台湾新养女湖泥火山流体地球化学特征与流体来源

马晓理, 刘丽华, 魏雪芹, 翟梦月, 余娟

马晓理, 刘丽华, 魏雪芹, 翟梦月, 余娟. 台湾新养女湖泥火山流体地球化学特征与流体来源[J]. 海洋地质与第四纪地质, 2020, 40(6): 71-81. DOI: 10.16562/j.cnki.0256-1492.2020061501
引用本文: 马晓理, 刘丽华, 魏雪芹, 翟梦月, 余娟. 台湾新养女湖泥火山流体地球化学特征与流体来源[J]. 海洋地质与第四纪地质, 2020, 40(6): 71-81. DOI: 10.16562/j.cnki.0256-1492.2020061501
MA Xiaoli, LIU Lihua, WEI Xueqin, ZHAI Mengyue, YU Juan. Geochemical characteristics and source of pore fluids of the mud volcanoes in Shin-yan-ny-hu, Taiwan, China[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 71-81. DOI: 10.16562/j.cnki.0256-1492.2020061501
Citation: MA Xiaoli, LIU Lihua, WEI Xueqin, ZHAI Mengyue, YU Juan. Geochemical characteristics and source of pore fluids of the mud volcanoes in Shin-yan-ny-hu, Taiwan, China[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 71-81. DOI: 10.16562/j.cnki.0256-1492.2020061501

台湾新养女湖泥火山流体地球化学特征与流体来源

基金项目: 国家自然科学基金项目“南海北部台西南盆地浅层沉积物中自生碳酸盐岩形成动力学模拟研究”(41776071);2019年省级促进经济发展专项资金项目“水合物开采安全评价预测技术研究”(GDOE[2019]A41);中国科学院南海生态环境工程创新研究院项目“生物礁地球化学记录反演南海沉积环境变化研究”(ISEE2020YB05);广东省海洋科技协同创新中心项目(20180207)
详细信息
    作者简介:

    马晓理(1995―),女,硕士研究生,主要研究方向为海洋地质,E-mail:maxl159@163.com

    通讯作者:

    刘丽华(1968―),女,研究员,主要研究方向为海洋地质、地球化学,E-mail:liulh@ms.giec.ac.cn

  • 中图分类号: P736.4

Geochemical characteristics and source of pore fluids of the mud volcanoes in Shin-yan-ny-hu, Taiwan, China

  • 摘要: 陆地泥火山流体来源及其演化过程的研究,对于理解板块俯冲边界增生楔中流体特性及迁移途径有重要作用,对于油气等资源勘探具有指示意义。通过分析台湾西南部新养女湖(SYNH)泥火山喷出流体的离子组分、氢氧同位素组分以及泥质沉积物的矿物组分,探索泥火山喷出流体源区的化学特征、流体的来源及源区温度和深度条件;搭建组分运移、演化的概念模型。调查发现SYNH泥火山喷出泥质沉积物的矿物以石英、长石、伊利石、绿泥石为主,含少量方解石和白云石。流体中Na+、Cl占主导,且Na+和Cl呈显著正相关,表明泥火山流体起源于海洋沉积孔隙水。泥浆池中流体的Cl浓度约为海水的1/5;氧同位素δ18O为6.24‰~6.59‰,明显富集18O;氢同位素δD的范围为−23.72‰~−12.9‰,显示贫化的特征。Cl浓度和氢氧同位素特征指示蒙脱石脱水稀释流体组分、改变流体的化学特征。此外,氢氧同位素分布偏移大气降水线,表明大气降水对泥火山流体的影响较小。流体中富集Na+,严重贫化K+,可能与蒙脱石的伊利石化作用有关。根据Na/K、K/Na地温计和氢氧同位素数据推算深部流体的温度范围为79~181 ℃。结合地温梯度,推测SYNH泥火山喷出流体起源的深度为2.6~6.0 km,对应中新世长石坑组及乌山组的页岩-砂岩和上新世的开竹寮页岩。基于研究区构造背景、矿物组成及流体地球化学特征搭建SYNH泥火山深部流体喷出过程的简化模型,即原始海水组分被保留在孔隙中,塑性页岩的圈闭作用使得孔隙流体排出不均衡,随着上覆岩层的压实作用及横向构造挤压,孔隙内部流体压力急剧升高,当压力大于上覆岩层压力或存在高渗通道时,流体携带沉积物喷出地表。
    Abstract: The sources and geochemical evolution of pore fluids of terrestrial mud volcanoes are critical to the understanding of the features and migrating paths of the fluids in subduction accretionary prisms. They are also important to oil and gas exploration. In order to get an answer to the problems mentioned above, we analyzed the ionic composition, and the hydrogen and oxygen isotopes of mud volcanic fluids as well as the mineral composition of the sediments of mud volcanos taking the Shin-yan-ny-hu (SYNH) mud volcano, Taiwan, China as a case. The analysis results suggest that the erupted minerals by the mud volcano are dominated by quartz, feldspar, illite and chlorite, with a small amount of calcite and dolomite, while in the fluids, Na+ and Cl dominate and there is a significant positive correlation between Na+ and Cl. Such a correlation suggests that the fluids are derived mainly from pore water of marine sediments. The Cl concentration of the fluid is about one-fifth of the seawater, characterized by enriched oxygen isotopes (δ18O: 6.24‰~6.59‰) and depleted hydrogen isotopes (δD: −23.72‰~−12.9‰), indicating the dehydration of smectite. The hydrogen and oxygen isotopes are obviously deviated from meteoric precipitation, the results support the conclusion that the influences of meteoric precipitation on this area are limited. Comparing to seawater, the fluids are rich in Na+ and severely depleted in K+, owing to the increase in smectite by illite/smectite interaction. The geochemical signatures of the pore fluids further suggest that the fluids sourced from the deep with temperatures ranging between 79 ℃−181 ℃ responding to a source region 2.6 km to 6.0 km in depth, where, as we know, occur the Kai-tzu-liao shales of Pliocene, and the interbedded shale and sandstone sequence of Miocene Chang-chi-keng and Wu-shan Formations. Based on the tectonic background, mineral composition and fluid sources of the SYNH mud volcanos, we established a theoretical model in this paper: The pore fluids of marine sediments trapped by the plastic shales caused the uneven ejection of pore water. With the compaction by the overlying sediments and lateral extrusions, the pressures of pore fluids increased sharply. Finally, the fluids carrying sediments erupted out, when the pressures are greater than that of overlying rocks if there are high-permeability channels.
  • 泥火山由深部气体、水和泥质物质沿裂隙、断裂等高渗通道喷出地表或海底形成,其外貌形态和活动过程与岩浆作用的火山类似,但其喷出物质主要来自于地壳浅部的沉积物,而火山喷出的物质则来自地壳深部或地幔岩浆[1-3]。汇聚大陆边缘的挤压地带是泥火山发育的良好场所[4-5]。在混合驱动力作用下,深部物质向上拱入喷出。泥火山喷出气体一般为甲烷(>80%)占主导的碳氢化合物,其余为二氧化碳、烷烃(乙烷―丁烷)和空气组分[6-8]。喷出的泥质沉积物由源区富含黏土矿物的泥质物质和脱落的围岩碎屑混合组成,继承了源区沉积物及途经围岩的特征[2]。沉积物的矿物组分包括蒙脱石、伊利石、高岭石、绿泥石、石英、长石等[2-3, 9]。伴随气体、泥质沉积物喷出的流体具有多种来源且经历复杂的演变过程。在地下活动通道中,来自不同深度、不同成分的流体相互混合、相互作用并与周围岩石或沉积物发生水岩反应[5]。这些流体混合及成岩过程的信息均被记录在流体的化学组分中,因此,开展泥火山流体化学特征的研究对追溯流体来源及其化学演变过程具有一定指示意义,对于泥火山相关的油气资源勘探研究有辅助作用。

