Magnetic properties of sediments and their implications for sedimentary dynamic environment in the middle and lower reaches of the Qiantang River
-
摘要: 利用2010年1月与2010年8月采集的钱塘江中下游河床沉积物粒度和磁性测量数据以及2010年8月测量的流速数据,分析了沉积物粒度和磁性的时空分布特征,探讨了粒度和磁性参数对沉积动力环境的指示意义。结果表明:(1)冬季河床沉积物以粉砂和黏土为主,夏季以粉砂和砂为主,沉积物粒度呈现从中游到富春江水库逐渐变细、近口段到河口段逐渐变粗的规律,并且冬季粒度总体上细于夏季,指示夏季以及河口段较强的水动力环境。(2)磁性矿物含量从中游到下游呈现逐渐减少的趋势,夏季磁性矿物含量比冬季高。磁性矿物中亚铁磁性矿物占主导地位,夏季亚铁磁性矿物的含量高于冬季。(3)χfd%、χARM、χARM/SIRM和χARM/χ可以作为这个区域冬季<16 μm的细颗粒沉积物的代用指标,χfd%和χARM/χ可以作为夏季<32 μm细颗粒沉积物的代用指标。(4)沉积物磁性参数χfd%、χARM、χARM/χ和χARM/SIRM同样呈现出从中游到富春江水库逐渐变大、而从近口段到河口段逐渐变小的趋势,这与沉积物磁性矿物晶粒对沉积动力环境的响应是密切相关的,其中参数χfd%与χARM更能有效地反映沉积动力环境。Abstract: Based on the particle size and magnetic characteristics of the sediments collected in the middle and lower reaches of the Qiantang River in January 2010 and August 2010, as well as the flow velocity data measured in August 2010, the temporal and spatial distribution of particle size and magnetism of the sediments are analyzed, and their indication significance to the sedimentary dynamic environment dicussed. Results show that the river bottom sediments are mainly composed of silt and clay in winter, but dominated by silt and sand in summer. The grain size of the sediments gradually gets fining from middle reaches to the Fuchunjiang Reservoir and becomes coarse from near-mouth section to estuary; the particle size is smaller in winter in general, indicating a stronger hydrodynamic environment in the estuary in summer. The content of magnetic minerals gradually decreases from the middle reaches to the lower reaches. The content of magnetic minerals in summer is higher than that in winter. Ferrimagnetic minerals dominate magnetic minerals, and there are more ferrimagnetic minerals in summer. χfd%,χARM, χARM/SIRM and χARM/χ can be used as proxies for the sediments finer than 16 μm in the study area in winter, while χfd% and χARM/χ be used as indicators for sediments finer than 32 μm in summer. χfd%, χARM, χARM/χ and χARM/SIRM also show an increasing trend from middle reaches to the Fuchunjiang Reservoir, while show a decreasing trend from near-mouth section to estuary. This is closely related to the response of the sediment magnetic crystals to the sedimentary dynamic environment. χfd% and χARM can reflect the sedimentary dynamic environment more effectively.
-
-
图 9 钱塘江中下游流域冬季
$ {\chi }_{\rm{fd \%}} $ 、$ {\chi }_{\rm{ARM}} $ 、$ {\chi }_{\rm{ARM}} $ /$ \chi $ 和$ {\chi }_{\rm{ARM}} $ /SIRM参数的沿程变化Figure 9. Changes of
$ {\chi }_{\rm{fd \%}} $ ,$ {\chi }_{\rm{ARM}} $ ,$ {\chi }_{\rm{ARM}} $ /$ \chi $ and$ {\chi }_{\rm{ARM}} $ /SIRM parameters along the middle and lower reaches of the Qiantang River in winter图 10 钱塘江中下游流域夏季
$ {\chi }_{\rm{fd \%}} $ 、$ {\chi }_{\rm{ARM}} $ 、$ {\chi }_{\rm{ARM}} $ /$ \chi $ 和$ {\chi }_{\rm{ARM}} $ /SIRM参数的沿程变化Figure 10. Changes of
$ {\chi }_{\rm{fd \%}} $ ,$ {\chi }_{\rm{ARM}} $ ,$ {\chi }_{\rm{ARM}} $ /$ \chi $ and$ {\chi }_{\rm{ARM}} $ /SIRM parameters along the middle and lower reaches of the Qiantang River in summer表 1 钱塘江中下游流域河床沉积物粒度参数统计
Table 1 Statistics of grain size parameters of bed sediments in the middle and lower reaches of the Qiantang River
位置 季节 砂/% 粉砂/% 黏土/% 中值粒径/Φ 河口段 冬季 26.23 65.45 6.99 4.53 夏季 38.23 55.25 5.52 4.33 近口段 冬季 9.33 61.33 25.07 6.35 夏季 25.74 58.22 13.58 4.95 中游段 冬季 12.31 56.00 27.58 6.70 夏季 10.47 60.44 25.11 6.59 表 2 钱塘江中下游流域冬季河床沉积物磁性参数与粒度参数的相关性
