Cenozoic tectonic subsidence of the continental margins of southwest sub-basin, South China Sea and its evolution
-
摘要: 构造沉降史分析有助于认识盆地的形成演化过程,是盆地分析的重要基础。为对比分析南海西南次海盆两侧陆缘新生代构造演化特征,本文选取了横穿南海西南次海盆两侧陆缘的多道地震剖面测线,其中NH973-3测线横跨西南次海盆北侧陆缘中-西沙地块,NH973-1+SO27-04联合剖面跨越西南次海盆南侧陆缘南沙地块,在地震地层解释的基础上,采用回剥法和平衡剖面技术分析了西南次海盆两侧陆缘构造沉降特征及伸展过程。分析结果表明:(1)西南次海盆两侧陆缘的构造沉降曲线特征表现为裂陷初始期曲线斜率平缓,裂陷强烈期和末期曲线斜率较陡,断-拗转换期和拗陷期曲线斜率又回归相对平缓的反“S”形多段式特征;(2)两侧陆缘的构造沉降具有一定的延迟滞后性,造成此现象的原因可能与西南次海盆两侧陆缘岩石圈的分层差异伸展及南海西缘断裂的右旋走滑活动有关,且南海西缘断裂的右旋走滑活动造成两侧陆缘的构造沉降中心向南迁移;(3)两侧陆缘盆地主要形成于晚渐新世,北侧陆缘因受晚渐新世南海西缘断裂右旋走滑活动的改造影响而形成伸展-走滑相关的沉积盆地,南侧陆缘在早中新世因受到挤压碰撞的改造影响而形成伸展-挠曲复合型沉积盆地。这些研究成果可为南海西南次海盆两侧陆缘沉积盆地的油气和天然气水合物的勘探开发提供重要的科学背景支持。Abstract: Tectonic subsidence analysis is helpful for understanding the origin and evolution of a basin, which are critical for basin analysis. In order to reveal the characteristics of Cenozoic tectonic evolution of the continental margins of the southwest sub-sea basin, South China Sea, the multi-channel seismic profile lines, NH973-3 and NH973-1+SO27-04 across the continental margins, were selected as research targets. The structures of the continental margins are studied using the methods of back stripping and balanced profile. It is observed that: (1) the structural subsidence curves of the above-mentioned continental margins are characterized by a multiple segment pattern in a reversed “s” shape, with a gentle slope in the initial rifting stage, a steep slope in the strong rifting stage and the end stage. The slope of the curve return to the relatively gentle during the transitional period from fault-depression to subsidence; (2) the tectonic subsidence along the continental margins have certain time delay, probably due to the layered differentiation and the extension of lithosphere and the dextral strike slip movement of the faults on the western margin of the South China Sea. The dextral strike slip movement of the faults on the western margin of the South China Sea might have resulted in the southward migration of the tectonic subsidence centers; (3) The basins on the continental margins were mainly formed in Late Oligocene, as the basins related to extensional strike slip on the northern margin of the South China Sea were formed due to the modification of the dextral strike slip movement of the west margin fault in Late Oligocene, whereas the flexure-extensional complex basins formed on the southern margin of the South China Sea due to the compression and collision in Early Miocene. The research results have provided important scientific background for the exploration and development of hydrocarbon and gas hydrate in the sedimentary basins on both sides of the southwest sub basin of the South China Sea.
-
