南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测

吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明

吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701
引用本文: 吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701
WU Shuyu, LIU Jun, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YUAN Yong, XU Ming. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701
Citation: WU Shuyu, LIU Jun, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YUAN Yong, XU Ming. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701

南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测

基金项目: 青岛市市南区科技发展资金项目“南黄海中—古生界海相碳酸盐岩储层叠前反演研究”(2016-3-009-ZH);国家海洋局海底重点实验室基金“台西南盆地沉积基底特征和莫霍面构造形态综合地球物理研究”(KLSG1603);中国地质调查项目“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152),“海岸带和大陆架地质演化调查与评价”(DD20160147)
详细信息
    作者简介:

    吴淑玉(1985—),女,在读博士,副研究员,主要从事地震资料解释和反演工作,E-mail:hnwushuyu@163.com

    通讯作者:

    刘俊(1978—),男,博士,高级工程师,从事海洋地球物理处理工作,E-mail:vnlj@163.com

  • 中图分类号: P736

Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin

  • 摘要: 海相碳酸盐岩储层是南黄海盆地崂山隆起中—古生界重要的油气储层,由于钻井少,储层非均质性强,地震储层预测研究是油气勘探的重点和难点。以南黄海石炭系—下二叠统碳酸盐岩为例,通过分析CSDP-2井生物碎屑灰岩储层的岩石物性及井-震响应特征,发现生物碎屑灰岩声波阻抗高于纯灰岩以及碎屑岩的声波阻抗,低λρ具有较好的岩石物性特征,针对这种特点,采用叠前同时反演方法对孔隙型碳酸盐岩储层的岩性和物性进行预测。预测结果表明南黄海崂山隆起石炭系—下二叠统生物碎屑灰岩储层比较发育,横向不连续且具有较强的非均质性,位于古高地储层物性发育较好,其成因是由于受印支构造运动,上覆地层抬升到地表遭到暴露,加上淡水淋滤溶蚀作用,在一定程度上提高了碳酸盐岩储层的次生孔隙,形成了钻井岩心所揭示的储层特征,因此,高孔隙度的孔隙型碳酸盐岩是南黄海石炭系—下二叠统油气勘探的首选目标。
    Abstract: Marine carbonate is a kind of important oil and gas reservoir in the Mesozoic- Palaeozoic on the Laoshan uplift of South Yellow Sea Basin. Due to lacking of drilling data and knowledge of heterogeneity of the carbonate reservoirs, seismic prediction is the only way for reservoir assessment in oil and gas exploration although it is a rather difficult. Taking the Carboniferous - Lower Permian limestone in the South Yellow Sea as an example, this paper analyzed the petrophysical characteristics and the logging - seismic response of the limestone. Petrophysical analysis reveals that the acoustic impedance of bioclastic limestone is higher than that of pure limestone and siliceous clastic rocks. The limestone with lower λρ has better petrophysical characteristics. Pre-stack simultaneous inversion technique is effective to predict the lithology and physical properties of the pore-dominated carbonate reservoir. The results further suggest that the Carboniferous - Lower Permian bioclastic limestone reservoirs are relatively developed on the Laoshan Uplift and strongly discontinuous and heterogenous. Reservoirs are mainly developed on ancient highlands, owing to the exposure to air of the limestone uplifted by the Indosinian tectonic movement, the filtration by freshwater and dissolution of limestone, which increased the secondary porosity of carbonate reservoir to some extent. Such reservoirs have been encountered in drilling cores. Therefore, the pore-dominated carbonate rocks with high porosity should be regarded as the first priority of petroleum exploration target for the Carboniferous - Lower Permian in the South Yellow Sea Basin.
  • 凝析油是从凝析气田的天然气中凝析出来的液相组分,主要由低碳数轻烃组成。从物理条件来讲,凝析气藏的形成主要受温度、压力以及组分的影响,其形成需要一定气油比的烃类体系以及较高的温度和压力[1-2]。凝析油气的形成机理和成因类型多样,20世纪70年代,Tissot和Welte[3]提出了干酪根成烃演化模式,认为凝析气的形成与烃源岩母质类型和热演化程度有关。黄汝昌等[4]提出了陆相或陆源有机质在热演化程度低到中等阶段,也可生成大量凝析油,或形成凝析气藏。因此,在适当的温压和成藏条件下,在不同的母质类型和不同的演化阶段都可以形成原生的凝析气藏。周兴煕等研究发现在油气运移、聚集和成藏过程中,烃类体系分异、富化以及混合,同样也可形成凝析气藏[5-6]。近年来,准噶尔盆地、琼东南盆地、塔里木盆地都发现了蒸发分馏型或者运移分馏型的次生凝析气藏[7-9]

    石油蜡是从石油中结晶析出的固态烃类混合物,由长链的(>C16)正构烷烃、异构烷烃、环烷烃和芳香烃组成,按照组分的不同又分为石蜡和地蜡[9-10]。对于蜡质的母源,目前认为陆源高等植物的蜡质、角质、孢粉质、低等水生生物的藻类体均可以生成高蜡石油[11-12]。研究显示蜡质油的形成既与母质类型有关,也与演化阶段以及次生作用有关[13-14]

    目前西湖凹陷斜坡带已发现的油气类型以凝析气(油)为主,也有正常的轻质油、中质油。对于凝析气藏的成因,傅宁[15]首次提出蒸发分馏效应是西湖凹陷凝析气藏的重要成因,认为气藏均为“蒸发分馏”作用形成的次生凝析气藏;此外,根据平北地区孔雀亭、宝云亭的油气性质和油气充注期次,单超[16]、苏奥等[17]认为混合和气侵作用是凝析气藏形成的重要机制,在向浅部运移的过程中随着温压条件变化凝析油析出,形成“上油下气”的格局,但这些研究均未涉及原油物性与蒸发分馏(气侵)作用的关系。对于X构造来讲,油气藏类型多样,包括凝析气藏、带油环的凝析气藏以及挥发油藏,且挥发油的含蜡量高,凝析油与蜡质油的形成机制与关系尚不清楚,本文从油气地球化学特征入手,分析了油气性质和油气来源,通过原油轻烃色谱以及指纹参数的精细对比,提出了凝析油和蜡质油的形成机制。

    西湖凹陷位于东海陆架盆地东北部,为新生代沉积凹陷,根据构造特征自西向东划分为保俶斜坡带、三潭深凹、中央背斜带、白堤深凹、东部断阶带共5个次级构造带。西湖凹陷新生代的构造演化主要经历了古新世—始新世的断陷期、渐新世—中新世的坳陷期、上新世以后的区域沉降3个阶段,具有先断后拗的演化特征。地层自上而下发育东海群、三潭组、柳浪组、玉泉组、龙井组、花港组、平湖组和宝石组。X构造位于保俶斜坡带中部的平北地区,平北地区受鼻隆构造和平湖主断裂的影响,具有“东西分带、南北分区”的构造格局。X构造以发育一系列西倾的反向断裂为特点,形成了多个反向断层控制的断鼻和断块,构成了典型的反向断阶半地堑型构造。

    X构造目前主要有5口钻井(图1),均已钻遇油气层,油气成果丰富。油气主要富集在平湖组,平中上段和平下段均能成藏。油气藏类型以构造—岩性复合油气藏为主。油气藏流体类型多样,有凝析气藏、带油环的凝析气藏以及油藏。