Table 2 Correlations between magnetic parameters and grain size characteristics of bed sediments in the middle and lower reaches of the Qiantang River in winter
粒级/μm $ \chi $ SIRM HIRM $ {\chi }_{\rm{fd \%}} $ $ {\chi }_{\rm{ARM}} $ $ {\chi }_{\rm{ARM}} $/SIRM $ {\chi }_{\rm{ARM}} $/$ \chi $ <2 0.211 0.198 0.183 0.494** 0.580** 0.413** 0.556** <4 0.182 0.180 0.189 0.551** 0.604** 0.471** 0.609** <8 0.159 0.169 0.209 0.604** 0.632** 0.521** 0.654** <16 0.164 0.192 0.231* 0.620** 0.653** 0.529** 0.662** <32 0.179 0.205 0.204 0.570** 0.618** 0.496** 0.605** <63 0.125 0.082 0.008 0.308** 0.303** 0.325** 0.283* 2~4 0.138 0.143 0.194 0.611** 0.615** 0.535** 0.662** 4~8 0.107 0.141 0.234* 0.671** 0.650** 0.588** 0.706** 8~16 0.170 0.243* 0.269* 0.576** 0.637** 0.483** 0.593** 16~32 0.029 0.018 −0.165 −0.369** −0.314** −0.283* −0.410** 32~63 −0.164 −0.261* −0.345** −0.623** −0.712** −0.470** −0.714** 砂 −0.125 −0.082 −0.008 −0.308** −0.303** −0.325** −0.283** 粉砂 0.030 −0.084 −0.192 −0.189 −0.247** −0.073** −0.279** 黏土 0.180 0.182 0.199 0.564** 0.611** 0.475** 0.617** 平均粒径 0.129 0.131 0.124 0.447** 0.482** 0.443** 0.487** 中值粒径 0.143 0.143 0.141 0.489** 0.478** 0.418** 0.454** 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。 表 3 钱塘江中下游流域夏季河床沉积物磁性参数与粒度参数的相关性
Table 3 Correlations between magnetic parameters and grain size characteristics of bed sediments in the middle and lower reaches of the Qiantang River in summer
粒级/μm $ \chi $ SIRM HIRM $ {\chi }_{\rm{fd \%}} $ $ {\chi }_{\rm{ARM}} $ $ {\chi }_{\rm{ARM}} $/SIRM $ {\chi }_{\rm{ARM}} $/$ \chi $ <2 0.222 0.318* 0.420** 0.386** 0.190 0.252* 0.406** <4 0.219 0.302* 0.409** 0.410** 0.190 0.267* 0.417** <8 0.214 0.280* 0.396** 0.429** 0.183 0.280* 0.422** <16 0.182 0.252* 0.384** 0.491** 0.179 0.313* 0.436** <32 0.120 0.194 0.362** 0.517** 0.168 0.337** 0.428** <63 −0.028 −0.009 0.230 0.393** 0.105 0.289* 0.290** 2~4 0.214 0.281* 0.393** 0.436** 0.189 0.282* 0.426** 4~8 0.193 0.230 0.349** 0.428** 0.160 0.281* 0.400** 8~16 0.074 0.143 0.021 0.560** 0.141 0.340** 0.398** 16~32 −0.216 −0.178 0.023 0.269* 0.005 0.206 0.102 32~63 −0.289* −0.404** −0.317* −0.342** −0.151 −0.165 −0.346** 砂 0.025 0.004 −0.232 −0.397** −0.106 −0.290* −0.293* 粉砂 −0.184 −0.213 0.047 0.271* 0.019 0.222 0.124 黏土 0.221 0.302* 0.408** 0.411** 0.191 0.267* 0.418** 平均粒径 0.111 0.153 0.349** 0.436** 0.158 0.297* 0.371** 中值粒径 0.109 0.151 0.340** 0.414** 0.141 0.279* 0.354** 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关。 -
[1] Krom M D, Stanley J D, Cliff R A, et al. Nile River sediment fluctuations over the past 7000 yr and their key role in sapropel development [J]. Geology, 2002, 30(1): 71-74. doi: 10.1130/0091-7613(2002)030<0071:NRSFOT>2.0.CO;2
[2] Revel M, Ducassou E, Grousset F E, et al. 100, 000 years of African monsoon variability recorded in sediments of the Nile margin [J]. Quaternary Science Reviews, 2010, 29(11-12): 1342-1362. doi: 10.1016/j.quascirev.2010.02.006
[3] Montero-Serrano J C, Bout-Roumazeilles V, Sionneau T, et al. Changes in precipitation regimes over North America during the Holocene as recorded by mineralogy and geochemistry of Gulf of Mexico sediments [J]. Global and Planetary Change, 2010, 74(3-4): 132-143. doi: 10.1016/j.gloplacha.2010.09.004
[4] Yang S L, Xu K H, Milliman J D, et al. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes [J]. Scientific Reports, 2015, 5(1): 12581.
