非线性层析技术在琼东南天然气水合物成像中的应用

帅庆伟, 徐云霞, 文鹏飞, 沙志彬, 万晓明

帅庆伟, 徐云霞, 文鹏飞, 沙志彬, 万晓明. 非线性层析技术在琼东南天然气水合物成像中的应用[J]. 海洋地质与第四纪地质, 2020, 40(3): 206-213. DOI: 10.16562/j.cnki.0256-1492.2020040301
引用本文: 帅庆伟, 徐云霞, 文鹏飞, 沙志彬, 万晓明. 非线性层析技术在琼东南天然气水合物成像中的应用[J]. 海洋地质与第四纪地质, 2020, 40(3): 206-213. DOI: 10.16562/j.cnki.0256-1492.2020040301
SHUAI Qingwei, XU Yunxia, WEN Pengfei, SHA Zhibin, WAN Xiaoming. Application of non-linear tomography technology to gas hydrate imaging in the Qiongdongnan area[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 206-213. DOI: 10.16562/j.cnki.0256-1492.2020040301
Citation: SHUAI Qingwei, XU Yunxia, WEN Pengfei, SHA Zhibin, WAN Xiaoming. Application of non-linear tomography technology to gas hydrate imaging in the Qiongdongnan area[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 206-213. DOI: 10.16562/j.cnki.0256-1492.2020040301

非线性层析技术在琼东南天然气水合物成像中的应用

基金项目: 国家重点研发计划项目“中国海域冷泉系统演变过程及其机制”(2018YFC0310000);广东省促进经济高质量发展专项资金“海洋经济发展项目”(GDOE(2019)A39);中国地质调查局地质调查项目“神狐海域天然气水合物先导试验区资源评价”(DD20190224)
详细信息
    作者简介:

    帅庆伟(1984—),男,硕士,工程师,主要从事海洋地球物理综合研究和项目管理工作,E-mail:shuaiqw1984@163.com

  • 中图分类号: P738

Application of non-linear tomography technology to gas hydrate imaging in the Qiongdongnan area

  • 摘要: 琼东南海域地震剖面上存在大量的含气特征,同相轴下拉、明显的速度横向变化等,因此水合物之下地层存在成像模糊且归位不准等问题,本文利用基于非线性层析的深度偏移方法提升成像精度。该方法采用全三维体的层析成像反演法建立深度域速度模型,通过对深度偏移道集拾取RMO量,并对其进行反偏移计算运动学不变量;在建立层位、倾角等骨架信息约束的混合模型基础上,利用运动学不变量进行速度层析,使得RMO最小以实现模型更新。该方法避免了常规速度更新的多次迭代偏移,能极大地提升层析效率,并能充分利用剖面骨架和倾角信息,获得高精度的速度模型。在琼东南水合物资料的实际应用中,有效地消除了含气对地层的影响,获得高精度的深度域成像结果。
    Abstract: There are a substantial amount of gas-bearing sediments occurred in the Qiongdongnan area. Geophysical features, such as in-phase axial pulling down and velocity changes are commonly observed. Therefore, the images of sediments below the gas hydrate layer are always blurring. In this paper, a method based on non-linear tomographic depth offset is adopted to enhance the accuracy and resolution of imaging. The method of full 3D tomography inversion is used to establish the velocity model in depth domain, and the kinematic invariants are calculated by picking up the RMO of depth offset gathers and reverse deflection. Based on the mixed model under the constraints of skeleton information, such as horizons and inclination angles, kinematic invariants are used for velocity tomography to minimize RMO for model updating. This method can avoid multiple iteration PSDM processing while updating velocity and greatly improve the tomographic efficiency. Then the high precision velocity model can be obtained by making full use of the profile skeleton and inclination information. The effect of gas on stratigraphic formation is effectively eliminated in the practical application of hydrate data in the Qiongdongnan area, and high precision depth imaging results are obtained.
  • 图  1   非线性层析流程

    Figure  1.   Flow chart of non-linear tomography technology

    图  2   剩余量拾取

    a. 道集中RMO拾取量,b. 剩余曲率属性,c. 质量因子属性。

    Figure  2.   The remaining quantity picking up

    a. RMO quantity is picked up from gathers,b. gamma attribute,c. semblance attribute.

    图  3   运动学反偏移原理

    Figure  3.   Principle of kinematic reverse migration

    图  4   样条插值思想

    a. 一维速度模型,b. 小网格还原速度情况,c. 大网格还原速度情况,d. 样条插值还原速度情况。

    Figure  4.   Spline interpolation

    a. 1D velocity model,b. small grid reduction velocity model,c. big grid reduction velocity model,d. spline interpolation reduction velocity model.

