东北印度洋85°E海脊的性质和起源:综述和新认识

尚鲁宁, 胡刚, 袁忠鹏, 祁江豪, 潘军

尚鲁宁, 胡刚, 袁忠鹏, 祁江豪, 潘军. 东北印度洋85°E海脊的性质和起源:综述和新认识[J]. 海洋地质与第四纪地质, 2020, 40(4): 1-16. DOI: 10.16562/j.cnki.0256-1492.2020042201
引用本文: 尚鲁宁, 胡刚, 袁忠鹏, 祁江豪, 潘军. 东北印度洋85°E海脊的性质和起源:综述和新认识[J]. 海洋地质与第四纪地质, 2020, 40(4): 1-16. DOI: 10.16562/j.cnki.0256-1492.2020042201
SHANG Luning, HU Gang, YUAN Zhongpeng, QI Jianghao, PAN Jun. Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new observations[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 1-16. DOI: 10.16562/j.cnki.0256-1492.2020042201
Citation: SHANG Luning, HU Gang, YUAN Zhongpeng, QI Jianghao, PAN Jun. Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new observations[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 1-16. DOI: 10.16562/j.cnki.0256-1492.2020042201

东北印度洋85°E海脊的性质和起源:综述和新认识

基金项目: 中国地质调查局地质调查项目“深海科学钻探井位选址调查”(DD20190236);国家自然科学基金重点项目“冲绳海槽海底冷泉-热液系统相互作用及资源效应”(91858208)
详细信息
    作者简介:

    尚鲁宁(1986 —),男,副研究员,海洋地质与构造地质专业,E-mail:sluning@mail.cgs.gov.cn

    通讯作者:

    胡刚(1979—),男,正高级工程师,海洋沉积学专业,E-mail:hugang@mail.cgs.gov.cn

  • 中图分类号: P736.1

Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new observations

  • 摘要: 85°E海脊是东北印度洋一条重要的线性基底隆起,形成于中生代印度板块北漂过程中的构造和岩浆活动。海脊的结构、性质和起源蕴含了东印度洋扩张和印度板块北漂过程的关键信息,然而目前对其构造属性和形成演化的认识存在较大争议。分析了85°E海脊及邻区的重磁异常特征,结合前人对海脊外部形貌、内部结构、深部构造以及东印度洋板块重建的研究成果,探讨了海脊的性质和起源。结果表明,85°E海脊的形成是热点活动、洋脊扩张、转换断层、扩张中心跃迁以及板块汇聚远程效应等多种地质过程综合作用的结果。海脊呈现明显的构造分段性,不同分段的结构、性质和成因机制不同。12°N以北的海脊形成于板内热点型岩浆作用;2°~12°N的海脊与NW-SE向和N-S向两期海底扩张的边界高度吻合,是白垩纪东印度洋扩张中心调整和板块重组的产物;2°N以南的阿法纳西-尼基廷海山是随着海底扩张逐渐侵位的热点型海脊,可能与2°N以北的海脊不存在成因上的关联。分析认为,2°~12°N的海脊中段是未来部署地球物理测量、进一步确认海脊性质和成因的关键区域。通过深海钻探揭示海脊不同分段的物质组成和形成时代,是破解85°E海脊的性质和起源、白垩纪印度洋板块重建事件以及热点-洋中脊相互作用机制等重大地质问题的关键途径。
    Abstract: The 85°E ridge in the Northeast Indian Ocean is a prominent linear basement uplift, formed by the tectonic and magmatic activities during the Mesozoic northward drift of the Indian plate. This ridge is a key unit for understanding the East Indian Ocean spreading and the northward drifting of the Indian Plate. However, its structural characteristics and formation and evolution process are controversial. In this paper, gravity and magnetic anomalies around the 85°E ridge are mapped and analyzed. We discussed the nature and origin of the ridge upon integration of previous works on morphology and deep structure of the crust under the ridge and the reconstruction models of the East Indian Ocean plate. The results show that the 85°E ridge is generated by the integrated multiple processes including hot spot activity, spreading, transform fault, transition of spreading center and long-distance effect of plate convergence. Different segments are dominated by different structures, natures and genetic mechanisms. The segment north of 12°N was formed by intraplate hot spot magmatism. Between 2°N and 12°N the ridge is highly consistent with the boundary of NW-SE and N-S seafloor spreading, resulted from the Cretaceous plate reorganization. The Afanasy-Nikitin seamount to the south of 2°N is a near-axis hot spot trail emplaced along with the seafloor spreading, and may not be genetically related to the ridge to the north of 2°N. We suggest, therefore, that the middle part of the ridge between 2°N and 12°N is a critical area for further confirmation of the nature and origin of the ridge. Geophysical surveys are required and scientific drilling will help solve major geological problems, such as the nature and origin of the 85°E ridge, the reorganization of the Indian Ocean Plate in Cretaceous, and the interaction mechanism between hot spot and mid-ocean ridge.
  • 图  1   印度洋海底地形和构造单元简图 (地貌/构造单元名称据文献[34-35], 水深数据来源https://www.gebco.net/)

