砂质海底沉积物压缩波速与物理参数关系试验研究

王虎, 吴涛, 张仕杰, 孙振银, 周亚迪, 朱涛

王虎, 吴涛, 张仕杰, 孙振银, 周亚迪, 朱涛. 砂质海底沉积物压缩波速与物理参数关系试验研究[J]. 海洋地质与第四纪地质, 2021, 41(2): 222-230. DOI: 10.16562/j.cnki.0256-1492.2020051001
引用本文: 王虎, 吴涛, 张仕杰, 孙振银, 周亚迪, 朱涛. 砂质海底沉积物压缩波速与物理参数关系试验研究[J]. 海洋地质与第四纪地质, 2021, 41(2): 222-230. DOI: 10.16562/j.cnki.0256-1492.2020051001
WANG Hu, WU Tao, ZHANG Shijie, SUN Zhenyin, ZHOU Yadi, ZHU Tao. Experimental study on the relation between compressional wave velocity and physical properties of sandy sediments[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 222-230. DOI: 10.16562/j.cnki.0256-1492.2020051001
Citation: WANG Hu, WU Tao, ZHANG Shijie, SUN Zhenyin, ZHOU Yadi, ZHU Tao. Experimental study on the relation between compressional wave velocity and physical properties of sandy sediments[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 222-230. DOI: 10.16562/j.cnki.0256-1492.2020051001

砂质海底沉积物压缩波速与物理参数关系试验研究

基金项目: 山东省海洋生态环境与防灾减灾重点实验室开放基金项目“基于声学遥测的近海底质精细化识别研究”(201805);国家级大学生创新训练计划项目“海底粉土声传播规律试验研究”(201810056104);国家自然科学基金项目“基于波致动力固结的黄河三角洲铁板砂形成过程研究”(41702307)
详细信息
    作者简介:

    王虎(1986—),男,讲师,主要从事海洋工程地质研究,E-mail:hu.wang@tju.edu.cn

  • 中图分类号: P733

Experimental study on the relation between compressional wave velocity and physical properties of sandy sediments

  • 摘要: 砂土是主要的海底沉积物类型之一,明确砂质沉积物声学与物理性质的关系对海底底质和地层探测至关重要。本文利用超声探测仪和自制的试样制备测试装置,模拟制备不同沉积状态的砂土试样,同步开展超声测试和物理性质测试,探讨砂质沉积物声速测试方法及影响因素,揭示砂质沉积物压缩波速与物理参数的内在联系。试验结果和分析表明:换能器接触管壁的间接测量方法中,声波多路径传播可显著影响沉积物声速测量的准确性,而换能器接触试样的直接测量方法可避免这一影响;30 kHz至100 kHz的不同频率对压缩波速测量结果没有明显影响。砂质沉积物的压缩波速与密度、孔隙度、含水率有较好的相关性,相关系数分别为0.87、0.86、0.84,并且随密度的增大而增大,随孔隙度、含水量的增大而减小。砂质沉积物的压缩波速与中值粒径的相关系数小于0.6,对物质组成不敏感。另外,与声速相比,砂质沉积物的声阻抗与密度、孔隙度、含水量的相关性更高。砂质沉积物压缩波速对饱和度非常敏感,例如,饱和度从0.971增至0.994时,压缩波速从393.3 m·s−1急剧增大到748.5 m·s−1,需特别注意。
    Abstract: Sand is one of the main type of submarine sediments. Figuring out the relation between acoustic and physical properties of sandy sediments is critical to seafloor and sub-bottom detection. In this paper, by using the ultrasonic detector and the self-developed sample preparation device, sand samples in different physical states are prepared to simulate different natural sedimentary conditions. Acoustic and physical properties are tested simultaneously, so as to reveal the effective measuring methods and its influence factors, and to explore the internal connection between the compressive wave velocity (CWV) and physical parameters of sandy sediments. Results and analysis indicate that the multipath propagation of sound wave can affect the measurement accuracy for the method with ultrasonic transducers touching the side wall of sediment container, while this effect can be avoided by measuring with a direct contact between transducers and sediment. No effects are found with different test frequencies among 30 kHz to 100 kHz. The CWV of sandy sediments, which shows good correlation with density, porosity and water content, with correlation coefficients 0.87, 0.86, and 0.84, respectively, increases with increasing density, while decreases with increasing porosity and water content. While the correlation coefficient between CWV and medium diameter is smaller than 0.6, which shows that the CWV of sandy sediments has no clear link to grading distribution. The correlation of acoustic impedance with bulk density, porosity and water content is bigger than that of CWV with them. In addition, special attention should be paid to the saturation of sediments because the CWV is very sensitive to saturation, for example, the CWV increases dramatically from 393.3 m·s−1 to 748.5 m·s−1 as the saturation increases from 0.971 to 0.994.
  • 图  1   试验装置示意图