    目前对泥火山流体来源的研究较多[9-12]。Mazzini和Etiope[5]系统概述了泥火山流体主要来源于海洋沉积孔隙水、矿物结构水和大气降水。Planke和Dia[9, 13]根据不同流体来源的深度不同,建立深部流体与浅层流体的混合模型。虽然国际上对泥火山流体的研究起步较早,但在不同地域,泥火山流体的研究程度却不尽相同。在台湾,特殊地质构造背景使得台湾泥火山成为近几十年来科学家们研究的热点[14],研究包括泥火山分布特征[15]、形成机制[16-17]、油气聚集[18-19]、生物地球化学过程[20-21]等。许多学者也对台湾泥火山喷出流体开展大量研究工作,Gieskes和Yeh[22-23]分析了台湾西南部泥火山流体的离子组成,推测海洋沉积孔隙水是其来源的重要组成部分;Gieskes[22]推测泥火山流体可能与增生楔底部的滑脱作用有关。Liu[24]研究了台湾西南部Wu-shan-ting和Hsiao-kun-shui泥火山流体的离子组分,推测泥火山流体与深层卤水混合大气降水相关。You和Chao[11, 25]分析台湾西南部泥火山流体化学组成,发现沉积孔隙水混合黏土矿物脱水可能是深部流体的主要来源。目前对台湾泥火山流体的具体来源、深度、形成温度和演化过程认识尚存在争议。本研究选取台湾西南部新养女湖(简称SYNH)作为研究对象,分析SYNH泥火山喷出流体的主要元素、次要元素和氢氧同位素特征以及喷出泥质沉积物的矿物种类与含量,探讨SYNH流体的来源及其化学组分对成岩过程的响应;建立SYNH泥火山流体的运移及喷出模型。

    台湾增生楔位于台湾南部地形隆起区,是洋内俯冲和弧陆碰撞共同作用的产物[14, 26]。弧陆碰撞产生强烈的挤压应力场,有利于泥火山深部形成超高压流体。此外,造山运动伴生的断裂构造为超高压流体的运移提供了通道[27]。在台湾,目前已报道活跃的陆地泥火山共有64座,集中分布在台湾西南部的前陆区域和台湾东部的沿海区域[15, 28]。这些泥火山主要沿构造断裂和背斜分布,如触口断裂带、旗山断裂带、纵谷断裂带和古亭坑背斜等,有少量分布在沿海平原[28]。其中,SYNH(22°48'17"N、120°24'23"E)泥火山主要沿旗山断裂带分布(图1)。台湾大多数泥火山喷出气体以甲烷占主导(含量>90%),极少数泥火山喷出气体以二氧化碳占主导(如Chung-lun泥火山)[8, 18-19]。C1/(C2+C3)和δ13CCH4分析显示50%的台湾泥火山喷出气体为热成因烃类气体[8, 19]。喷出泥质沉积物的矿物组分以石英、伊利石、绿泥石为主,伴随极少量的高岭石[15]。台湾西南部泥火山喷出流体具有高Na+、Cl浓度、富集B、Li、Ba元素和18O同位素等特征,指示喷出流体可能经历黏土矿物成岩作用[23, 25]、沉积物吸附与解吸[29]、碳酸盐成岩作用[11]等。喷出地表后,流体的化学成分受季节性波动的影响,如在雨季前流体中Na+、Cl浓度普遍较高[24]

    图  1  台湾南部地区区域构造图[11]
    Figure  1.  Regional tectonic map of southern Taiwan [11]

    2017年经过SYNH土地所有者允许,在研究区采取了13个泥水混合物样品。研究区共有4个泥浆喷口(图2)。其中最大的泥浆喷口面积约为2.5 m×2 m,属于典型的泥浆池(SYNH01)。第二大的泥浆喷口(SYNH03)被坚硬的外壳所包围,呈圆锥形态。SYNH02为休眠泥火山,SYNH04为小型泥浆喷口。在取样过程中,可明显闻到臭鸡蛋气味和天然气气味。在喷口周围附有一层油膜,在喷口上方点火能点燃。在SYNH01泥浆池中,沿直径以0.3 m为间距采集了7个泥水混合物样品。随后分别在SYNH02的边缘、SYNH03和SYNH04泥火山的喷口中心和边缘共采集了5个泥水混合物样品,此外,在距离SYNH01泥浆池约4 m处采集了1个背景土样品(图2)。

    图  2  研究区取样示意图及研究区SYNH泥火山实物图
    图中MV代表泥火山。
    Figure  2.  Schematic map of sampling sites and pictures of outcrops
    The MV represents a mud volcano.

    泥水混合样品运回实验室,采用转速为8 200 ×g的离心机离心10 min。上清液采用0.22 μm的滤膜过滤,收集孔隙水作后续组分和含量分析。部分孔隙水样品采用体积为20 μL的2 M的硝酸酸化处理(pH<2)用以测试主、微量元素;另一部分样品测试阴离子和水中的氢氧同位素。所有的孔隙水样品均在4 ℃的冰箱中保存。