[5] 杨云平, 张明进, 李松喆, 等. 三峡大坝下游粗细颗粒泥沙输移规律及成因[J]. 湖泊科学, 2017, 29(4):942-954. [YANG Yunping, ZHANG Mingjin, LI Songzhe, et al. Transport patterns of the coarse and fine sediments and its causes in the downstream of the Three Gorges Dam [J]. Journal of Lake Sciences, 2017, 29(4): 942-954. doi: 10.18307/2017.0418 [6] 肖晓. 南海北部湾底质沉积物粒度和泥沙运移趋势研究[D]. 中国海洋大学硕士学位论文, 2015. XIAO Xiao. Surface sediment grain size and transport of the Beibu gulf in South China Sea[D]. Master Dissertation of Ocean University of China, 2015.
[7] Maher B A. Environmental magnetism and climate change [J]. Contemporary Physics, 2007, 48(5): 247-274. doi: 10.1080/00107510801889726
[8] Liu Q S, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: Principles and applications [J]. Reviews of Geophysics, 2012, 50(4): RG4002.
[9] 时连强, 李九发, 张卫国, 等. 黄河三角洲飞雁滩HF孔沉积物的磁性特征及其环境意义[J]. 海洋学研究, 2007, 25(4):13-23. [SHI Lianqiang, LI Jiufa, ZHANG Weiguo, et al. Magnetic properties of Core HF from Feiyantan tidal flat, the Huanghe River Delta and its environmental significance [J]. Journal of Marine Sciences, 2007, 25(4): 13-23. doi: 10.3969/j.issn.1001-909X.2007.04.002 [10] 彭俊, 陈洪全, 马随随, 等. 黄河三角洲潮滩沉积物磁性特征与沉积环境分析[J]. 地理科学, 2014, 34(10):1262-1269. [PENG Jun, CHEN Hongquan, MA Suisui, et al. Magnetic properties of sediment and sedimentary environment in tidal flat of the Yellow River Delta [J]. Scientia Geographica Sinica, 2014, 34(10): 1262-1269. [11] 潘大东, 王张华, 陈艇, 等. 长江口表层沉积物矿物磁性分区特征及其沉积环境指示意义[J]. 海洋学报, 2015, 37(5):101-111. [PAN Dadong, WANG Zhanghua, CHEN Ting, et al. Mineral magnetic characteristics of surficial sediments and their implications for identifying sedimentary environments at the Changjiang River mouth [J]. Haiyang Xuebao, 2015, 37(5): 101-111. [12] 李金婵, 陈秀玲, 方红, 等. 福州河道表层沉积物磁学特征及其环境意义[J]. 地球环境学报, 2015, 6(1):17-25. [LI Jinchan, CHEN Xiuling, FANG Hong, et al. Magnetic properties of river sediments in Fuzhou and their environmental significance [J]. Journal of Earth Environment, 2015, 6(1): 17-25. doi: 10.7515/JEE201501003 [13] 杨小强, Grapes R, 周厚云, 等. 珠江三角洲沉积物的岩石磁学性质及其环境意义[J]. 中国科学D辑: 地球科学, 2008, 51(1):56-66. [YANG Xiaoqiang, Grapes R, ZHOU Houyun, et al. Magnetic properties of sediments from the Pearl River Delta, South China: Paleoenvironmental implications [J]. Science in China Series D: Earth Sciences, 2008, 51(1): 56-66. doi: 10.1007/s11430-007-0151-4 [14] 钱塘江志编纂委员会. 钱塘江志[M]. 北京: 方志出版社, 1998. Qiantang River Records Compilation Committee. Qiantang River Journal[M]. Beijing: Local Records Press, 1998.