    Figure  1.   Schematic diagram of test device

    图  2   不同测试频率下的砂质沉积物压缩波速

    F-细砂,M-中砂,C-粗砂;G-级配良好,N-级配不良;C-击实,I-无击实;1-直接法,2-间接法。

    Figure  2.   Compression wave velocity of sandy sediments at different test frequencies

    F-fine sand, M-medium sand, C-coarse sand; G-good gradation , N-poor gradation; C-compaction, I-no compaction; 1-direct method, 2-indirect method.

    图  3   不同工况下的间接法超声测试波形图

    Figure  3.   Waveforms of indirect ultrasonic testing under different working conditions

    图  4   不同工况下的间接法超声测试传播路径及走时

    Figure  4.   Propagation path and travel time of indirect ultrasonic testing under different working conditions

    图  5   密度对砂质沉积物压缩波速的影响

    Figure  5.   The effect of density on the compression wave velocity of sandy sediments

    图  6   孔隙度对砂质沉积物压缩波速的影响

    Figure  6.   The effect of porosity on the compression wave velocity of sandy sediments

    图  7   含水量对砂质沉积物压缩波速的影响

    Figure  7.   The effect of water content on compressional wave velocity of sandy sediments

    图  8   压缩波速与饱和度的关系

    Figure  8.   Relationship between compression wave speed and saturation

    表  1   直接测量法获得的砂质沉积物物理和声学参数值

    Table  1   Physical and acoustic parameters of sandy sediment obtained by direct measurement

    试验组别中值粒径d50 /mm密度ρ /g·cm−3含水量ω /%孔隙度n /%饱和度Sr压缩波速Vp /m·s−1声阻抗Z /kg·m−2·s−1
    FGI-10.2462.03323.00538.3290.992616.91254.0
    FGC-10.2462.16216.45030.7240.994747.51616.3
    FNI-10.2301.93029.00244.1750.982444.2857.1
    FNC-10.2302.04722.30137.5470.994506.61036.9
    MGI-10.3741.99725.13740.4530.992481.8962.0
    MGC-10.3742.12817.87732.6390.989598.21272.7
    MNI-10.4601.94328.03043.3730.981405.6788.0
    MNC-10.4602.00124.23039.8980.978426.4853.3
    CGI-10.9732.07920.36635.5510.989552.81149.2
    CGC-10.9732.17016.04830.2270.993748.51624.1
    CNI-10.5871.91830.10244.9910.986393.3754.4
    CNC-10.5872.01722.97038.7970.971438.0883.6
    下载: 导出CSV

    表  2   间接测量法获得的砂质沉积物物理和声学参数值

    Table  2   Physical and acoustic parameters of sandy sediment obtained by indirect measurement