二辉橄榄岩一直被认为是西南印度洋中脊东段(E-SWIR)地幔岩的重要组成部分,但近些年来越来越多的学者认为E-SWIR地幔源区中可能存在一定数量的辉石岩[1-5]。洋中脊玄武岩(MORB)被认为是地幔物质被动上涌、减压熔融所形成的最终产物,含有辉石岩的地幔岩部分熔融往往形成富集型洋中脊玄武岩(E-MORB)[6-8]。由于地幔潜在温度较低,E-SWIR的岩浆供应量较少[9-11],有利于富集的辉石组分在更难熔的亏损橄榄岩中先发生部分熔融。一个具有不同固相状态的、多组分的、不均一地幔源区会产生复杂的熔融模式,这取决于各组分的部分熔融、均一性和富集程度[12-14]。前人对沿中大西洋中脊的Vema岩石圈剖面提出了类似的过程[7]。此外,部分学者认为西南印度洋中脊(SWIR)和东南印度洋中脊(SEIR)的MORB样品中表现出较低3He/4He同位素组成,是由于受到不同比例辉石衍生熔体(具有极低3He/4He比值)的影响[8,15-16]。
前人基于MORB的地球化学组成提出许多关于示踪辉石岩的岩石学参数,比如Fe/Mn、Zn/Fe、FC3MS以及FCKANTMS等[17-20],这些参数都可以很好地反映岩浆源岩的岩性以及熔融残余的矿物组合。但是辉石岩涵盖了从榴辉岩到含橄榄石的斜方辉石岩等大量岩性变化,所以进一步查明地幔源区岩石类型与组合一直是学者们研究的热点。基于此,本文针对64°E玄武岩样品的微量元素组成以及区域地球化学资料,对地幔源区岩性特征与矿物组合展开详细部分熔融数值模拟研究,以揭示E-SWIR地幔源区中榴辉岩相存在的证据以及对地幔源区的贡献,可为E-SWIR区域E-MORB成因、地幔不均一性的起源以及洋中脊构造演化等提供新的认识。
1. 区域地质背景
西南印度洋中脊东段(E-SWIR),处于Melville转换断层(61°E)以东至罗德里格斯三连点(Rodrigues Triple Junction, RTJ,70°E)之间(图1a),该洋脊段整体扩张方向约为60°(北东—东向),平均全扩张速率小于14 mm/a,洋脊轴基本不发育转换断层,而是受一些规模较小的非转换不连续带(NTDs)影响发生错动(图1b)。相比于Melville转换断层以西洋脊段,E-SWIR具有相对平坦的海底地形且更大的平均水深(约
4730 m),此外还表现出相对较薄的洋壳厚度(通常小于4 km)以及较低的地幔熔融程度等特征,因此,E-SWIR也被认为是整个西南印度洋中脊岩浆作用最匮乏的区域[9-10,21]。图 1 研究区及采样位置a:西南印度洋中脊水深图, b:西南印度洋中脊东段水深图,c:西南印度洋中脊东段水深剖面图及岩浆构造单元(灰色代表斜向扩张段63°~64°E ,红色代表64°E Jourdanne海山,蓝色代表正向扩张段64°~65°E),d:64°E附近水深图及本文样品位置(改自文献[22])。Figure 1. Location of the study area and samplinga: The geotectonic setting and topography of the Southwest Indian Ridge (SWIR), b: the area between the Melville Fracture Zone and Rodrigues Triple Junction, c: along-axis bathymetric profile between 61°E and 69°E, d: topography of the Tianzuo hydrothermal field and the adjacent Tiancheng and Mt. Jourdanne fields from multibeam sonar data (modified from reference [22]).64°E附近发育典型的洋中脊轴部隆起地形,位于#11洋脊段的中部[10-11],又称作为Jourdanne海山,海山顶部距离轴部裂谷约有
1000 m的高度。自西向东依次将63°~65°E区域划分成3个不同构造单元区域,分别是非转换断层不连续带(NTDs,也可以称为斜向扩张单元,63°~63.8°E)、轴部火山隆起区域(63.8°~64°E,Jourdanne海山)、正向扩张区域(64°~64.8°E)。64°E Jourdanne海山是由一系列的挤出构造单元组成,主要以溢流状、片流状以及枕状熔岩交替出现。溢流熔岩主要出现在平缓倾斜山坡的北面一侧,而枕状熔岩以及一些基性岩石碎屑往往出现在海山顶部。前人在E-SWIR地区发现两种类型的MORB(E-MORB和N-MORB)均有不同规模的产出[23],但是相比于西南印度洋中脊Melville转换断层以西区域,E-MORB所占比重明显增加。部分学者还在局部非岩浆增生洋脊段发现有少量超基性岩或蛇纹石化橄榄岩出露,而且在一些离轴区域发现辉长岩等[8,24]。
2. 样品与测试
本研究的MORB样品通过“大洋一号”的DY115-19、DY115-20、DY115-26、DY115-30、DY115-49和“向阳红9号”的DY125-35航次的调查,在西南印度洋中脊27.5°~28°S、63.5°~64°E区域,分别利用TVG电视抓斗和“蛟龙号”载人深潜器作业获取(详见文献[22])。
MORB类型主要为超斑状或斑状玄武岩,少数样品为隐晶质玄武岩,个别样品的气孔较多。样品整体较新鲜,表面由于与海水长期接触,表现为不同程度的蚀变和氧化,形成灰绿色、灰黑色表层或者棕褐色氧化层。少数样品具有明显的冷凝边结构,形成一定厚度的玻璃壳层。手标本中可见斑晶矿物发育较完整,主要以斜长石为主,橄榄石次之。MORB样品的全岩微量元素(含稀土)分析测试仪器为Thermo X Series 2电感耦合等离子体质谱仪(Thermo X Series 2,ICP-MS),实验在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,详细分析步骤见文献[25]。
3. 结果
3.1 64°E玄武岩样品的微量与稀土元素组成
本次研究获得的样品微量和稀土元素测试结果见附表1。其中,La含量的变化范围为(3.28~6.56)×10−6,Ni含量为(41.2~93.4)×10−6,Sm含量为(1.87~4.07)×10−6,Yb含量为(1.54~3.52)×10−6。研究区样品的稀土元素总量(∑REE)变化范围为(32.57~67.47)×10−6,其中30I-TVG2-1与30I-TVG2-2玄武岩样品具有非常低的∑REE,分别为37.71×10−6和32.57×10−6。玄武岩样品的(La/Sm)N = 0.79~1.13,(Ce/Yb)N = 1.35~2.14,与典型的E-MORB类似,具有轻稀土富集配分模式。