    孔隙水中的主要阳离子(Na+、K+、Ca2+、Mg2+、NH4+)采用电感耦合等离子体光谱仪(ICAP-7200系列,Thermo,USA)测试,在测试前,样品稀释约1∶10倍,随后取8 mL转移到进样管中,测试精度大于5%。微量元素(Fe、Mn、Cr、Ba、Sr、U、Ti、Mo)采用电感耦合等离子体质谱仪(iCAP Q系列,Thermo,USA)进行测试,检出最低值大约为0.06 μg/kg, 精度及准确度都小于5%。Cl${\rm {NO}}_3^{-} $的含量采用离子色谱仪(ICS-1100型,Thermo,USA)进行测试,平行实验结果显示Cl${\rm {NO}}_3^{-} $浓度的RSD (n=5)分别为0.35%、0.50%,均小于1%,实验具有较好的重复性。水中氢氧同位素值分别采用高温裂解TC/EA连续流稳定同位素质谱仪(TC/EA-IRMS)和Gasbench Ⅱ-连续流稳定同位素质谱仪(Gasbench Ⅱ-IRMS)测试。δD、δ18O值均以SMOW国际标准作为参考标准,δD和δ18O测定精度均优于2‰和0.2‰。孔隙水的所有分析工作均在自然资源部第三海洋研究所分析测试中心(MNR)完成。

    沉积物矿物组分及含量采用德国BRUKER D8 ADVANCE型X射线衍射仪分析, 在中国科学院广州地球化学研究所完成。工作参数为Cu靶Kα射线,石墨单色器,工作电压为40 kV,电流为30 mA,扫描范围2θ=3°~85°,狭缝1 mm,扫描速度4/min,矿物含量依面积法进行半定量分析。

    研究区流体的地球化学特征见表1图3图4图5。其中Na+浓度为135.9~289.1 mM,Cl浓度为107.8~216.1 mM,显著高于其他阳离子,K+、Ca2+、Mg2+、NH4+浓度为0~1.34 mM(表1)。Na+/Cl比值为1.24~1.37,大于海水值(0.86),K+/Cl、Ca2+/Cl、Mg2+/Cl比值分别为5.55~7.33、0.64~1.9、3.14~4.22 μM/mM,远小于海水值(分别为18.6、18.8、97.1)(图3)。水的氢氧同位素值分别为δ18O=5.58‰~7.01‰,δD=−23.72‰~0.4‰。SYNH泥浆池边缘的流体数据(点3-2,点4-2),δ18O、δD、Cl离子较喷口池中的大(图4)。SYNH泥火山喷出泥质沉积物的矿物组成及含量见表2。其中,背景土的矿物组分及含量与其余取样点无显著差异。矿物组分均以石英、长石、黏土矿物为主,含少量方解石和白云石,黏土矿物组分主要为伊利石和绿泥石。

    表  1  SYNH泥火山4个喷口流体的地球化学组成及含量
    Table  1.  Geochemical compositions of discharged fluids from SYNH mud volcanoes.
    样品编号Cl/
    mM
    NH4+/
    mM
    Na+/
    mM
    K+/
    mM
    Mg2+/
    mM
    Ca2+/
    mM
    Mn2+/
    μM
    Cr/
    μM
    Ba2+/
    μM
    Sr2+/
    μM
    U/
    μM
    Ti/
    μM
    Mo/
    μM
    δ18OSMOW/
    δDSMOW/
    K/Na地
    温计/℃
    Na/K地
    温计/℃
    SYNH01-6110.10.32150.50.700.4090.1140.230.00292.2717.350.0500.281.826.45−22.99NDND
    SYNH01-4125.70.40167.10.790.4240.1250.290.00382.7220.530.0530.262.026.56−21.4488.198
    SYNH01-2114.70.33155.90.770.4280.1600.460.00151.8019.430.0550.332.156.34−22.6890.498.9
    SYNH01-1123.80.38165.60.720.4770.1230.310.00382.8019.400.0500.261.746.54−23.7285.296.9
    SYNH01-3125.60.42170.60.920.4490.1710.430.00192.3024.050.0680.383.166.59−23.5293.9100.3
    SYNH01-5108.40.40144.860.680.3970.1340.350.00232.6119.690.0450.321.606.59−23.3388.198
    SYNH01-7124.30.47167.60.880.4810.1740.440.00272.5323.530.0570.382.426.28−21.35NDND
    SYNH02-2216.10.32289.11.341.2300.3891.530.01420.8542.020.0811.004.165.580.4NDND
    SYNH03-1129.30.33176.50.810.5310.1510.370.00121.7419.110.0670.382.156.24−12.9087.297.6
    SYNH03-2198.10.49254.51.100.6210.1270.130.00401.7429.720.0820.353.587.01−7.45NDND
    SYNH04-1107.80.45135.90.640.3610.2050.270.00352.6418.450.0570.472.346.29−21.208897.9
    SYNH04-2150.10.30186.60.840.6340.2800.470.00371.5926.900.0780.633.746.78−9.88NDND
      注:ND 表示未计算温度值。
    下载: 导出CSV 
    | 显示表格
    表  2  SYNH泥火山喷出泥的矿物组分及含量
    Table  2.  Mineralogical compositions of the erupted mud by SYNH mud volcanoes.
    % 
    样品编号石英长石伊利石绿泥石方解石白云石
    SYNH01-640.915.219.021.72.20.9
    SYNH01-439.714.820.621.51.41.9
    SYNH01-238.616.019.522.30.53.0
    SYNH01-142.516.816.721.61.50.9
    SYNH01-347.614.515.118.43.11.4
    SYNH01-539.716.217.619.94.22.4
    SYNH01-745.418.512.416.45.41.9
    SYNH02-242.515.217.519.33.42.1
    SYNH03-144.014.917.720.01.42.0
    SYNH03-247.219.812.915.01.13.9
    SYNH04-143.016.317.619.71.22.2
    SYNH04-237.512.720.722.62.04.4
    背景土49.816.712.517.51.22.2
    下载: 导出CSV 
    | 显示表格
    图  3  研究区阳离子/Cl比值与Cl对比图
    本研究结果为绿色实心点,前人在 SYNH 泥火山研究的流体数据来源于文献 [11, 21, 23]。
    Figure  3.  Plot of major elements/Cl ratios vs. Cl
    The results of this study are shown with green solid points, and fluids data of SYNH mud volcanoes are from references [11, 21, 23].
    图  4  流体中 δD、Cl浓度与δ18O对比图
    点3-2和点4-2分别代表从SYNH03、SYNH04喷口边缘采集的流体数据。
    Figure  4.  Plot of δD and Cl concentrations vs. δ18O
    Sample 3-2 and 4-2 represented fluids data collected from the edges of SYNH03 and SYNH04 mud volcanoes, respectively.
    图  5  (Na++K++2Ca2++2Mg2+)、Na+与Cl关系图
    图中虚线代表海水稀释线,小图中实线代表相关线。
    Figure  5.  Relationship diagram of (Na++K++Ca2++Mg2+) vs. Cl and Na+ vs. Cl
    The dotted line represents the seawater dilution line, and the solid line in the small figures represents the correlation line.

