U-Pb age characteristics of major fluvial detrital zircons in the Bohai Bay Basin and their provenance implications
-
摘要: 在环渤海湾盆地的汇入河流碎屑沉积中寻找理想的物源示踪指标,对理解和认识渤海湾盆地以及中国东部陆架海的物质扩散均具有重要意义。利用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)对渤海湾盆地周缘主要河流的碎屑锆石进行微区原位U-Pb年龄分析,对比前人已经报道的研究结果,发现辽河和滦河同时接受中亚造山带和燕山山脉的物质供给,永定河、滹沱河和漳河的物质分别来自燕山和太行山。黄河汇集了上游的祁连山、秦岭和黄土高原以及华北克拉通南部的物质信号。渤海湾盆地南部的鲁中山区和胶东半岛的碎屑锆石峰值年龄组成与燕山、太行山、黄河流域存在显著差异。因而,利用碎屑锆石U-Pb年龄特征能很好地区分近源的滦河、永定河、滹沱河、漳河、大清河、胶莱河和远源黄河的物质信号。Abstract: It is of great significance to select ideal provenance indices for the in-flowing detrital sediments into the Bohai Bay Basin for further understanding the material diffusion process on the continental shelf of East China. In this paper, the LA-ICP-MS is used to analyze the in situ U-Pb age of detrital zircons from major rivers around Bohai Bay. Combined with the previous research results, our data suggest that the Liaohe and Luanhe rivers are both supplied by the sediments from the Central Asian Orogenic Belt and the Yanshan Mountain. The sediments of the Yongding, Hutuo and Zhanghe rivers mainly come from the Yanshan mountain and Taihang mountain respectively. The peak age compositions of detrital zircons in the Luzhong Uplift and Jiaodong Peninsula are significantly different from those from the Yanshan, and Taihang mountains and the Yellow River drainage. Our results demonstrate that the U-Pb age of the detrital zircons is an efficient mean to distinguish the sources of detrital sediments from the rivers surrounding the Bohai Bay Basin.
-
Keywords:
- fluvial sediment /
- zircon /
- U-Pb age /
- provenance /
- Bohai Sea
-
河流是造山带与大洋物质联系的纽带,不仅是河流地貌的主要塑造者,同时来源于这些河流的碎屑沉积物还记录了源区的地质演化信息[1-5]。发源于青藏高原、太行山、燕山、鲁中山区、胶东半岛的水系,每年将大量碎屑物质携带至渤海湾盆地[6],这深刻影响了中国东部陆架海沉积体系的形成、地貌环境的演变及化学物理通量的变化等[7-8]。因而,国内外研究者对采用矿物组合[9-12]、单颗粒矿物成分[4]、全岩微量和稀土元素分析[13-15]等方法进行源-汇对比,对渤海湾盆地广泛开展物源示踪研究。但是,上述研究多针对一条河流进行,缺乏环渤海湾主要注入河流的整体物源判别信息。
碎屑锆石广泛分布在岩浆岩、变质岩和沉积岩中,具有封闭温度高(700~900 ℃),高U、低 Pb 的特征,是进行原位 U-Pb 年龄测定的理想矿物[16-17],已经被广泛应用于大河物源示踪分析。然而,研究者以往对环渤海湾盆地注入河流开展的碎屑锆石U-Pb年龄分析,主要关注华北克拉通的地壳生长过程[1,18-19],或只关注黄河的锆石U-Pb年龄对比分析[20-21]。此外,更为重要的是,发源于太行山滹沱河和漳河的碎屑锆石U-Pb年龄此前从未报道,这导致一些学者在研究渤海的碎屑物质扩散、河流演化和盆山耦合过程时,只能引用黄河或滦河的碎屑锆石U-Pb年龄[22-23],而缺乏系统的综合判断。因而十分有必要对环渤海湾的主要河流进行碎屑锆石U-Pb年龄物源示踪研究,综合对比、判别其年龄组成的异同,为中国东部陆架海物质扩散、海陆变迁等研究提供详细的对比数据。
1. 区域地质背景
1.1 华北克拉通
华北克拉通面积为3×105 km2,是中国最大的古老陆块(图1)。它的主体部分形成于中—晚太古代(2.5~2.7 Ga),在其东部出现3.5~3.8 Ga的岩石,整体上被中元古代至新生代沉积岩覆盖[25-27]。华北克拉通东部和西部最后一次合并发生在约1.85 Ga[28]。进入早中生代,随着太平洋板块向欧亚大陆俯冲,华北克拉通发生活化[29-30],伴随着克拉通内部大规模的隆起和岩浆作用的开始,以及裂谷盆地的发育与发展[31]。
1.2 燕山
燕山山脉位于华北克拉通北缘,东西长约420 km,南北最宽处近200 km。燕山的地壳组成可分为三大构造层:华北克拉通的结晶基底(1900~1800 Ma)、中元古界—古生界克拉通型盖层(1000 Ma)和中生界的陆相盆岭型火山沉积层[32]。燕山山脉中生代经历了复杂的板内构造变形和构造体制变革,侵入岩的锆石 U-Pb 年龄集中于111~130、140~180 Ma[33]。
1.3 太行山