    红色五星为热点,黑色实线为洋底年龄等值线(单位Ma),红色实线为扩张中心。地貌和构造单元缩写:AAB. 澳大利亚-南极海盆, ArB. 阿拉伯海盆, AgB. 厄加勒斯海盆, ANS. 阿法纳西-尼基廷海山, AP. 厄加勒斯海底高原, BF. 孟加拉扇, BR. 布罗肯海脊, CB. 克洛泽海盆,CHS. 克洛泽热点, CIB. 中印度洋盆地, CIR. 中印度洋中脊, CoHS. 康拉德热点, CoR. 康拉德海脊, CP. 克洛泽海底高原, CR. 卡尔斯伯格海岭, EB. 艾 朗浅滩, EnB. 恩德比海盆, GB. 加斯科因海盆, KHS. 凯尔盖朗热点, LCR. 拉克代夫-查戈斯海岭, MaP. 马达加斯加海底高原, MdB. 马达加斯加海盆, MoP. 莫桑比克海底高原, MsB. 马斯克林海盆, NB. 纳塔尔海盆, NER. 东经九十度海岭, NKP. 北凯尔盖朗海底高原, PB. 珀斯海盆,RHS. 留尼汪热点, RTJ. 罗德里格斯三联点, SAB. 南澳大利亚海盆, SB. 索马里海盆, SKP. 南凯尔盖朗海底高原, SMP. 塞舌尔-马斯克林海底高原, SEIR. 东南印度洋中脊, SWIR. 西南印度洋中脊, WB. 沃顿海盆。

    Figure  1.   Bathymetry of Indian Ocean and major topographic/tectonic features (Names of the features after references [34-35], bathymetric data from https://www.gebco.net/)

    The red stars are hotspots. The black lines are isochrones of the seafloor(Unit: Ma). The red lines are spreading centers. The black dashed rectangle outlines the area of Fig. 2. Abbreviations of topographic/ tectonic features are: AAB. Australian-Antarctic Basin, ArB. Arabian Basin, AgB. Agulhas basin, ANS.Afanasy- Nikitin Seamount, AP. Agulhas Plateau, BF. Bengal Fan, BR. Broken Ridge, CB. Crozet Basin, CHS. Crozet Hotspot, CIB. Central Indian Basin, CIR. Central Indian Ridge, CoHS. Conrad Hotspot, CoR. Conrad Ridge, CP. Crozet Plateau, CR. Carlsberg Ridge, EB. Elan Bank, EnB. Enderby Basin, GB. Gascoyne Basin, KHS. Kerguelen Hotspot, LCR. Laccadive-Chagos Ridge, MaP. Madagascar Plateau, MdB. Madagascar Basin, MoP. Mozambique Plateau, MsB. Mascarene Basin, NB. Natal Basin, NER. Ninety East Ridge, NKP. North Kerguelen Plateau, PB. Perth Basin, RHS. Reunion Hotspot, RTJ. Rodrigues Triple Junction, SAB. South Australian Basin, SB. Somalian Basin, SKP. South Kerguelen Plateau, SMP. Seychelles-Mascarene Plateau, SEIR. Southeast Indian Ridge, SWIR. Southwest Indian Ridge, WB. Wharton Basin.

    图  2   孟加拉湾及邻区构造纲要图(据文献[2, 34]修改, 水深数据来源https://www.gebco.net/)

    Figure  2.   Tectonic map of the Bay of Bengal and adjacent regions (modified from references [2, 34], bathymetric data from https://www.gebco.net/)

    图  3   孟加拉湾空间重力异常图及解释(数据来源http://bgi.omp.obs-mip.fr/data)

    S1-S5为海脊不同分段编号,红色虚线为转换断层,黑色点线圈定了85°E海脊的范围。

    Figure  3.   Free-air gravity anomaly map of the Bay of Bengal and some interpretations (gravity data from http://bgi.omp.obs-mip.fr/data)

    S1 to S5 indicate the segments of the ridge. The red dashed lines are the transform faults. The black dotted line delineates the 85°E Ridge.