1 64°E玄武岩样品微量和稀土元素(10−6)测试结果样品 87-S01 87-S02 87-S03 87-S06 19III-TVG03 26VI-TVG02 26VI-TVG03-1 26VI-TVG03-2 30I-TVG2-1 30I-TVG2-2 49I-TVG01-1 Sc 35.2 34.2 32.5 34.3 43.3 42.5 43.3 43.4 26.3 22.1 32.8 V 199 192 185 197 240 236 244 240 147 125 181 Cr 202 205 192 182 152 207 174 174 223 205 263 Co 109.5 232 154.5 99.2 35.1 33.2 34.6 34.2 132 104 33.2 Ni 93 88.5 85.8 84.4 41.2 43.7 41.3 42 58.4 48.8 93.4 Cu 61.5 76.5 60.4 53.5 88.3 82.5 82.8 85 60.5 44.9 65.8 Zn 55 54 51 55 124 68.7 70.6 72.9 42.7 35.3 68.5 Rb 1 0.6 0.5 2.1 2.36 2.16 2.47 2.64 1.42 1.15 1.77 Sr 203 214 225 208 186 195 195 201 271 283 232 Y 24.3 22.6 21.9 24 35.4 33.5 35.1 35.5 18.7 15.7 23.4 Zr 117.5 107 106.5 114.5 144 141 145 149 79.4 66.7 101 Nb 3.6 4.4 3.3 3.8 4.75 4.52 4.72 4.91 3.41 2.7 3 Ba 19.9 20.4 20.1 19.8 26.1 26.9 27 26.5 17.9 16 22.1 Hf 2.4 2.2 2.2 2.4 3.21 2.96 3.11 2.93 1.93 1.51 2.28 Ta 0.65 2.66 0.83 1.19 0.31 0.28 0.3 0.32 0.87 0.49 0.22 Th 0.3 0.3 0.26 0.27 0.35 0.36 0.34 0.36 0.18 0.16 0.26 U 0.12 0.13 0.1 0.1 0.13 0.12 0.12 0.21 0.092 0.064 0.079 La 4.4 3.8 3.7 4.6 6.21 6.34 6.49 6.56 3.6 3.28 4.41 Ce 14 11.5 11.1 14.5 17.7 17.5 18 18.2 10.2 8.85 17.8 Pr 1.93 1.9 1.87 1.87 2.76 2.56 2.59 2.68 1.56 1.35 1.97 Nd 9.4 9.6 9.5 9.3 12.7 12.5 13.3 13.3 7.66 6.62 9.43 Sm 2.89 2.73 2.83 2.9 4.02 4 4.07 4.1 2.29 1.87 2.65 Eu 1.06 1.11 1.14 1.11 1.45 1.36 1.42 1.43 0.9 0.84 1.11 Gd 3.62 3.7 3.4 3.38 5.16 5.13 5.02 5.28 2.72 2.22 3.33 Tb 0.62 0.63 0.65 0.65 0.92 0.81 0.91 0.91 0.5 0.43 0.63 Dy 4.26 4.18 4.01 3.95 6.01 5.45 5.93 5.9 3.34 2.81 4.19 Ho 0.93 0.84 0.89 0.88 1.28 1.17 1.19 1.19 0.68 0.59 0.86 Er 2.37 2.41 2.46 2.41 3.63 3.48 3.6 3.61 1.9 1.7 2.47 Tm 0.36 0.36 0.36 0.37 0.56 0.5 0.54 0.56 0.29 0.24 0.37 Yb 2.46 2.37 2.37 2.18 3.52 3.25 3.45 3.23 1.8 1.54 2.31 Lu 0.33 0.31 0.33 0.33 0.53 0.48 0.5 0.52 0.27 0.23 0.35 Pb − − − − 1.17 1.2 0.99 0.95 2.33 5.48 0.76 ΣREE 48.63 45.44 44.61 48.43 66.45 51.64 59.4 67.47 37.71 32.57 51.88 (La/Sm)N 0.95 0.84 0.81 1.00 0.99 1.02 0.79 1.03 1.01 1.13 1.07 (La/Yb)N 1.32 1.14 1.11 1.34 1.27 1.24 0.97 1.46 1.436 1.53 1.37 (Ce/Yb)N 1.58 1.35 1.30 1.85 1.40 1.50 1.45 1.57 1.57 1.60 2.14 (Sm/Yb)N 1.31 1.28 1.33 1.48 1.27 1.37 1.31 1.41 1.41 1.35 1.27 3.2 E-SWIR玄武岩样品微量与稀土元素沿轴变化
微量和稀土元素与经度的关系图(见附图1和2)可以反映元素沿洋脊轴变化情况。在微量元素含量沿轴变化方面(附图1),研究区的Ni与Cr含量在整个E-SWIR相对较低,而Nb与Sr的含量较高。大多数微量元素沿经度的变化表现出区域性递增或递减,但是Co与Ta含量在E-SWIR基本保持恒定,分别约为47.4×10−6和0.2×10−6。在稀土元素含量沿轴变化方面(附图2),各稀土元素平均含量沿整个E-SWIR的差异较小,只有La和Ce元素含量在RTJ附近相对较小。在研究区东侧正向扩张洋脊段稀土元素(La、Ce、Nd、Tm和Yb)含量表现出自东向西明显的递增变化趋势,而研究区(64°E附近)及其西侧的NTDs之间并没有表现出明显的系统变化趋势。
4. 讨论
4.1 E-SWIR地幔源区性质
E-SWIR洋脊段的MORB样品明显受原始地幔(Primitive Mantle,具有相对富集不相容元素等特点,以下简称PM)和亏损的MORB地幔(Depleted MORB Mantle,具有相对亏损的不相容元素等特点,以下简称DMM)两种不同地幔端元影响(图2a、b),表现出复杂的成分特征,部分MORB样品的(La/Sm)N>0.8(特别是64°E研究区附近MORB样品),具有典型的E-MORB特征(图2c),但同时N-MORB在本区域也几乎有同等规模的发育[8,26],这表明E-SWIR岩石圈地幔组成具有明显不均一性。此外,MORB样品的(Lu/Tb)PM<1,但ThPM>1(图2d),这反映出占主导的、亏损的地幔中混有一定数量的富集组分。最近研究表明,在整个E-SWIR地幔源区中存在一定规模的辉石岩[5]。地幔中辉石岩含量的变化,同时影响了洋中脊不同区段内各种类型MORB的产出。