太行山脉位于山西省与华北平原之间,呈东北-西南走向,绵延约400 km。它是中国地形第二阶梯的东缘。太行山主要由太古代—下元古代变质岩和上元古代—早古生代灰岩和白云岩组成,以及晚古生代和中—新生代沉积岩和火山岩[34]。太行山沉积盖层碎屑锆石U-Pb峰值年龄集中于148~163、240~320、1600~2100和2300~2600 Ma[35-36],早白垩世由于受太平洋板块的俯冲作用,太行山岩浆活动强烈,锆石U-Pb峰值年龄为127~138 Ma[37]。
1.4 鲁中山区
鲁中山区位于黄河以南、胶东半岛以西,东西长约200 km,南北宽约50 km,由泰山、鲁山、沂山、尼山等山脉组成。它是由早前寒武纪花岗质片麻岩和片麻状花岗岩组成的断块低山。鲁中山区出露中—新太古代和中元古代、古生代和中—新生代地层,其中寒武纪—奥陶纪海相地层广泛分布[38-39]。鲁中山区的岩浆岩期次单一,主要以太古代时期最强烈,锆石U-Pb年龄集中于2750~2500 Ma[40]。
1.5 胶东丘陵
胶东丘陵位于山东省东部,以五莲-烟台断裂为界,在构造上可将胶东半岛分为两部分:北部的胶北地体和东部的胶东地体[41]。胶北地体具有华北克拉通的属性,其前寒武基底主要为太古代、古元古代以及新元古代地层[42]。胶东地体具有扬子克拉通苏鲁超高压的属性,其前寒武基底主要为新元古代花岗质片麻岩。锆石U-Pb年代学结果表明,晚侏罗世(160 Ma)和早白垩世(130~115 Ma)花岗质侵入岩体在胶北和胶东地体广泛分布[41, 43],但新元古代(600~800 Ma)锆石U-Pb峰值年龄只在胶东地体广泛分布[43-44]。
1.6 辽东丘陵
辽东丘陵位于辽河口与鸭绿江口连线以南,伸入黄海、渤海之间,长340 km,北宽150 km,向南渐窄。辽东丘陵出露的地层包括太古宙上壳岩、古元古代辽河群、新元古代青白口纪、古生代寒武纪、中生代侏罗纪—白垩纪、新生代第四纪,其中古元古代地层发育最为广泛[45]。侏罗纪(156~180 Ma)和早白垩世(117~131 Ma)中生代岩浆作用广泛出现在辽东丘陵内部[45-47]。
2. 样品与方法
2.1 河流样品
环渤海湾水系复杂,从北到南主要水系有辽河、滦河、永定河、滹沱河、漳河、黄河等。其中辽河全长1390 km,流域面积219 000 km2,它分为东辽河和西辽河,以西辽河为正源,是渤海湾盆地东部最大的河流,每年向渤海湾盆地输入大约3.5×107 t 碎屑物质[6]。我们在东西辽河汇合后的台安县红庙子村辽河干流边滩采集中细砂样品(TA-3,41°45′05″N、122°48′15″E)。滦河发源于内蒙古,全长833 km,流域面积44 900 km2,向南流经燕山山脉最后注入渤海,其主体流动在华北克拉通内,有部分河段流经中亚造山带南缘。滦河现在每年向渤海湾输入大约2.67×107 t 碎屑物质。样品 LH-1采自承德市双滦区三道合村滦河干流边滩中细砂(40°26′04″N、17°38′20″E)。永定河上游有两大支流,南为桑干河,发源于山西省;北为洋河,发源于内蒙古兴和县,汇合于河北省怀来县夹河村,开始称永定河,其全长747 km,流域面积47 016 km2,向东经华北平原北部注入渤海。采样点(YDH-1)位于永定河下游妙峰山峡谷区(39°59′00″N、116°03′12″E)洪水季节形成的河漫滩中的夹层细砂。滹沱河发源于山西省繁峙县,全长587 km,流域面积27 300 km2,切穿系舟山和太行山,东流至河北省献县臧桥与滏阳河相汇成子牙河后入渤海。样品 HTH-1采自滹沱河下游干流边滩细砂(38°10′20″N、114°64′47″E)。漳河发源于山西长治,长412 km,流域面积为18 200 km2,其上游由清漳河和浊漳河组成,二者在河北省涉县合漳村汇合后称漳河。样品 ZHH-1采自太行山与华北平原衔接部位的干流枯水季河床心滩细砂(36°31′49″N、114°08′31″E)。永定河、北运河、子牙河(滏阳河和滹沱河汇合)和南运河汇合形成海河水系,汇入渤海,其每年向渤海提供大约1.8 ×108 t 碎屑物质。但由于海河下游进行了广泛的堤岸治理,自然河床受到较大改动,我们未能在海河下游采集样品。黄河是我国第二大河,也是世界上泥沙含量最高的河流,每年向渤海湾盆地输入超过1×109 t 泥沙。胶莱河发源于青岛平度市万家镇姚家村分水岭北麓,是胶东半岛上的一条重要河流,干流全长100 km,流域面积3978.6 km2,于平度市新河镇大苗家村流入莱州湾。大汶河发源于山东沂源县境内,干流河道长239 km,流域面积9098 km2,泰安大汶口以上为上游,大汶口至东平县戴村坝为中游,戴村坝以下为下游,为大清河,年平均输沙量约为1.82×106 t 。沂河尽管不是渤海湾的注入河流,但却是鲁中山区最大的河流(长574 km,流域面积17325 km2),其碎屑锆石 U-Pb 年龄对反映鲁中山区的锆石 U-Pb 峰值年龄更具有代表性,因此,我们在沂河中游河边滩(36°20′06″N、117°25′53″E)采集一件中细砂样品。以上每个采样点采集样品3~5 kg,采集双份,避免因样品采集量少而不能挑选出目标矿物。
2.2 实验方法
将野外采集的碎屑样品经重砂分析、磁性分选等,分离出锆石颗粒,并在双目显微镜下进行人工挑选提纯。每个样品所挑选出来的锆石颗粒均在1000粒以上,然后随机挑选>300颗制成环氧树脂靶,随后对靶片进行表面抛光处理,利用5%的硝酸和纯酒精对其清洗,降低普通铅污染的影响。通过反射光和投射光图像选择某一颗粒的分析位置,分析时避开包裹体和裂隙部位,提高分析精度。
锆石U-Pb同位素定年和微量元素含量在武汉上谱分析科技有限责任公司利用LA-ICP-MS同时分析完成。GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。激光剥蚀过程中采用氦气作载气,氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置。本次分析的激光束斑和频率分别为32 µm和5 Hz。U-Pb同位素定年和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正。每个时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及 U-Pb 同位素比值和年龄计算)采用软件ICPMSDataCal完成[48]。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3完成。锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U的测试精度均为2%(2σ)左右,标准锆石的定年精度和准确度在1%(2σ)左右。