    图  4   孟加拉湾布格重力异常图及解释(数据来源http://bgi.omp.obs-mip.fr/data)

    S1-S5为海脊不同分段编号,红色虚线为转换断层,黑色点线圈定了85°E海脊的范围。

    Figure  4.   Bouguer gravity anomaly map of the Bay of Bengal and some interpretations (gravity data from http://bgi.omp.obs-mip.fr/data)

    S1 to S5 indicate the segments of the ridge. The red dashed lines are the transform faults. The black dotted line delineates the 85°E Ridge.

    图  5   85°E海脊及邻区结晶地壳厚度图(a)及地壳结构剖面(b)

    a. 底图为空间重力异常阴影图,红色实线为剖面位置,黑色点线为85°E海脊对应重力异常范围,地壳厚度据文献[30];b. 黑色虚线为85°E海脊中轴。剖面来源:S2来源于文献[37],15.3°N、11.4°N、10°N、9°N、8°N来源于文献[8],MAN-01来源于文献[22],MAN-03来源于文献[36],1来源于文献[30],S22-II-A、AS 10-02、RL-3来源于文献[38]。

    Figure  5.   3-D crustal thickness (from acoustic basement to the Moho) of the 85°E ridge (a) and crustal structure profiles (b)

    (a)The underlying map of the 3-D crustal thickness is the shaded free-air gravity map. The red solid lines show the locations of the profiles. The black dotted line delineates the 85°E Ridge. The 3-D crustal thickness is after reference [30].(b)The black dashed line indicates the axis of the ridge. Profiles are from: S2 from reference [37], 15.3°N、11.4°N、10°N、9°N、8°N from reference [8], MAN-01 from reference [22], MAN-03 from reference [36], 1 from reference [30], S22-II-A、AS 10-02、RL-3 from reference [38].

    图  6   孟加拉湾磁力异常图及解释(磁异常条带据文献[24, 41-44], 地磁极性年代表据文献[34])

    Figure  6.   Magnetic anomaly map of the Bay of Bengal and some interpretations (Magnetic lineation after references [24, 41-44]. The geomagnetic polarity scale is from reference [34])

    图  7   SK72-13磁测剖面(据文献[24]修改) 和SK82-02磁测剖面 (据文献[43]修改) 磁异常条带对比结果

    剖面位置见图6;注意:SK72-13剖面高值区和低值区的界线不是0 nT。

    Figure  7.   Comparison of SK72-13 and SK82-02 magnetic profiles with the synthetic models (SK72-13 after reference [24], SK82-02 after reference [43])

    Locations of the profiles are shown in Fig. 6. Note that the boundary of the high (yellow) and low (blue) anomalies on profile SK72-13 is not 0 nT.

    图  8   85°E海脊北段的地震反射特征

    a. 地震剖面位置,底图为空间重力异常;b, c. 地震剖面及解释(据文献[49]);d, e. 海脊内部反射结构及火山机构特征(据文献[9])。

    Figure  8.   Seismic reflection profiles showing the basement morphology and internal structures of the 85°E Ridge

    a. profile locations overlying on the free-air gravity anomaly map; b and c. seismic reflection profiles and some interpretations(after reference [49]); d and e. internal structure of the volcanic edifice (after reference [9]).

    图  9   阿法纳西-尼基廷海山海底地形(a)及基底形貌(b)(水深数据来源于https://www.gebco.net/, 剖面据文献[11]修改)

    Figure  9.   Submarine topography of the Afanasy-Nikitin Seamount(a)and its basement morphology(b)(Bathymetric data from https://www.gebco.net/. Profiles are modified from reference [11])

    图  10   白垩纪东印度洋形成演化过程重建 (据文献[44])