图 2 E-SWIR稀土元素比值关系图a:Y/Nb与Zr/Nb关系图,b:Nb/Y与Zr/Y关系图, c:(La/Sm)N与Zr/Nb关系图, d:(Lu/Tb)PM与ThPM关系图。本文以外数据来自PetDB 数据库http://www.petdb.orgFigure 2. The relationship between rare-earth elementsa: Y/Nb and Zr/N, b: Nb/Y and Zr/Y, c:(La/Sm)N and Zr/Nb, d: (Lu/Tb)PM and ThPMData outside of this article are from PetDB, http://www.petdb.orgE-SWIR洋脊段MORB样品整体表现出具有较高的(La/Sm)N(平均为0.93)、高的Zr/Nb(20~120)和低的Zr/Y(小于3)、高的Y/Nb(8~54)(图2a-c),而且这些MORB样品还具有较低的(Lu/Tb)PM(基本小于1,图2d),由于石榴石比单斜辉石在Lu/Tb分离方面更有效[27],所以起始部分熔融深度可能位于石榴石相稳定域。研究区64°E附近样品也显示出相似的原始地幔标准化微量元素模式[22],这表明玄武质熔体在上涌过程中受到同化或混染作用的影响并不显著。而且其微量元素组成与前人在E-SWIR区域发现的大多数E-MORB样品极为相似[22,26],这说明它们可能有着共同的地幔源区。
4.2 石榴石特征
石榴石中稀土元素(如Ce、Sm、Lu和Yb等)之间相容性的不同,可以用来识别地幔源区中是否存在石榴石[1,17,24]。我们通过MELT软件对石榴石二辉橄榄岩进行非模式分离熔融模拟(全岩分配系数D据文献[28],石榴石中Sr、Zr和Hf 的分配系数据文献[29],Ti 的分配系数据文献[30]),结果显示出与尖晶石二辉橄榄岩完全不同的熔融曲线(图3)。由于石榴石中Sm、Yb和Lu比La更相容[31-32],所以随着熔融程度的增大表现出平缓到负的趋势,这说明地幔中含石榴石组分发生一定程度的熔融。Lu和Yb在石榴石中是最相容的稀土元素[33-34],所以尖晶石二辉橄榄岩和石榴石二辉橄榄岩熔融曲线之间的分散程度也相对较大(图3b,d)。
图 3 63°~65°E区域Ce,Lu,Sm和Yb分别与La的关系图图上显示尖晶石方辉橄榄岩与石榴石二辉橄榄岩部分熔融曲线,以及两者混合熔体(1%石榴石二辉橄榄岩+X%尖晶石二辉橄榄岩)。本文以外数据来自PetDB 数据库http://www.petdb.orgFigure 3. The relationship between Ce, Lu, Sm, Yb and La at 63°~65°EPartial melting curves of spinel harzburgite and garnet lherzolite and their mixed melts (1% garnet lherzolite + X% spinel lherzolite). Data outside of this article are from PetDB, http://www.petdb.orgE-SWIR 64°E样品中Ce、Sm、Lu和Yb含量的变化表现出与石榴石二辉橄榄岩低程度部分熔融趋势一致。在石榴石稳定域内发生的部分熔融可能会持续到尖晶石稳定域,因此不同比例熔体的混合可以解释大部分元素含量变化[6]。图3b、c和d中的混合熔体曲线反映了1%熔融程度的石榴石二辉橄榄岩熔体与不同比例(占比逐渐升高)的尖晶石二辉橄榄岩熔体混合的结果。混合熔融曲线(尖晶石二辉橄榄岩部分熔融程度小于15%)基本涵盖所有稀土元素的变化范围,混合有石榴石二辉橄榄岩低程度部分熔融所形成的熔体可以很好地解释E-SWIR 64°E玄武岩样品中La含量升高的原因。
此外,64°E玄武岩样品中Sm与Sc含量在地幔源区多岩相组合的熔融曲线(图4)中表现出十分相似的变化程度,并且Sm/Yb的分离程度相对较小。相对于全球MORB的平均值(通常为1.0~1.1),这些分馏校正后的Sm/Yb范围相对较大[35-37]。一般认为Sm/Yb的升高通常与地幔源区中的残留石榴石有关[38-39],然而一些基于配分系数变化的研究表明,石榴石的分馏并不会产生相对应的REE分布模式[40]。 如图4a所示,石榴石二辉橄榄岩熔融使得Sm/Yb发生明显变化(相较于尖晶石二辉橄榄岩熔融)。64°E玄武岩样品中Sm/Yb的变化范围为1.2~1.4,这表明地幔岩部分熔融过程中需要有石榴石的参与,石榴石二辉橄榄岩1%至5%的部分熔融可以解释64°E玄武岩样品中Sm/Yb升高的原因。部分样品表现出较低的Sm/Yb,这可能是由于石榴石二辉橄榄岩衍生的熔体所占比例相对较小所导致。因此,由不同比例的石榴石和尖晶石二辉橄榄岩衍生熔体的混合基本可以解释大多数64°E玄武岩样品化学组成的变化。
图 4 63°~65°E区域Sm/Yb与Sm、Sc关系图a:Sm/Yb与Sm关系图,b:Sm/Yb与Sc关系图。图上显示尖晶石二辉橄榄岩、石榴石二辉橄榄岩和榴辉岩部分熔融曲线。图例和数据来源同图3。Figure 4. The relationship of Sm/Yb and Sm, Sm/Yb and Sc at 63°~65°Ea: Sm/Yb and Sm, b: Sm/Yb and Sc. Partial melting curves of spinel harzburgite and garnet lherzolite and their mixed melts are shown in the figure. The legends and data source same as Fig.34.3 榴辉岩相
前文中的许多地球化学指标都暗示了地幔中残留石榴石的存在,而且样品中微量元素的变化趋势介于石榴石二辉橄榄岩与尖晶石二辉橄榄岩熔融曲线之间,这说明存在有一定比例的尖晶石二辉橄榄岩熔体的混入。但是地幔岩1%~5%熔融程度所产生的熔体不足以在E-SWIR 64°E附近产生约7 km厚的洋壳[8],而且混有尖晶石二辉橄榄岩熔体的石榴石二辉橄榄岩相部分熔融也不能很好地解释轻稀土元素的极端富集现象[22]。