    海水稀释线代表不同Cl浓度下海水的常量阳离子(Na++K++2Ca2++2Mg2+)组成,SYNH泥浆池流体数据靠近海水稀释线分布(图5),表明其化学组分与海水相似。除此之外,流体中Na+、Cl占主导(表1),且Na+和Cl显著正相关(图5),因此,SYNH泥火山流体可能起源于海洋沉积孔隙水[25]或地下深部岩盐的溶解[13, 30]。沉积地层观察表明台湾地区不发育岩盐[22],排除起源于蒸发岩溶解的可能性。SYNH泥浆池流体的常量阳离子与Cl的相关性[10]与巴巴多斯马农海域的泥火山流体相似(图5),均呈显著正相关,表明它们的起源相同。因此,SYNH泥火山流体最大可能起源于海洋沉积孔隙水,在源区沉积物快速埋藏过程中被机械圈闭在孔隙中[5]

    由于流体和泥浆沿通道快速喷出,生物作用和非生物作用对喷出流体的化学组成影响较小,且氯是孔隙流体中化学性质最保守的元素,因此,泥浆池中流体的离子组成可以代表源区流体的离子性质。SYNH泥浆池中Cl浓度为108~129 mM(表1图5),约为海水值(558 mM)的1/5,表明深部起源的海洋沉积孔隙水被低盐度流体所稀释。在世界其他泥火山中也观察到深部流体被稀释的现象,如巴巴多斯增生楔泥火山[10]、地中海东部泥火山[31]、特立尼达拉岛泥火山[9]和黑海东部泥火山[32]等。这种稀释过程可能由水合物分解、大气降水输入、黏土膜过滤作用或黏土矿物脱水造成[10, 31]。然而排除水合物分解稀释的可能性,因为泥火山地下深部的高温条件(高达390 ℃/km)不适宜水合物的发育[33]

    泥火山喷出流体的氢氧同位素特征可以指示流体被稀释的机制[31]。研究区喷口池中水的氧同位素值为6.24‰~6.59‰,较于海水值(约0‰)富集氧同位素;氢同位素值为−23.72‰~−12.9‰,较于海水值(约0‰)贫化氢同位素(表1),极可能是源区海洋沉积孔隙水与低盐度流体混合的结果。大气降水线表示全球或特定区域大气降水中氢氧同位素的线性相关,而研究区流体的氢氧同位素数据均偏离大气降水线分布(图6),表明SYNH流体受大气降水输入的影响较小。在沉积埋藏过程中,沉积物中页岩和黏土矿物相当于半透膜能“过滤”流体中的盐离子(如Na+、Cl)以及水中18O和D同位素,使得过滤流体中盐度降低及18O和D同位素贫化[34-36],Coplen[34]实验证明经黏土膜“过滤”的流体,其18O和D同位素较未过滤流体分别贫化−0.8‰、−2.5‰。这与研究区流体中18O同位素富集特征相反,排除黏土膜过滤作用的影响。随着埋深和地温的增加,在增生楔某一深度范围内发生黏土矿物脱水,这个过程不仅释放富18O、贫D的淡水到其周围,而且导致泥火山流体富18O和贫D;同时在某一温度下,黏土矿物与周围孔隙流体发生同位素交换反应。一般海洋黏土矿物中氧和氢同位素组成分别为δ18O=12.5‰~27.5‰,δD=−80‰~−27‰[37-39],当与周围孔隙流体发生同位素分馏时,最终使得流体中18O同位素增加和D同位素降低[31, 40]。与研究区流体中呈现的氧同位素正偏、氢同位素负偏的特征符合。因此,黏土矿物脱水是稀释SYNH泥火山流体最可能的机制。

    图  6  流体中氢氧同位素对比图
    图中虚线分别代表全球大气降水线(GMWL)[46]和当地大气降水线(LMWL)[47]。台湾8个泥火山[23-25, 48-49]、台湾雨水[25]、台湾河水和地下水[11]以及全球分布的4个泥火山[9, 12, 30, 50]中水的氢氧同位素数据被收集进行投图对比。
    Figure  6.  Comparison of hydrogen and oxygen isotopes in fluids
    The dash lines represent the global precipitation line (GMWL)[46]and local precipitation line (LMWL)[47] respectively. The hydrogen and oxygen isotopes data were collected for comparison including eight mud volcanos in Taiwan[23-25, 48-49], rain water in Taiwan[25], river water and groundwater in Taiwan[11], and four mud volcanoes worldwide[9, 12, 30, 50].

    值得注意的是,黏土矿物中高岭石-流体作用虽对稀释深部流体作用微乎其微,但也使得流体中氧同位素富集、氢同位素贫化[41],因此不能忽略高岭石-流体相互作用对研究区流体中氢氧同位素的贡献。中中新世以来,南海洋壳俯冲到菲律宾海板块下部,随后菲律宾海板块最前端的吕宋岛弧自6.5 MaBP与亚洲大陆边缘发生斜向碰撞,原沉积在南海陆坡的沉积物,因碰撞被抬升并出露于现台湾西部山麓带和中央山脉带(图1),现代南海的黏土矿物特征一定程度上能近似反映SYNH泥火山深部源区的黏土矿物组成[14]。南海东北部表层黏土矿物定量分析表明,蒙脱石占27%~46%,伊利石占30%~41%,绿泥石占18%~28%,高岭石仅占很小一部分(5%~13%)[42],据此推测高岭石-流体相互作用对源区流体的氢氧同位素影响很小。而含水的蒙脱石矿物含量十分丰富(27%~46%)[42],推测黏土矿物中蒙脱石脱水可能是稀释SYNH泥火山深部高盐度流体最主要的机制[31, 40]。蒙脱石脱水模拟实验显示在巴巴多斯大陆边缘俯冲带,蒙脱石仅脱去5%的层间水,流体中的Cl浓度即从558 mM下降到460 mM[41]。在其他增生楔泥火山的研究中,低氯流体的出现都归因于蒙脱石脱水影响[36, 43-44]。研究区流体中Na+的富集、K+的贫化(图3图5),进一步佐证蒙脱石脱水的结论。蒙脱石脱水反应式如下[45]

    $$\begin{split}&{\rm{Smectite(}}{\text{蒙脱石}}{\rm{) + 4}}{\rm{.5}}{{\rm{K}}^{\rm{ + }}}{\rm{ + 8A}}{{\rm{l}}^{{\rm{3 + }}}} \to {\rm{illite(}}{\text{伊利石}}{\rm{) }}+\\&\quad{{\rm{Na}}^{\rm{ + }}}{\rm{ + 2C}}{{\rm{a}}^{{\rm{2 + }}}}{\rm{ + 2}}{\rm{.5F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{ + 2M}}{{\rm{g}}^{{\rm{2 + }}}}{\rm{ + 3S}}{{\rm{i}}^{{\rm{4 + }}}}{\rm{ + 10}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\end{split}$$