    黑色虚线表示断裂带;蓝色粗实线代表活动的扩张中心;黑色粗虚线表示消亡的扩张中心;灰色阴影部分代表85°E海脊对应的重力低异常;红色虚线代表白垩纪早期—中期海底扩张方向的趋势线;粉色线圈定的区域代表大火成岩省或微陆块;红色点代表凯尔盖朗热点的可能位置;数字表示文中的共轭海底扩张区域;绿色虚线代表M2时期洋中脊向北跃迁后残留的转换断层。B. 巴塔维亚海山,BR. 布罗肯海岭,CKP. 中凯尔盖朗海底高原,CR. 康拉德隆起,EB. 艾朗海底高原,K-86°FZ. 凯尔盖朗—86°E断裂带,R. 拉贾马尔块体,S. 锡尔赫特块体,SKP. 南凯尔盖朗海底高原,SL. 斯里兰卡,WZFZ. 瓦拉比—泽尼斯断裂带,Z. 泽尼斯海底高原。

    Figure  10.   Plate reconstruction models for Eastern Indian Ocean during Cretaceous (after reference [44])

    Fracture zones are shown as thin black dashed lines. The active spreading ridge is shown as a thick blue line. Thick black dashed lines denote the extinct spreading ridges. The gravity low of the subsurface 85°E Ridge is shown in gray shade. Color shades as per legend denotes the ages of the underlying oceanic crust. The dashed red lines denote synthetic flow lines that border the inferred spreading corridors/zones and are drawn to understand the evolution of the Early to Middle Cretaceous crust. Large Igneous Provinces and inferred continental slivers are outlined in pink. Red circle denotes the probable location of the Kerguelen hotspot. The numbers represent conjugate spreading corridors. Green dashed lines mark the remnants of the transform fault along which the northward ridge jump took place at around M2 time. B. Batavia knoll, BR. Broken Ridge, CKP. Central Kerguelen Plateau, CR. Conrad Rise, EB. Elan Bank, K-86° FZ. Kerguelen-86°E Fracture Zone, R. Rajmahal Traps, S. Sylhet Traps, SKP. Southern Kerguelen Plateau, SL. SriLanka, WZFZ. Wallaby-Zenith Fracture Zone, Z. Zenith Plateau.

  • [1]

    Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes [J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223. doi: 10.1016/S0264-8172(03)00035-7

    [2]

    Curray J R. The Bengal Depositional System: From rift to orogeny [J]. Marine Geology, 2014, 352: 59-69. doi: 10.1016/j.margeo.2014.02.001

    [3]

    Mishra D C. Magnetic crust in the Bay of Bengal [J]. Marine Geology, 1991, 99(1-2): 257-261. doi: 10.1016/0025-3227(91)90095-L

    [4]

    Ramana M V, Subrahmanyam V, Chaubey A K, et al. Structure and origin of the 85°E ridge [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8): 17995-18012. doi: 10.1029/97JB00624

    [5]

    Curray J R, Munasinghe T. Origin of the Rajmahal Traps and the 85°E Ridge: Preliminary reconstructions of the trace of the Crozet hotspot [J]. Geology, 1991, 19(12): 1237-1240. doi: 10.1130/0091-7613(1991)019<1237:OOTRTA>2.3.CO;2

    [6]

    Müller D, Royer J Y, Lawver L A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks [J]. Geology, 1993, 21(3): 275-278. doi: 10.1130/0091-7613(1993)021<0275:RPMRTT>2.3.CO;2

    [7]

    Kent K W, Storey M, Saunders A D, et al. Comment and reply on "Origin of the Rajmahal Traps and the 85°E Ridge: Preliminary reconstructions of the trace of the Crozet hotspot" [J]. Geology, 1992, 20(10): 957-959. doi: 10.1130/0091-7613(1992)020<0957:CAROOO>2.3.CO;2

    [8]

    Anand S P, Rajaram M, Majumdar T J, et al. Structure and tectonics of 85°E Ridge from analysis of Geopotential data [J]. Tectonophysics, 2009, 478(1-2): 100-110. doi: 10.1016/j.tecto.2008.09.036

    [9]

    Ismaiel M, Krishna K S, Srinivas K, et al. Internal structure of the 85°E ridge, Bay of Bengal: Evidence for multiphase volcanism [J]. Marine and Petroleum Geology, 2017, 80: 254-264. doi: 10.1016/j.marpetgeo.2016.11.020

    [10]

    Gibbons A D, Whittaker J M, Müller R D. The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(3): 808-822. doi: 10.1002/jgrb.50079

    [11]

    Krishna K S, Bull J M, Ishizuka O, et al. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E ridge, northeastern Indian Ocean [J]. Journal of Earth System Science, 2014, 123(1): 33-47. doi: 10.1007/s12040-013-0392-x