    图  5   主测线方向的地层斜率剖面

    Figure  5.   Stratigraphic inclining profile in the direction of inline

    图  6   RMO量统计直方图

    a. 初始速度模型计算的RMO量统计直方图,b. 最终速度模型计算的RMO量统计直方图。

    Figure  6.   RMO quantity statistical histogram

    a. statistical histogram of RMO quantity calculated by initial velocity model,b. statistical histogram of RMO quantity calculated by final velocity model.

    图  7   主测线叠前时间偏移剖面

    Figure  7.   Prestack time migration profile along inline

    图  8   主测线叠前深度偏移剖面

    Figure  8.   Prestack depth migration profile along inline

    图  9   非线性层析前后速度切片对比

    a. 层析前后速度曲线对比,b. 初始速度切片,c. 非线性层析后速度切片。

    Figure  9.   Comparison of velocity slices before and after nonlinear tomography

    a. the comparison of velocity curves before and after tomography,b. initial velocity slice,c. Velocity slice after nonlinear tomography.

  • [1] 杨胜雄. 南海天然气水合物成藏理论[M]. 北京: 科学出版社, 2019: 2-3.

    YANG Shengxiong. Research on Gas Hydrate Accumulation in South China Sea[M]. Beijing: Science Press, 2019: 2-3.

    [2] 龚跃华, 杨胜雄, 王宏斌, 等. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报: 地球科学版, 2018, 48(4):1030-1042. [GONG Yuehua, YANG Shengxiong, WANG Hongbin, et al. Prospect of gas hydrate resources in Qiong Dongnan basin [J]. Journal of Jilin University: Earth Science Edition, 2018, 48(4): 1030-1042.
    [3] 张伟, 何家雄, 卢振权, 等. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探[J]. 天然气地球科学, 2015, 26(11):2185-2197. [ZHANG Wei, HE Jiaxiong, LU Zhenquan, et al. Preliminary study of the relationship between the suspected mud Diapir and natural gas hydrate in the Qiongdongnan Basin, northern South China Sea [J]. Natural Gas Geoscience, 2015, 26(11): 2185-2197. doi: 10.11764/j.issn.1672-1926.2015.11.2185
    [4] 刘杰, 杨睿, 张金华, 等. 琼东南盆地华光凹陷天然气水合物成藏条件及有利区带预测[J]. 海洋地质与第四纪地质, 2019, 39(1):134-142. [LIU Jie, YANG Rui, ZHANG Jinhua, et al. Gas hydrate accumulation conditions in the Huaguang depression of Qiongdongnan basin and prediction of favorable zones [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 134-142.
    [5] 何家雄, 苏丕波, 陆振权, 等. 南海北部琼东南盆地天然气水合物气源及运聚成藏模式预测[J]. 天然气工业, 2015, 35(8):19-29. [HE Jiaxiong, SU Pibo, LU Zhengquan, et al. Prediction of gas sources of natural gas hydrate in the Qiongdongnan basin, northern South China Sea, and its migration, accumulation and reservoir formation pattern [J]. Natural Gas Industry, 2015, 35(8): 19-29. doi: 10.3787/j.issn.1000-0976.2015.08.003
    [6] 张伟. 南海北部主要盆地泥底辟/泥火山发育演化与油气及天然气水合物成矿成藏[D]. 中国科学院广州地球化学研究所博士学位论文, 2016.

    ZHANG Wei. Research on the development and evolution of mud diapir/mud volcano and their relationship with migration and accumulation of petroleum and natrural gas-hydrate in major basins, northern South China Sea[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016.

    [7]

    Madariaga V F R. Non-linear reflection tomography [J]. Geophysical Journal International, 1988, 95(1): 135-147. doi: 10.1111/j.1365-246X.1988.tb00456.x

    [8]

    Clapp R G, Biondi B, Claerbout J F. Incorporating geologic information into reflection tomography [J]. Geophysics, 2004, 69(2): 533-546. doi: 10.1190/1.1707073

    [9]

    Evans E, Papouin M, Abedi S, et al. Southern North Sea preSDM imaging using hybrid gridded tomography[C]//Proceedings of 2005 SEG Annual Meeting. Houston, Texas: Society of Exploration Geophysicists, 2005: 2530-2534.

    [10]

    Guillaume P, Reinier M, Lambaré G, et al. Dip constrained non-linear slope tomography[C]//Proceedings of 2013 SEG Annual Meeting. Houston, Texas: Society of Exploration Geophysicists, 2013.