    图  1  X构造断裂分布与井位分布图
    Figure  1.  Map of fault distribution and well locations on Structure X

    原油的物理性质取决于生油母质、热演化程度以及次生变化因素,物理性质是化学组成的宏观表现[18]。根据原油物性的差异,X构造已发现原油主要包括两种类型(表1):第一类为凝析油,这类原油具有密度低、黏度低、含蜡量和凝固点低的特点;第二类原油为轻—中质油,这类原油具有密度、黏度较高,含蜡量和凝固点较高的特点,为中高蜡含量的蜡质油。整体来看,平面上从斜坡低部位到高部位,油气性质从凝析油过渡到凝析油、蜡质油共生;纵向上油气分布复杂,发育多个油藏、气藏以及带油环的凝析气藏,整体具有“上油下气”的特点。

    表  1  X构造原油物性特征
    Table  1.  Character of oil properties in Structure X
    井号层位性质深度/m密度(20 ℃)
    /(g/cm3
    动力黏度(50 ℃)
    /(mPa·s)
    含蜡量
    /%
    凝固点
    /℃
    A平湖组蜡质油3 594~3 603.60.882.1326.8116
    B平湖组凝析油3 499.8~3 505.60.800.963.36−1
    C平湖组凝析油4 580~4 6200.790.763.364
    C平湖组凝析油4 359~4 3820.831.364.9513
    D平湖组凝析油3 4750.801.161.2−9
    D平湖组蜡质油3 5370.874.2213.218
    D平湖组蜡质油3 6140.863.2513.718
    D平湖组蜡质油3 640.50.863.8217.513
    D平湖组蜡质油3 743.50.864.7212.717
    D平湖组蜡质油3 734.2~3 746.50.855.681319
    D平湖组凝析油4 040~4 0600.771.255.511
    E平湖组蜡质油4 212.50.863.189.518
    E平湖组凝析油4 508.40.842.450.69
    E平湖组凝析油4 6340.832.260.7
    下载: 导出CSV 
    | 显示表格

    TIC总离子流图显示凝析油和蜡质油的正构烷烃特征不同,凝析油(图2a)表现出前峰型的特点,主峰碳为C15,高碳数的正构烷烃含量较低。蜡质油(图2b)表现出后峰型的特点,主峰碳为C23,高碳数的正构烷烃含量较高。二者均有明显的姥鲛烷优势,表明形成于弱还原—氧化的沉积环境。

    图  2  X构造凝析油与蜡质油的生物标志物特征
    a. D井3 532 m凝析油, b. D井3 537 m蜡质油
    Figure  2.  Biomarkers of condensate oil and waxy oil in Structure X
    a. Condensate oil from Well D, at 3 532 m, b. Waxy oil from Well D, at 3 537 m

    从甾烷特征(m/z=217)、萜烷特征(m/z=191)以及二萜类特征(m/z=123)来看,凝析油和蜡质油并未表现出明显的差别。藿烷系列(m/z=191)检测到了奥利烷,表明原油具有高等植物生源;甾烷系列(m/z=217)以C29规则甾烷为主,呈“√”型,表现出高等植物和低等生物均有贡献;二萜类化合物检测到了海松烷系列和扁枝烷系列,表明为裸子植物树脂来源[19]。凝析油甾烷异构化指数C29ααα20S/20S+20R=0.46,C29ββ/ββ+αα=0.50,说明凝析油为成熟原油;蜡质油甾烷异构化指数C29ααα20S/20S+20R=0.46,C29ββ/ββ+αα=0.52,成熟度与凝析油相当。

    从凝析油和蜡质油饱和色质谱来看,这两类原油均表现为高等植物来源为主的成熟原油,区别主要在于正构烷烃的分布形式,蜡质油以高碳数正构烷烃为主,这是其含蜡量高的主要原因。由于饱和烃质谱特征反映了二者具有同源的特征,推测这两类原油的差异主要为次生作用形成。从其他井原油生标特征(图3)来看,凝析油和蜡质油的正构烷烃分布也有明显的差别,但原油成熟度相近,具有同源的特征。

    图  3  X构造凝析油与蜡质油的生物标志物参数
    a. 原油(C21+C22)/(C28+C29)与C21−/C22+交会图,b. 原油甾烷成熟度图版
    Figure  3.  Biomarker parameters of condensate oil and waxy oil in Structure X
    a. Cross plot between(C21+C22)/(C28+C29)and C21−/C22+,b. Cross plot between C29ααα20S/20S+20R and C29ββ/ββ+αα

    Radke和Welte基于菲以及甲基菲异构体随成熟度的变化,提出了利用甲基菲指数计算原油成熟度,MPI1=1.5×[(3−MP)+(2−MP)]/[P+(1−MP)+(9−MP)],折算公式Rc=0.6×MPI1+0.64(0.6%<Ro<1.35%)。考虑到烃源岩母质类型可能对甲基菲指数计算有所影响,利用斜坡带自身平湖组烃源岩的Ro与甲基菲指数建立了新的折算公式,Rc=0.32MPI1+0.59。利用该公式对原油的成熟度进行了计算(表2),结果表明X构造原油均为成熟原油,成熟度Rc约为1.0%,也与烃源岩热模拟实验生油高峰的Ro相对应[20],因此,认为原油成熟度的计算结果是比较合理的。

    表  2  X构造原油成熟度计算
    Table  2.  Calculated values of oil maturity in Structure X
    井号层位性质深度/mMPI1Rc(Radke,1983)Rc(本次拟合)
    A平湖组蜡质油3 594~3 603.61.181.070.97
    B平湖组凝析油3 499.8~3 505.61.111.040.94
    C平湖组凝析油4 580~4 6201.001.000.91
    C平湖组凝析油4 359~4 3821.211.080.98
    D平湖组凝析油3 4750.980.990.90
    D平湖组凝析油3 5321.090.990.90
    D平湖组蜡质油3 5371.091.040.94
    D平湖组蜡质油3 6141.101.040.94
    D平湖组蜡质油3 640.50.970.990.90
    D平湖组蜡质油3 743.51.031.010.92
    下载: 导出CSV 
    | 显示表格

    原油碳同位素是油源分析的重要指标,表3显示X构造原油碳同位素偏重,碳同位素为−27.31‰~−25.9‰,原油之间的碳同位素差异不大,凝析油和轻质油无明显的差别,在原油成熟度相似的情况下,推测原油来源相同。对比而言,X构造原油的碳同位素值与东濮凹陷、冀中凹陷、四川盆地以及鄂尔多斯盆地的煤成油相当[21],高于湖相原油。因此,原油的形成可能有煤的贡献。

    表  3  X构造原油碳同位素特征
    Table  3.  Carbon isotopes of crude oils in Structure X
    井号井深/m性质原油
    δ13CPDB/‰
    饱和烃
    δ13CPDB/‰
    芳烃
    δ13CPDB/‰
    非烃
    δ13CPDB/‰
    沥青质
    δ13CPDB/‰
    C4 580~4 620凝析油−26.2−27.7−24.8
    C4 359~4 382凝析油−25.9−27.3−24.5
    D3 475凝析油−27.31−27.51−27.39−28.9−28.28
    D3 532凝析油−27.25−27.41−27.97−29.67−28.12
    D3 537蜡质油−27.18−28−25.63−26.44−27.49
    D3 546蜡质油−26.96−27.07−26.38−27.65−27.5
    D3 614蜡质油−26.6−27.63−25.39−26.06−26.96
    D3 640.5蜡质油−26.77−27.34−25.22−25.97−26.93
    D3 743.5蜡质油−26.91−27.37−25.8−26.2−27.28
    D3 760蜡质油−27.24−27.19−26.75−28.98−27.98
    D3 780蜡质油−26.9−27.16−26.54−27.85−28.07
    下载: 导出CSV 
    | 显示表格