    [12] 李江海, 程海艳, 赵星, 等. 残余洋盆的大地构造演化及其油气意义[J]. 地学前缘, 2009, 16(4):40-51. [LI Jianghai, CHENG Haiyan, ZHAO Xing, et al. Tectonic evolution of remnant oceanic basin and its implication for hydrocarbon [J]. Earth Science Frontiers, 2009, 16(4): 40-51. doi: 10.3321/j.issn:1005-2321.2009.04.005
    [13]

    Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia [J]. Tectonophysics, 1995, 251(1-4): 85-138. doi: 10.1016/0040-1951(95)00023-2

    [14]

    Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet [J]. Nature, 2006, 439(7077): 677-681. doi: 10.1038/nature04506

    [15]

    Alam M, Alam M M, Curray J R, et al. An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history [J]. Sedimentary Geology, 2003, 155(3-4): 179-208. doi: 10.1016/S0037-0738(02)00180-X

    [16]

    Curray J R. Tectonics and history of the Andaman Sea region [J]. Journal of Asian Earth Sciences, 2005, 25(1): 187-232. doi: 10.1016/j.jseaes.2004.09.001

    [17]

    Steckler M S, Akhter S H, Seeber L. Collision of the Ganges-Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard [J]. Earth and Planetary Science Letters, 2008, 273(3-4): 367-378. doi: 10.1016/j.jpgl.2008.07.009

    [18]

    Maurin T, Rangin C. Impact of the 90°E ridge at the Indo-Burmese subduction zone imaged from deep seismic reflection data [J]. Marine Geology, 2009, 266(1-4): 143-155. doi: 10.1016/j.margeo.2009.07.015

    [19]

    Curray J R, Emmel F J, Moore D G, et al. Structure, tectonics, and geological history of the northeastern Indian ocean[M]//The Ocean Basins and Margins. Boston, MA: Springer, 1982: 399-450.

    [20]

    Royer J Y, Sandwell D T. Evolution of the eastern Indian Ocean since the Late Cretaceous: Constraints from Geosat altimetry [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13755-13782. doi: 10.1029/JB094iB10p13755

    [21]

    Gaina C, Müller R D, Brown B, et al. Breakup and early seafloor spreading between India and Antarctica [J]. Geophysical Journal International, 2007, 170(1): 151-169. doi: 10.1111/j.1365-246X.2007.03450.x

    [22]

    Krishna K S, Michael L, Bhattacharyya R, et al. Geoid and gravity anomaly data of conjugate regions of Bay of Bengal and Enderby Basin: New constraints on breakup and early spreading history between India and Antarctica [J]. Journal of Geophysical Research: Solid Earth, 2009, 114: B03102.

    [23]

    Veevers J J. Change of tectono-stratigraphic regime in the Australian plate during the 99 Ma (mid-cretaceous) and 43 Ma (mid-Eocene) swerves of the Pacific [J]. Geology, 2000, 28(1): 47-50. doi: 10.1130/0091-7613(2000)28<47:COTRIT>2.0.CO;2

    [24]

    Talwani M, Desa M A, Ismaiel M, et al. The Tectonic origin of the Bay of Bengal and Bangladesh [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 4836-4851. doi: 10.1002/2015JB012734

    [25]

    Peirce J W. The northward motion of India since the Late Cretaceous [J]. Geophysical Journal International, 1978, 52(2): 277-311. doi: 10.1111/j.1365-246X.1978.tb04234.x

    [26]

    Duncan R A, Richards M A. Hotspots, mantle plumes, flood basalts, and true polar wander [J]. Reviews of Geophysics, 1991, 29(1): 31-50. doi: 10.1029/90RG02372

    [27]

    Coffin M F, Pringle M S, Duncan R A, et al. Kerguelen hotspot magma output since 130 Ma [J]. Journal of Petrology, 2002, 43(7): 1121-1137. doi: 10.1093/petrology/43.7.1121

    [28]

    Curray J R, Moore D G. Growth of the Bengal deep-sea fan and denudation in the Himalayas [J]. Geological Society of America Bulletin, 1971, 82(3): 563-572. doi: 10.1130/0016-7606(1971)82[563:GOTBDF]2.0.CO;2

    [29]

    Liu C S, Sandwell D T, Curray J R. The negative gravity field over the 85°E ridge [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B9): 7673-7686. doi: 10.1029/JB087iB09p07673

    [30]

    Radhakrishna M, Subrahmanyam C, Damodharan T. Thin oceanic crust below Bay of Bengal inferred from 3-D gravity interpretation [J]. Tectonophysics, 2010, 493(1-2): 93-105. doi: 10.1016/j.tecto.2010.07.004

    [31]

    Curray J R. Sediment volume and mass beneath the Bay of Bengal [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 371-383. doi: 10.1016/0012-821X(94)90227-5

    [32]

    Bonvalot S, Balmino G, Briais A, et al. World Gravity Map[M]. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNES-IRD, Paris, 2012.