    流体中Ca2+、Mg2+的贫化(图3)与碳酸盐岩成岩作用改造相一致[10-11]。Chao[11]发现SYNH泥火山喷出流体具有较高的87Sr/86Sr同位素比值,并从实验的角度证明高锶同位素比值由碳酸盐岩重结晶产生。

    地温计和氢氧同位素数据可用来估算源区流体形成的温度[51-52]。地温计是基于流体中SiO2浓度或不同阳离子之间的比值,来推断源区溶质与周围沉积物或岩石达到平衡时的温度,该温度代表发生成岩反应的温度[10]。目前常用的地温计包括SiO2地温计、Mg/Li地温计、Na/Li地温计、Na-K-Ca地温计、K/Na地温计、Na/K地温计等。其中K/Na和Na/K地温计最适合推断深部储层的温度,该储层不受大气降水或地下水输入的影响[29],计算方法见公式(1)和(2)[53-54],式中离子浓度单位为mg/L。

    $${{T({\text{℃}}) = }}\frac{{{\rm{1\;390}}}}{{{\rm{1}}{\rm{.75 - log}}\frac{{\rm{K}}}{{{\rm{Na}}}}}}{\rm{ - 273}}{\rm{.15}}$$ (1)
    $${{T({\text{℃}}) = }}\frac{{{\rm{1\;052}}}}{{{\rm{1 + }}{{\rm{e}}^{{\rm{(1}}{\rm{.714 \times log}}\frac{{{\rm{Na}}}}{{\rm{K}}}{\rm{ + 0}}{\rm{.252)}}}}}}{\rm{ + 76}}$$ (2)

    根据K/Na和Na/K地温计,计算在SYNH喷口池中采集的每一个样品的形成温度(表1)。除此之外,运用Hensen[55]的方法计算不同温度下黏土矿物的δ18O和δD理论值(图7),该方法是基于源区黏土矿物与周围孔隙流体达到同位素分馏平衡的假设。本文共采集了4个喷口流体的样品,其中SYNH02喷口为休眠泥火山(图2)。SYNH泥火山喷口实物图(图2 )及地球化学数据(表1)均显示SYNH01喷口最为活跃,推测其可能为主通道喷口;而SYNH03、SYNH04喷口可能是泥火山流体的支路喷口,较SYNH01喷口可能经历较多生物或非生物过程的影响。由于SYNH喷口池中流体的离子组成能近似代表源区流体离子性质(见3.1),因此,源区孔隙流体端元的δ18Opw和δDpw值采用SYNH01喷口池中流体的氢氧同位素平均值(δ18O=6.48‰;δD=−22.72‰)近似代替。假设前提为黏土矿物与周围孔隙流体达到氢氧同位素分馏平衡[55]。根据源区孔隙流体端元值(δ18Opw=6.48‰和δDpw=−22.72‰),推算不同温度下,最终黏土矿物的δ18O和δD理论值。其中δ18O值使用Sheppard和Gilg[51]的氧同位素分馏公式计算,δD值分别使用Capuano[38](实心菱形)和Yeh[58](空心菱形)的氢同位素分馏公式计算。依据自然界中黏土矿物的δ18O和δD值范围(阴影区域)[37-39],圈出计算流体形成的理论温度为79~181 ℃(图7)。与K/Na和Na/K地温计推算的温度范围(85~100 ℃)重合(表1)。但二者温度上限存在较大差异的原因可能是黏土矿物脱水很大程度上影响流体的同位素值,对流体中K/Na和Na/K离子对的影响较小[29]。SYNH泥火山喷出泥质沉积物的矿物组分以石英、长石、伊利石、绿泥石为主,含少量方解石和白云石(表2)。而蒙脱石及伊利石-蒙脱石混层矿物缺乏,指示在SYNH泥火山深部可能发生强烈的黏土矿物成岩作用,将蒙脱石和伊利石-蒙脱石混层矿物转为伊利石[12],反应的温度为95~200 ℃[56],与本文根据同位素数据估算的温度范围较为一致。综上,推测SYNH泥火山流体的形成温度最大可能为79~181 ℃。另外,Rumble[57]基于同位素异数体(13CDH312CD2H2)丰度分析推测SYNH泥火山热成因甲烷的形成温度(150 ℃)为79~181 ℃。

    图  7  源区流体形成的理论温度
    图中箭头指示两个温度曲线的交点,对应温度为95 ℃。
    Figure  7.  The theoretical temperature of fluids generation
    The arrow indicated the point at which the two temperature curves intersected, corresponding temperature at 95 ℃.

    根据研究区流体形成的温度范围(79~181 ℃)及平均地温梯度(30 ℃/km)[19],推测SYNH泥火山流体来源的深度为2.6~6.0 km。这个深度对应的地层为中新世长石坑组和乌山组的海陆交互相页岩-砂岩以及上新世开竹寮页岩[19]图8)。SYNH泥火山流体的喷出过程极大可能与6.5~0 Ma期间的造山运动密切相关[14]。6.5 MaBP的弧陆碰撞将原沉积在中国大陆边缘的沉积物抬升并出露于现台湾陆地,同时形成一系列逆冲推覆构造,包括研究区的旗山逆断层[27]。抬升的沉积物为富含有机质的巨厚泥页岩,对应研究区的长石坑组及乌山组的页岩-砂岩、开竹寮页岩。沉积物的快速抬升及埋藏,导致原沉积物处于欠压实状态,沉积物中的孔隙率增高。加之沉积物中页岩(黏土矿物)的圈闭作用,海相起源的孔隙流体(高Na+、Cl)排出受阻。与此同时,异常的高温促进黏土矿物发生脱水(主要为蒙脱石脱水)[43],释放大量淡水稀释高盐度流体的同时,深部流体大量积聚,含水率进一步升高。在上覆沉积物的压实及碰撞产生的横向构造挤压力的作用下,孔隙内部流体压力急剧升高。除此之外,沉积物中的大量有机质降解转化为烃类气体,进一步提高了孔隙内部的流体压力[19]。当这种压力大于上覆沉积地层压力或存在旗山断层等渗透通道时,压力的释放,气体、流体携带周围泥质物质沿旗山断裂系统不断向上覆地层侵入充注,最终喷出地表形成泥火山(图8)。

    图  8  SYNH泥火山流体运移及反应简化模型[19]
    Figure  8.  Schematic model of water-rock interaction, fluids transport and evolution of SYNH mud volcanos[19]

    (1)SYNH泥火山喷出泥质沉积物的矿物组分以石英、长石、伊利石和绿泥石为主,含少量方解石和白云石。喷出流体中Na+和Cl占主导,且Na+和Cl呈显著正相关,表明SYNH泥火山流体极大可能起源于海洋沉积孔隙水。