3. 结果
根据CL图像观察,大多数锆石具有典型结晶韵律环带(图2),代表其岩浆成因,部分锆石呈面状、斑杂状以及核边结构,说明有少量变质锆石。此次共分析360颗锆石颗粒,选择206Pb/238U(年龄<1000 Ma)与207Pb/235U或207Pb/206Pb(年龄>1000 Ma)谐和度为90%~99%的结果,共330颗锆石合格。如图3所示,有3颗锆石的Th/U比值<0.1,说明此次分析的锆石大多数为岩浆锆石。
辽河下游样品(TA-3)的年龄主要集中在中生代和晚古生代(141~559 Ma),出现168、263、367和520 Ma的峰值;古元古代峰值年龄为1768 Ma;新太古代峰值年龄为2496 Ma(图4a)。滦河样品(LH-1)中生代和晚古生代峰值年龄为138、245、312和482 Ma;出现795 Ma的峰值,这一峰值在其他流域内均没有出现;古元古代峰值为1728 和1851 Ma;新太古代峰值为2241和2409 Ma(图4b)。永定河(YDH-1)锆石U-Pb年龄以中生代和晚古生代为主,分别出现140、271和387 Ma的峰值;古元古代年龄峰值为1792 Ma;新太古代年龄峰值为2352和2464 Ma(图4c)。滹沱河(HTH-1)晚古生代年龄峰值为279 Ma;古元古代年龄峰值1880 Ma;新太古代年龄峰值为2480 Ma;同时出现此次样品分析中最古老的锆石年龄3110 Ma(图4d)。漳河(ZHH-1)晚古生代年龄占主体,峰值年龄为249和320 Ma;古元古代年龄峰值为1832 Ma;新太古代年龄峰值为2312 Ma(图4e)。沂河(YH-1)的U-Pb年龄范围从2381±24 Ma到2863±15 Ma,峰值年龄集中于2502 Ma(图4f)。
4. 讨论
西拉木伦河的碎屑锆石U-Pb峰值年龄组成[17](图5A-a)与蒙古南部[24](图5A-b)和大兴安岭[19](图5A-c)的碎屑锆石U-Pb年龄特征相似,但是与华北克拉通北部的锆石U-Pb峰值年龄相比较[17](图5A-d),其古元古代和新太古代峰值年龄不显著,因而西拉木伦河的碎屑锆石主要由中亚造山带提供。老哈河(图5A-e)与西拉木伦河相比[49],最主要的差别体现在前者缺乏新元古代峰值年龄,这一峰值年龄在燕山造山带和华北克拉通北部的锆石峰值年龄组成中亦不存在或不显著[50](图5A-f)。辽河中游(图6A-g)和上游的西拉木伦河和老哈河相比[18],新元古代峰值年龄依然存在,但这一峰值年龄在燕山和辽东半岛基岩中都不是典型峰值[45-47](图5A-h)。西拉木伦河的古元古代和新太古代峰值年龄不显著,但在燕山造山带中却广泛分布,因而辽河中游物质综合了西拉木伦河和老哈河的物质特征。辽河下游(图5A-i)与中游相比,最主要的特征是其晚古生代的峰值年龄显著,古元古代和新太古代峰值年龄不显著,因而辽河下游和中亚造山带的物质组成更相似。
图 5 辽河流域(A)与滦河流域(B)碎屑锆石U-Pb年龄特征分布A-a引自[17], A-b引自[24], A-c引自[19], A-d引自[17], A-e引自[49], A-f引自[50], A-g引自[18], A-h引自[45-47], A-i(本次研究); B-a(本次研究), B-b-d引自[1, 50], B-e引自[50]。Figure 5. U-Pb age distribution of detrital zircons in Liao River basin (A), and U-Pb age distribution of detrital zircons in Luan River basin (B)图 6 永定河流域(A)与黄河流域、鲁中山区和胶东半岛(B)锆石U-Pb年龄特征分布图A-a引自[1], A-b(本次研究), A-c引自[36], A-d引自[51], A-e(本次研究), A-f引自[52], A-g(本次研究), A-h引自[36], A-i引自[21]; B-a引自[53], B-b引自[54], B-c引自[55-56], B-d引自[1], B-e引自[21], B-f引自[18], B-g(本次研究), B-h引自[40], B-i引自[18], B-j-k引自[58]。Figure 6. U-Pb age distribution of detrital zircons in Yongding River basin (A), and U-Pb age distribution of zircons in the Yellow River, Central Shandong and Jiaodong Peninsula (B)A-a is cited from[1], A-b(is from this study), A-c is cited from[36], A-d is cited from[51], A-e(from this study), A-f is cited from[52], A-g(from this study), A-h is cited from[36], A-i is cited from[21]; B-a is cited from[53], B-b is cited from[54], B-c is cited from[55-56], B-d is cited from[1], B-e is cited from[21], B-f is cited from[18], B-g(is from this study), B-h is cited from[40], B-i is cited from[18], B-j-k are cited from[58].滦河中游(图5B-a)和下游相比,年龄峰值组成几乎一致,主要由晚中生代、晚古生代、新元古代、古元古代和新太古代峰值组成[1](图5B-b)。新元古代锆石U-Pb年龄是蒙古南部戈壁的典型峰值,位于其东南部的浑善达克沙漠的新元古代锆石主要由其提供[24](图5B-c,d)。滦河和辽河上游都流经或靠近浑善达克沙漠,因而流域内的新元古代峰值年龄体现了中亚造山带的物质输入。晚中生代、古元古代和新太古代锆石U-Pb峰值年龄在滦河流域广泛出现,但蒙古南部戈壁中这些峰值年龄并不显著,而在华北克拉通北部和燕山造山带(图5B-e)却都是优势峰值[50],这说明滦河流域的碎屑物质主要来自中亚造山带和燕山造山带。