    另外,西湖凹陷的原油检测出丰富的海松烷、扁枝烷等四环二萜类化合物,而这些化合物的生源主要为松科类植物的树脂,同样指示了煤的贡献。结合西湖凹陷已经证实煤有机质丰度高,有机显微组分壳质组含量相对较高,且以树脂体为主[20],具有很好的生油潜力。综合推测原油主要来自于平湖组、宝石组的煤。

    X构造天然气干燥系数均小于0.95,主要为0.85~0.93,表明天然气主要为湿气(图4a)。X构造平中上段(约3 500 m)天然气相对干燥系数较高,大多都在0.9以上,可能具有更高的天然气成熟度。通过天然气中甲烷含量以及重烃含量的关系图(图4b)来看,X构造天然气为成熟的油气—高成熟的凝析气,其中D井平中上段重烃含量相对较低,天然气成熟度较高。

    图  4  X构造天然气组分特征
    a. 干燥系数与深度关系,b. C2+与C1/C2+C3交会图
    Figure  4.  Character of gas composition in Structure X
    a. Cross plot between dry coefficient and depth,b. Cross plot between C2+ and C1/C2+C3

    戴金星提出了适用于湿气或湿气程度较大天然气的鉴别图版[22],主要应用δ13C1、δ13C2、δ13C3图版进行天然气成因的判别。利用图版(图5)可以看出X构造天然气主要处于煤型气、油型气和混合气区。比起本区煤成油来讲,天然气的同位素偏轻,表现出了混合气的特点,煤和泥岩可能都有贡献。对比而言,鄂尔多斯盆地上古生界煤成气的天然气碳同位素普遍偏重,δ13C1为−35‰~−29‰[23]

    图  5  X构造天然气成因判别(图版引自戴金星,1992)
    Figure  5.  Origin of natural gas in Structur X(plates by Dai,1992)

    由于天然气δ13C1随Ro增大而增大,Stahl、戴金星、沈平、刘文汇等先后建立了油型气以及煤型气的δ13C1-Ro的定量关系,并取得了良好的应用效果[24-25]。另外,胡惕麟利用模拟实验结果建立的天然气同位素差值与镜质体反射率回归方程,同样实现了对天然气成熟度的定量预测。应用戴金星、刘文汇以及胡惕麟的计算公式对X构造天然气的成熟度进行了计算,计算结果(表4)显示不同公式的计算结果差别较大,按照戴金星和刘文汇对煤型气的计算公式可以得出天然气主要处于成熟阶段的结论,而利用胡惕麟的公式则认为天然气出于高成熟阶段。考虑到X构造主要为混合成因气,戴金星和刘文汇的煤型气计算结果可能偏小,并且西湖凹陷烃源岩模拟实验表明天然气大量生成阶段对应Ro大于1.2,因此,认为胡惕麟公式的计算结果可能更符合实际,X构造天然气成熟度高于原油,集中为1.4%~1.7%。

    表  4  X构造天然气成熟度计算
    Table  4.  Calculated values of natural gas maturity in Structure X
    井号深度/mCH4C2H6C3H8Rc1(戴金星)Rc2(刘文汇)Rc3(胡惕麟)
    C井4 580~4 620−36.9−27.1−25.10.660.881.56
    C井4 359~4 382−32.2−24.9−24.51.431.311.83
    B井3 499.8~3 505.6−35.74−26.68−25.560.800.911.66
    B井3 705.5~3 710.6−36.13−26.52−28.180.750.911.72
    A井3 594~3 603.6−35.13−25.63−23.640.890.971.58
    A井3 801.6~3 806.4−35.88−27.19−24.80.780.921.64
    D井3 532−35.15−26.71−24.500.880.961.66
    D井3 537−35.36−26.89−24.710.850.941.66
    D井3 614−35.63−26.72−24.610.820.921.63
    D井3 640.5−36.23−25.99−23.700.740.901.51
    D井3 743.5−37.13−26.32−23.700.640.871.45
    D井3 760−36.44−25.90−23.340.720.901.48
    D井3 734.2~3 746.5−36.59−28.53−25.910.700.891.68
    D井4 040~4 060−39.92−29.51−27.290.410.761.50
      计算公式:戴金星:δ13C1 ≈14.12 ×lg Ro −34.39;刘文汇:δ13C1 ≈48.77×lg Ro −34.10,(Ro≤0.9),δ13C1 ≈22.42×lg Ro −34.80,(Ro>0.9);胡惕麟:Ro=(R2+R3)/2,其中R2=-0.089 1(δ13C2−δ13C1)+2.404 4;R3= −0.077 5×(δ13C3−δ13C1)+2.502 4。
    下载: 导出CSV 
    | 显示表格

    蒸发分馏(气侵分馏)效应是早期油藏中的原油与后期注入的高成熟天然气混合,使得原油成分发生变化,轻质组分更多的溶解到气相,饱含轻组分的气体继续运移,在较低温压条件下反凝析形成凝析油的过程[26-27]。Thompson[28]研究认为蒸发分馏效应会随着分馏程度的增强导致残留油中的低碳数烃类含量降低,高碳数烃类的相对含量增高,而凝析油呈现相反的特征。同时,分馏作用的最终结果会导致凝析油和残留油中的芳烃、环烷烃浓度增大。从图6凝析油和蜡质油的全烃色谱来看,凝析油以低碳数的正构烷烃为主,随着碳数的增高正构烷烃的相对含量逐渐降低,而蜡质油的全烃色谱明显表现出了完全相反的特征,以高碳数正构烷烃为主,分布形式与凝析油呈镜像关系。从图6原油的轻烃色谱可以看出,无论是凝析油还是蜡质油都有较高含量的甲基环己烷以及甲苯,但凝析油仍然以低碳数正构烷烃为主。因此,推测X构造的凝析油为蒸发分馏效应产生的凝析油,而蜡质油则为蒸发分馏效应的残留油。

    图  6  X构造凝析油与蜡质油全烃及轻烃特征
    a. 4 040~4 060 m凝析油,b. 3 734.2~3 746.5 m蜡质油
    Figure  6.  Character of total hydrocarbon and light hydrocarbon of condensate oil and waxy oil in Structure X
    a. Condensate oil from Well D,4 040~4 060 m, b. Waxy oil from Well D, 3 734.2~3 746.5 m