    (2)SYNH喷口池中氯浓度约为海水的20%,氧同位素值为+6.24‰~+6.59‰,较海水值(0‰)富集氧同位素;而氢同位素值为−23.72‰~−12.9‰,较海水值(0‰)贫化氢同位素,推测源区流体极可能经历蒙脱石脱水,形成了源区低盐度流体。流体中Na+/Cl比值大于海水值,K+/Cl比值远小于海水值,指示可能发生蒙脱石的伊利石化反应,导致过量的Na+离子释放进入流体,同时捕获流体中K+离子,进一步佐证蒙脱石脱水的可能性。

    (3)基于同位素数据以及K/Na、Na/K地温计估算流体形成的温度为79 ℃~181 ℃,对应埋藏深度为2.6~6.0 km。在这个深度内,来源于长石坑组、乌山组和开竹寮页岩中的蒙脱石矿物脱水释放大量淡水进入原始流体。

    (4)根据以上分析搭建SYNH泥火山流体的形成及演化模型:原始海水组分在孔隙周围塑性页岩的圈闭及流体排出受阻的情况下,孔隙内部孕育了巨大的超高压潜能。当这种压力大于上覆岩层压力或存在渗透通道的情况下,大量气体、流体携带泥质沉积物喷出地表。

  • 图  1   台湾南部地区区域构造图[11]

    Figure  1.   Regional tectonic map of southern Taiwan [11]

    图  2   研究区取样示意图及研究区SYNH泥火山实物图

    图中MV代表泥火山。

    Figure  2.   Schematic map of sampling sites and pictures of outcrops

    The MV represents a mud volcano.

    图  3   研究区阳离子/Cl比值与Cl对比图

    本研究结果为绿色实心点,前人在 SYNH 泥火山研究的流体数据来源于文献 [11, 21, 23]。

    Figure  3.   Plot of major elements/Cl ratios vs. Cl

    The results of this study are shown with green solid points, and fluids data of SYNH mud volcanoes are from references [11, 21, 23].

    图  4   流体中 δD、Cl浓度与δ18O对比图

    点3-2和点4-2分别代表从SYNH03、SYNH04喷口边缘采集的流体数据。

    Figure  4.   Plot of δD and Cl concentrations vs. δ18O

    Sample 3-2 and 4-2 represented fluids data collected from the edges of SYNH03 and SYNH04 mud volcanoes, respectively.

    图  5   (Na++K++2Ca2++2Mg2+)、Na+与Cl关系图

    图中虚线代表海水稀释线,小图中实线代表相关线。

    Figure  5.   Relationship diagram of (Na++K++Ca2++Mg2+) vs. Cl and Na+ vs. Cl

    The dotted line represents the seawater dilution line, and the solid line in the small figures represents the correlation line.

    图  6   流体中氢氧同位素对比图

    图中虚线分别代表全球大气降水线(GMWL)[46]和当地大气降水线(LMWL)[47]。台湾8个泥火山[23-25, 48-49]、台湾雨水[25]、台湾河水和地下水[11]以及全球分布的4个泥火山[9, 12, 30, 50]中水的氢氧同位素数据被收集进行投图对比。

    Figure  6.   Comparison of hydrogen and oxygen isotopes in fluids

    The dash lines represent the global precipitation line (GMWL)[46]and local precipitation line (LMWL)[47] respectively. The hydrogen and oxygen isotopes data were collected for comparison including eight mud volcanos in Taiwan[23-25, 48-49], rain water in Taiwan[25], river water and groundwater in Taiwan[11], and four mud volcanoes worldwide[9, 12, 30, 50].

    图  7   源区流体形成的理论温度

    图中箭头指示两个温度曲线的交点,对应温度为95 ℃。

    Figure  7.   The theoretical temperature of fluids generation

    The arrow indicated the point at which the two temperature curves intersected, corresponding temperature at 95 ℃.

    图  8   SYNH泥火山流体运移及反应简化模型[19]

    Figure  8.   Schematic model of water-rock interaction, fluids transport and evolution of SYNH mud volcanos[19]

    表  1   SYNH泥火山4个喷口流体的地球化学组成及含量

    Table  1   Geochemical compositions of discharged fluids from SYNH mud volcanoes.

    样品编号Cl/
    mM
    NH4+/
    mM
    Na+/
    mM
    K+/
    mM
    Mg2+/
    mM
    Ca2+/
    mM
    Mn2+/
    μM
    Cr/
    μM
    Ba2+/
    μM
    Sr2+/
    μM
    U/
    μM
    Ti/
    μM
    Mo/
    μM
    δ18OSMOW/
    δDSMOW/
    K/Na地
    温计/℃
    Na/K地
    温计/℃
    SYNH01-6110.10.32150.50.700.4090.1140.230.00292.2717.350.0500.281.826.45−22.99NDND
    SYNH01-4125.70.40167.10.790.4240.1250.290.00382.7220.530.0530.262.026.56−21.4488.198
    SYNH01-2114.70.33155.90.770.4280.1600.460.00151.8019.430.0550.332.156.34−22.6890.498.9
    SYNH01-1123.80.38165.60.720.4770.1230.310.00382.8019.400.0500.261.746.54−23.7285.296.9
    SYNH01-3125.60.42170.60.920.4490.1710.430.00192.3024.050.0680.383.166.59−23.5293.9100.3
    SYNH01-5108.40.40144.860.680.3970.1340.350.00232.6119.690.0450.321.606.59−23.3388.198
    SYNH01-7124.30.47167.60.880.4810.1740.440.00272.5323.530.0570.382.426.28−21.35NDND
    SYNH02-2216.10.32289.11.341.2300.3891.530.01420.8542.020.0811.004.165.580.4NDND
    SYNH03-1129.30.33176.50.810.5310.1510.370.00121.7419.110.0670.382.156.24−12.9087.297.6
    SYNH03-2198.10.49254.51.100.6210.1270.130.00401.7429.720.0820.353.587.01−7.45NDND
    SYNH04-1107.80.45135.90.640.3610.2050.270.00352.6418.450.0570.472.346.29−21.208897.9
    SYNH04-2150.10.30186.60.840.6340.2800.470.00371.5926.900.0780.633.746.78−9.88NDND
      注:ND 表示未计算温度值。
    下载: 导出CSV

    表  2   SYNH泥火山喷出泥的矿物组分及含量

    Table  2   Mineralogical compositions of the erupted mud by SYNH mud volcanoes.