[15] 刘朝. 钱塘江流域河流表层沉积物特征及物源分析[D]. 华东师范大学硕士学位论文, 2016. LIU Chao. Study on the characteristics of surface sediment in the Qiantang River and analysis of provenance[D]. Master Dissertation of East China Normal University, 2016.
[16] 中国海湾志编纂委员会. 中国海湾志(第十四分册)[M]. 北京: 海洋出版社, 1998. China Gulf Records Compilation Committee. Chinese Gulf Journal (Part 14)[M]. Beijing: China Ocean Press, 1998.
[17] Folk R L, Ward W C. Brazos River Bar: a study on the significance of grain size parameters [J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
[18] 赖智荣. 钱塘江河流表层沉积物矿物特征及其物源指示意义[D]. 华东师范大学硕士学位论文, 2019. LAI Zhirong. Study on the characteristics of minerals of surface sediment in the Qiantang River and analysis of provenance[D]. Master Dissertation of East China Normal University, 2019.
[19] 张卫国, 俞立中. 长江口潮滩沉积物的磁学性质及其与粒度的关系[J]. 中国科学D辑: 地球科学, 2003, 46(9):954-966. [ZHANG Weiguo, YU Lizhong. Magnetic properties of tidal flat sediments of the Yangtze Estuary and its relationship with particle size [J]. Science in China Series D: Earth Sciences, 2003, 46(9): 954-966. doi: 10.1007/BF02991341 [20] 褚慧敏, 周立旻, 黄静, 等. 岷江上游干流边滩沉积物岩石磁学特征及其影响因素[J]. 海洋地质与第四纪地质, 2016, 36(4):57-66. [CHU Huimin, ZHOU Limin, HUANG Jing, et al. Rock-magnetic properties of the point bat deposits in the upper mainstream of Minjiang River and their origin [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 57-66. [21] 董瑞斌, 张卫国, 卢升高, 等. 土壤和沉积物的磁参数及其在环境科学中的应用[J]. 科技通报, 2000, 16(6):479-483. [DONG Ruibin, ZHANG Weiguo, LU Shenggao, et al. The magnetic indexes for soil and sediment and their applications on environmental studies [J]. Bulletin of Science and Technology, 2000, 16(6): 479-483. doi: 10.3969/j.issn.1001-7119.2000.06.014 [22] 陈晖, 刘坤松, 郭晓娟, 等. 珠江磨刀门河口表层沉积物磁性特征及其动力沉积环境意义[J]. 海洋学报, 2017, 39(3):44-54. [CHEN Hui, LIU Kunsong, GUO Xiaojuan, et al. Magnetic properties of surficial sediment and its implication for sedimentation dynamic environment in the Modaomen Outlet of the Pearl River Estuary [J]. Haiyang Xuebao, 2017, 39(3): 44-54. [23] 林炳尧, 黄世昌, 毛献忠, 等. 钱塘江河口潮波变化过程[J]. 水动力学研究与进展(A辑), 2002, 17(6):665-675. [LIN Bingyao, HUANG Shichang, MAO Xianzhong, et al. Deformation process of tidal waves in Qiantang Estuary [J]. Journal of Hydrodynamics, 2002, 17(6): 665-675. [24] 中国海湾志编纂委员会. 中国海湾志(第五分册)[M]. 北京: 海洋出版社, 1992. China Gulf Records Compilation Committee. Chinese Gulf Journal (Part 5)[M]. Beijing: China Ocean Press, 1992.
[25] Pejrup M. Flocculated suspended sediment in a micro-tidal environment [J]. Sedimentary Geology, 1988, 57(3-4): 249-256. doi: 10.1016/0037-0738(88)90032-2
[26] 周开胜, 孟翊, 刘苍字, 等. 长江口北支潮流沉积物磁性特征与沉积环境分析[J]. 海洋通报, 2008, 27(5):47-55. [ZHOU Kaisheng, MENG Yi, LIU Cangzi, et al. Magnetic properties and sedimentary environment of the Xinglong Sand in the North Branch, the Yangtze Estuary [J]. Marine Science Bulletin, 2008, 27(5): 47-55. doi: 10.3969/j.issn.1001-6392.2008.05.008