亏损的地幔橄榄岩熔体与不同程度的榴辉岩熔体混合同样可以产生高Sm/Yb熔体[14,29,41-44]。榴辉岩全岩的Sm/Yb约为1.9,其部分熔融对Sm/Yb的升高是十分显著的[33-34,44]。尽管将熔融程度80%以上的榴辉岩熔体与熔融程度约6%、亏损的橄榄岩熔体混合似乎有些不合理,但根据前人研究表明,E-SWIR的MORB样品中挥发组分的含量普遍较高[5],富含挥发组分榴辉岩的固相线可能比无水橄榄岩深得多。因此,榴辉岩在到达橄榄岩固相线时发生60%以上的熔融是存在一定可能性的[12-13]。
由图4b中Sm/Yb与Sc含量的关系可知,尖晶石二辉橄榄岩熔融并不能解释Sm/Yb升高与Sc含量降低之间的负相关关系,而石榴石二辉橄榄岩的低程度部分熔融可以在64°E与NTDs玄武岩样品之间产生一系列变化。尽管石榴石二辉橄榄岩熔融程度在1%到10%之间的熔融曲线具有基本恒定的Sc含量和变化的Sm/Yb,但趋势还是略微延伸至低于石榴石二辉橄榄岩Sc含量的方向。64°E轴部隆起单元中MORB样品的Sc含量和Sm/Yb的关系,同样在南大西洋中脊的MORB样品中有所体现[1],但其Sm/Yb值更高,Sc含量更低。Roux等[1]认为这可能是由于局部构造作用影响熔融过程的结果,部分辉石岩优先发生熔融并最终占熔体的20%~40%。榴辉岩部分熔融曲线表明(图4),64°E轴部隆起单元的地幔很大可能混有一些低Sc含量和高Sm/Yb的物质参与到整个熔融过程当中。
如图3所示,64°E玄武岩样品中La含量(最高约为7.04×10−6)高于尖晶石二辉橄榄岩或石榴石二辉橄榄岩5%部分熔融时的La含量,但明显低于其他地幔端元中的La含量(比如EM2端元的La含量约为16×10−6)。图5a和图5b显示了64°E玄武岩样品中Lu、Yb与La的关系以及榴辉岩的熔融趋势。三个岩浆构造单元中MORB样品数据变化基本与榴辉岩至少约50%熔融程度的熔融曲线相吻合,但是大部分数据位于一个相当窄的变化范围内,这反映出亏损的橄榄岩熔体与榴辉岩熔体以不同比例混合的结果。
图 5 63°~65°E区域稀土元素关系图a:Lu与La关系图,b:Yb与La关系图,c:(Hf/Sm)PM与(Nb/Ta)PM关系图。图上显示尖晶石二辉橄榄岩、石榴石二辉橄榄岩和榴辉岩部分熔融曲线。图例和数据来源同图3。Figure 5. The relationship of Lu and La, Yb and La, (Hf/Sm)PM and (Nb/Ta)PM at 63°~65°Ea: Lu and La, b: Yb and La, c: (Hf/Sm)PM and (Nb/Ta)PM. Partial melting curves of spinel harzburgite and garnet lherzolite and their mixed melts are shown in the figure. The legends and data source same as Fig.364°E轴部隆起单元MORB样品的(Nb/Ta)N>1,而相邻构造单元玄武岩样品的(Nb/Ta)N<1[22],这表明源岩中的榴辉岩可能还含有少量金红石[45-46]。含金红石榴辉岩中的Zr和Hf相对于Sm和Eu比较亏损。图5c表示的是样品中(Hf/Sm)PM与(Nb/Ta)PM之间关系,其中还包括有尖晶石二辉橄榄岩、石榴石二辉橄榄岩和含金红石榴辉岩三种岩性的熔融曲线。绝大多数玄武岩样品表现出超球粒陨石的(Hf/Sm)PM和亚球粒陨石的(Nb/Ta)PM的特征,但64°E玄武岩样品表现出复杂变化的特征,部分前人数据具有亚球粒陨石的(Hf/Sm)PM值和超球粒陨石的(Nb/Ta)PM值,而本文数据则表现出超球粒陨石的(Hf/Sm)PM值和亚球粒陨石的(Nb/Ta)PM值,这反映出地幔不均一性在很小的尺度范围内也有显著的表现。部分样品表现出(Nb/Ta)N>1和亏损(Hf/Sm)PM的特征与榴辉岩岩性基本一致,而且尖晶石和石榴石二辉橄榄岩的熔融曲线并不能解释(Nb/Ta)PM值的富集现象,但含金红石榴辉岩的部分熔融可以很好地解释超球粒陨石的(Nb/Ta)PM值,也可以解释La含量的增加以及LREE和HREE之间的负相关关系。因此,推测在E-SWIR地幔源区存在含金红石的榴辉岩,它对整个区域内不同类型MORB化学组成变化产生了一系列的影响。
5. 结论
(1)样品中微量元素La/Sm、Zr/Nb和Lu/Tb等表现出富集和(或)亏损的特征,表明E-SWIR地幔具有明显的不均一性,可能与源区中存在辉石岩有关。地幔中辉石岩含量沿洋中脊走向上的变化,导致E-SWIR区域不同类型MORB的产出。
(2)通过Ce、Sm、Lu和Yb等稀土元素在石榴石中相容性的差异,结合部分熔融计算模拟结果,E-SWIR地幔源区中存在一定数量的石榴石,而且其赋存状态可能是以含金红石榴辉岩而不是石榴石二辉橄榄岩的形式存在于地幔之中。
注:附表、附图见 http://jhydz.com.cn/article/doi/10.16562/j.cnki.0256-1492.2021121501
-
表 1 不同类型沉积相古水深参考值
Table 1 Paleo-depth reference values for different types of sedimentary facies
沉积相类型 古水深参考值 冲积—河流相 0 m 滨湖相 <5 m 浅湖相 5~20 m 深湖相 20~30 m或更深 扇三角洲相 ≤30 m 海陆交互相 <15 m 滨浅海相 <30 m 浅海相 30~200 m 半深海相 200~500 m 深海相 >500 m -
[1] Taylor B, Hayes D E. Origin and history of the South China Sea Basin[C]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Geophysical Monograph Series 27. Washington, DC: American Geophysical Union, 1983: 23-56.
[2] Taylor B, Hayes D E. The tectonic evolution of the South China Basin[C]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Geophysical Monograph Series 23. Washington, DC: American Geophysical Union, 1980: 89-104.