    [33]

    Balmino G, Vales N, Bonvalot S, et al. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies [J]. Journal of Geodesy, 2012, 86(7): 499-520. doi: 10.1007/s00190-011-0533-4

    [34] 李江海, 李洪林, 韩喜球. 印度洋底大地构造图[M]. 北京: 地质出版社, 2015.

    LI Jianghai, LI Honglin, HAN Xiqiu. Tectonic Map of the Indian Ocean[M]. Beijing: Geological Publishing House, 2015.

    [35]

    Yatheesh V, Dyment J, Bhattacharya G C, et al. Detailed structure and plate reconstructions of the Central Indian Ocean between 83.0 and 42.5 Ma (Chrons 34 and 20) [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 4305-4322. doi: 10.1029/2018JB016812

    [36]

    Rao D G, Krishna K S, Sar D. Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous [J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8): 17747-17768. doi: 10.1029/96JB01339

    [37]

    Desa M A, Ramana M V, Ramprasad T, et al. Geophysical signatures over and around the northern segment of the 85°E Ridge, Mahanadi offshore, Eastern Continental Margin of India: Tectonic implications [J]. Journal of Asian Earth Sciences, 2013, 73: 460-472. doi: 10.1016/j.jseaes.2013.05.021

    [38]

    Krishna K S. Structure and evolution of the Afanasy Nikitin seamount, buried hills and 85°E Ridge in the northeastern Indian Ocean [J]. Earth and Planetary Science Letters, 2003, 209(3-4): 379-394. doi: 10.1016/S0012-821X(03)00081-5

    [39]

    Maus S, Barckhausen U, Berkenbosch H, et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8): Q08005.

    [40]

    Ramana M V, Nair R R, Sarma K V L N S, et al. Mesozoic anomalies in the Bay of Bengal [J]. Earth and Planetary Science Letters, 1994, 121(3-4): 469-475. doi: 10.1016/0012-821X(94)90084-1

    [41]

    Desa M, Ramana M V, Ramprasad T. Seafloor spreading magnetic anomalies south off Sri Lanka [J]. Marine Geology, 2006, 229(3-4): 227-240. doi: 10.1016/j.margeo.2006.03.006

    [42]

    Krishna K S, Rao D G, Ramana M V, et al. Tectonic model for the evolution of oceanic crust in the northeastern Indian Ocean from the Late Cretaceous to the Early Tertiary [J]. Journal of Geophysical Research, 1995, 100(B10): 20011-20024. doi: 10.1029/94JB02464

    [43]

    Krishna K S, Rao D G. Abandoned Paleocene spreading center in the northeastern Indian Ocean: evidence from magnetic and seismic reflection data [J]. Marine Geology, 2000, 162(2-4): 215-224. doi: 10.1016/S0025-3227(99)00085-7

    [44]

    Desa M A, Ramana M V. Middle cretaceous geomagnetic field anomalies in the eastern Indian Ocean and their implication to the tectonic evolution of the bay of Bengal [J]. Marine Geology, 2016, 382: 111-121. doi: 10.1016/j.margeo.2016.10.002

    [45]

    Banerjee B, Sengupta B J, Banerjee P K. Signals of Barremian (116 Ma) or younger oceanic crust beneath the Bay of Bengal along 14 °N latitude between 81 °E and 93 °E [J]. Marine Geology, 1995, 128(1-2): 17-23. doi: 10.1016/0025-3227(95)00086-E

    [46]

    Radhakrishna M, Srinivasa R G, Nayak S, et al. Early Cretaceous fracture zones in the Bay of Bengal and their tectonic implications: Constraints from multi-channel seismic reflection and potential field data [J]. Tectonophysics, 2012, 522-523:: 187-197. doi: 10.1016/j.tecto.2011.11.026