    基于蒸发分馏效应的影响,Thompson[28]提出了利用正庚烷/甲基环己烷(石蜡度)和甲苯/正庚烷(芳香度)比值图版进行分馏效应的判别,因为气洗作用会导致残留油中芳构化富集、正构化富集以及链烷烃贫化,所以残留油中石蜡度逐渐减小,芳香度逐渐增大,而凝析油则表现为相反的趋势。X构造的凝析油主要位于图版(图7a)的右下方,而蜡质油主要位于图版的左上方,符合蒸发分馏效应的作用。Kissin Y[29]指出,未发生次生改造的基态原油正构烷烃的摩尔分数的对数与其对应的碳原子数呈线性分布关系,经过气洗作用改造的原油其分布曲线则明显分为两部分:高碳数正构烷烃部分曲线仍能保持原有线性分布关系,气洗作用则造成低碳数正构烷烃部分线性曲线偏离。从图7b可以看出,蜡质油正构烷烃摩尔分数的对数与其对应的碳原子数分布明显分成两个部分,中低碳数的正构烷烃曲线明显偏离趋势。由于低碳数化合物在气相中的溶解度始终大于高碳数化合物,即同一次形成的凝析油中正构组分nCm/nCm+1值必然大于残留油中的nCm/nCm+1值,这种现象称为协变关系[30]。从图7c可以看出,凝析油和蜡质油的nC7/nC8到nC23/nC24数值有明显的协变关系,表现为凝析油比值明显高于蜡质油。

    图  7  X构造凝析油与蜡质油蒸发分馏效应
    a. 正庚烷/甲基环己烷与甲苯/正庚烷交会图,b. 正构烷烃摩尔浓度与碳原子数关系图,c. 凝析油与蜡质油的正构烷烃组分协变关系
    Figure  7.  Evaporating fractionation effect of condensate oil and waxy oil in Structure X
    a. Cross plot of nC7/MCyC6 and Tol/nC7,b. Cross plot between molar concentration of n-alkanes and carbon number,c. Covariation relationships of n-alkanes of condensate oil and waxy oil

    西湖凹陷发育宝石组和平湖组两套烃源岩层系,主要发育煤和暗色泥岩两种生烃物质,同时斜坡带低部位和三潭深凹均可向斜坡带供烃,具有多源供烃的特点。油气源对比结果表明原油主要来自于煤,且为成熟原油;天然气则是来煤和暗色泥岩来源的混源气,天然气成熟度高于原油,至少存在两期烃类充注。前人研究认为斜坡带油气存在两期充注[16-17],第一期为中中新世,以油为主,第二期为中新世末—现今,以气为主。

    X构造油气成藏过程概括如下:中中新世时期,X构造接受了第一期原油充注,主要为煤成油,形成早期的油藏;在中新世晚期开始,接受煤和泥岩生成天然气的大量充注,天然气充注到早期形成的油藏之后,受蒸发分馏效应的影响,油藏中的轻组分更多的溶解到天然气中,导致天然气石蜡度增大、芳香度减低。随着天然气的持续充注,蒸发分馏的天然气会继续向高部位运移,并继续对高部位的油藏进行气洗,纵向上形成多个带油环的凝析气藏。残余油由于轻组分损失严重从而形成高分子烃类富集的蜡质原油(图8)。

    图  8  X构造D井油气藏剖面
    Figure  8.  Oil and gas accumulation profile in Structure X

    除了蒸发分馏作用外,油气在运移过程中还发生了运移分馏作用,饱和油的天然气在向上运移的过程中,随着温度、压力的降低,同样会发生相态的转变,液态组分会逐渐析出,形成带油环的凝析气藏,继续向浅层运移会形成带气顶的油藏或纯油藏,这也是保俶斜坡整体“上油下气”格局的主要原因。

    (1)X构造原油按照物性可以分为两类,第一类为凝析油,具有密度、黏度及含蜡量低的特点,第二类为蜡质油,具有密度、黏度中等,含蜡量较高的特点。两类原油族组分均以饱和烃和芳烃为主,非烃及沥青质含量较低。

    (2)凝析油和蜡质油的饱和烃色谱具有较大的差别,凝析油以前峰型为主,富含低碳数分子,蜡质油以后峰型为主,富含高碳数分子。但甾烷、二萜烷生标特征以及原油碳同位素都比较相似,推测为同源,主要来自于煤岩。

    (3)天然气主要为湿气,组分碳同位素显示主要为油型气和煤型气的混源,主要来自于泥岩和煤。演化处于成熟油气—高成熟凝析气阶段,成熟度计算结果高于原油。

    (4)通过两类原油的轻烃色谱对比,结合石蜡度—芳香度指数、正构烷烃摩尔浓度随碳数的变化以及正构烷烃组分比值的协变关系,认为X构造原油普遍遭受了气侵,凝析油是蒸发分馏作用的产物,蜡质油为蒸发分馏作用的残留油,并恢复了X构造的油气成藏过程,认为蒸发分馏和运移分馏共同形成了“上油下气”的油气分布情况。

  • 图  1   南黄海盆地构造单元[53]

    F1:郯庐断裂带,F2:五莲-青岛-蓉城断裂,F3:连云港-千里岩断裂,F4:嘉山-响水断裂,F5:苏州-昆山断裂,F6:朝鲜西部断裂,F7:Honam断裂,F8:济州岛南缘断裂,F9:江绍断裂。

    Figure  1.   The tectonic map of the South Yellow Sea Basin (modified from reference[53])

    图  2   沉积相、岩性和地震解释剖面综合分析

    a. 南黄海晚石炭世船山期沉积相,红色框为本文研究区;b. 石炭世—二叠世岩性简化柱状图;c. 地震解释剖面(黑色箭头分别表示剖面的位置和石炭系—下二叠统对应的岩性)。

    Figure  2.   Integrated profiles of sedimentary facies,lithology and seismic interpretation

    a. The sedimentary facies map of the Late Carboniferous Chuanshan period in the South Yellow Sea, the red border is the research area of this paper;b. Simplified lithologic column charts from Carboniferous to Permian; c. seismic interpretation profile (Black arrows indicate the location of the profile and the corresponding lithology of the Carboniferous- Lower Permian).

    图  3   CSDP-2井上石炭统船山组生物碎屑灰岩柱状图和岩心照片

    a. 船山组岩心柱状图,箭头表示岩样分析位置;b. 1 730.4 m生物碎屑泥晶灰岩;c. 1 757.03 m生物碎屑亮晶灰岩充填孔;d. 1 777.83 m生屑泥晶灰岩;e. 1 819.5 m灰岩晶间孔。

    Figure  3.   The lithologic column and core photographs of upper Carboniferous Chuanshan Formation of Well CSDP-2

    a. Lithologic Column of the Chuanshan Formation, arrows indicate the location of the samples analyzed; b. Bioclastic micritic limestone at depth of 1 730.4 m; c. Bioclastic sparry limestone filled pore in the depth of 1 757.03 m; d. Bioclastic micrite limestone in the depth of 1 777.83 m;e. Limestone intergranular pore in the depth of 1 819.5 m.

    图  4   CZ12-1-1井测井曲线和地震响应特征

    Figure  4.   Logging and seismic characteristic of Well CZ12-1-1

    图  5   CSDP-2井岩性敏感参数交汇分析

    Figure  5.   Lithology- sensitive parameters from Well CSDP-2

    图  6   CSDP-2井物性敏感参数交汇分析

    Figure  6.   Property sensitive parameters from Well CSDP-2

    图  7   CSDP-2井石炭系—下二叠统生物碎屑灰岩段的λρ与孔隙度拟合

    Figure  7.   Fitting relationship between λρ and porosity of bioclastic limestone from Carboniferous to Lower Permian of Well CSDP-2

    图  8   南黄海叠前同时反演储层预测技术流程

    Figure  8.   Flow chart of pre-stack simultaneous inversion for reservoir prediction

    图  9   CSDP-2井合成地震记录及提取子波(a. 全叠加数据合成地震记录,b. 远、中、近叠加道集合成地震记录, c. 不同叠加道集提取的近、中、远角度子波,d. 不同角度提取子波的能量谱 )

    Figure  9.   The synthetic seismogram and extract wavelets of the Well CSDP-2(a. synthetic seismogram from full stack seismic, b. synthetic seismogram from far-mid-near stack seismic, c. wavelets extracted from far-mid-near synthetic seismogram, d. energy spectrum of wavelets extracted from different angles)

    图  10   叠前同时反演结果

    a. 纵波阻抗剖面代表岩性分布,b. λρ剖面代表物性优劣,c. 下石炭船山组物性切片,d. 孔隙度剖面。

    Figure  10.   Pre-stack simultaneous inversion results

    a. Longitudinal impedance profile-representing lithologic distribution; b. λρ profile-representing physical properties; c. Physical properties section of lower Carboniferous Chuanshan Formation; d. porosity profile.

