海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响

徐翠玲, 孙治雷, 吴能友, 赵广涛, 耿威, 曹红, 张现荣, 张喜林, 翟滨, 李鑫

徐翠玲, 孙治雷, 吴能友, 赵广涛, 耿威, 曹红, 张现荣, 张喜林, 翟滨, 李鑫. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质, 2020, 40(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020050801
引用本文: 徐翠玲, 孙治雷, 吴能友, 赵广涛, 耿威, 曹红, 张现荣, 张喜林, 翟滨, 李鑫. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质, 2020, 40(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020050801
XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020050801
Citation: XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. DOI: 10.16562/j.cnki.0256-1492.2020050801

海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响

基金项目: 国家自然科学基金“冲绳海槽泥火山甲烷迁移与转化的空间分布规律及其对海水碳输入的影响”(41906068),“冲绳海槽海底冷泉-热液系统相互作用及资源效应”(91858208);山东省泰山学者特聘专家计划(ts201712079);中国地质调查局海洋地质调查专项项目(DD20190819)
详细信息
    作者简介:

    徐翠玲(1988―),女,助理研究员,主要从事海底冷泉地球化学研究,E-mail:xcl1130@163.com

    通讯作者:

    吴能友(1965―),男,研究员,主要从事海洋地质与天然气水合物研究,E-mail:wuny@ms.giec.ac.cn

  • 中图分类号: P736.3

Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input

  • 摘要: 海底通过泥火山释放的富甲烷流体是海洋甚至大气重要的碳源之一,对该系统内甲烷迁移与转化过程开展研究,有助于精确估算其碳排放总量。系统调研了国内外文献,认识到泥火山的碳排放具有强烈的时、空变化特征。在时间上,甲烷的排放主要发生在泥火山的喷发期和平静期,而在其消亡之后只出现微量的渗漏;在空间上,一个单独的泥火山中心、翼部和外缘分别发育强甲烷气泡泄漏、中等强度富甲烷和溶解无机碳(DIC)的流体泄漏以及大面积的DIC微渗漏;甲烷厌氧氧化和碳酸盐岩沉淀作用在翼部最强,对碳排放的拦截最有效,而在中心和外缘均较慢。全球陆坡和深水盆地沉积物通过泥火山向上释放的深部来源的甲烷通量为0.02 Pg C·a−1,这些碳可能引发海水缺氧、酸化和影响海-气交换通量,从而在千年尺度甚至更短时间内影响海洋吸收大气二氧化碳的能力。将来需要进一步对海底泥火山的发育数目和喷发周期进行统计,对不同类型的泥火山开展精细调查,以准确评估沉积物中自下而上的碳排放对海洋碳循环的影响,完善全球碳循环模式。
    Abstract: Submarine mud volcanoes contribute carbon to the hydrosphere and the atmosphere by releasing methane-rich fluids, and researches on the temporal and spatial distribution of methane migration and chemical transportation at submarine mud volcanoes are the keys to understanding the processes mentioned above. In this paper, a large number of domestic and foreign literatures are systematically investigated, and the strong heterogeneity of methane leakage was recognized in the mud volcano systems. Methane emissions mainly occur during the eruption and dormant periods of mud volcanoes, and only a small amount of leakage occurs in extinct periods. In space, strong methane bubble leakages are usually developed around the centers of mud volcanos, and the chemical transportation efficiencies of methane are low in sediments; the leakages of methane and DIC controlled by fluid flow are mainly developed in the wings, where the rates of anaerobic oxidation of methane and the precipitation rate of authigenic carbonate are the highest. Shallow sediments have the strongest interception to carbon emission; both the intensity and the transportation rate of methane in the edge area are low, and hence a large area of DIC microleakage is developed. Globally, the carbon flux from submarine mud volcanos into shallow sediments is ca. 0.02 Pg C·a−1. The methane and DIC coming from sediments could cause seawater anoxia, acidification, and change air-sea carbon exchange fluxes, which may affect the ocean’s ability to absorb atmospheric carbon dioxide on millennium scale or even in a shorter time, and thus impacts on the global climate environment. In the future, accurate statistics on the number and eruption cycle of submarine mud volcanoes, and detailed investigations on the migration and transportation of methane in typical submarine mud volcanoes with different sizes and development stages, will be helpful to further accurately estimate their total carbon emissions, to study the impacts of bottom-up mud volcanoes’ carbon emissions on the marine carbon cycle, and to improve the marine carbon cycle model.
  • 黄海是位于中国大陆与朝鲜半岛之间的一个半封闭陆架浅海,承接了来自长江、黄河等周围河流的大量陆源物质[1]。这些巨量的陆源物质在复杂海洋动力条件下的输运和沉降过程是中国东部陆架海区源汇沉积体系的重要研究内容[2-3]。南黄海中部海区发育有典型的泥质沉积体,作为陆架海区细颗粒沉积物的聚集区和重要的碳汇,南黄海泥质沉积体的形成过程和动力机制是近年来黄海沉积学研究的热点[4-5]。前人研究表明黄海沉积物的沉积过程具有“夏储冬输”的季节性输运格局[6-7],来自黄河的陆源物质可以在沿岸流的作用下进入南黄海中部[8-11],声学剖面观测也表明细颗粒沉积体可以延伸到南黄海中部80 m深的区域[12],而山东半岛沿岸流冬强夏弱的特征也使得冬季成为物质输运的主要季节[13-14]。作为冬季南黄海海区唯一一支向北的流系,黄海暖流也被认为可以将悬浮体从南向北输入到南黄海中部[15-16]。夏季,黄海冷水团主导的“弱潮低能”的动力环境具有捕获悬浮物质的能力[17-18],冷水团分布区与底部泥质沉积的位置对应关系指示了两者之间的密切联系。部分学者认为冷水团主导的环流体系,尤其是上升流对细颗粒的分选作用是泥质区形成的主要控制因素[19-20]。董礼先等则认为冷水团区较弱的潮动力对研究区的泥沙输运与沉积起主导作用[21-22]。然而这些理论缺乏现代沉积过程实测资料的支持,因此对南黄海中部泥质沉积区的形成过程尚存在争议。