    试验组别中值粒径d50 /mm密度ρ /g·cm−3含水量ω /%孔隙度n /%饱和度Sr压缩波速Vp /m·s−1声阻抗Z /kg·m−2·s−1
    FGI-20.2221.95932.10244.6661.0001488.52915.9
    FGC-20.2222.07625.02838.0551.0001531.03177.8
    FNI-20.2111.93731.96745.2371.0001511.22926.9
    FNC-20.2112.01126.77440.7971.0001521.13059.6
    MGI-20.3811.96527.97642.7201.0001454.42857.3
    MGC-20.3812.06624.96638.3071.0001469.83036.8
    MNI-20.4501.86135.11648.6040.9951514.12817.9
    MNC-20.4501.99731.08143.1551.0001544.33083.9
    CGI-20.9052.09220.85735.4181.0001488.03112.7
    CGC-20.9052.13121.28834.4551.0001510.63218.5
    CNI-20.6851.93629.57244.2590.9981525.12952.1
    CNC-20.6851.97326.86141.9560.9961542.03043.1
    下载: 导出CSV

    表  3   不同工况下的间接法超声测试走时

    Table  3   Travel time of indirect ultrasonic test under different working conditions

    工况类型试样筒直径D /mm理论径向声速Vd /m·s−1理论环向声速Vc /m·s−1理论径向声时Td /μs理论环向声时Tc /μs实际声时T/μs
    1空试样筒803402730235.346.054
    2试样筒+干砂80247[27]2730323.846.054
    3试样筒+水801500273053.346.053
    4试样筒+饱和砂801592[27]273050.346.054
    下载: 导出CSV

    表  4   砂质沉积物声学与物理参数的经验公式

    Table  4   Empirical formula of acoustic and physical parameters of sandy sediment

    物理力学参数经验公式R2
    密度ρ /g·cm−3Vp = 3729.2ρ2 − 13933ρ + 134150.87
    Z = 8975.6ρ2 − 33447ρ + 319220.91
    孔隙度n /%Vp = 1.1174n2 − 106.37n + 2934.10.86
    Z = 2.6851n2 − 257.23n + 6926.90.90
    含水量ω /%Vp = 1.6054ω2 − 96.921ω + 1876.50.84
    Z = 3.8943ω2 − 236.37ω + 4382.90.88
    中值粒径d50 /mmVp = 1479.3d502− 1652.2d50 + 894.350.44
    Z = 3453.1d502 − 3821.8d50 + 1921.60.42
    下载: 导出CSV
  • [1]

    Kim G Y, Richardson M D, Bibee D L, et al. Sediment types determination using acoustic techniques in the Northeastern Gulf of Mexico [J]. Geosciences Journal, 2004, 8(1): 95-103. doi: 10.1007/BF02910282

    [2] 金翔龙. 海洋地球物理研究与海底探测声学技术的发展[J]. 地球物理学进展, 2007, 22(4):1243-1249. [JIN Xianglong. The development of research in marine geophysics and acoustic technology for submarine exploration [J]. Progress in Geophysics, 2007, 22(4): 1243-1249. doi: 10.3969/j.issn.1004-2903.2007.04.034
    [3]

    Hamilton E L. Low sound velocities in high-porosity sediments [J]. The Journal of the Acoustical Society of America, 1956, 28(1): 16. doi: 10.1121/1.1908208

    [4]

    Hamilton E L. Sound velocity and related properties of marine sediments [J]. The Journal of the Acoustical Society of America, 1982, 72(6): 1891. doi: 10.1121/1.388539

    [5]

    Anderson R S. Statistical correlation of physical properties and sound velocity in sediments[M]//Hampton L. Physics of Sound in Marine Sediments. Boston, MA: Springer, 1974: 481-518.

    [6]

    Richardson M D, Muzi E, Troiano L. Shear wave velocity in surfictal marine sediments: A comparison of in situ and laboratory measurements [J]. Journal of the Acoustical Society of America, 1988, 83(1): S78. doi: 10.1121/1.396188

    [7]

    Bae S H, Kim D C, Lee G S, et al. Physical and acoustic properties of inner shelf sediments in the South Sea, Korea [J]. Quaternary International, 2014, 344: 125-142. doi: 10.1016/j.quaint.2014.03.058

    [8]

    Endler M, Endler R, Bobertz B, et al. Linkage between acoustic parameters and seabed sediment properties in the south-western Baltic Sea [J]. Geo-Marine Letters, 2015, 35(2): 145-160. doi: 10.1007/s00367-015-0397-3