  • [1] 罗平, 张静, 刘伟, 等. 中国海相碳酸盐岩油气储层基本特征[J]. 地学前缘, 2008, 15(1):36-50. [LUO Ping, ZHANG Jing, LIU Wei, et al. Characteristics of marine carbonate hydrocarbon reservoirs in China [J]. Earth Science Frontiers, 2008, 15(1): 36-50. doi: 10.3321/j.issn:1005-2321.2008.01.004
    [2] 胡必规. 下扬子区中、古生界油气前景[J]. 上海地质, 1988(2):21-27. [HU Bigui. Oil and gas future of Mesozoic and Palaeozoic at the Low Yangtze area [J]. Shanghai Geology, 1988(2): 21-27.
    [3] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705. [CAI Laixing, GUO Xingwei, XU Zhaohui, et al. Depositional environment of Upper Paleozoic in the central uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.
    [4] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中—古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202. [YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison [J]. Petroleum Geology & Experiment, 2017, 39(2): 195-202. doi: 10.11781/sysydz201702195
    [5] 冯志强, 陈春峰, 姚永坚, 等. 南黄海北部前陆盆地的构造演化与油气突破[J]. 地学前缘, 2008, 15(6):219-231. [FENG Zhiqiang, CHEN Chunfeng, YAO Yongjian, et al. Tectonic evolution and exploration target of the northern Foreland Basin of the South Yellow Sea [J]. Earth Science Frontiers, 2008, 15(6): 219-231. doi: 10.3321/j.issn:1005-2321.2008.06.029
    [6] 谢天峰. 南黄海重磁资料处理与断裂系统研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2008.

    XIE Tianfeng. Processing on gravity and magnetic data of South Yellow Sea and research on fracture system[D]. Master Dissertation of Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2008.

    [7] 陈建文, 施剑, 刘俊, 等. 南黄海海相中—古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8. [CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.
    [8] 蔡乾忠. 横贯黄海的中朝造山带与北、南黄海成盆成烃关系[J]. 石油与天然气地质, 2005, 26(2):185-192, 196. [CAI Qianzhong. Relationship between Sino-Korean orogenic belt traversing Yellow Sea and basin evolution and hydrocarbon generation in North and South Yellow Sea Basins [J]. Oil & Gas Geology, 2005, 26(2): 185-192, 196. doi: 10.3321/j.issn:0253-9985.2005.02.010
    [9] 冯志强, 姚永坚, 曾祥辉, 等. 对黄海中、古生界地质构造及油气远景的新认识[J]. 中国海上油气(地质), 2002, 16(6):367-373. [FENG Zhiqiang, YAO Yongjian, ZENG Xianghui, et al. New understanding of Mesozoic-Paleozoic tectonics and hydrocarbon potential in Yellow Sea [J]. China Offshore Oil and Gas (Geology), 2002, 16(6): 367-373.
    [10]

    Chen J W, Xu M, Lei B H, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019(1): 67-84.

    [11] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29. [CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.
    [12] 张训华, 杨金玉, 李刚, 等. 南黄海盆地基底及海相中、古生界地层分布特征[J]. 地球物理学报, 2014, 57(12):4041-4051. [ZHANG Xunhua, YANG Jinyu, LI Gang, et al. Basement structure and distribution of Mesozoic- Paleozoic marine strata in the South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2014, 57(12): 4041-4051. doi: 10.6038/cjg20141216
    [13] 吴淑玉, 陈建文, 梁杰, 等. 南黄海海相中—古生界碳酸盐岩储层特征及成藏模式:对比四川盆地和苏北盆地[J]. 海洋地质前沿, 2016, 32(1):13-21. [WU Shuyu, CHEN Jianwen, LIANG Jie, et al. Characteristics of Mesozoic-Palaeozoic Marine carbonate reservoir in the South Yellow Sea Basin and hydrocarbon accumulation: comparison between the Sichuan Basin and the Subei Basin [J]. Marine Geology Frontiers, 2016, 32(1): 13-21.
    [14] 王明健, 张训华, 王安国, 等. 南黄海盆地南部坳陷二叠系龙潭组—大隆组沉积相[J]. 海洋地质前沿, 2014, 30(7):46-50, 65. [WANG Mingjian, ZHANG Xunhua, WANG Anguo, et al. Depositional facies of Longtan and Dalong formations in the southern Depression of South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 46-50, 65.
    [15] 刘金庆, 许红, 孙晶, 等. 下扬子海区南黄海盆地油气勘探的几点认识[J]. 海洋地质前沿, 2012, 28(4):30-37. [LIU Jinqing, XU Hong, SUN Jing, et al. A discussion on oil and gas potential in the South Yellow Sea Basin of Lower Yangtze Sea area [J]. Marine Geology Frontiers, 2012, 28(4): 30-37.
    [16] 陈建文, 张异彪, 刘俊, 等. 南黄海“高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17. [CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The "HRS" seismic exploration technology and its application in the South Yellow Sea Basin [J]. Marine geology Frontiers, 2016, 32(10): 9-17.
    [17] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23. [CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.
    [18]

    Yuan Y, Chen J W, LIANG J, et al. Hydrocarbon Geological Conditions and Exploration Potential of Mesozoic-Paleozoic Marine Strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2019, 18(6): 1329-1343. doi: 10.1007/s11802-019-3853-2