    [11] 王兆旗, 庄锡进, 李立胜, 等. 非线性层析反演速度建模技术[J]. CT理论与应用研究, 2017, 26(5):543-551. [WANG Zhaoqi, ZHUANG Xijin, LI Lisheng, et al. Non-linear tomography inversion technology for velocity modeling [J]. CT Theory and Applications, 2017, 26(5): 543-551.
    [12] 王兆旗, 李立胜, 叶月明, 等. 倾角约束的非线性层析反演速度建模技术[J]. 物探化探计算技术, 2018, 40(2):156-161. [WANG Zhaoqi, LI Lisheng, YE Yueming, et al. Dip constrained non-linear tomography inversion technology for velocity modeling [J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(2): 156-161. doi: 10.3969/j.issn.1001-1749.2018.02.03
    [13]

    Adler F, Baina R, Soudani M A, et al. Nonlinear 3D tomographic least-squares inversion of residual moveout in Kirchhoff prestack-depth-migration common-image gathers [J]. Geophysics, 2008, 73(5): VE13-VE23. doi: 10.1190/1.2956427

    [14] 张凯, 李振春. 双复杂条件下层析速度反演方法研究[J]. 地球物理学进展, 2013, 28(6):3001-3006. [ZHANG Kai, LI Zhenchun. Tomographic velocity inversion method with dual-complexity [J]. Progress in Geophysics, 2013, 28(6): 3001-3006. doi: 10.6038/pg20130622
    [15] 李辉, 王华忠, 刘守伟. 基于高斯束的速度层析方法研究[J]. 石油物探, 2017, 56(1):116-125. [LI Hui, WANG Huazhong, LIU Shouwei. A velocity tomography algorithm based on Gaussian beam [J]. Geophysical Prospecting for Petroleum, 2017, 56(1): 116-125. doi: 10.3969/j.issn.1000-1441.2017.01.014
    [16] 欧阳甜子. 高斯束叠前深度偏移在普光气田的应用研究[J]. 非常规油气, 2018, 5(5):35-42. [OUYANG Tianzi. Applied research on Gaussian beam prestack depth migration in Puguang gas field [J]. Unconventional Oil & Gas, 2018, 5(5): 35-42. doi: 10.3969/j.issn.2095-8471.2018.05.006
    [17]

    Jones I F, Sugrue M, Hardy P. Hybrid gridded tomography[C]//Proceedings of First Break. EAGE, 2007: 35-41.

    [18]

    Lambaré G, Guillaume P, Zhang X, et al. Multi-layer non-linear slope tomography[C]//Proceedings of 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013. London: European Association of Geoscientists & Engineers, 2013.

    [19]

    Guillaume P, Hollingworth S, Zhang X M, et al. Multi-layer tomography and its application for improved depth imaging[C]//Proceedings of 2012 SEG Annual Meeting. Las Vegas, Nevada: Society of Exploration Geophysicists, 2012: 1-5.

    [20] 肖艳玲, 范旭, 王晓涛, 等. 网格层析速度反演技术在齐古背斜叠前深度偏移中的应用[J]. 石油地球物理勘探, 2017, 52(S2):98-103. [XIAO Yanling, FAN Xu, WANG Xiaotao, et al. Mesh tomographic velocity inversion for the prestack depth migration of the Qigu anticline [J]. Oil Geophysical Prospecting, 2017, 52(S2): 98-103.
    [21] 潘兴祥, 秦宁, 曲志鹏, 等. 叠前深度偏移层析速度建模及应用[J]. 地球物理学进展, 2013, 28(6):3080-3085. [PAN Xingxiang, QIN Ning, QU Zhipeng, et al. Tomography velocity modeling and application of prestack depth migration [J]. Progress in Geophysics, 2013, 28(6): 3080-3085. doi: 10.6038/pg20130632
    [22] 王红丽. 南海复杂构造地震成像及其应用研究[D]. 中国科学院深海科学与工程研究所博士学位论文, 2018.

    WANG Hongli. Seismic imaging of complex structures and its application research in South China Sea[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2018.

    [23] 杨振武. 海洋石油地震勘探[M]. 北京: 石油工业出版社, 2012: 126-124.

    YANG Zhenwu. Offshore Oil Seismic Exploration[M]. Beijing: Petroleum Industry Press, 2012: 121-126.

  • 期刊类型引用(2)

    1. 郭亮,曾彩虹,邢兰昌,王斌. 基于热声成像的天然气水合物相变界面监测的方法研究. 地球物理学进展. 2023(01): 201-210 . 百度学术
    2. 李辉,张旭辉,陆程,谢鹏飞,鲁晓兵. 压缩加载条件下含水合物沉积物蠕变特性分析. 海洋地质与第四纪地质. 2023(06): 217-225 . 本站查看

    其他类型引用(0)

图(9)
计量
  • 文章访问数:  2199
  • HTML全文浏览量:  429
  • PDF下载量:  26
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-04-02
  • 修回日期:  2020-04-16
  • 网络出版日期:  2020-05-28
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回