永定河上游支流洋河流经燕山造山带西段[1](图6A-a),与永定河下游干流相比较(图6A-b),缺乏晚中生代的碎屑锆石峰值,很有可能是受区域水动力分选和岩性控制所致,但二者都具有典型的古元古代和新太古代峰值年龄,这是燕山造山带[50](图6A-d)和华北克拉通北部典型的峰值年龄[17](图5A-d)。永定河另一条支流桑干河流经的大同盆地具有典型的中元古代峰值年龄[51](图6A-c),但这一峰值年龄在永定河下游并没有出现,因而永定河的锆石年龄组成更具有燕山造山带的特征(图6A-d)。滹沱河(图6A-e)和漳河(图6A-g)的锆石U-Pb峰值年龄组成相对简单,主要由晚古生代(249~305 Ma)、古元古代(1832~1880 Ma)和新太古代(2312~2480 Ma)年龄组成,这与山西高原中南部的云冈-平鲁盆地[51](图6A-f)、宁武盆地[36](图6A-h)的碎屑锆石U-Pb年龄组成一致,尽管太行山中南部晚中生代基岩锆石U-Pb年龄有报道[37],也是华北克拉通南部典型的峰值年龄[21](图6A-i),但在滹沱河和漳河却普遍缺乏这一峰值年龄。考虑到漳河是南运河上游支流,滹沱河是子牙河的支流,永定河是海河北部的主要支流之一,在缺乏海河下游干流现代河流沉积物碎屑锆石U-Pb年龄对比研究的前提下,上述海河支流的碎屑锆石U-Pb年龄特征是否能用于今后中国东部陆架海的物质扩散研究,依然需要开展相关工作进行验证。
黄河流域面积大,流经的地质单元多,因而碎屑锆石U-Pb年龄组成复杂[1, 21],黄河下游的锆石U-Pb峰值年龄集中在中生代(250 Ma)、早古生代(452 Ma)、新元古代(808 Ma)、古元古代(1892 Ma)和新太古代(2448 Ma)。黄河上游的祁连山[53](图6B-a)、秦岭[54](图6B-b)和黄土高原(图7B-c)显著富集中生代、早古生代、新元古代峰值年龄[55-56]。尽管新元古代峰值年龄在华北地区的北京西山有报道[57],但这一峰值年龄在华北克拉通南部(图6B-e)并不是主要峰值[21]。与祁连山、秦岭、黄土高原和华北克拉通相比缺乏古元古代和新太古代年龄,说明黄河下游(郑州-东营, 6B-c)的锆石[1]汇集了上游的祁连山、秦岭和黄土高原以及华北克拉通南部的物质信号。
大清河[18](图6B-f)和沂河(图6B-g)的碎屑锆石U-Pb年龄组成单一,主要由新太古代年龄组成,这与鲁中山区基岩的锆石U-Pb峰值年龄高度一致[40](图6B-h)。胶莱河是发源于胶东半岛流入渤海的重要河流[18](图6B-i),出现晚中生代(100 Ma)、晚古生代(300 Ma)、新元古代峰值年龄(770 Ma),这与流域内胶莱盆地沉积地层的碎屑锆石U-Pb年龄组成相似[58](图7B-j)。此外,胶莱河还出现显著的古元古代和新太古代锆石峰值年龄,这些峰值年龄在胶莱盆地中存在。胶莱盆地北部的物质具有华北克拉通的属性,而南部则接受苏鲁造山带的物质供给[58],因而,出现在胶莱河中的碎屑锆石同时具有华北克拉通和苏鲁造山带的物质信号[18]。
综上所述,辽河和滦河同时受中亚造山带和燕山山脉的物质供给,永定河、滹沱河和漳河的物质分别以燕山和太行山为主。黄河与滦河、永定河相比,缺乏晚中生代锆石U-Pb峰值年龄;较之滹沱河和漳河,又显著富集新元古代锆石U-Pb峰值年龄。渤海湾盆地南部的鲁中山区和胶东半岛的碎屑锆石峰值年龄组成与黄河存在显著差异。黄河与上述所有河流相比,存在早古生代峰值年龄。因而,在进行渤海湾盆地西部钻孔物源示踪时,利用碎屑锆石U-Pb年龄特征能很好地区分近源的滦河、永定河、滹沱河、漳河和远源黄河的物质信号。黄河和沂河、胶东半岛的碎屑锆石U-Pb年龄组成截然不同,这对判别渤海物质向黄海扩散十分有效。但同时需要强调的是,环渤海湾盆地不同河流入海泥沙通量的巨大差异,会严重影响其沉积物物源信号在海区物源示踪研究中的识别,即如果河流入海物质极少,其特征物源信息(单颗粒锆石U-Pb年龄)在海区沉积物中显得微乎其微而无法识别。因此,上述结果需要得到渤海/黄海钻孔或海岸砂的锆石U-Pb年龄组成的进一步检验。
5. 结论
(1)辽河和滦河同时具有中亚造山带和燕山山脉的锆石U-Pb年龄特征,在区分渤海湾盆地东部的辽东湾的碎屑物质来源时,单一的碎屑锆石U-Pb年龄对比达不到预期结果。
(2)永定河的碎屑锆石主要来自燕山山脉;发源于太行山中南部的滹沱河和漳河的锆石U-Pb年龄特征与燕山山脉截然不同,具有太行山中南部的特征,但由于缺乏海河下游干流的碎屑锆石U-Pb年龄特征分析,使得今后在利用这一方法开展渤海/黄海物源示踪研究时,需要谨慎。
(3)大清河和沂河的碎屑锆石U-Pb峰值年龄代表了鲁中山区的锆石年龄组成,是环渤海湾河流中碎屑锆石U-Pb年龄组成最单一的流域。
(4)黄河的碎屑锆石U-Pb峰值年龄组成复杂,同时受多个地质体的物质供给,与燕山、太行山、鲁中山区、胶东半岛的锆石U-Pb年龄特征差异大。考虑到黄河是渤海泥沙输入量最大的河流,其锆石U-Pb年龄物源信息特征表现最显著,使其成为开展渤海/黄海钻孔物源示踪研究的理想方法。
-
图 1 渤海湾盆地位置分布图(A)及渤海湾盆地河流样品采样位置(B)
1-6为此次样品采集点;a-j为前人研究采样点:a引用自[18],b引用自[17],c引用自[19],d-g引用自[1],h-i引用自[18],j引用自[24]。
Figure 1. Location map of Bohai Bay Basin(A)and field sampling locations around the Bohai Bay Basin(B)
1-6 are our samples; a-j are the previous research results: a is cited from [18], b is cited from [17], c is cited from [19], d-g are cited from [1], g-i are cited from [18], j is cited from [24].
图 5 辽河流域(A)与滦河流域(B)碎屑锆石U-Pb年龄特征分布
A-a引自[17], A-b引自[24], A-c引自[19], A-d引自[17], A-e引自[49], A-f引自[50], A-g引自[18], A-h引自[45-47], A-i(本次研究); B-a(本次研究), B-b-d引自[1, 50], B-e引自[50]。