    [19] 罗开平, 黄泽光, 蒋小琼, 等. 川东北地区优质碳酸盐岩储层改造机制探讨[J]. 石油实验地质, 2011, 33(6):559-563. [LUO Kaiping, HUANG Zeguang, JIANG Xiaoqiong, et al. Reformation mechanism of high-quality carbonate reservoirs in northeastern Sichuan Basin [J]. Petroleum Geology & Experiment, 2011, 33(6): 559-563. doi: 10.3969/j.issn.1001-6112.2011.06.001
    [20] 吴熙纯, 王权锋, 陈斯忠, 等. 从世界第三纪生物礁的油气储集潜能看中国南海生物礁储层发育和分布的控制因素[J]. 中国海上油气, 2011, 23(4):218-224. [WU Xichun, WANG Quanfeng, CHEN Sizhong, et al. Considering controls on development and distribution of reef reservoirs in South China Sea from the hydrocarbon accumulation potential of tertiary reefs in the world [J]. China Offshore Oil and Gas, 2011, 23(4): 218-224. doi: 10.3969/j.issn.1673-1506.2011.04.002
    [21] 杨雪飞, 王兴志, 杨跃明, 等. 川中地区下寒武统龙王庙组白云岩储层成岩作用[J]. 地质科技情报, 2015, 34(1):35-41. [YANG Xuefei, WANG Xingzhi, YANG Yueming, et al. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in Central Sichuan Basin [J]. Geological Science and Technology Information, 2015, 34(1): 35-41.
    [22] 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3):268-277. [DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of Central Sichuan Paleo-uplift, Sichuan Basin [J]. Petroleum Exploration and Development, 2014, 41(3): 268-277. doi: 10.11698/PED.2014.03.02
    [23] 高刚, 贺振华, 黄德济, 等. 川东北地区碳酸盐岩储层孔隙度预测方法研究[J]. 科学技术与工程, 2013, 13(10):2635-2641. [GAO Gang, HE Zhenhua, HUANG Deji, et al. Research on predicting the porosity of carbonate reservoir in the Northeast Area of Sichuan [J]. Science Technology and Engineering, 2013, 13(10): 2635-2641. doi: 10.3969/j.issn.1671-1815.2013.10.004
    [24] 高刚. 基于碳酸盐岩孔隙结构预测孔隙度方法研究[J]. 地球物理学进展, 2013, 28(2):920-927. [GAO Gang. Method for predicting the porosity based on the pore structure of carbonate [J]. Progress in Geophysics, 2013, 28(2): 920-927. doi: 10.6038/pg20130245
    [25] 雷芬丽, 贺振华, 文晓涛, 等. ZH区碳酸盐岩储层孔隙度预测方法研究[J]. 石油天然气学报(江汉石油学院学报), 2010, 32(3):236-239. [LEI Fenli, HE Zhenhua, WEN Xiaotao, et al. Study on prediction method of porosity of carbonate reservoir in ZH area [J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2010, 32(3): 236-239.
    [26] 代双河, 田兵, 韩宇春. 基质孔隙型碳酸盐岩储层预测技术及应用[J]. 石油地球物理勘探, 2006, 41(6):681-686. [DAI Shuanghe, TIAN Bing, HAN Yuchun. Prediction of matrix porous carbonate reservoir and application [J]. Oil Geophysical Prospecting, 2006, 41(6): 681-686. doi: 10.3321/j.issn:1000-7210.2006.06.014
    [27] 刘欣欣, 印兴耀, 张峰. 一种碳酸盐岩储层横波速度估算方法[J]. 中国石油大学学报(自然科学版), 2013, 37(1):42-49. [LIU Xinxin, YIN Xingyao, ZHANG Feng. S-wave velocity estimation method in carbonate reservoir [J]. Journal of China University of Petroleum, 2013, 37(1): 42-49.
    [28] 包世海, 张秀平, 杨玉凤, 等. 川东北部飞仙关组鲕滩储层含气性识别方法[J]. 天然气工业, 2003, 23(S1):35-37. [BAO Shihai, ZHANG Xiuping, YANG Yufeng, et al. Gas potential identification of the oolitic beach reservoirs in Feixianguan Formation in the North part of East Sichuan [J]. Natural Gas Industry, 2003, 23(S1): 35-37.
    [29] 谢芳, 李志荣, 肖富森, 等. 四川盆地东北部飞仙关组鲕滩储层地震预测技术[J]. 天然气工业, 2004, 24(1):34-36. [XIE Fang, LI Zhirong, XIAO Fuseng, et al. Prediction technique for the oolitic beach reservoir of Feixianguan formation in the Northeast of Sichuan Basin by using seismic data [J]. Natural Gas Industry, 2004, 24(1): 34-36. doi: 10.3321/j.issn:1000-0976.2004.01.011
    [30] 马灵伟, 顾汉明, 赵迎月, 等. 应用随机介质正演模拟刻画深水区台缘礁碳酸盐岩储层[J]. 石油地球物理勘探, 2013, 48(4):583-590. [MA Lingwei, GU Hanming, ZHAO Yingyue, et al. Sculpturing platform-edge reef carbonate reservoirs in deep-water with random media forward modeling [J]. Oil Geophysical Prospecting, 2013, 48(4): 583-590.
    [31] 汪晴川, 李瑞, 蒲平文, 等. 川东长兴组生物礁分布地震识别技术研究[J]. 物探化探计算技术, 2008, 30(4):282-287. [WANG Qingchuan, LI Rui, PU Pingwen, et al. Research of the Changxing organic reef distributed and seismic recognition techniques, East Sichuan Basin [J]. Computing Techniques for Geophysical and Geochemical Exploration, 2008, 30(4): 282-287. doi: 10.3969/j.issn.1001-1749.2008.04.005
    [32] 蒋晓迪, 朱仕军, 张光荣, 等. 四川盆地蜀南地区茅口组储层预测研究[J]. 天然气勘探与开发, 2014, 37(1):37-40, 44. [JIANG Xiaodi, ZHU Shijun, ZHANG Guangrong, et al. Reservoir prediction of Maokou Formation, southern Sichuan Basin [J]. Natural Gas Exploration & Development, 2014, 37(1): 37-40, 44. doi: 10.3969/j.issn.1673-3177.2014.01.009
    [33] 刘国萍, 游瑜春, 冯琼, 等. 元坝长兴组生物礁储层精细雕刻技术[J]. 石油地球物理勘探, 2017, 52(3):583-590. [LIU Guoping, YOU Yuchun, FENG Qiong, et al. Fine depict of reef reservoirs in Changxing Formation, Yuanba area [J]. Oil Geophysical Prospecting, 2017, 52(3): 583-590.
    [34] 马永生, 郭旭升, 凡睿. 川东北普光气田飞仙关组鲕滩储集层预测[J]. 石油勘探与开发, 2005, 32(4):60-64. [MA Yongsheng, GUO Xusheng, FAN Rui. Reservoir prediction of Feixianguan Formation in Puguang gas field, Northeast Sichuan province [J]. Petroleum Exploration and Development, 2005, 32(4): 60-64. doi: 10.3321/j.issn:1000-0747.2005.04.010
    [35] 王伟, 胡明毅, 胡忠贵, 等. 建南地区长兴组碳酸盐岩礁滩储层波阻抗反演预测[J]. 科学技术与工程, 2013, 13(34):10272-10278, 10288. [WANG Wei, HU Mingyi, HU Zhonggui, et al. The prediction of wave impedance inversion in carbonate reef flat reservoir of Changxing Formation in Jiannan area [J]. Science Technology and Engineering, 2013, 13(34): 10272-10278, 10288. doi: 10.3969/j.issn.1671-1815.2013.34.032
    [36] 杜浩坤, 蔡其新, 肖斌, 等. 普光地区中三叠统雷口坡组顶部储层分布预测[J]. 石油地球物理勘探, 2017, 52(6):1269-1279. [DU Haokun, CAI Qixin, XIAO Bin, et al. Reservoir distribution prediction on the top of Middle Triassic Leikoupo Formation in Puguang area [J]. Oil Geophysical Prospecting, 2017, 52(6): 1269-1279.