    泥质沉积体是细颗粒沉积物的聚集区,不同粒度悬浮颗粒行为的研究对于厘清泥质沉积的形成过程具有重要意义。传统的悬浮体研究方法以抽滤法为主,这种方法将不同粒级的悬浮颗粒看作一个整体,破坏了颗粒的粒度结构和物质组成[23],难以获得悬浮体的原位粒度分布数据。原位激光粒度仪(Laser In-Situ Scattering and Transmissometry, LISST)利用激光散射原理,可以同时测得32个粒级(2.5~500 μm)的悬浮体的体积浓度(Volume Concentration, VC),使得无损、快捷、分粒级地观测悬浮体的分布成为可能[24-25]

    本文利用2012年夏季在南黄海调查获取的水文环境资料和悬浮体现场粒度观测数据,对悬浮体的粒度分布特征及其影响因素进行了研究,并对南黄海中部泥质沉积区的形成机制进行了探讨,揭示了悬浮体粒度分布对研究陆架海区现代沉积过程的重要意义。

    “科学三号”考察船于2012年夏季(7月24日至8月7日)在南黄海海区进行水体综合调查(图1),在调查站位利用SBE9/11plus型CTD及其附带传感器获取水体温度、盐度和荧光叶绿素a (chl a)浓度剖面数据。利用SBE Data Processing软件对采集数据进行处理,得到垂向分辨率为1 m 的剖面数据。同时,将LISST-100X(C型)固定于CTD上部,随采集系统一起下放,同步获取垂向分辨率为1 m 的32个粒级的体积浓度数据。

    图  1  研究区地形及站位分布
    黑色菱形代表调查站位,蓝色箭头代表沿岸流,灰色实线代表等深线;Ⅰ江苏外海浅水区;Ⅱ长江口东北部区域;Ⅲ海州湾区;Ⅳ南黄海冷水团区。
    Figure  1.  Topography and sampling stations of the study area
    The black rhombuses indicate the sample stations; the blue arrows indicate the coastal currents; the gray solid lines indicate the water depth; Ⅰ shallow water area off the Jiangsu coast; Ⅱ northeast of Changjiang River; Ⅲ Haizhou Bay; Ⅳ South Yellow Sea Cold Water Mass.

    在各调查站位利用CTD附属采水器在表层、5、10、20、30、50 m、底层(距海底2~5 m)采集海水样品,并立即在船载实验室中用预先称重的混合纤维素酯滤膜(0.45 μm)对水样进行过滤。过滤完成后用蒸馏水润洗滤膜以去除盐分,冷冻保存。在陆地实验室对滤膜烘干、称重,获得悬浮体质量浓度数据(Mass Concentration, MC)。

    夏季,研究区表层海水温度高于20 ℃,空间差异较小。沿A03-B04-C05站位存在一条表层冷水带(图2a)。底层海水温度从近岸向远岸逐渐降低,高温水体位于水深较浅的江苏外海,南黄海中部海水温度低于10 ℃,两者之间形成较强的温度锋面(图2b)。前人研究中多把10 ℃作为冷水团的边界[26],因此这种底层冷水是典型的黄海冷水团水体。表层盐度在出现冷水条带的站位也出现了高盐特征,而底层盐度由近岸向南黄海中部逐渐升高,盐度等值线分布特征与温度相似(图2cd)。

    图  2  夏季温度和盐度平面分布特征
    Figure  2.  Horizontal distribution of temperature ( ℃) and salinity in the study during summer season.

    在垂向上,温度和盐度分布表现出近岸混合、远岸层化的分布特征(图3)。在水深小于20 m的近岸区域,垂向温盐差异较小。在>20 m的深水区,温度(盐度)从表层向底层逐渐降低(升高),且表现出三层水文结构:上部浅水混合层、中部温度和盐度跃层,深度在10~30 m左右,底层为低温高盐的冷水团水体。在冷水团与近岸浅水区的边界,即各断面坡度较陡的区域,等温线和等盐线表现出上凸的特征,指示了底层冷水上涌现象。

    图  3  夏季温度(a1—d1, ℃)和盐度(a2—d2)垂向分布特征
    a—d代表断面A—D;箭头指示底层冷水上涌。
    Figure  3.  Vertical distribution of temperature (a1—d1, ℃) and salinity (a2—d2) of the study area during summer season
    a—d represent the sections of A—D; the arrows indicate the upwelling of bottom cold water.

    南黄海海区的悬浮体质量浓度表现出近岸高远岸低、底层高表层低的分布特征(图4 a1d1)。从A断面到D断面,质量浓度逐渐降低,浓度最高值出现在B断面近岸浅水区域,高于100 mg/L。在远岸深水区,上层浓度值较低,底层均存在一个相对高浓度的雾状层。荧光叶绿素a浓度也呈层化分布特征,在温盐跃层存在的区域,存在一个次表层叶绿素最大值层,其深度与跃层深度相似,上部混合层及冷水团内部叶绿素浓度均较低(图4 a1d2)。

    图  4  夏季和秋季悬浮体质量浓度(a1—d1)和叶绿素a浓度(a2—d2)垂向分布特征
    a—d代表断面A—D;箭头指示底层冷水上涌。
    Figure  4.  Vertical distribution of MC (a1—d1, mg/L) and chl a concentration (a2—d2, μg/L) of the study area during summer season
    a—d represent the sections of A—D; the arrows indicate the upwelling of bottom cold water.