Figure 5. U-Pb age distribution of detrital zircons in Liao River basin (A), and U-Pb age distribution of detrital zircons in Luan River basin (B)
A-a is cited from[17], A-b is cited from[24], A-c is cited from[19], A-d is cited from[19], A-e is cited from[49], A-f is cited from[50], A-g is cited from[18], A-h is cited from[45-47], A-i(in this study); B-a(in this study), B-b-d are cited from[1], B-e is cited from[50].
图 6 永定河流域(A)与黄河流域、鲁中山区和胶东半岛(B)锆石U-Pb年龄特征分布图
A-a引自[1], A-b(本次研究), A-c引自[36], A-d引自[51], A-e(本次研究), A-f引自[52], A-g(本次研究), A-h引自[36], A-i引自[21]; B-a引自[53], B-b引自[54], B-c引自[55-56], B-d引自[1], B-e引自[21], B-f引自[18], B-g(本次研究), B-h引自[40], B-i引自[18], B-j-k引自[58]。
Figure 6. U-Pb age distribution of detrital zircons in Yongding River basin (A), and U-Pb age distribution of zircons in the Yellow River, Central Shandong and Jiaodong Peninsula (B)
A-a is cited from[1], A-b(is from this study), A-c is cited from[36], A-d is cited from[51], A-e(from this study), A-f is cited from[52], A-g(from this study), A-h is cited from[36], A-i is cited from[21]; B-a is cited from[53], B-b is cited from[54], B-c is cited from[55-56], B-d is cited from[1], B-e is cited from[21], B-f is cited from[18], B-g(is from this study), B-h is cited from[40], B-i is cited from[18], B-j-k are cited from[58].
-
[1] Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers [J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2660-2673. doi: 10.1016/j.gca.2009.02.007
[2] 赵希涛, 胡道功, 吴中海, 等. 长江三角洲地区晚新生代地质与环境研究进展述评[J]. 地质力学学报, 2017, 23(1):1-64. [ZHAO Xitao, HU Daogong, WU Zhonghai, et al. Reviews on the research of late Cenozoic geology and environment of the Yangtze River delta area [J]. Journal of Geomechanics, 2017, 23(1): 1-64. doi: 10.3969/j.issn.1006-6616.2017.01.001 [3] 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30):3070-3088. [LIU Jing, ZHANG Jinyu, GE Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes [J]. Chinese Science Bulletin, 2018, 63(30): 3070-3088. doi: 10.1360/N972018-00498 [4] 金秉福, 岳伟, 王昆山. 黄河、辽河和鸭绿江沉积角闪石矿物化学特征对比及物源识别[J]. 海洋学报, 2014, 36(4):11-21. [JIN Bingfu, YUE Wei, WANG Kunshan. Chemical composition of detrital amphibole in the sediments of the Huanghe River, Liaohe River and Yalu River, and its implication for sediment provenance [J]. Acta Oceanologica Sinica, 2014, 36(4): 11-21. [5] 林旭, 刘静, 吴中海, 等. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报, 2020, 94(10):3024-3035. [LIN Xu, LIU Jing, WU Zhonghai, et al. Detrital zircon U-Pb ages and K-feldspar main and trace elements provenance studying from fluvial to marine sediments in northern China [J]. Acta Geographica Sinica, 2020, 94(10): 3024-3035. doi: 10.3969/j.issn.0001-5717.2020.10.016 [6] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2013: 1-393.