    [47]

    Subrahmanyam C, Thakur N K, Rao T G, et al. Tectonics of the Bay of Bengal: new insights from satellite-gravity and ship-borne geophysical data [J]. Earth and Planetary Science Letters, 1999, 171(2): 237-251. doi: 10.1016/S0012-821X(99)00148-X

    [48]

    Subrahmanyam V, Krishna K S, Murthy I V R, et al. Gravity anomalies and crustal structure of the Bay of Bengal [J]. Earth and Planetary Science Letters, 2001, 192(3): 447-456. doi: 10.1016/S0012-821X(01)00469-1

    [49]

    Bastia R, Radhakrishna M, Das S, et al. Delineation of the 85°E ridge and its structure in the Mahanadi Offshore Basin, Eastern Continental Margin of India (ECMI), from seismic reflection imaging [J]. Marine and Petroleum Geology, 2010, 27(9): 1841-1848. doi: 10.1016/j.marpetgeo.2010.08.003

    [50]

    Bastia R, Radhakrishna M, Srinivas T, et al. Structural and tectonic interpretation of geophysical data along the Eastern Continental Margin of India with special reference to the deep water petroliferous basins [J]. Journal of Asian Earth Sciences, 2010, 39(6): 608-619. doi: 10.1016/j.jseaes.2010.04.031

    [51]

    Choudhuri M, Nemčok M, Melichar R, et al. Propagation of hotspot volcanism driven flexure in oceanic crust -85°E Ridge case study [J]. Marine and Petroleum Geology, 2017, 82: 134-153. doi: 10.1016/j.marpetgeo.2017.01.021

    [52]

    Mukhopadhyay M, Krishna M B R. Gravity anomalies and deep structure of the Ninetyeast Ridge north of the equator, eastern Indian Ocean-a hot spot trace model [J]. Marine Geophysical Researches, 1995, 17(2): 201-216. doi: 10.1007/BF01203426

    [53]

    Krishna K S, Neprochnov Y P, Rao D G, et al. Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies [J]. Tectonics, 2001, 20(3): 416-433. doi: 10.1029/2001TC900004

    [54]

    Krishna K S, Abraham H, Sager W W, et al. Tectonics of the Ninetyeast Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge [J]. Journal of Geophysical Research, 2012, 117(B4): B04101.

    [55]

    Sreejith K M, Krishna K S. Spatial variations in isostatic compensation mechanisms of the Ninetyeast Ridge and their tectonic significance [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5165-5184. doi: 10.1002/jgrb.50383

    [56]

    Kumar R T R, Windley B F. Spatial variations of effective elastic thickness over the Ninetyeast Ridge and implications for its structure and tectonic evolution [J]. Tectonophysics, 2013, 608: 847-856. doi: 10.1016/j.tecto.2013.07.034

    [57]

    Chaubey A K, Ramana M V, Sarma K V L N S, et al. Marine geophysical studies over the 85°E Ridge[M]//First Int. Sem. Exhbn. on Exploration Geophysics in Nineteen Nineties. AEG Pub ln., Vol. 2, 1991: 508-515.

    [58]

    Honsho C, Tamaki K. Differences in morphology and Structure between hotspot tracks: Effects of the lithospheric age at the time of formation[M]//Yukutake T. The Earth's Central Part: its Structure and Dynamics. Tokyo: Terra Scientific Publishing Company, 1995: 331-342.

    [59]

    Karner G D, Weissel J K. Compressional deformation of oceanic lithosphere in the central Indian Ocean: Why it is, where it is[M]//Proceeding of the Ocean Drilling Program, Scientific Results. College Station, Texas: Ocean Drilling Program, 1990, 116: 279-289.

    [60]

    Paul J, Singh R N, Subrahmanyam C, et al. Emplacement of Afanasy-Nikitin seamount based on transfer function analysis of gravity and bathymetry data [J]. Earth and Planetary Science Letters, 1990, 96(3-4): 419-426. doi: 10.1016/0012-821X(90)90017-R

    [61]

    Sreejith K M, Radhakrishna M, Krishna K S, et al. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean-a process oriented modeling approach [J]. Journal of Earth System Science, 2011, 120(4): 605-615. doi: 10.1007/s12040-011-0099-9

图(10)
计量
  • 文章访问数:  3152
  • HTML全文浏览量:  642
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-05-15
  • 网络出版日期:  2020-08-20
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回