    为研究南黄海海区悬浮体的总体粒度分布特征,我们对研究区所有站位所有层位的32个粒级的悬浮体体积浓度进行平均,并且将所有站位所有层位的质量浓度与32个粒级的体积浓度值分别进行了相关性分析(图5)。结果表明夏季南黄海海区悬浮体的平均体积浓度随粒径增大而逐渐增大,以128 μm粒级为界,细颗粒体积浓度增加速度较缓,粗颗粒的体积浓度迅速增大。相关性分析也表明小于128 μm的细颗粒与质量浓度表现出较好的相关性,而对大于128 μm的粗颗粒,其与质量浓度之间的相关性迅速降低(图5)。质量浓度是对悬浮体样品进行抽滤的结果,含水量较高的浮游生物及其分泌物在抽滤过程中极易被破坏。因此,在无机矿物颗粒含量较高的陆架海区,质量浓度数据反映的主要是无机颗粒的含量[23]。夏季北黄海冷水团区的粒度对比实验也表明,现场颗粒中大颗粒主要由黏性有机聚集体和单体浮游生物组成[27]。悬浮体质量浓度与各粒级体积浓度的相关性分析指示了不同粒级颗粒与无机颗粒的关系,高相关性表明悬浮颗粒以无机颗粒为主,反之则证明有机物质占有不可忽略的比重。因此本文的讨论中我们将≤128 μm的细颗粒定义为无机颗粒,而>128 μm的粗颗粒则归类为有机颗粒。

    图  5  调查站位所有层位的平均粒度分布特征以及质量浓度与各粒级体积浓度相关性
    Figure  5.  Average VC (black solid dots) and correlation between MC and VC (black triangle) of suspended particulate matter in different sizes. The VC was averaged based on all stations and layers

    悬浮体总体积浓度高值出现在近岸浅水区以及远岸的次表层10~30 m左右水层(图6 a1d1)。分粒级体积浓度垂向分布特征表明,有机颗粒与无机颗粒对总体积浓度的贡献具有空间差异性,近岸浅水区以及远岸深水区底层的高浓度主要是由无机颗粒导致,而次表层体积浓度最大值则是由有机颗粒造成的。另外,在断面坡度较陡的A和B断面,出现无机颗粒浓度锋面;从B断面到D断面,在等温线上凸的区域,表层无机颗粒体积浓度高于次表层,表明无机颗粒具有从表层向外海扩散的趋势(图6 b2d2)。

    图  6  夏季分粒级悬浮体体积浓度垂向分布特征
    a1—d1代表所有粒级的总体积浓度;a2—d2代表≤128 μm粒级颗粒的总体积浓度;a3—d3代表>128 μm粒级颗粒的总体积浓度;黄色箭头指示底层冷水上涌现象。
    Figure  6.  Vertical distribution of total VCs (a1—d1) inorganic (a2—d2) and organic (a3—d3) VCs of the study area during summer season
    a1—d1 indicate the total VCs; a2—d2 indicate the total VCs finer than 128 μm; a3—d3 indicate the total VCs coaster than 128 μm, the yellow arrows indicate the upwelling of bottom cold water.

    根据水文特征和悬浮体粒度分布特征,夏季南黄海海区可以划分为四种典型区域:Ⅰ江苏外海浅水区;Ⅱ长江口东北部区域(A断面远岸区);Ⅲ海州湾区;Ⅳ南黄海冷水团区。不同研究区的站位具有不同的悬浮体粒度分布特征(图7)。B01站位代表区域Ⅰ,从表层到底层其粒度特征具有一致性,呈三峰分布,在细颗粒和粗颗粒端均存在上升尾,中间峰值位于16~32 μm左右。B04站位代表江苏外海浅水区与冷水团区之间的锋面区域,其粒度分布从表层到底层也具有一致性,体积浓度随粒径增大而增大。A04站位代表区域Ⅱ,粒度分布主要分为两种类型:浅水层(<10 m)表现为双峰分布,峰值粒径在6和391 μm左右,而16~128 μm左右的颗粒浓度较低,部分层位为0;深水层表现为单峰分布,峰值粒径在64 μm左右。C03站位代表区域Ⅲ,粒度分布特征分为两种类型:浅水层位(<8 m)表现为双峰分布,在6 μm左右存在一个峰值,体积浓度为0.1 μL/L左右,在粗颗粒端存在一个上升尾且峰值大于100 μL/L;深水层也具有双峰分布特征,但峰值粒径在6和391 μm左右,在256 μm左右存在一个小的峰值,而16~128 μm左右的颗粒基本缺失。C05代表C断面的温度锋区域,其粒度分布与C03站位相似,从表层到底层均具有双峰分布特征,但底层16~128 μm粒级的颗粒浓度高于C03站位。D08站位代表区域Ⅳ,其粒度分布特征分为四种类型:18 m以浅水层呈三峰分布,粗、细颗粒端各存在一个上升尾,另外在256 μm左右存在一个小的峰值;18~45 m水层颗粒集中在大于128粒级,粒度分布较乱,无明显峰值粒级;45~62 m层位颗粒呈V字形分布,且16~128 μm粒级浓度随水深增大而增大,在10、256以及391 μm左右存在3个峰值;62~74 m水层16~128 μm粒级浓度较高,在32~64 μm左右存在一个较弱的峰值。

    图  7  典型站位的悬浮体粒度分布特征
    Figure  7.  Particle size distribution in some typical stations

    悬浮体的粒度特征由物质来源和水动力条件共同决定,物源决定其粒度特征的基本分布格局,水动力条件影响了其在基本格局下的波动[28]。因此本文从物源和水文动力两个方面探讨夏季南黄海海区悬浮体粒度分布特征的影响机制。

    南黄海海底沉积物类型较复杂[29],砂质沉积物主要分布在长江口外部海域、辐射沙脊区以及废黄河三角洲外侧部分区域;在废黄河三角洲及南黄海中部分布有大片黏土质粉砂,粉砂质黏土分布于南黄海中部的黏土质粉砂中;在近岸与南黄海中部之间的过渡区域和海州湾区发育有粉砂质砂,而苏北外海分布着砂质粉砂(图8)。由于相对较强的再悬浮作用(见4.2)以及较细的表层沉积物[30-31],江苏外海及长江口东北部从底层到表层具有相对较高的无机颗粒百分比(图9ac)。前人研究也表明,海底沉积物的再悬浮是苏北近岸悬沙最主要的来源,形成了近岸高浓度区[32-33]。而长江口北支北侧断面向北进入江苏海域的悬沙通量约为0.35~0.36亿t/a[34],悬浮颗粒的中值粒径为8~120 μm,平均为38 μm[35],也是江苏外海细颗粒悬浮体的重要来源。尽管处于水深小于40 m的近岸区,但海州湾区的砂质沉积导致了较低的无机颗粒比重(图9de)。在南黄海中部,由于水深较深,底层细颗粒沉积物的再悬浮作用较弱,只在近底层出现了无机颗粒高百分比区(图9f)。因此,海底表层沉积物是夏季南黄海海区无机颗粒的主要来源。