    [37] 靳秀菊, 侯加根, 刘红磊, 等. 普光气田礁滩相复杂孔隙类型储集层渗透率地震预测方法[J]. 古地理学报, 2016, 18(2):275-284. [JIN Xiuju, HOU Jiagen, LIU Honglei, et al. Seismic prediction method of permeability of reef bank reservoir with complex pore types in Puguang gasfield [J]. Journal of Palaeogeography, 2016, 18(2): 275-284. doi: 10.7605/gdlxb.2016.02.021
    [38] 吕其彪, 吴清杰, 毕有益. 高分辨率地震解释预测礁滩相储集层[J]. 新疆石油地质, 2012, 33(5):557-559. [LV Qibiao, WU Qingjie, BI Youyi. Prediction of reep-flat reservoir using high resolution seismic interpretation [J]. Xinjiang Petroleum Geology, 2012, 33(5): 557-559.
    [39] 张光荣, 张旋, 喻颐, 等. 四川盆地深层海相碳酸盐岩缝洞型储层预测关键技术——以SN地区茅口组为例[J]. 天然气地球科学, 2017, 28(8):1235-1242. [ZHANG Guangrong, ZHANG Xuan, YU Yi, et al. Key techniques for prediction of fractured carbonate reservoirs in deep marine carbonate rocks in Sichuan Basin: a case study of the Maokou Formation in SN area [J]. Natural Gas Geoscience, 2017, 28(8): 1235-1242.
    [40] 王浩, 马如辉, 陈志强, 等. 川东北元坝气田长兴组生物礁精细刻画及储层预测[J]. 长江大学学报: 自然科学版, 2019, 16(2):21-26. [WANG Hao, MA Ruhui, CHEN Zhiqiang, et al. Fine characterization of reefs and reservoir prediction of Changxing Formation in Yuanba gas field of northeastern Sichuan Basin [J]. Journal of Yangtze University: Natural Science Edition, 2019, 16(2): 21-26.
    [41] 冯凯, 陈祖庆, 查朝阳. 基于叠前地震资料预测碳酸盐岩复合岩性油气藏——以川东飞仙关组气藏储层为例[J]. 大庆石油地质与开发, 2006, 25(5):96-99. [FENG Kai, CHEN Zuqing, ZHA Chaoyang. Carbonate complex lithologicl hydrocarbon reservoir forecast based on pre-stack seismic data- with gas reservoir in Feixianguan formation in East Sichuan as an example [J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(5): 96-99. doi: 10.3969/j.issn.1000-3754.2006.05.027
    [42] 陈祖庆, 屈大鹏, 缪志伟. 元坝地区长兴组超深层礁滩储层地震预测[J]. 中国西部科技, 2015, 14(7):20-26. [CHEN Zuqing, QU Dapeng, MIAO Zhiwei. Seismic prediction of deep reef-bank reservoirs in the Changxing Formation in the YB area [J]. Science and Technology of West China, 2015, 14(7): 20-26. doi: 10.3969/j.issn.1671-6396.2015.07.007
    [43] 李金磊, 陈祖庆, 王良军, 等. 相控技术在低勘探区生屑滩相储层预测中的应用[J]. 岩性油气藏, 2017, 29(3):110-117. [LI Jinlei, CHEN Zuqing, WANG Liangjun, et al. Application of facies-controlled technique to bioclastic shoal reservoir prediction in less well zones [J]. Lithologic Reservoirs, 2017, 29(3): 110-117. doi: 10.3969/j.issn.1673-8926.2017.03.013
    [44] 纪学武, 张延庆, 臧殿光, 等. 四川龙岗西区碳酸盐岩礁、滩体识别技术[J]. 石油地球物理勘探, 2012, 47(2):309-314. [JI Xuewu, ZHANG Yanqing, ZANG Dianguang, et al. Carbonate reef- shoal reservoir identification in western Longgang, Sichuan Basin [J]. Oil Geophysical Prospecting, 2012, 47(2): 309-314.
    [45] 盛秋红, 张金明. 基于反褶积短时傅里叶变换的薄储层流体识别——以元坝为例[J]. 科学技术与工程, 2016, 16(15):41-46. [SHENG Qiuhong, ZHANG Jinming. Identification of fluid based on deconvolution short-time Fourier transform- taking Yuanba area as an example [J]. Science Technology and Engineering, 2016, 16(15): 41-46. doi: 10.3969/j.issn.1671-1815.2016.15.007
    [46] 黄花香, 邓瑛, 吴战培, 等. 吸收系数反演在川东碳酸盐岩储层预测中的应用[J]. 石油物探, 2003, 42(1):86-88. [HUANG Huaxiang, DENG Ying, WU Zhanpei, et al. Application of absorption coefficient inversion in prediction of Carbonate reservoir in the East of Sichuan [J]. Geophysical Prospecting for Petroleum, 2003, 42(1): 86-88. doi: 10.3969/j.issn.1000-1441.2003.01.019
    [47] 陈勇, 陈洪德, 关达, 等. 地震技术在碳酸盐岩生物礁油气储层流体识别中的应用[J]. 科学技术与工程, 2013, 13(21):6208-6215. [CHEN Yong, CHEN Hongde, GUAN Da, et al. The application of seismic technology in fluid discrimination of Carbonation reef oil and gas reservoir [J]. Science Technology and Engineering, 2013, 13(21): 6208-6215. doi: 10.3969/j.issn.1671-1815.2013.21.029
    [48] 杨子川, 高利君, 李海英. 匹配追踪时频分析技术在塔河油田缝洞型储层预测中的应用[J]. 地质科技情报, 2017, 36(3):293-298. [YANG Zichuan, GAO Lijun, LI Haiying. Match pursuit time-frequency analysis technology in the prediction of fractured reservoirs in Tahe oilfield [J]. Geological Science and Technology Information, 2017, 36(3): 293-298.
    [49] 吴淑玉, 陈建文, 刘俊, 等. 南黄海横波测井曲线预测在叠前反演中的应用[J]. 海洋地质前沿, 2016, 32(10):51-59. [WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of S-wave well longing predicted for prestack inversion in the South Yellow Sea Basin [J]. Marine geology Frontiers, 2016, 32(10): 51-59.
    [50] 吴淑玉, 刘俊, 肖国林, 等. 地震多属性预测技术在南黄海二叠系至三叠系沉积分析中的应用[J]. 海洋地质与第四纪地质, 2011, 31(5):109-116. [WU Shuyu, LIU Jun, XIAO Guolin, et al. Application of seismic attribute analysis to The Permian-Triassic Deposits in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 109-116.
    [51] 袁勇, 陈建文, 梁杰, 等. 应用多属性聚类分析方法研究南黄海盆地二叠系沉积特征[J]. 海洋地质前沿, 2016, 32(10):44-50. [YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Application of multiple attributes cluster analysis to Permian Deposits in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 44-50.
    [52] 吴淑玉, 陈建文, 刘俊, 等. 叠前同时反演技术在南黄海崂山隆起储层预测中的应用[J]. 海洋地质与第四纪地质, 2018, 38(3):162-174. [WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of pre-stack simultaneous inversion in the reservoir prediction in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 162-174.
    [53] 刘俊, 陈建文, 吴淑玉, 等. 南黄海崂山隆起石炭系-下二叠统海相碳酸盐岩叠前三参数反演储层预测[J]. 海洋地质与第四纪地质, 2018, 38(3):186-198. [LIU Jun, CHEN Jianwen, WU Shuyu, et al. Prestack three-term seismic inversion for prediction of Carboniferous-Lower Permian carbonate reservoir on the Central Uplift of South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 186-198.
    [54]