[3] 李家彪, 丁巍伟, 高金耀, 等. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识[J]. 地球物理学报, 2011, 54(12):3004-3015. [LI JiaBiao, DING Weiwei, GAO Jinyao, et al. Cenozoic evolution model of the sea-floor spreading in South China Sea: New constraints from high resolution geophysical data [J]. Chinese Journal of Geophysics, 2011, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003 [4] Shi X B, Burov E, Leroy S, et al. Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea [J]. Tectonophysics, 2005, 407(1-2): 117-134. doi: 10.1016/j.tecto.2005.07.004
[5] Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia [J]. Geology, 1995, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2
[6] 郭令智, 施央申, 马瑞士. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化[J]. 地质学报, 1983, 57(1):11-21. [GUO Lingzhi, SHI Yangshen, MA Ruishi. On the formation and evolution of the Mesozoic-Cenozoic active continental margin and island arc tectonics of the Western Pacific Ocean [J]. Acta Geologica Sinica, 1983, 57(1): 11-21. [7] Schlüter H U, Hinz K, Block M. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea [J]. Marine Geology, 1996, 130(1-2): 39-78. doi: 10.1016/0025-3227(95)00137-9
[8] 朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1):88-101. [ZHU Weilin, WU Jingfu, ZHANG Gongcheng, et al. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins [J]. Earth Science Frontiers, 2015, 22(1): 88-101. [9] 包汉勇, 郭战峰, 张罗磊, 等. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3):337-346. [BAO Hanyong, GUO Zhanfeng, ZHANG Luolei, et al. Tectonic dynamics of eastern China since the formation of the Pacific plate [J]. Advances in Earth Science, 2013, 28(3): 337-346. doi: 10.11867/j.issn.1001-8166.2013.03.0337 [10] 谢文彦, 王涛, 张一伟. 南沙群岛海域断裂体系构造特征及其形成机制[J]. 热带海洋学报, 2007, 26(6):26-33. [XIE Wenyan, WANG Tao, ZHANG Yiwei. Structural features and formation mechanism of fault systems in Nansha sea area [J]. Journal of Tropical Oceanography, 2007, 26(6): 26-33. doi: 10.3969/j.issn.1009-5470.2007.06.005 [11] Liu H L, Zheng H B, Wang Y L, et al. Basement of the South China Sea area: tracing the Tethyan Realm [J]. Acta Geologica Sinica-English Edition, 2011, 85(3): 637-655. doi: 10.1111/j.1755-6724.2011.00457.x
[12] 姚伯初. 南海南部地区的新生代构造演化[J]. 南海地质研究, 1994(6):1-15. [YAO Bochu. Tectonical evolution on the southern margin of South China Sea [J]. Geological Research of South China Sea, 1994(6): 1-15. [13] 姚伯初, 万玲, 吴能友. 大南海地区新生代板块构造活动[J]. 中国地质, 2004, 31(2):113-122. [YAO Bochu, WAN Ling, WU Nengyou. Cenozoic plate tectonic activities in the Great South China Sea area [J]. Geology in China, 2004, 31(2): 113-122. doi: 10.3969/j.issn.1000-3657.2004.02.001 [14] 姚永坚, 姜玉坤, 曾祥辉. 南沙海域新生代构造运动特征[J]. 中国海上油气(地质), 2002, 16(2):113-117, 124. [YAO Yongjian, JIANG Yukun, ZENG Xianghui. Cenozoic tectonic movements in Nansha area, South China Sea [J]. China Offshore Oil and Gas (Geology), 2002, 16(2): 113-117, 124. [15] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1):77-87. [XIE Xinong, REN Jianye, WANG Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading [J]. Earth Science Frontiers, 2015, 22(1): 77-87. [16] 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12):3280-3291. [XIE Xinong, ZHANG Cheng, REN Jianye, et al. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3280-3291. doi: 10.3969/j.issn.0001-5733.2011.12.026 [17] Li J B, Ding W W, Wu Z Y, et al. The propagation of seafloor spreading in the southwestern subbasin, South China Sea [J]. Chinese Science Bulletin, 2012, 57(24): 3182-3191. doi: 10.1007/s11434-012-5329-2
[18] Ding W W, Li J B. Propagated rifting in the Southwest Sub-basin, South China Sea: Insights from analogue modelling [J]. Journal of Geodynamics, 2016, 100: 71-86. doi: 10.1016/j.jog.2016.02.004
[19] 赵长煜, 宋海斌, 李家彪, 等. 南海西南次海盆NH973-1测线地震解释[J]. 地球物理学报, 2011, 54(12):3258-3268. [ZHAO Changyu, SONG Haibin, LI Jiabiao, et al. Tectonic and seismic interpretation of line NH973-1 along southwest sub-basin in South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3258-3268. doi: 10.3969/j.issn.0001-5733.2011.12.024 [20] 姚伯初. 南海西南海盆的岩石圈张裂模式探讨[J]. 海洋地质与第四纪地质, 1999, 19(2):37-48. [YAO Bochu. On the lithospheric rifting model in the southwest subbasin of South China Sea [J]. Marine Geology and Quaternary Geology, 1999, 19(2): 37-48. [21] 丘学林, 赵明辉, 敖威, 等. 南海西南次海盆与南沙地块的OBS探测和地壳结构[J]. 地球物理学报, 2011, 54(12):3117-3128. [QIU Xuelin, ZHAO Minghui, AO Wei, et al. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012 [22] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4