    图  8  南黄海沉积物类型(改自文献[29])
    黑色菱形代表调查站位,Ⅰ江苏外海浅水区;Ⅱ长江口东北部区域;Ⅲ海州湾区;Ⅳ冷水团区。
    Figure  8.  The sediment types in the Southern Yellow Sea (modified from reference [29] )
    The black rhombuses indicate the sample stations; Ⅰ shallow water area off the Jiangsu coast area; Ⅱ northeast of Changjiang River; Ⅲ Haizhou Bay; Ⅳ South Yellow Sea Cold Water Mass.
    图  9  典型站位温度、盐度、chl aN2以及无机和有机颗粒的累积体积百分比垂向分布
    Figure  9.  Vertical distribution of temperature, salinity, chl a, N2 and cumulative frequency distribution of inorganic and organic particles at typical stations

    在具有层化特征的远岸深水区(如D08站位,图9f),跃层及以上层位质量浓度较低,而叶绿素浓度较高,悬浮颗粒主要以有机粗颗粒为主,总体积浓度最高值与叶绿素最大值深度的一致性指示了生物源的有机组分对粗颗粒的影响。海水中的浮游植物在生长过程中会释放大量具有黏性的胞外聚合物[36],这些低密度的有机物质在海水浮力作用下可以向上层扩散,同时也可以与密度较大的无机矿物颗粒结合形成粒径较大的絮集体而发生沉降[27, 37],因此该区域悬浮颗粒主要集中在>128 μm的粗颗粒端。

    潮流、季风和季节性水团特征是夏季影响南黄海海区悬浮体分布格局的主要动力因素。黄海海区的气候条件受东亚季风影响,具有较强的季节性特征,冬季风平均风速可达10 m/s,而夏季东南季风平均风速仅为1.5 m/s[38],因此较弱的夏季风对水动力条件的影响有限,潮流和水团特征是主要的影响因素[33, 39]

    南黄海海区发育典型的规则半日潮(图10),江苏外海的最大潮差可达1~2 m。潮流流速具有近岸高远岸低的分布特征,苏北老黄河口至长江口沿岸属于强潮流区,潮流流速大于1 m/s,而南黄海中部为弱潮流区,潮流流速低于0.4 m/s[38]。研究表明,废黄河三角洲及辐射沙脊区的高浓度悬沙是由强烈的水流和海岸侵蚀造成的,而潮动力是影响悬沙浓度的主要因素[33]。尽管A04站位离岸较远,其潮流流速仍可达1 m/s,底层再悬浮作用较强。因此在江苏近岸海区以及A断面跃层以下层位,悬浮体粒度分布以无机细颗粒为主(图6 a2d2)。海州湾区的弱潮流流速以及底层沉积物性质限制了再悬浮作用,因此无机颗粒的贡献不明显(图9de)。南黄海中部具有“弱潮低能”的水动力环境[18, 21],现场观测结果证实悬浮体浓度随潮流变化显示出一定的周期性变化,但是变化较小,再悬浮作用只能影响到近底层一定深度范围[18],无机颗粒的贡献小于江苏外海区域(图9f)。

    图  10  南黄海海区M2旋转潮波系统和潮流椭圆图
    黑色三角代表研究站位,绿色十字代表潮流椭圆的长轴和短轴,半长轴表示M2潮流的最大速度和方向,半短轴表示最小速度和方向(改自文献 [40]);蓝色区域代表研究区的细颗粒沉积(改自文献[41])。
    Figure  10.  Map of sampling locations, the amphidromic system of the principal M2 constituent, and the elliptical axes of M2 tidal currents in the Southern Yellow Sea
    The half major axis indicates the maximum velocity and the direction of M2 tidal current and the half minor axis indicates the minimum velocity and the direction (modified from reference [40]). The blue areas show distribution of mud patches (modified from reference [41]).

    研究表明,夏季近岸水体在潮、风和波浪作用下水体混合较好,而冷水团内部是稳定的低温高盐水体,两者之间存在较大的温度或者密度差异,形成了潮混合锋面[42]。任强等利用走航式剖面测量系统(MVP)测量了35°N断面离底10 m位置的水平温度梯度,温度梯度最大值位于冷水团与近岸混合水边界位置,可达0.28 ℃/km[43]。较大的密度差异在水平方向造成了较大的斜压梯度力,这种斜压梯度力会驱使远岸水体向近岸移动,在遇到坡度较陡的地形时会沿斜坡爬升,形成上升流,并在表层形成离岸流[42],表层冷水条带即是冷水上涌的结果。现场调查及卫星遥感观测也证实这种表层冷水条带是夏季南黄海海区稳定存在的水文现象[42]。潮混合锋、质量浓度锋面以及无机颗粒体积浓度锋面的一致性表明潮混合锋的存在阻挡了近岸高浓度悬浮体向远岸扩散,导致远岸区上层无机颗粒浓度较低(图7f)。而无机细颗粒的垂向分布显示在锋面附近的表层区域,悬浮体有向远岸区扩散的趋势(图6 b2d2)。远岸深水区站位表层颗粒在小于16 μm粒级浓度大于次表层,且16~128 μm颗粒相对缺失,表明通过离岸流向南黄海中部输运的主要是小于16 μm的细颗粒(图7f),这种跨锋面输运为南黄海中部提供了细颗粒的无机颗粒。

    为讨论密度对水体垂向扩散特征的影响,我们计算了各断面的浮力频率(N2)分布[44]

    $$ {N}^{2}=-\frac{\mathrm{g}}{\rho }\frac{\partial \rho }{\partial z} $$

    这里g是重力加速度,ρ是水体密度,z是深度,海水的扩散系数与浮力频率的倒数成正比,即 $ {K}_{\mathrm{V}}\propto 1/N $。高浮力频率值意味着低扩散系数,即相对稳定水体。浮力频率在海水密度跃层处存在高值,水体扩散作用较弱。而在上混合层,冷水团内部以及近岸浅水区,浮力频率表现为低值,水体混合较好(图9)。