[7] Wang Y, Ren M E, Zhu D. Sediment supply to the continental shelf by the major rivers of China [J]. Journal of the Geological Society, 1986, 143(6): 935-944. doi: 10.1144/gsjgs.143.6.0935
[8] Li L, Ni J R, Chang F, et al. Global trends in water and sediment fluxes of the world’s large rivers [J]. Science Bulletin, 2020, 65(1): 62-69. doi: 10.1016/j.scib.2019.09.012
[9] 王昆山, 石学法, 蔡善武, 等. 黄河口及莱州湾表层沉积物中重矿物分布与来源[J]. 海洋地质与第四纪地质, 2010, 30(6):1-8. [WANG Kunshan, SHI Xuefa, CAI Shanwu, et al. Distribution and provenance of the surface sediments of the Yellow River mouth and Laizhou bay deduced from heavy minerals [J]. Marine Geology & Quaternary Geology, 2010, 30(6): 1-8. [10] 韩宗珠, 张军强, 邹昊, 等. 渤海湾北部底质沉积物中黏土矿物组成与物源研究[J]. 中国海洋大学学报: 自然科学版, 2011, 41(11):95-102. [Han Z Z, Zhang J Q, Zou H, et al. Characteristics and provenance of clay mineral assemblage of sediments from the northern part of the Bohai Bay [J]. Periodical of Ocean University of China, 2011, 41(11): 95-102. [11] 韩宗珠, 衣伟虹, 李敏, 等. 渤海湾北部沉积物重矿物特征及物源分析[J]. 中国海洋大学学报: 自然科学版, 2013, 43(4):73-79. [Han Z Z, Yi W H, Li M, et al. Analysis for heavy mineral characteristics and material provenance in the sediments of the Northern Bohai Bay [J]. Periodical of Ocean University of China, 2013, 43(4): 73-79. [12] Dou Y G, Li J, Zhao J T, et al. Clay mineral distributions in surface sediments of the Liaodong Bay, Bohai Sea and surrounding river sediments: Sources and transport patterns [J]. Continental Shelf Research, 2014, 73: 72-82. doi: 10.1016/j.csr.2013.11.023
[13] Zhang C S, Wang L J, Li G S, et al. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China [J]. Applied Geochemistry, 2002, 17(1): 59-68. doi: 10.1016/S0883-2927(01)00079-8
[14] Xu Y Y, Song J M, Duan L Q, et al. Fraction characteristics of rare earth elements in the surface sediment of Bohai Bay, North China [J]. Environmental Monitoring and Assessment, 2012, 184(12): 7275-7292. doi: 10.1007/s10661-011-2496-6
[15] Zhang Y, Gao X L, Chen C T A, et al. Rare earth elements in intertidal sediments of Bohai Bay, China: Concentration, fractionation and the influence of sediment texture [J]. Ecotoxicology and Environmental Safety, 2014, 105: 72-79. doi: 10.1016/j.ecoenv.2014.04.006
[16] Belousova E, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type [J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
[17] 包创, 陈岳龙, 李大鹏. 内蒙古西拉木伦河河漫滩沉积物碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义[J]. 岩石学报, 2013, 29(9):3159-3172. [BAO Chuang, CHEN Yuelong, LI Dapeng. U-Pb ages, Hf isotopic composition and its geological significance of detrital zircons in the floodplain sediments from the Xar Moron River, Inner Mongolia [J]. Acta Petrologica Sinica, 2013, 29(9): 3159-3172. [18] 耿显雷, 高山, 陈晨. 华北克拉通东部及苏鲁造山带的地壳生长: 来自现代河流碎屑锆石的U-Pb定年和Hf同位素证据[J]. 地球科学—中国地质大学学报, 2011, 36(3):483-499. [GENG Xianlei, GAO Shan, CHEN Chen. Crustal growth of the eastern north china Craton and Sulu orogen as revealed by U-Pb dating and Hf isotopes of detrital zircons from modern rivers [J]. Earth Sciences—Journal of China University of Geosciences, 2011, 36(3): 483-499. [19] 陈岳龙, 李大鹏, 刘长征, 等. 大兴安岭的形成与演化历史: 来自河漫滩沉积物地球化学及其碎屑锆石U-Pb年龄、Hf同位素组成的证据[J]. 地质学报, 2014, 88(1):1-14. [CHEN Yuelong, LI Dapeng, LIU Changzheng, et al. Formation and evolution history of the da Hinggan mountains: evidence from geochemistry of Rivers’ Overbank sediments, their zircon U-Pb ages, and Hf isotopic compositions [J]. Acta Geologica Sinica, 2014, 88(1): 1-14. doi: 10.1111/1755-6724.12176 [20] 郑萍, 李大鹏, 陈岳龙, 等. 黄河口河流沙碎屑沉积物锆石U-Pb年龄及地质意义[J]. 现代地质, 2013, 27(1):79-90. [ZHENG Ping, LI Dapeng, CHEN Yuelong, et al. Zircon U-Pb ages of clastic sediment from the outfall of the Yellow River and their geological significance [J]. Geoscience, 2013, 27(1): 79-90. doi: 10.3969/j.issn.1000-8527.2013.01.008 [21] 岳保静, 廖晶. 黄河流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质, 2016, 36(5):109-119. [YUE Baojing, LIAO Jing. Provenance study of yellow river sediments by U-Pb dating of the detrital zircons [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 109-119. [22] Deng K, Yang S Y, Li C, et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland [J]. Earth-Science Reviews, 2017, 164: 31-47. doi: 10.1016/j.earscirev.2016.10.015
[23] Su J B, Rao W B, Wang Y G, et al. Detrital zircon geochronology of the radial sand ridge system of Jiangsu coast, east China: implication for sediment provenance [J]. Journal of Earth Science, 2018, 29(1): 144-154. doi: 10.1007/s12583-017-0769-x
[24] 谢静, 吴福元, 丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报, 2007, 23(2):523-528. [XIE Jing, WU Fuyuan, DING Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance [J]. Acta Petrologica Sinica, 2007, 23(2): 523-528. doi: 10.3969/j.issn.1000-0569.2007.02.028 [25] Zhai M G, Liu W J. Palaeoproterozoic tectonic history of the North China Craton: a review [J]. Precambrian Research, 2003, 122(1-4): 183-199. doi: 10.1016/S0301-9268(02)00211-5