[23] 刘海龄, 阎贫, 张伯友, 等. 南海前新生代基底与东特提斯构造域[J]. 海洋地质与第四纪地质, 2004, 24(1):15-28. [LIU Hailing, YAN Pin, ZHANG Boyou, et al. Pre-Cenozoic basements of the South China Sea and eastern Tethyan realm [J]. Marine Geology and Quaternary Geology, 2004, 24(1): 15-28. [24] 刘海龄, 阎贫, 孙岩. 南沙微板块的层块构造[J]. 中国地质, 2002, 29(4):374-381. [LIU Hailing, YAN Pin, SUN Yan. Layer-block tectonics of the Nansha microplate [J]. Geology in China, 2002, 29(4): 374-381. doi: 10.3969/j.issn.1000-3657.2002.04.008 [25] 赵美松, 刘海龄, 吴朝华. 南海南北陆缘中生代地层—构造特征及碰撞造山[J]. 地球物理学进展, 2012, 27(4):1454-1464. [ZHAO Meisong, LIU Hailing, WU Chaohua. Mesozoic stratigraphic and structural features and collisional orogeny between the northern and southern continental margins of South China Sea [J]. Progress in Geophysics, 2012, 27(4): 1454-1464. doi: 10.6038/j.issn.1004-2903.2012.04.020 [26] Zhu R W, Liu H L, Yao Y J, et al. Mesozoic deformation and its geological significance in the southern margin of the South China Sea [J]. Journal of Ocean University of China, 2018, 17(4): 835-845. doi: 10.1007/s11802-018-3581-z
[27] 朱荣伟, 刘海龄, 姚永坚, 等. 南海中-西沙地块前新生代构造变形特征[J]. 海洋地质与第四纪地质, 2017, 37(2):67-74. [ZHU Rongwei, LIU Hailing, YAO Yongjian, et al. A preliminary analysis of pre-cenozoic tectonic deformation of Zhongsha-Xisha block in South China Sea [J]. Marine Geology and Quaternary Geology, 2017, 37(2): 67-74. [28] 朱荣伟, 刘海龄, 姚永坚, 等. 南沙海域中生代构造挤压及其成因[J]. 海洋地质与第四纪地质, 2017, 37(6):57-64. [ZHU Rongwei, LIU Hailing, YAO Yongjian, et al. Mesozoic tectonic compression and its genesis in the sea area of Nansha [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 57-64. [29] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the tertiary tectonics of Southeast Asia [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280
[30] Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983. doi: 10.1002/2014GC005567
[31] Franke D, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 704-720. doi: 10.1016/j.marpetgeo.2013.11.020
[32] Ding W W, Li J B, Clift P D, et al. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349 [J]. Journal of Asian Earth Sciences, 2016, 115: 97-113. doi: 10.1016/j.jseaes.2015.09.013
[33] 吴朝华, 赵美松, 刘海龄. 南沙中部海域沉积地层特征及其构造成因[J]. 地球科学-中国地质大学学报, 2011, 36(5):853-860. [WU Chaohua, ZHAO Meisong, LIU Hailing. Characteristics of sedimentary strata in Central Nansha Sea area and its tectonic origin [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(5): 853-860. [34] Wang Y L, Qiu Y, Yan P, et al. Seismic evidence for Mesozoic strata in the northern Nansha waters, South China Sea [J]. Tectonophysics, 2016, 677-678: 190-198. doi: 10.1016/j.tecto.2016.04.003
[35] Yan P, Liu H L. Tectonic-stratigraphic division and blind fold structures in Nansha Waters, South China Sea [J]. Journal of Asian Earth Sciences, 2004, 24(3): 337-348. doi: 10.1016/j.jseaes.2003.12.005
[36] Cohen K M, Finney S C, Gibbard P L, et al. The ICS international chronostratigraphic chart [J]. Episodes, 2013, 36(3): 199-204. doi: 10.18814/epiiugs/2013/v36i3/002
[37] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic [J]. Science, 1987, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156
[38] Dong D D, Wu S G, Zhang G C, et al. Rifting process and formation mechanisms of syn-rift stage prolongation in the deepwater basin, northern South China Sea [J]. Chinese Science Bulletin, 2008, 53(23): 3715-3725. doi: 10.1007/s11434-008-0326-1
[39] Watts A B, Ryan W B F. Flexure of the lithosphere and continental margin basins [J]. Tectonophysics, 1976, 36(1-3): 25-44. doi: 10.1016/0040-1951(76)90004-4
[40] Bond G C, Kominz M A. Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian Rocky Mountains: implications for subsidence mechanisms, age of breakup, and crustal thinning [J]. GSA Bulletin, 1984, 95(2): 155-173. doi: 10.1130/0016-7606(1984)95<155:COTSCF>2.0.CO;2
[41] Sclater J G, Christie P A F. Continental stretching: an explanation of the Post-Mid-Cretaceous subsidence of the central North Sea basin [J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B7): 3711-3739. doi: 10.1029/JB085iB07p03711
[42] 杨军, 施小斌, 王振峰, 等. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因[J]. 海洋地质与第四纪地质, 2015, 35(1):81-90. [YANG Jun, SHI Xiaobin, WANG Zhenfeng, et al. Origin of syn-rift subsidence deficit and rapid post-rift subsidence in Qiongdongnan Basin [J]. Marine Geology and Quaternary Geology, 2015, 35(1): 81-90. [43] 张云帆, 廖杰, 孙珍, 等. 南海海域构造沉降特征[J]. 地球科学-中国地质大学学报, 2011, 36(5):949-955. [ZHANG Yunfan, LIAO Jie, SUN Zhen, et al. Characteristics of tectonic subsidence Nansha Area [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(5): 949-955. [44] 蔡佳, 王华, 崔敏. 琼东南盆地古近系沉降特征[J]. 海洋地质前沿, 2014, 30(4):14-19, 27. [CAI Jia, WANG Hua, CUI Min. Subsidence character of the Paleogene Qiongdongnan Basin [J]. Marine Geology Frontiers, 2014, 30(4): 14-19, 27. [45] Walsh J, Watterson J, Yielding G. The importance of small-scale faulting in regional extension [J]. Nature, 1991, 351(6325): 391-393. doi: 10.1038/351391a0
[46] Lü C C, Hao T Y, Lin J, et al. The role of rifting in the development of the continental margins of the southwest subbasin, South China Sea: Insights from an OBS experiment [J]. Marine Geophysical Research, 2017, 38(1-2): 105-123. doi: 10.1007/s11001-016-9295-y
[47] Ding W W, Franke D, Li J B, et al. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea [J]. Tectonophysics, 2013, 582: 162-176. doi: 10.1016/j.tecto.2012.09.026
[48] Clift P D, Sun Z. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B6): B06405.