    % 
    样品编号石英长石伊利石绿泥石方解石白云石
    SYNH01-640.915.219.021.72.20.9
    SYNH01-439.714.820.621.51.41.9
    SYNH01-238.616.019.522.30.53.0
    SYNH01-142.516.816.721.61.50.9
    SYNH01-347.614.515.118.43.11.4
    SYNH01-539.716.217.619.94.22.4
    SYNH01-745.418.512.416.45.41.9
    SYNH02-242.515.217.519.33.42.1
    SYNH03-144.014.917.720.01.42.0
    SYNH03-247.219.812.915.01.13.9
    SYNH04-143.016.317.619.71.22.2
    SYNH04-237.512.720.722.62.04.4
    背景土49.816.712.517.51.22.2
    下载: 导出CSV
  • [1]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    [2]

    Dimitrov L I. Mud volcanoes-the most important pathway for degassing deeply buried sediments [J]. Earth-Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7

    [3]

    Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 1005. doi: 10.1029/2000RG000093

    [4]

    Kholodov V N. Mud volcanoes, their distribution regularities and genesis: communication 1. mud volcanic provinces and morphology of mud volcanoes [J]. Lithology and Mineral Resources, 2002, 37(3): 197-209. doi: 10.1023/A:1015425612749

    [5]

    Mazzini A, Etiope G. Mud volcanism: an updated review [J]. Earth-Science Reviews, 2017, 168: 81-112. doi: 10.1016/j.earscirev.2017.03.001

    [6]

    Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean [J]. Geophysical Research Letters, 2003, 30(2): 1037.

    [7]

    Etiope G, Milkov A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere [J]. Environmental Geology, 2004, 46(8): 997-1002. doi: 10.1007/s00254-004-1085-1

    [8]

    Chao H C, You C F, Sun C H. Gases in Taiwan mud volcanoes: chemical composition, methane carbon isotopes, and gas fluxes [J]. Applied Geochemistry, 2010, 25(3): 428-436. doi: 10.1016/j.apgeochem.2009.12.009

    [9]

    Dia A N, Castrec-Rouelle M, Boulègue J, et al. Trinidad mud volcanoes: where do the expelled fluids come from? [J]. Geochimica et Cosmochimica Acta, 1999, 63(7-8): 1023-1038. doi: 10.1016/S0016-7037(98)00309-3

    [10]

    Martin J B, Kastner M, Henry P, et al. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B9): 20325-20345. doi: 10.1029/96JB00140

    [11]

    Chao H C, You C F, Liu H C, et al. The origin and migration of mud volcano fluids in Taiwan: evidence from hydrogen, oxygen, and strontium isotopic compositions [J]. Geochimica et Cosmochimica Acta, 2013, 114: 29-51. doi: 10.1016/j.gca.2013.03.035

    [12]

    Babadi M F, Mehrabi B, Tassi F, et al. Origin of fluids discharged from mud volcanoes in SE Iran [J]. Marine and Petroleum Geology, 2019, 106: 190-205. doi: 10.1016/j.marpetgeo.2019.05.005

    [13]

    Planke S, Svensen H, Hovland M, et al. Mud and fluid migration in active mud volcanoes in Azerbaijan [J]. Geo-Marine Letters, 2003, 23(3-4): 258-268. doi: 10.1007/s00367-003-0152-z

    [14]

    Teng L S. Geotectonic evolution of late cenozoic arc-continent collision in Taiwan [J]. Tectonophysics, 1990, 183(1-4): 57-76. doi: 10.1016/0040-1951(90)90188-E

    [15]

    Shih T T. A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud [J]. Petrol Geol Taiwan, 1967, 5: 259-310.

    [16]

    Sung Q C, Chang H C, Liu H C, et al. Mud volcanoes along the Chishan fault in Southwestern Taiwan: a release bend model [J]. Geomorphology, 2010, 118(1-2): 188-198. doi: 10.1016/j.geomorph.2009.12.018

    [17]

    Chang P Y, Chang S K, Liu H C, et al. Using integrated 2D and 3D resistivity imaging methods for illustrating the mud-fluid conduits of the Wushanting mud volcanoes in Southwestern Taiwan [J]. Terrestrial Atmospheric and Oceanic Sciences, 2011, 22(1): 1-14. doi: 10.3319/TAO.2010.06.28.01(TT)

    [18]

    Yang T F, Yeh G H, Fu C C, et al. Composition and exhalation flux of gases from mud volcanoes in Taiwan [J]. Environmental Geology, 2004, 46(8): 1003-1011. doi: 10.1007/s00254-004-1086-0

    [19]

    Sun C H, Chang S C, Kuo C L, et al. Origins of Taiwan's mud volcanoes: evidence from geochemistry [J]. Journal of Asian Earth Sciences, 2010, 37(2): 105-116. doi: 10.1016/j.jseaes.2009.02.007

    [20]

    Chang Y H, Cheng T W, Lai W J, et al. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan [J]. Environmental Microbiology, 2012, 14(4): 895-908. doi: 10.1111/j.1462-2920.2011.02658.x

    [21]

    Cheng T W, Chang Y H, Tang S L, et al. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano [J]. The ISME Journal, 2012, 6(12): 2280-2290. doi: 10.1038/ismej.2012.61

    [22]

    Gieskes J M, You C F, Lee T, et al. Hydro-geochemistry of mud volcanoes in Taiwan [J]. Acta Geologica Taiwanica, 1992, 30: 79-88.

    [23]

    Yeh G H, Yang T F, Chen J C, et al. Fluid geochemistry of mud volcanoes in Taiwan[C]//Martinelli G, Panahi B. Mud Volcanoes, Geodynamics and Seismicity. Netherlands: Springer, 2005: 227-237.

    [24]

    Liu C C, Jean J S, Nath B, et al. Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: implications for water-sediment interaction and groundwater arsenic enrichment [J]. Applied Geochemistry, 2009, 24(9): 1793-1802. doi: 10.1016/j.apgeochem.2009.06.002

    [25]

    You C F, Gieskes J M, Lee T, et al. Geochemistry of mud volcano fluids in the Taiwan accretionary prism [J]. Applied Geochemistry, 2004, 19(5): 695-707. doi: 10.1016/j.apgeochem.2003.10.004

    [26]

    Suppe J. A retrodeformable cross section of northern Taiwan [J]. Proceedings-Geological Society of China, 1980, 23: 46-55.

    [27]

    Lin A T, Watts A B, Hesselbo S P. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region [J]. Basin Research, 2003, 15(4): 453-478. doi: 10.1046/j.1365-2117.2003.00215.x

    [28]

    Wang S, Shu M, Yang C. Morphological study of mud volcanoes on land in Taiwan [J]. Nat. Taiwan Museum, 1988, 31: 31-49.