[26] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton [J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162
[27] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited [J]. Precambrian Research, 2005, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
[28] Zhai M G, Santosh M. The early Precambrian odyssey of the North China Craton: a synoptic overview [J]. Gondwana Research, 2011, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005
[29] Zhu R X, Xu Y G, Zhu G, et al. Destruction of the North China Craton [J]. Science China Earth Sciences, 2012, 55(10): 1565-1587. doi: 10.1007/s11430-012-4516-y
[30] Li S Z, Suo Y H, Li X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate [J]. Earth-Science Reviews, 2019, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003
[31] Li S Z, Zhao G C, Dai L M, et al. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton [J]. Journal of Asian Earth Sciences, 2012, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008
[32] Davis G A, Zheng Y D, Cong W, et al. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China[M]. Memoirs-Geological Society of America, 2001: 171-198.
[33] 葛肖虹, 刘俊来, 任收麦, 等. 中国东部中-新生代大陆构造的形成与演化[J]. 中国地质, 2014, 41(1):19-38. [GE Xiaohong, LIU Junlai, REN Shoumai, et al. Formation and Evolution of the Mesozoic-Cenozoic continental tectonics in eastern China [J]. Geology of China, 2014, 41(1): 19-38. doi: 10.3969/j.issn.1000-3657.2014.01.002 [34] 王永超, 董树文, 施炜, 等. 华北晚中生代构造演化过程: 根据太行山北部盆地沉积记录[J]. 地球学报, 2016, 41(1):35-45. [WANG Yongchao, DONG Shuwen, SHI Wei, et al. An Analysis of late Mesozoic tectonic evolution process in northern China: based on basin sedimentary records in northern Taihang mountains [J]. Acta Geoscientica Sinica, 2016, 41(1): 35-45. doi: 10.3975/cagsb.2016.01.04 [35] Li H Y, Xu Y G, Huang X L, et al. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle basin [J]. Chinese Science Bulletin, 2009, 54(4): 677-686. doi: 10.1007/s11434-008-0444-9
[36] Zhou R, Liu D N, Zhou A C, et al. Provenance analyses of early Mesozoic sediments in the Ningwu basin: Implications for the tectonic-palaeogeographic evolution of the northcentral North China Craton [J]. International Geology Review, 2017, 61(1): 86-108.
[37] 陈斌, 田伟, 翟明国, 等. 太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J]. 岩石学报, 2005, 21(1):13-24. [CHEN Bin, TIAN Wei, ZHAI Mingguo, et al. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China craton, with implications for petrogenesis and geodynamic setting [J]. Acta Petrologica Sinica, 2005, 21(1): 13-24. doi: 10.3321/j.issn:1000-0569.2005.01.002 [38] Li H Y, Xu Y G, Liu Y M, et al. Detrital zircons reveal no Jurassic plateau in the eastern North China Craton [J]. Gondwana Research, 2013, 24(2): 622-634. doi: 10.1016/j.gr.2012.12.007
[39] Xu J Q, Li Z, Shi Y H. Jurassic detrital zircon U-Pb and Hf isotopic geochronology of Luxi Uplift, eastern North China, and its provenance implications for tectonic-paleogeographic reconstruction [J]. Journal of Asian Earth Sciences, 2013, 78: 184-197. doi: 10.1016/j.jseaes.2013.05.024
[40] Wan Y S, Wang S J, Liu D Y, et al. Redefinition of depositional ages of Neoarchean supracrustal rocks in western Shandong Province, China: SHRIMP U-Pb zircon dating [J]. Gondwana Research, 2012, 21(4): 768-784. doi: 10.1016/j.gr.2011.05.017
[41] Yang Q Y, Santosh M, Shen J F, et al. Juvenile vs. recycled crust in NE China: Zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula [J]. Gondwana Research, 2014, 25(4): 1445-1468. doi: 10.1016/j.gr.2013.06.003
[42] Zhao R, Wang Q F, Liu X F, et al. Uplift history of the Jiaodong Peninsula, eastern North China Craton: implications for lithosphere thinning and gold mineralization [J]. Geological Magazine, 2018, 155(4): 979-991. doi: 10.1017/S0016756816001254
[43] Tang J, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China [J]. Precambrian Research, 2008, 161(3-4): 389-418. doi: 10.1016/j.precamres.2007.09.008
[44] Zong K Q, Liu Y S, Gao C G, et al. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China [J]. Chemical Geology, 2010, 269(3-4): 237-251. doi: 10.1016/j.chemgeo.2009.09.021
[45] Zhang H F, Ying J F, Tang Y J, et al. Phanerozoic reactivation of the Archean North China Craton through episodic magmatism: evidence from zircon U-Pb geochronology and Hf isotopes from the Liaodong Peninsula [J]. Gondwana Research, 2011, 19(2): 446-459. doi: 10.1016/j.gr.2010.09.002
[46] 吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用[J]. 高校地质学报, 2005, 11(3):305-317. [Wu F Y, Yang J H, Liu X M. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China [J]. Geological Journal of China Universities, 2005, 11(3): 305-317. doi: 10.3969/j.issn.1006-7493.2005.03.003 [47] 王安平. 辽东半岛早白垩世方家隈子盆地沉积特征及年代学研究[D]. 中国地质大学(北京)硕士学位论文, 2019. WANG Anping. Sedimentary characteristics and geochronology of the early cretaceous Fangjiaweizi Basin in the Liaodong Peninsula[D]. Master Dissertation of China University of Geosciences (Beijing), 2019.