    [9]

    Kim S R, Lee G S, Kim D C, et al. Physical properties and geoacoustic provinces of surficial sediments in the southwestern part of the Ulleung Basin in the East Sea [J]. Quaternary International, 2017, 459: 35-44. doi: 10.1016/j.quaint.2017.08.027

    [10]

    Hou Z Y, Wang J Q, Chen Z, et al. Sound velocity predictive model based on physical properties [J]. Earth and Space Science, 2019, 6(8): 1561-1568. doi: 10.1029/2018EA000545

    [11]

    Lu B, Li G X, Huang S J, et al. Physical properties of sediments on the northern continental shelf of the South China Sea [J]. Marine Georesources & Geotechnology, 2006, 24(1): 47-60.

    [12]

    Hou Z Y, Guo C S, Wang J Q, et al. Seafloor sediment study from south China sea: Acoustic & physical property relationship [J]. Remote Sensing, 2015, 7(9): 11570-11585. doi: 10.3390/rs70911570

    [13]

    Liu B H, Han T C, Kan G M, et al. Correlations between the in situ acoustic properties and geotechnical parameters of sediments in the Yellow Sea, China [J]. Journal of Asian earth Sciences, 2013, 77: 83-90. doi: 10.1016/j.jseaes.2013.07.040

    [14] 邹大鹏, 阚光明, 龙建军. 海底浅表层沉积物原位声学测量方法探讨[J]. 海洋学报, 2014, 36(11):111-119. [ZOU Dapeng, KAN Guangming, LONG Jianjun. Methods of in-situ acoustic measurement of seafloor surface sediment [J]. Acta Oceanologica Sinica, 2014, 36(11): 111-119.
    [15] 阚光明, 邹大鹏, 孙蕾, 等. 浅海沉积声学原位探测系统研制及深海功能拓展[J]. 海洋测绘, 2014, 34(5):79-82. [KAN Guangming, Zou Dapeng, Sun Lei, et al. Development of sediment acoustic in situ measurement system for shallow water and its functioned expansional for deep sea [J]. Hydrographic Surveying and Charting, 2014, 34(5): 79-82. doi: 10.3969/j.issn.1671-3044.2014.05.022
    [16] 段晓勇, 印萍, 刘金庆, 等. 中国东部近海现代沉积环境[J]. 海洋地质与第四纪地质, 2019, 39(2):17-23. [DUAN Xiaoyong, YIN Ping, LIU Jinqing, et al. Modern sedimentation environments in the coastal zone of East China [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 17-23.
    [17]

    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168. doi: 10.1121/1.1908239

    [18]

    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179. doi: 10.1121/1.1908241

    [19]

    Stoll R D. Marine sediment acoustics [J]. The Journal of the Acoustical Society of America, 1985, 77(5): 1789-1799. doi: 10.1121/1.391928

    [20]

    Zou D P, Kan G M, Long J J, et al. Influence of hydrostatic pressure on the sound speed of surficial seafloor sediments [J]. Marine Georesources & Geotechnology, 2018, 37(3): 277-281.

    [21]

    Sessarego J P, Ivakin A N, Ferrand D. Frequency dependence of phase speed, group speed, and attenuation in water-saturated sand: Laboratory experiments [J]. IEEE Journal of Oceanic Engineering, 2009, 33(4): 359-366.

    [22] 天津大学. 一种海底沉积物超声测量装置及其超声测量方法: 中国, 201811088311.2[P]. 2019-01-18.

    Tianjin University. Seafloor sediment ultrasonic-measurement device and ultrasonic measurement method thereof: CN, 201811088311.2[P]. 2019-01-18.

    [23]

    Richardson M D, Briggs K B. In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering [J]. Geo-Marine Letters, 1996, 16(3): 196-203. doi: 10.1007/BF01204509

    [24] 国家质量技术监督局, 中华人民共和国建设部. GB 50123-1999 土工试验方法标准[2007版][S]. 北京: 中国计划出版社, 1999.