    2012年春季,南黄海藻华事件消耗了表层营养盐[45],而大量有机物在冷水团内部的分解进一步促进了底层营养盐含量升高,形成了营养盐储库[46-47]。从春季到夏季,冷水团与上部混合层的密度跃层进一步增强,水体在跃层处的扩散作用较弱(图9 ef),底层的营养盐难以跨过密度跃层向表层输送[48]。营养盐的缺乏和较弱的光照条件分别使得表层和冷水团内部不利于浮游植物生长,而在密度跃层处,充足的营养盐和适宜的光照条件促进了浮游植物生长,形成了次表层叶绿素最大值层(图4 a2d2)。密度梯度最大值与chl a 最大值深度的相关性证明了这种阻挡作用的存在(图11a)。浮游植物在生长过程中会分泌大量透明胞外物质,并与无机矿物颗粒结合形成尺寸和密度较大的絮集体,因此在跃层及跃层以上层位存在较多的粗颗粒物质。总体积浓度峰值深度与chl a最大值深度的相关性证明了有机物质对大颗粒悬浮体的重要作用(图11b)。

    图  11  Chl a最大值深度与密度梯度最大值深度或TVC最大值深度的相关性
    Figure  11.  Correlation between the depth of the maximum chl a concentration with the maximum density gradient (a) or TVC (b) during summer season

    南黄海中部泥质沉积是细颗粒沉积物的聚集区。根据上述讨论,夏季无机悬浮颗粒在近岸浅水区形成了悬浮体高浓度中心,而潮混合锋阻挡了近岸高浓度悬浮体从近底层向南黄海中部扩散。数值模拟结果则表明,潮混合区存在一个次级环流:底层冷水沿海底向岸流动,上升流沿斜坡向上爬升,并在上部表层逆向流动,即形成跨锋面的离岸流[42]。无机颗粒的断面分布特征则显示,细的无机颗粒(<16 μm)可以被离岸流输运至南黄海中部(图6 b2d2)。这种跨潮混合锋面的细颗粒离岸输运为泥质区的形成提供了物质来源。另一方面,来源于近岸跨锋面输运的细颗粒悬浮体是远岸区表层无机悬浮颗粒的主要来源,扩散系数较低的密度跃层的存在限制了这些颗粒的沉降,而絮集体的形成则极大地促进了无机细颗粒的跨跃层沉降,提高了表层到底层的无机颗粒通量。粒度对比试验结果也表明,这些粒度较大的絮集体是由单体浮游生物或黏性生物分泌物与小于32 μm的细颗粒组成[27],而絮集体的沉降速度比单体细颗粒高几个数量级[49]。这些有机物质在沉积过程中或沉降之后会发生分解,无机细颗粒的沉降则促进了底层泥质沉积的形成。因此,江苏外海的再悬浮颗粒为泥质区的形成提供了物源,跨潮混合锋面的离岸流是携带细颗粒进入南黄海中部的动力,絮集体的形成是将这些细颗粒带离表层并快速沉降到海底的主要方式。

    (1)夏季,南黄海悬浮颗粒中≤128 μm的细颗粒主要是由无机矿物颗粒组成,而>128 μm的粗颗粒则由有机颗粒主导。无机颗粒主要分布在混合作用较强的近岸浅水区以及远岸的近底水层,有机颗粒在水体层化较强海域的密度跃层处占据主导地位。

    (2)再悬浮的海底表层沉积物是研究区无机颗粒的主要来源,而潮动力是其再悬浮的主要动力。潮混合锋面阻挡了近岸高浓度无机颗粒沿近底层向远岸扩散,但跨锋面的表层离岸流可以将部分细颗粒输运至南黄海中部。密度跃层阻挡了冷水团内部营养盐向表层扩散,浮游植物在密度跃层处聚集形成叶绿素次表层最大值层,浮游生物及其分泌的黏性有机物质与无机颗粒形成的絮集体是>128 μm的粗颗粒的主要来源。絮集体的形成促进了表层无机颗粒向底层的沉降。

    (3)江苏外海的再悬浮颗粒为泥质区的形成提供了物源,跨潮混合锋面的离岸流是携带细颗粒进入南黄海中部的动力,絮集体的形成是将这些细颗粒带离表层并快速沉降到海底的主要方式,促进了南黄海中部泥质区的形成。

    致谢: 感谢“科学三号”考察船全体船员和航次科考队员对相关采样和观测工作提供的帮助,谨致谢忱。

  • 图  1   海底泥火山的分布、地貌和构造图

    a. 全球已发现的陆地和海底泥火山分布图[17]表2中的海底泥火山 (红色星型),b. 尼罗河深海扇海底泥火山地形图[14],c. 海底泥火山构造模型图[17]

    Figure  1.   The distribution、topography and structure of submarine mud volcanoes

    a. distribution of terrestrial and submarine mud volcanoes in the world[17], and submarine mud volcanoes (red star) in Table 2; b. bathymetric map of submarine mud volcano in the Nile deep sea fan[14]; c. Sketch map of mud volcano structure[17].

    图  2   海底泥火山浅层沉积物中甲烷的迁移与转化示意图[32]

    Figure  2.   A sketch shpwing migration and consumption of methane in shallow sediments of submarine mud volcanoes [32]

    图  3   哥斯达黎加岸外冷泉区5个沉积柱站位的甲烷释放速率和转化速率[45]

    a. 孔隙水对流速率,b. 沉积物―水界面甲烷泄漏通量,c. AOM速率,d. 碳酸盐岩沉淀速率图。

    Figure  3.   The methane migration and consumption rates at five gravity core sites in cold seep area offshore Costa Rica[45]

    a. pore water advection rates, b. methane fluxes at sediment-water interface, c. AOM rates, d. carbonate precipitation rates.

    图  4   海洋碳循环及海底冷泉活动对海洋碳循环的影响示意图

    方括号内的数字表示碳库量,单位为Pg C,箭头旁边不带括号的数字表示年度通量,单位为Pg C·a−1。参考文献a-[67-68]; b-[64]; c-[60]; d-[22]; e-[69]。

    Figure  4.   schematic diagram of marine carbon cycle and the impact of sedimentary methane emissions on marine carbon cycle

    the number in square brackets represents the carbon pool in Pg C, and the number without brackets next to the arrow represents annual flux in Pg C·a−1. References a-[67-68]; b-[64]; c-[60]; d-[22]; e-[69].