    [29]

    Chao H C, You C F, Wang B S, et al. Boron isotopic composition of mud volcano fluids: implications for fluid migration in shallow subduction zones [J]. Earth and Planetary Science Letters, 2011, 305(1-2): 32-44. doi: 10.1016/j.jpgl.2011.02.033

    [30]

    Mazzini A, Svensen H, Planke S, et al. When mud volcanoes sleep: insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan [J]. Marine and Petroleum Geology, 2009, 26(9): 1704-1715. doi: 10.1016/j.marpetgeo.2008.11.003

    [31]

    Dählmann A, De Lange G J. Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160 [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 377-391. doi: 10.1016/S0012-821X(03)00227-9

    [32]

    Reitz A, Pape T, Haeckel M, et al. Sources of fluids and gases expelled at cold seeps offshore Georgia, eastern Black Sea [J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3250-3268. doi: 10.1016/j.gca.2011.03.018

    [33]

    Wu J N. New data processing algorithm for marine heat flow and thermal modeling for Tsan-Yao mud volcano offshore SW Taiwan[D]. Taipei: Institute of Oceanography College of Science, National Taiwan University, 2016.

    [34]

    Coplen T B, Hanshaw B B. Ultrafiltration by a compacted clay membrane-I. oxygen and hydrogen isotopic fractionation [J]. Geochimica et Cosmochimica Acta, 1973, 37(10): 2295-2310. doi: 10.1016/0016-7037(73)90105-1

    [35]

    Rolfe P F, Aylmore L A G. Water and salt flow through compacted clays: I. Permeability of compacted illite and montmorillonite [J]. Soil Science Society of America Journal, 1977, 41(3): 489-495. doi: 10.2136/sssaj1977.03615995004100030011x

    [36]

    Kastner M, Elderfield H, Martin J B. Fluids in convergent margins: what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? [J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences, 1991, 335(1638): 243-259. doi: 10.1098/rsta.1991.0045

    [37]

    Savin S M, Epstein S. The oyxgen and hydrogen isotope geochemistry of ocean sediments and shales [J]. Geochimica et Cosmochimica Acta, 1970, 34(1): 43-63. doi: 10.1016/0016-7037(70)90150-X

    [38]

    Capuano R M. The temperature dependence of hydrogen isotope fractionation between clay minerals and water: evidence from a geopressured system [J]. Geochimica et Cosmochimica Acta, 1992, 56(6): 2547-2554. doi: 10.1016/0016-7037(92)90208-Z

    [39]

    Shanks III W C, Bohlke J K, Seal II R R. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. in Seafloor hydrothermal systems: Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph Series, 1995: 194-221.

    [40]

    Chen N C, Yang T F, Hong W L, et al. Discharge of deeply rooted fluids from submarine mud volcanism in the Taiwan accretionary prism [J]. Scientific Reports, 2020, 10: 381. doi: 10.1038/s41598-019-57250-9

    [41]

    Hupers A, Kopf A J. Effect of smectite dehydration on pore water geochemistry in the shallow subduction zone: an experimental approach [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q0AD26.

    [42]

    Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport [J]. Marine Geology, 2010, 277(1-4): 48-60. doi: 10.1016/j.margeo.2010.08.010

    [43]

    Moore J C, Vrolijk P. Fluids in accretionary prisms [J]. Reviews of Geophysics, 1992, 30(2): 113-135. doi: 10.1029/92RG00201

    [44]

    Suess E, Von Huene R, Emeis K C, et al. Ocean drilling program Leg-112, peru continental margin: part 2, sedimentary history and diagenesis in a coastal upwelling environment [J]. Geology, 1988, 16(10): 939-943. doi: 10.1130/0091-7613(1988)016<0939:ODPLPC>2.3.CO;2

    [45]

    Boles J R, Franks S G. Clay diagenesis in wilcox sandstones of southwest texas; implications of smectite diagenesis on sandstone cementation [J]. Journal of Sedimentary Research, 1979, 49(1): 55-70.

    [46]

    Rozanski K, Araguás-Aguás L, Gonfiantini R. Isotopic patterns in modern global precipitation[M]//Stewart P K. Climate Change in Continental Isotopic Records. Washington DC: Geophysical Monograph Series, 1993, 76: 1-36.

    [47]

    Wang C H, Kuo C H, Peng T R, et al. Isotope characteristics of Taiwan groundwaters [J]. Western Pacific Earth Sciences, 2001, 1(4): 415-428.

    [48]

    Nath B, Berner Z, Chatterjee D, et al. Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: comparative geochemical profile and leaching study [J]. Applied Geochemistry, 2008, 23(5): 996-1011. doi: 10.1016/j.apgeochem.2007.11.017

    [49]

    Liu C C, Maity J P, Jean J S, et al. Geochemical characteristics of the mud volcano fluids in Southwestern Taiwan and their possible linkage to elevated arsenic concentration in Chianan plain groundwater [J]. Environmental Earth Sciences, 2012, 66(5): 1513-1523. doi: 10.1007/s12665-011-1391-3

    [50]

    Mazzini A, Svensen H, Akhmanov G G, et al. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia [J]. Earth and Planetary Science Letters, 2007, 261(3-4): 375-388. doi: 10.1016/j.jpgl.2007.07.001

    [51]

    Sheppard S M F, Gilg H A. Stable isotope geochemistry of clay minerals [J]. Clay Minerals, 1996, 31(1): 1-24. doi: 10.1180/claymin.1996.031.1.01

    [52]

    Haese R R, Hensen C, De Lange G J. Pore water geochemistry of eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin [J]. Marine Geology, 2006, 225(1-4): 191-208. doi: 10.1016/j.margeo.2005.09.001

    [53]

    Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators [J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    [54]

    Can I. A new improved Na/K geothermometer by artificial neural networks [J]. Geothermics, 2002, 31(6): 751-760. doi: 10.1016/S0375-6505(02)00044-5

    [55]

    Hensen C, Wallmann K, Schmidt M, et al. Fluid expulsion related to mud extrusion off Costa Rica-a window to the subducting slab [J]. Geology, 2004, 32(3): 201-204. doi: 10.1130/G20119.1

    [56]

    Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. mineralogical and chemical evidence [J]. GSA Bulletin, 1976, 87(5): 725-737. doi: 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2

    [57]

    Rumble D, Ash J L, Wang P L, et al. Resolved measurements of 13CDH3 and 12CD2H2 from a mud volcano in Taiwan [J]. Journal of Asian Earth Sciences, 2018, 167: 218-221. doi: 10.1016/j.jseaes.2018.03.007

    [58]

    Yeh H W. DH ratios and late-stage dehydration of shales during burial [J]. Geochimica et Cosmochimica Acta, 1980, 44(2): 341-352. doi: 10.1016/0016-7037(80)90142-8

  • 期刊类型引用(1)

    1. 汪倩,彭莱,蒋雨函,周启超,高小其. 中国泥火山的主要分布及研究进展. 地震地质. 2025(01): 90-116 . 百度学术

    其他类型引用(0)

图(8)  /  表(2)
计量
  • 文章访问数:  1880
  • HTML全文浏览量:  349
  • PDF下载量:  43
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-06-14
  • 修回日期:  2020-07-18
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2020-11-30

目录

/

返回文章
返回