    State Bureau of Quality and Technical Supervision, Ministry of Construction of the People's Republic of China. GB 50123-1999 Standard for soil test method[S]. Beijing: China Planning Press, 1999.

    [25] 朱俊高, 李翔, 徐佳成, 等. 粗粒土浸水饱和时间试验研究[J]. 重庆交通大学学报: 自然科学版, 2016, 35(1):85-89, 183. [ZHU Jungao, LI Xiang, XU Jiacheng, et al. Experimental study of saturation time of coarse-grained soil [J]. Journal of Chongqing Jiaotong University: Natural Sciences, 2016, 35(1): 85-89, 183.
    [26] 冯若. 超声手册[M]. 南京: 南京大学出版社, 1999.

    FENG Ruo. Ultrasonics Handbook[M]. Nanjing: Nanjing University Press, 1999.

    [27]

    Kumar J, Madhusudhan B N. Dynamic properties of sand from dry to fully saturated states [J]. Géotechnique, 2012, 62(1): 45-54. doi: 10.1680/geot.10.P.042

    [28]

    Hou Z Y, Chen Z, Wang J Q, et al. Acoustic impedance properties of seafloor sediments off the coast of Southeastern Hainan, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 154: 1-7. doi: 10.1016/j.jseaes.2017.12.003

    [29]

    Hamilton E L. Sound velocity as a function of depth in marine sediments [J]. The Journal of the Acoustical Society of America, 1985, 78(4): 1348. doi: 10.1121/1.392905

    [30] 侯正瑜. 南海南部海底沉积物声学性质及物理参数相关关系研究 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2016.

    HOU Zhengyu. The correlation of seafloor sediment acoustic properties and physical parameters in the southern south China sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2016.

    [31]

    Emerson M, Foray P. Laboratory P-wave measurements in dry and saturated sand [J]. Acta Geotechnica, 2006, 1(3): 167-177. doi: 10.1007/s11440-006-0015-7

    [32]

    Tsukamoto Y, Ishihara K, Nakazawa H, et al. Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities [J]. Soils and Foundations, 2002, 42(6): 93-104. doi: 10.3208/sandf.42.6_93

    [33]

    Mory M, Michallet H, Bonjean D, et al. A field study of momentary liquefaction caused by waves around a coastal structure [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007, 133(1): 28-38. doi: 10.1061/(ASCE)0733-950X(2007)133:1(28)

    [34] 朱祖扬, 王东, 周建平, 等. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究[J]. 地球物理学报, 2012, 55(1):180-188. [ZHU Zuyang, WANG Dong, ZHOU Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoll model [J]. Chinese Journal of Geophysics, 2012, 55(1): 180-188. doi: 10.6038/j.issn.0001-5733.2012.01.017
    [35] 贾永刚, 董好刚, 单红仙, 等. 黄河三角洲粉质土硬壳层特征及成因研究[J]. 岩土力学, 2007, 28(10):2029-2035. [JIA Yonggang, DONG Haogang, SHAN Hongxian, et al. Study of characters and formation mechanism of hard crust on tidal flat of Yellow River estuary [J]. Rock and Soil Mechanics, 2007, 28(10): 2029-2035. doi: 10.3969/j.issn.1000-7598.2007.10.004
    [36] 徐东升, 汪稔, 孟庆山, 等. 黄河三角洲粉土原位力学性能试验研究[J]. 岩石力学与工程学报, 2010, 29(2):409-416. [XU Dongsheng, WANG Ren, MENG Qingshan, et al. Experimental research on in-situ mechanical properties of silt in Yellow River delta [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 409-416.
    [37] 黄博, 汪清静, 凌道盛, 等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7):1313-1319. [HUANG Bo, WANG Qingjing, LING Daosheng, et al. Effects of back pressure on shear strength of saturated sand in triaxial tests [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319.
图(8)  /  表(4)
计量
  • 文章访问数:  1642
  • HTML全文浏览量:  384
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-08-10
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2021-04-27

目录

    /

    返回文章
    返回