    图  5   Håkon Mosby 泥火山上覆海水中的气态和溶解态甲烷分布[30]

    a. 甲烷气泡羽流的声学反射图像,b. 高甲烷浓度异常。

    Figure  5.   The distribution of gaseous and dissolved methane in the seawater above the HåKon Mosby Mud Volcano[30]

    a. acoustic backscatter image of methane bubble plume, b. high methane concentration in the seawater.

    表  1   巴伦支海Håkon Mosby泥火山中心到边缘不同生态分区的甲烷泄漏强度[15, 30-31]

    Table  1   intensities of methane emission from the center to the edge of the Håkon Mosby Mud Volcanoin the Barents Sea[15, 30-31]

    生态分区面积/
    m2
    对流速率/
    (cm·a−1
    深部甲烷泄漏AOM海底甲烷通量/
    (106 mol·a−1
    通量/
    (mol·m-2·a−1
    流量/
    (106 mol·a−1
    速率/
    (mol·m−2·a−1
    总速率/
    (106 mol·a−1
    效率/
    %
    泥火山中心300~600
    高热流区14>182.52.61.80.0412.6
    次高热流区10122.3~28.52.61.10.142.4
    气泡羽流8~35008~35
    Beggiatoa
    密集菌席3060~10032.10.93.60.1120.8
    斑状菌席550.60.07120.5
    灰色菌席
    菌席8013.113.90.3320.7
    菌席附近60>102.26.26.2
    管状虫
    Siboglinid410408.43.37.63.1930.2
    合计75017.3aq+(8~35)g3.82213.5aq+(8~35)g
     注:下标aq表示溶解态,g表示气态
    下载: 导出CSV

    表  2   不同海域海底泥火山的溶解态甲烷泄漏强度统计

    Table  2   Statistics of the intensities of dissolved methane seepage from mud volcanoes in different sea areas

    泥火山面积/km2流体对流速率/
    (cm·a−1
    深部来源甲烷流量/
    (106 mol·a−1
    AOM速率/
    (106 mol·a−1
    AOM效率/%
    海底甲烷流量/
    (106 mol·a−1
    参考文献
    黑海
    Dvurechenskii泥火山38~258.9773~841.9[11]
    Dvurechenskii泥火山30~15019~271450~7013[33]
    巴伦支海
    Håkon Mosby泥火山0.7540~53017.33.82213.5[15, 31]
    巴巴多斯岸外
    Atalante泥火山10~1506.5[11]
    Cyclops泥火山7~500.6
    哥斯达黎加岸外
    Mound 125100.4[34]
    Mound 11-50.07
    Mound Culebra5-0.6
    格雷仕湾
    Carlos Ribeiro1.770.4~40.10.085850.015[35]
    Cap. Arutyunov3.1410~150.006[36]
    Ginsburg泥火山3[16]
    Bonjardim泥火山0.81.3
    下载: 导出CSV
  • [1]

    Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 2-1-2-52.

    [2]

    Dimitrov L I. Mud volcanoes—the most important pathway for degassing deeply buried sediments [J]. Earth Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7

    [3]

    Zheng G D, Ma X X, Guo Z F, et al. Gas geochemistry and methane emission from Dushanzi mud volcanoes in the southern Junggar Basin, NW China [J]. Journal of Asian Earth Sciences, 2017, 149: 184-190. doi: 10.1016/j.jseaes.2017.08.023

    [4]

    Etiope G, Milkov A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere [J]. Environmental Geology, 2004, 46(8): 997-1002. doi: 10.1007/s00254-004-1085-1

    [5] 马向贤, 郑国东, 郭正府, 等. 准噶尔盆地南缘独山子泥火山温室气体排放通量[J]. 科学通报, 2014, 59(32):3190-3196. [MA Xiangxian, ZHENG Guodong, GUO Zhengfu, et al. Estimation of greenhouse gas flux from mud volcanoes in the Dushanzi area, southern Junggar Basin of Northwest China [J]. Chinese Science Bulletin, 2014, 59(32): 3190-3196. doi: 10.1360/N972014-00361
    [6] 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3):483-489. [CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
    [7] 何家雄, 祝有海, 翁荣南, 等. 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系[J]. 地球科学, 2010, 35(1):75-86. [HE Jiaxiong, ZHU Youhai, WENG Rongnan, et al. Characters of North-West Mud Diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas [J]. Earth Science, 2010, 35(1): 75-86.
    [8] 阎贫, 王彦林, 郑红波, 等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报, 2014, 36(7):142-148. [YAN Pin, WANG Yanlin, ZHENG Hongbo, et al. Geophysical features of mud volcanoes in the waters southwest of the Dongsha islands [J]. Acta Oceanologica Sinica, 2014, 36(7): 142-148.
    [9]

    Xu C L, Sun Z L, Geng W, et al. Thermal recovery method of submarine gas hydrate based on a thermoelectric generator [J]. China Geology, 2018, 1(4): 568-569. doi: 10.31035/cg2018068

    [10]

    Sun Z L, Cao H, Geng W, et al. A three-dimensional environmental monitoring system for the production of marine gas hydrates [J]. China Geology, 2018, 1(4): 570-571. doi: 10.31035/cg2018066

    [11]

    Wallmann K, Drews M, Aloisi G, et al. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes [J]. Earth & Planetary Science Letters, 2006, 248(1-2): 545-560.

    [12]

    Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz [J]. Geochimica Et Cosmochimica Acta, 2006, 70(21): 5336-5355. doi: 10.1016/j.gca.2006.08.010

    [13]

    Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea [J]. Geological Journal, 2019, 54(1): 177-189. doi: 10.1002/gj.3168

    [14]

    Dupré S, Buffet G, Mascle J, et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys [J]. Marine Geophysical Research, 2008, 29(4): 275-290. doi: 10.1007/s11001-009-9063-3

    [15]

    de Beer D, Sauter E, Niemann H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano [J]. Limnology & Oceanography, 2006, 51(3): 1315-1331.