[48] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[49] 郭瑞. 内蒙古赤峰市老哈河河漫滩沉积物源区区域地壳的形成与演化[D]. 中国地质大学(北京)硕士学位论文, 2012. GUO Rui. Crustal formation and evolution of the provenance in Laoha River over band sediment, Chifeng City of Inner Mongolia[D]. Master Dissertation of China University of Geosciences (Beijing), 2012.
[50] 许欢. 华北北部侏罗-白垩过渡期陆相红层及其古地理、古生态和构造演化[D]. 中国地质科学院博士学位论文, 2016. XU Huan. Jurassic-cretaceous transition terrestrial red beds in Northern North China and their regional paleogeography, paleoecology and tectonic evolution[D]. Doctor Dissertation of Chinese Academy of Geological Sciences, 2016.
[51] 韩亚超. 大同盆地西缘中生代逆冲构造变形研究[D]. 中国地质大学(北京)硕士学位论文, 2013. HAN Yachao. Mesozoic thrust deformation on the western margin of the Datong basin and its implications[D]. Master Dissertation of China University of Geoscientists (Beijing), 2013.
[52] 周瑞. 华北中北部晚古生代末期-早中生代沉积与构造作用的关系研究[D]. 太原理工大学博士学位论文, 2019. ZHOU Rui. Study on the relationship between sedimentation and tectonism of late paleozoic-early Mesozoic Sediments in the north-central North[D]. Doctor Dissertation of Taiyuan University of Technology, 2019.
[53] Zhao X C, Liu C Y, Wang J Q, et al. Detrital zircon U-Pb ages of Paleozoic sedimentary rocks from the eastern Hexi Corridor Belt (NW China): Provenance and geodynamic implications [J]. Sedimentary Geology, 2016, 339: 32-45. doi: 10.1016/j.sedgeo.2016.04.005
[54] 张红.秦岭北麓现代河流碎屑锆石U-Pb年代学研究及其地质意义[D]. 西北大学硕士学位论文, 2008. ZHANG Hong. Study on U-Pb chronology of modern fluvial zircon at the northern foot of Qinling Mountains and its geological significance[D]. Master Dissertation of Northwest University, 2008.
[55] Sun J M, Ding Z L, Xia X P, et al. Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau [J]. Journal of Asian Earth Sciences, 2018, 155: 21-34. doi: 10.1016/j.jseaes.2017.10.012
[56] Fan Y, Li Z, Wang F, et al. Provenance variations of the Tengger Desert since 2.35 Ma and its linkage with the Northern Tibetan Plateau: Evidence from U-Pb age spectra of detrital zircons [J]. Quaternary Science Reviews, 2019, 223: in press.
[57] 胡波, 翟明国, 彭澎, 等. 华北克拉通古元古代末-新元古代地质事件-来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据[J]. 岩石学报, 2013, 29(7):2508-2536. [HU Bo, ZHAI Mingguo, PENG Peng, et al. Late paleoproterozoic to neoproterozoic geological events of the North China Craton: evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing [J]. Acta Petrologica Sinica, 2013, 29(7): 2508-2536. [58] 赵睿. 胶东半岛构造演化及金成矿作用[D]. 中国地质大学(北京)博士学位论文, 2016. ZHAO Rui. Tectonic evolution and gold mineralization in the Jiaodong Peninsula[D]. Doctor Dissertation of China University of Geology (Beijing), 2016.
-
期刊类型引用(6)
1. 李越哲,殷杰,叶琳,王振奇. 南堡凹陷沙一段烃源岩综合识别及分布预测. 河南理工大学学报(自然科学版). 2024(04): 56-67 . 百度学术
2. 秦晓艳,王震亮,程昊,赵晓东. 基于多测井参数的陆相页岩储层总有机碳含量预测:以和尚塬地区延长组长7段为例. 新疆大学学报(自然科学版中英文). 2024(05): 620-628 . 百度学术
3. 尚亚洲,许多年,张兆辉,刘建宇,赵雯雯. 基于PCA-BP神经网络的TOC测井评价方法研究. 测井技术. 2024(04): 438-452 . 百度学术
4. 卢妍欣,包书景,周志,李飞. 高热演化页岩总有机碳地球物理预测方法研究进展. 地球物理学进展. 2023(01): 229-241 . 百度学术
5. 郭飞飞,柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征. 天然气地球科学. 2021(03): 405-415 . 百度学术
6. 黄毅,黄登旺. 基于A区J井致密油测井曲线的TOC模拟. 化学工程与装备. 2021(12): 62-63 . 百度学术
其他类型引用(8)