract: In order to study the adsorption behavior of the intertidal sediment adsorption of polycyclic aromatic hydrocarbons (PAHs), we use the Soxhlet extraction method, characteristic ratio method, statistical analysis, isothermal adsorption experiment, together with sediment adsorption parameter modeling and inverse calculations for three different particle size groups (i.e., 0~31 μm, 32~64 μm, and > 64 μm) to identify the influence of particle size on the adsorption parameter. The results reveal that the contents of PAHs varied from 49.67~141.90 ng·g−1, with an average of 74.92 ng·g−1. The PAHs were primarily trinuclear, tetracyclic or pentacyclic, and the surface sediment PAHs in the study area had a mixed origin of combustion. When the organic matter content in sediments is relatively low, particle size plays a major role in PAHs adsorption.
  • 图  1   采样区位置图

    Figure  1.   Sampling site for the tidal flat sediment cores

    图  2   盐城潮滩柱状样沉积物参数的垂向分布

    Figure  2.   Vertical distributions of sediment mean grain size, TOC and PAHs content in the Yancheng tidal flat

    图  3   沉积物中不同环数PAHs所占百分比

    Figure  3.   Down-core variations of the composition of PAHs with different ring numbers

    图  4   3种粒径颗粒对PAHs的吸附能力

    Figure  4.   The sorption parameters of PAHs associated with three different sediment sizes

    图  5   3种粒径颗粒对低中高3种环数PAHs的吸附能力

    Figure  5.   The sorption parameters of low-ring, middle-ring and high-ring PAHs with three different sediment sizes

    图  6   Freundlich模型下沉积物对PAHs吸附和盐城潮滩沉积物实际吸附对比图

    Figure  6.   Comparison of PAHs adsorption by sediments predicted by the-Freundlich model and the actual adsorption of the Yancheng tidal flat sediments

    表  1   PAHs的比值法判断指标[1, 25-26]

    Table  1   The method of PAHs source identification using isomeric ratios[1, 25-26]

    特征分子比石油燃烧煤炭燃烧草木燃烧石油源
    荧蒽/(荧蒽+芘)0.4~0.5>0.5>0.5<0.4
    苯并[a]蒽/(苯并[a]蒽+䓛)>0.35>0.35>0.35<0.2
    茚并芘/(茚并芘+苯并苝)0.2~0.5>0.5>0.5<0.2
    下载: 导出CSV

    表  2   沉积物中PAHs分子比值

    Table  2   Isomeric ratios of PAHs in sediments

    特征分子比范围平均值指示意义
    荧蒽/(荧蒽+芘)0.44~0.550.51燃烧源
    苯并[a]蒽/(苯并[a]蒽+䓛)0.27~0.490.41燃烧源
    茚并芘/(茚并芘+苯并苝)0.41~0.530.49石油燃烧源
    下载: 导出CSV

    表  3   PAHs组分在主成分上的因子载荷和累积方差

    Table  3   The components load of PAHs (PC1) in sediment and the variance of PCA (PC2)

    PAHs组分PC1PC2
    0.4840.743
    苊烯0.7980.435
    0.9020.375
    0.9050.105
    0.946−0.053
    0.955−0.053
    荧蒽0.959−0.227
    0.906−0.301
    苯并[a]蒽0.986−0.152
    0.953−0.278
    苯并[b]荧蒽0.957−0.219
    苯并[k]荧蒽0.9240.189
    苯并[a]芘0.983−0.079
    二苯并[a,h]蒽0.9460.104
    茚并[1,2,3-cd]芘0.969−0.005
    苯并[g,h,i]苝0.967−0.128
    累积方差%84.69692.468
    下载: 导出CSV

    表  4   Freundlich模型下盐城潮滩三种粒径物质颗粒吸附能力参数

    Table  4   Freundlich sorption parameters of PAHs with different sediment sizes from the Yancheng tidal flat