    [16]

    Hensen C, Nuzzo M, Hornibrook E, et al. Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint [J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1232-1248. doi: 10.1016/j.gca.2006.11.022

    [17]

    Mazzini A, Etiope G. Mud volcanism: An updated review [J]. Earth-Science Reviews, 2017, 168: 81-112. doi: 10.1016/j.earscirev.2017.03.001

    [18]

    ZHANG J, LEI H Y, CHEN Y, et al. Carbon and oxygen isotope composition of carbonate in bulk sediment in the southwest Taiwan Basin, South China Sea: methane hydrate decomposition history and its link to mud volcano eruption [J]. Marine & Petroleum Geology, 2018, 98: 687-696.

    [19]

    Yan P, Wang Y L, Liu J, et al. Discovery of the southwest Dongsha Island mud volcanoes amid the northern margin of the South China Sea [J]. Marine & Petroleum Geology, 2017, 88: 858-870.

    [20]

    Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007

    [21]

    Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 465-570.

    [22]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [23] 冯东, 陈多福, 苏正, 等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1):26-32. [FEND Dong, CHEN Duofu, SU Zheng, et al. Characteristics of cold seep carbonates and microbial processes in gas seep system [J]. Geoscience, 2005, 19(1): 26-32. doi: 10.3969/j.issn.1000-8527.2005.01.004
    [24]

    Xu C L, Wu N Y, Sun Z L, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough [J]. Marine and Petroleum Geology, 2018, 98: 306-315. doi: 10.1016/j.marpetgeo.2018.08.021

    [25]

    Caprais J C, Lanteri N, Crassous P, et al. A new CALMAR benthic chamber operating by submersible: First application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea) [J]. Limnology & Oceanography Methods, 2010, 8(6): 304-312.

    [26]

    Sun M S, Zhang G L, Ma X, et al. Dissolved methane in the East China Sea: Distribution, seasonal variation and emission [J]. Marine Chemistry, 2018, 202: 12-26. doi: 10.1016/j.marchem.2018.03.001

    [27] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学报, 2016, 35(3):442-450. [SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450.
    [28]

    Judd A, Hovland M. Seabed Fluid Flow—the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2007:195-205.

    [29]

    Milkov A V, Vogt P R, Crane K, et al. Geological, geochemical, and microbial processes at the hydrate-bearing Hakon Mosby mud volcano: a review [J]. Chemical Geology, 2004, 205(3-4): 347-366. doi: 10.1016/j.chemgeo.2003.12.030

    [30]

    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth & Planetary Science Letters, 2006, 243(3-4): 354-365.

    [31]

    Felden J, Wenzhöfer F, Feseker T, et al. Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby Mud Volcano (HMMV) [J]. Limnology & Oceanography, 2010, 55(6): 2366-2380.

    [32]

    Bohrmann G, Torres M E. Gas hydrates in marine sediments[M]//Schulz H, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer-Verlag, 2006: 481-512.

    [33]

    Lichtschlag A, Felden J, Wenzhöfer F, et al. Methane and sulfide fluxes in permanent anoxia: in situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5002-5018. doi: 10.1016/j.gca.2010.05.031

    [34]

    Linke P, Wallmann K, Suess E, et al. In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin [J]. Earth & Planetary Science Letters, 2005, 235(1-2): 79-95.

    [35]

    Vanneste H, Kelly-Gerreyn B A, Connelly D P, et al. Spatial variation in fluid flow and geochemical fluxes across the sediment–seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz) [J]. Geochimica Et Cosmochimica Acta, 2011, 75(4): 1124-1144. doi: 10.1016/j.gca.2010.11.017

    [36]

    Sommer S, Linke P, Pfannkuche O, et al. Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz) [J]. Marine Ecology Progress Series, 2009, 382: 69-86. doi: 10.3354/meps07956

    [37]

    Praeg D, Ceramicola S, Barbieri R, et al. Tectonically-driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea [J]. Marine & Petroleum Geology, 2009, 26(9): 1849-1865.

    [38]

    Toyos M H, Medialdea T, León R, et al. Evidence of episodic long-lived eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes, Gulf of Cádiz [J]. Geo Marine Letters, 2016, 36(3): 197-214. doi: 10.1007/s00367-016-0440-z

    [39] 黄华谷, 邸鹏飞, 陈多福. 泥火山的全球分布和研究进展[J]. 矿物岩石地球化学通报, 2011, 30(2):189-197. [HUANG Huagu, DI Pengfei, CHEN Duofu. Global distribution and research progress of mud volcanoes [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2): 189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010
    [40]

    Deville E, Guerlais S H. Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean) [J]. Marine & Petroleum Geology, 2009, 26(9): 1681-1691.

    [41] 王家生, Suess E. 天然气水合物伴生的沉积物碳、氧稳定同位素示踪[J]. 科学通报, 2002, 47(15):1172-1176. [WANG Jiasheng, Suess E. Carbon and oxygen stable isotope tracing of sediments associated with gas hydrate [J]. Chinese Science Bulletin, 2002, 47(15): 1172-1176. doi: 10.3321/j.issn:0023-074X.2002.15.012
    [42]

    Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    [43]

    Luo M, Torres M E, Hong W L, et al. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin [J]. Earth and Planetary Science Letters, 2020, 541: 116288. doi: 10.1016/j.jpgl.2020.116288

    [44]

    Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediment [J]. Geochimica et Cosmochimica Acta, 2017, 207: 256-276. doi: 10.1016/j.gca.2017.03.019

    [45]

    Karaca D, Hensen C, Wallmann K. Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08S27.

    [46]

    Lein A Y, Pimenov N V, Savviechev A S, et al. Methane as a source of organic matter and carbon dioxide of carbonates at a cold seep in the Norway Sea [J]. Geochemistry International, 2000, 38(3): 232-245.