[49] 赵中贤, 孙珍, 陈广浩, 等. 南沙海域新生代构造特征和沉降演化[J]. 地球科学-中国地质大学学报, 2011, 36(5):815-822. [ZHAO Zhongxian, SUN Zhen, CHEN Guanghao, et al. Cenozoic structural characteristics and subsidence evolution in Nansha [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(5): 815-822. [50] Shi X B, Jiang H Y, Yang J, et al. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: implications for the development of the deep thermal anomaly [J]. Basin Research, 2017, 29(3): 340-362. doi: 10.1111/bre.12179
[51] 陈梅, 施小斌, 刘凯, 等. 南海北缘珠三坳陷新生代构造沉降特征[J]. 海洋地质与第四纪地质, 2017, 37(6):47-56. [CHEN Mei, SHI Xiaobin, LIU Kai, et al. Cenozoic tectonic subsidence of the Zhu Ⅲ depression in the Pearl River Mouth basin, Northern South China Sea [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 47-56. [52] Zhao Z X, Sun Z, Wang Z F, et al. The dynamic mechanism of post-rift accelerated subsidence in Qiongdongnan Basin, northern South China Sea [J]. Marine Geophysical Research, 2013, 34(3-4): 295-308. doi: 10.1007/s11001-013-9188-2
[53] 徐行, 姚永坚, 彭登, 等. 南海西南次海盆的地热流特征与分析[J]. 地球物理学报, 2018, 61(7):2915-2925. [XU Xing, YAO Yongjian, PENG Deng, et al. The characteristics and analysis of heat flow in the Southwest sub-basin of South China Sea [J]. Chinese Journal of Geophysics, 2018, 61(7): 2915-2925. doi: 10.6038/cjg2018L0223 [54] Savva D, Meresse F, Pubellier M, et al. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam [J]. Tectonophysics, 2013, 608: 72-83. doi: 10.1016/j.tecto.2013.07.010
[55] 汪俊, 邱燕, 阎贫, 等. 跨南海西南次海盆OBS、多道地震与重力联合调查[J]. 热带海洋学报, 2019, 38(4):81-90. [WANG Jun, QIU Yan, YAN Pin, et al. A joint investigation using OBS, multi-channel seismic and gravity data across the Southwestern Sub-basin of the South China Sea [J]. Journal of Tropical Oceanography, 2019, 38(4): 81-90. [56] 张云帆, 孙珍, 周蒂, 等. 南海北部陆缘新生代地壳减薄特征及其动力学意义[J]. 中国科学(D辑: 地球科学), 2008, 51(3):422-430. [ZHANG Yunfan, SUN Zhen, ZHOU Di, et al. Stretching characteristics and its dynamic significance of the northern continental margin of South China Sea [J]. Science in China Series D: Earth Sciences, 2008, 51(3): 422-430. doi: 10.1007/s11430-008-0019-2 [57] 雷超, 任建业, 佟殿君. 南海北部洋陆转换带盆地发育动力学机制[J]. 地球物理学报, 2013, 56(4):1287-1299. [LEI Chao, REN Jianye, TONG Dianjun. Geodynamics of the ocean-continent transition zone, northern margin of the South China Sea: Implications for the opening of the South China Sea [J]. Chinese Journal of Geophysics, 2013, 56(4): 1287-1299. doi: 10.6038/cjg20130423 [58] 佟殿君, 任建业, 雷超, 等. 琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制[J]. 地球科学-中国地质大学学报, 2009, 34(6):963-974. [TONG Dianjun, REN Jianye, LEI Chao, et al. Lithosphere stretching model of deep water in Qiongdongnan Basin, northern continental margin of South China Sea, and controlling of the post-rift subsidence [J]. Earth Science-Journal of China University of Geosciences, 2009, 34(6): 963-974. doi: 10.3321/j.issn:1000-2383.2009.06.011 [59] 安慧婷, 李三忠, 索艳慧, 等. 南海西部新生代控盆断裂及盆地群成因[J]. 海洋地质与第四纪地质, 2012, 32(6):95-111. [AN Huiting, LI Sanzhong, SUO Yanhui, et al. Basin-controlling faults and formation mechanism of the Cenozoic basin groups in the western South China Sea [J]. Marine Geology and Quaternary Geology, 2012, 32(6): 95-111. [60] 高红芳. 南海西缘断裂带走滑特征及其形成机理初步研究[J]. 中国地质, 2011, 38(3):537-543. [GAO Hongfang. A tentative discussion on strike-slipping character and formation mechanism of western-edge fault belt in South China Sea [J]. Geology in China, 2011, 38(3): 537-543. doi: 10.3969/j.issn.1000-3657.2011.03.003 [61] 刘海龄, 姚永坚, 沈宝云, 等. 南海西缘结合带的贯通性[J]. 地球科学-中国地质大学学报, 2015, 40(4):615-632. [LIU Hailing, YAO Yongjian, SHEN Baoyun, et al. On linkage of western boundary faults of the South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2015, 40(4): 615-632. doi: 10.3799/dqkx.2015.049 [62] 袁玉松, 杨树春, 胡圣标, 等. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 2008, 51(2):376-383. [YUAN Yusong, YANG Shuchun, HU Shengbiao, et al. Tectonic subsidence of Qiongdongnan Basin and its main control factors [J]. Chinese Journal of Geophysics, 2008, 51(2): 376-383. doi: 10.3321/j.issn:0001-5733.2008.02.010 -
期刊类型引用(2)
1. 俞心婷,任健,边叶萍,李中乔,林龙,金海燕,陈建芳. 东西伯利亚陆架炭屑分布特征及其控制因素. 极地研究. 2024(02): 113-127 . 百度学术
2. 张振虎,姚政权,胡利民,Anatolii Astakhov,邹建军,刘焱光,王昆山,杨刚,陈志华,夏逸,李秋玲,冯晗,石学法. 北极东西伯利亚陆架表层沉积物汞的分布特征及其意义. 海洋地质与第四纪地质. 2023(01): 49-60 . 本站查看
其他类型引用(2)