    PAHs组分粒径/μmKnR2
    0~318.091.220.96
    32~646.001.240.94
    >645.801.250.97
    苊烯0~3125.871.020.94
    32~6420.461.020.97
    >6418.771.030.95
    0~3127.071.000.96
    32~6422.271.010.94
    >6417.271.020.95
    0~3116.731.040.94
    32~6414.411.050.97
    >6414.901.040.96
    0~3122.381.070.95
    32~6421.071.070.94
    >6416.911.100.96
    0~3129.121.070.96
    32~6422.611.090.97
    >6423.941.060.96
    荧蒽0~3126.291.060.94
    32~6421.041.100.95
    >6424.321.090.96
    0~3120.261.150.95
    32~6419.471.150.95
    >6416.811.150.95
    苯并[a]蒽0~3126.461.140.96
    32~6418.961.140.94
    >6414.451.170.94
    0~3127.281.100.95
    32~6421.231.080.97
    >6423.331.060.96
    苯并[b]荧蒽0~3123.111.200.98
    32~6419.421.210.96
    >6421.741.190.94
    苯并[k]荧蒽0~3124.781.220.97
    32~6421.271.230.98
    >6418.231.240.98
    苯并[a]芘0~3123.691.090.95
    32~6416.571.080.96
    >6414.631.110.96
    二苯并[a,h]蒽0~3138.331.080.96
    32~6433.051.100.95
    >6428.151.090.95
    茚并[1,2,3-cd]芘0~3118.011.340.94
    32~6415.681.380.96
    >6416.121.370.96
    苯并[g,h,i]苝0~3110.251.200.96
    32~649.501.200.95
    >649.521.180.96
    下载: 导出CSV
  • [1]

    Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5

    [2]

    Zhang Y X, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004 [J]. Atmospheric Environment, 2009, 43(4): 812-819. doi: 10.1016/j.atmosenv.2008.10.050

    [3]

    Kim G B, Maruya K A, Lee R F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea [J]. Marine Pollution Bulletin, 1999, 38(1): 7-15. doi: 10.1016/S0025-326X(99)80006-X

    [4]

    Lin C, Liu J L, Wang R M, et al. Polycyclic aromatic hydrocarbons in surface soils of Kunming, China: concentrations, distribution, sources, and potential risk [J]. Soil and Sediment Contamination: An International Journal, 2013, 22(7): 753-766. doi: 10.1080/15320383.2013.768201

    [5]

    Gao S, Collins M B. Holocene sedimentary systems on continental shelves [J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021

    [6] 毕丽姣, 周岩梅, 张林林, 等. 太子河中游河段有机污染物分布特征研究[J]. 环境科学与技术, 2016, 39(S1):164-168

    BI Lijiao, ZHOU Yanmei, ZHANG Linlin, et al. Distribution characteristics of organic contaminant in middle reaches of Taizihe river [J]. Environmental Science & Technology, 2016, 39(S1): 164-168.

    [7] 王喆, 卢丽. 南宁市清水泉地下河水中多环芳烃分布特征[J]. 环境科学与技术, 2016, 39(4):132-136

    WANG Zhe, LU Li. Distribution characteristics of polycyclic aromatic hydrocarbons in water from Qingshuiquan underground river in Nanning [J]. Environmental Science & Technology, 2016, 39(4): 132-136.

    [8]

    Müller S, Wilcke W, Kanchanakool N, et al. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in particle-size separates of urban soils in Bangkok, Thailand [J]. Soil Science, 2000, 165(5): 412-419. doi: 10.1097/00010694-200005000-00005

    [9]

    Wang B, Wang C, Huang Q Y, et al. Adsorption of PAHs on the sediments from the Yellow River delta as a function of particle size and salinity [J]. Soil and Sediment Contamination: An International Journal, 2015, 24(2): 103-115. doi: 10.1080/15320383.2014.920292

    [10]

    Wang X C, Zhang Y X, Chen R F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States [J]. Marine Pollution Bulletin, 2001, 42(11): 1139-1149. doi: 10.1016/S0025-326X(01)00129-1

    [11] 李锐龙, 刘贝贝, 朱亚先, 等. 芘在不同粒径红树林沉积物团聚体上的吸附/解吸行为[J]. 环境化学, 2014, 33(3):423-431 doi: 10.7524/j.issn.0254-6108.2014.03.012

    LI Ruilong, LIU Beibei, ZHU Yaxian, et al. Sorption/desorption behaviors of pyrene on mangrove sediment aggregates with different sizes [J]. Environmental Chemistry, 2014, 33(3): 423-431. doi: 10.7524/j.issn.0254-6108.2014.03.012

    [12] 李杨帆, 朱晓东, 邹欣庆, 等. 江苏盐城海岸湿地景观生态系统研究[J]. 海洋通报, 2005, 24 (4):46-51 doi: 10.3969/j.issn.1001-6392.2005.04.008

    LI Yangfan, ZHU Xiaodong, ZOU Xinqing, et al. Study on landscape ecosystem of coastal wetlands in Yancheng, Jiangsu Province [J]. Marine Science Bulletin, 2005, 24 (4): 46-51. doi: 10.3969/j.issn.1001-6392.2005.04.008

    [13]

    Du J B, Shi B W, Li J S, et al. Muddy coast off Jiangsu, China: physical, ecological, and anthropogenic processes[M]//. Wang X H. Sediment Dynamics of Chinese Muddy Coasts and Estuaries. Boston: Academic Press, 2019.