    [47]

    Niemann H, Linke P, Knittel K, et al. Methane-carbon flow into the benthic food web at cold seeps – A case study from the costa Rica Subduction zone [J]. PLoS One, 2013, 8(10): e74894. doi: 10.1371/journal.pone.0074894

    [48]

    Haese R R, Meile C, van Cappellen P, et al. Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 361-375. doi: 10.1016/S0012-821X(03)00226-7

    [49]

    Wang X C, Chen R F, Whelan J, et al. Contribution of "Old" carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico [J]. Geophysical Research Letters, 2001, 28(17): 3313-3316. doi: 10.1029/2001GL013430

    [50]

    Pohlman J W, Bauer J E, Waite W F, et al. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans [J]. Nature Geoscience, 2011, 4(1): 37-41. doi: 10.1038/ngeo1016

    [51]

    Hung C W, Huang K H, Shih Y Y, et al. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea [J]. Scientific Reports, 2016, 6: 29597. doi: 10.1038/srep29597

    [52]

    Stadnitskaia A, Muyzer G, Abbas B, et al. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea [J]. Marine Geology, 2005, 217(1-2): 67-96. doi: 10.1016/j.margeo.2005.02.023

    [53]

    Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz [J]. Sedimentary Geology, 2012, 243-244: 155-168. doi: 10.1016/j.sedgeo.2011.10.013

    [54]

    Tamborrino L, Himmler T, Elvert M, et al. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea [J]. Marine and Petroleum Geology, 2019, 107: 20-31. doi: 10.1016/j.marpetgeo.2019.05.003

    [55]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [56]

    Ruffine L, Germain Y, Polonia A, et al. Pore water geochemistry at two seismogenic areas in the Sea of Marmara [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7): 2038-2057. doi: 10.1002/2015GC005798

    [57]

    Mazumdar A, Peketi A, Joao H M, et al. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit [J]. Marine & Petroleum Geology, 2014, 49: 162-175.

    [58]

    Haese R R, Hensen C, de Lange G J. Pore water geochemistry of eastern Mediterranean mud volcanoes: Implications for fluid transport and fluid origin [J]. Marine Geology, 2006, 225(1-4): 191-208. doi: 10.1016/j.margeo.2005.09.001

    [59]

    Aloisi G, Drews M, Wallmann K, et al. Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles [J]. Earth & Planetary Science Letters, 2004, 225(3-4): 347-363.

    [60] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7):668-681. [JIAO Nianzhi, LI Chao, WANG Xiaoxue. Response and feedback of marine carbon sink to climate change [J]. Advances in Earth Science, 2016, 31(7): 668-681. doi: 10.11867/j.issn.1001-8166.2016.07.0668.
    [61]

    Dimitrov L, Woodside J. Deep sea pockmark environments in the eastern Mediterranean [J]. Marine Geology, 2003, 195(1-4): 263-276. doi: 10.1016/S0025-3227(02)00692-8

    [62]

    Palomino D, López-González N, Vázquez J T, et al. Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cádiz continental slope (northeastern sector) [J]. Marine Geology, 2016, 378: 196-212. doi: 10.1016/j.margeo.2015.10.001

    [63]

    Chuang P C, Yang T F, Hong W L, et al. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation [J]. Geofluids, 2010, 10(4): 497-510. doi: 10.1111/j.1468-8123.2010.00313.x

    [64]

    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    [65]

    Werne J P, Haese R R, Zitter T, et al. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea [J]. Chemical Geology, 2004, 205(3-4): 367-390. doi: 10.1016/j.chemgeo.2003.12.031

    [66]

    Ritt, B., Pierre, C., Gauthier, O. et al Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan [J]. Marine Biology, 2011, 158: 1187-1210. doi: 10.1007/s00227-011-1679-6

    [67]

    Tanhua T, Bates N R, Körtzinger A. The marine carbon cycle and ocean carbon inventories [J]. International Geophysics, 2013, 103: 787-815. doi: 10.1016/B978-0-12-391851-2.00030-1

    [68] 张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州: 浙江大学, 2018.

    ZHANG Han. A modeling study of interactive feedbacks between carbon dioxide, global warming, ocean acidification, and the ocean carbon cycle[D]. Hangzhou: Zhejiang University, 2018:19-50.

    [69]

    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment [J]. Energy & Fuels, 2005, 19(2): 459-470.

    [70]

    Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean [J]. Geophysical Research Letters, 2003, 30(2): 1037.

    [71]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    [72]

    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth & Planetary Science Letters, 2006, 244(1-2): 1-15.

    [73]

    Zhang X R, Sun Z L, Fan D J, et al. Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea [J]. Continental Shelf Research, 2019, 174: 108-117. doi: 10.1016/j.csr.2018.12.014

    [74]

    Wallmann K, Aloisi G, Haeckel M, et al. Silicate weathering in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918. doi: 10.1016/j.gca.2008.03.026

  • 期刊类型引用(6)

    1. 陈亦洋,王奥博,唐建辉. 南黄海水体中溴代阻燃剂的时空分布与生态风险评估. 地球化学. 2024(06): 801-814 . 百度学术
    2. 卢鹏飞,岳英洁,朱龙海,胡日军,尹砚军,冷星. 南黄海西部日照近海悬浮泥沙分布、输运及控制因素. 海洋地质与第四纪地质. 2022(03): 36-49 . 本站查看
    3. 边佳琪,时美楠,吴怀春,汪卫国. 俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素. 海洋地质与第四纪地质. 2022(05): 94-102 . 本站查看
    4. 龙小志,王珍岩. 台风“灿鸿”对长江口外海域悬浮体分布的影响. 海洋与湖沼. 2022(06): 1322-1337 . 百度学术
    5. 密蓓蓓,张勇,梅西,王忠蕾,窦衍光. 南黄海表层沉积物稀土元素分布特征及其物源指示意义. 海洋地质与第四纪地质. 2022(06): 93-103 . 本站查看
    6. 沈小雄,杨敏妮,余志,胡旭跃. 螺旋桨射流对底泥起悬及铅在底泥-水界面处迁移规律的研究. 长沙理工大学学报(自然科学版). 2021(04): 24-31+43 . 百度学术

    其他类型引用(3)

图(5)  /  表(2)
计量
  • 文章访问数:  3964
  • HTML全文浏览量:  1118
  • PDF下载量:  155
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-05-07
  • 修回日期:  2020-06-17
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2020-11-30

目录

/

返回文章
返回