    [14] 成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1978.

    North Shaanxi Team of Chengdu University of Geology. Analysis and application of grain size[M]. Beijing: Geological Publishing House, 1978.

    [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    LU Rukun. Methods of soil agricultural chemistry analyses[M]. Beijing: China Agricultural Science and Technology Press, 2000.

    [16] 中华人民共和国环境保护局. HJ 805-2016, 土壤和沉积物多环芳烃的测定 气相色谱-质谱法[S]. 北京: 中国环境科学出版社, 2016.

    Environmental Protection Bureau of the People's Republic of China. HJ 805-2016, Soil and sediment–determination of polycyclic aromatic hydrocarbon by gas chromatography-mass spectrometry method[S]. Beijing: China Environmental Science Press, 2016.

    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 26411-2010, 海水中16种多环芳烃的测定 气相色谱-质谱法[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China GB/T 26411-2010, Determination of 16 polynuclear aromatic hydrocarbons in seawater by GC-MS[S]. Beijing: Standards Press of China, 2011.

    [18]

    Wang Y, Shen C C, Shen Z Y, et al. Spatial variation and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Yangtze Estuary, China [J]. Environmental Science: Processes & Impacts, 2015, 17(7): 1340-1347.

    [19]

    Mead, J. A. A comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate adsorption properties of soils [J]. Australian Journal of Soil Research, 1981, 19(3): 333-342. doi: 10.1071/SR9810333

    [20]

    Baumard P, Budzinski H, Garrigues P. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea [J]. Environmental Toxicology and Chemistry, 1998, 17(5): 765-776. doi: 10.1002/etc.5620170501

    [21]

    Bjørseth A, Ramdahl T. Handbook of Polycyclic Aromatic Hydrocarbons, Volume 2, Emission Sources and Recent Progress in Analytical Chemistry[M]. New York: Marcel Dekker, 1985.

    [22] 郭俊丽, 杨旸, 高建华, 等. 浙闽沿岸泥质区南部表层沉积物中多环芳烃的分布、来源及生态风险评价[J]. 海洋环境科学, 2017, 36(6):826-831

    GUO Junli, YANG Yang, GAO Jianhua, et al. The distribution, sources and ecological risk assessment of surficial sediment in the south coastal mud Area off Zhejiang-Fujian [J]. Marine Environmental Science, 2017, 36(6): 826-831.

    [23]

    Wilcke W. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review [J]. Journal of Plant Nutrition and Soil Science, 2000, 163(3): 229-248. doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6

    [24]

    Fernandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary [J]. Marine Pollution Bulletin, 1997, 34(11): 857-867. doi: 10.1016/S0025-326X(97)00063-5

    [25]

    Yan B Z, Abrajano T A, Bopp R F, et al. Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City [J]. Environmental Science & Technology, 2005, 39(18): 7012-7019.

    [26]

    Sofowote U M, McCarry B E, Marvin C H. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods [J]. Environmental Science & Technology, 2008, 42(16): 6007-6014.

    [27]

    Wang C H, Wu S H, Zhou S L, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk [J]. Science of the Total Environment, 2015, 527-528: 375-383. doi: 10.1016/j.scitotenv.2015.05.025

    [28]

    Simoneit B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0

    [29] 范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价[J]. 环境科学, 2019, 40(5):2101-2114

    FAN Bo, WANG Xiaonan, HUANG Yun, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China [J]. Environmental Science, 2019, 40(5): 2101-2114.

    [30] 丁爱芳. 江苏省部分地区农田土壤中多环芳烃(PAHs)的分布与生态风险[D]. 南京农业大学博士学位论文, 2007.

    DING Aifang. Distribution of polycyclic aromatic hydrocarbons (PAHs) in farm-land of parts of Jiangsu Province and its ecological risk[D]. Doctor Dissertation of Nanjing Agricultural University, 2007.

图(6)  /  表(4)
计量
  • 文章访问数:  1687
  • HTML全文浏览量:  222
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-10-26
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2021-06-27

目录

    /

    返回文章
    返回