    Wu S Y, Liu J, Chen J W, et al. Pre-stack simultaneous inversion in the marine carbonate reservoir prediction of the South Yellow Sea Basin, China [J]. Acta Geologica Sinica, 2019, 93(S2): 420-421.

    [55] 张晓华, 张训华, 吴志强, 等. 谱分解在南黄海中部隆起中-古生界储层预测中的应用[J]. 海洋学报, 2017, 39(7):102-109. [ZHANG Xiaohua, ZHANG Xunhua, WU Zhiqiang, et al. Application of spectral decomposition to detect Mesozoic- Paleozoic reservoir on the Central uplift of the South Yellow Sea Basin [J]. Acta Oceanologica Sinica, 2017, 39(7): 102-109.
    [56] 王建强, 陈建文, 梁杰, 等. 频谱分解技术在南黄海崂山隆起的应用[J]. 海洋地质前沿, 2016, 32(10):38-43. [WANG Jianqiang, CHEN Jianwen, LIANG Jie, et al. Application of spectrum decomposition to the Laoshan uplift, South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(10): 38-43.
    [57] 张训华, 郭兴伟, 吴志强, 等. 南黄海盆地中部隆起CSDP-2井初步成果及其地质意义[J]. 地球物理学报, 2019, 62(1):197-218. [ZHANG Xunhua, GUO Xingwei, WU Zhiqiang, et al. Preliminary results and geological significance of well CSDP-2 in the Central Uplift of South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2019, 62(1): 197-218. doi: 10.6038/cjg2019L0233
    [58] 郭兴伟, 张训华, 吴志强, 等. 大陆架科学钻探CSDP-2井科学目标及初步成果[J]. 吉林大学学报: 地球科学版, 2019, 49(1):1-12. [GUO Xingwei, ZHANG Xunhua, WU Zhiqiang, et al. Scientific objectives and preliminary progresses of CSDP-2 well in continental shelf drilling program [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 1-12.
    [59] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70. [CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. The inclusion evidence of multi-phase hydrocarbon accumulation in the South Yellow sea [J]. Marine Geology Frontiers, 2018, 34(2): 69-70.
    [60] 陈建文. 南黄海崂山隆起海相中—古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70. [CHEN Jianwen. Many large traps are found in the Mesozoic-Paleozoic marine facies of Laoshan Uplift in the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(4): 69-70.
    [61]

    Liang J, Chen J W, Zhang Y G, et al. New evidence of Silurian hydrocarbon accumulation is discovered by fluid inclusion analysis in the South Yellow Sea Basin [J]. China Geology, 2019, 2(1): 110-111. doi: 10.31035/cg2018077

    [62] 李双应, 金福全. 下扬子盆地石炭纪的古地理[J]. 合肥工业大学学报: 自然科学版, 1994, 17(3):167-174. [LI Shuangying, JIN Fuquan. Carboniferous paleography in the Lower Yangzi Basin [J]. Journal of Hefei University of Technology, 1994, 17(3): 167-174.
    [63] 冯增昭, 何幼斌, 吴胜和. 中下扬子地区二叠纪岩相古地理[J]. 沉积学报, 1993, 11(3):13-24. [FENG Zengzhao, HE Youbin, WU Shenghe. Listhofacies paleogeography of Permian Middle and Lower Yangtze region [J]. Acta Sedimentologica Sinica, 1993, 11(3): 13-24.
    [64] 王成善, 李祥辉, 陈洪德, 等. 中国南方二叠纪海平面变化及升降事件[J]. 沉积学报, 1999, 17(4):536-541. [WANG Chengshan, LI Xianghui, CHEN Hongde, et al. Permian sea- level changes and rising- falling events in South China [J]. Acta Sedimentologica Sinica, 1999, 17(4): 536-541.
    [65] 陈华成, 王云慧, 严幼因. 江苏及安徽南部早石炭世地层[J]. 地层学杂志, 1979, 3(4):242-250. [CHEN Huacheng, WANG Yunhui, YAN Youyin. Early Carboniferous strata in the South of Jiangsu and Anhui [J]. Acta Stratigraphica Sinica, 1979, 3(4): 242-250.
    [66] 胡芬. 南黄海盆地海相中、古生界油气资源潜力研究[J]. 海洋石油, 2010, 30(3):1-8, 77. [HU Fen. Hydrocarbon resources potential study in Mesozoic-Palaeozoic marine strata in the South Yellow Sea Basin [J]. Offshore Oil, 2010, 30(3): 1-8, 77. doi: 10.3969/j.issn.1008-2336.2010.03.001
    [67] 张雨琦, 郭萌萌, 张志鹏, 等. 川东地区石炭系碳酸盐岩储层成因机理及主控因素研究[J]. 地球科学前沿, 2014, 4(4):189-197. [ZHANG Yuqi, GUO Mengmeng, ZHANG Zhipeng, et al. Genetic mechanism and main control factors of Carboniferous carbonate reservoirs in eastern Sichuan Basin [J]. Advances in Geosciences, 2014, 4(4): 189-197. doi: 10.12677/AG.2014.44023
    [68] 高小惠, 张训华, 蔡来星, 等. 南黄海盆地中部隆起CSDP-2井志留系——石炭系岩石学特征及其沉积相[J]. 吉林大学学报: 地球科学版, 2019, 49(1):53-64. [GAO Xiaohui, ZHANG Xunhua, CAI Laixing, et al. Silurian-Carboniferous petrographic features and depositional facies in the well CSDP-2 in the Central Uplift of the South Yellow Sea Basin [J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1): 53-64.
    [69] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中-古生界沉积相及烃源岩特征——以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046. [CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in central uplift of South Yellow Sea: a case study of CSDP-2 coring well [J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4): 1030-1046.
    [70] 王正和, 郭彤楼, 谭钦银, 等. 四川盆地东北部长兴组-飞仙关组各沉积相带储层特征[J]. 石油与天然气地质, 2011, 32(1):56-63. [WANG Zhenghe, GUO Tonglou, TAN Qinyin, et al. Reservoir characteristics of different sedimentary facies in the Changxing and Feixianguan Formations, Northeast of the Sichuan Basin [J]. Oil & Gas Geology, 2011, 32(1): 56-63. doi: 10.11743/ogg20110107
    [71] 李昌峰, 侯明才, 张小青, 等. 川东北元坝地区上二叠统长兴组优质储层形成机制[J]. 地质力学学报, 2015, 21(2):278-289. [LI Changfeng, HOU Mingcai, ZHANG Xiaoqing, et al. Formation mechanism of high-quality reservoirs in the Upper Permian Changxing Formation in Yuanba gas field, northeastern Sichuan Basin [J]. Journal of Geomechanics, 2015, 21(2): 278-289. doi: 10.3969/j.issn.1006-6616.2015.02.018
    [72] 万晓明, 梁劲, 梁金强, 等. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3):438-444. [WAN Xiaoming, LIANG Jing, LIANG Jinqiang, et al. The application of post-stack impedance inversion without well to the prediction of gas hydrate distribution in T study area [J]. Geophysical and Geochemical Exploration, 2016, 40(3): 438-444. doi: 10.11720/wtyht.2016.3.2
    [73] 张江华, 林承焰, 惠俊刚, 等. 影响约束地震反演品质的因素分析[J]. 西北大学学报: 自然科学版, 2008, 38(4):627-630. [ZHANG Jianghua, LIN Chengyan, HUI Jungang, et al. Analysis on factors affecting quality of logging constraint inversion [J]. Journal of Northwest University: Natural Science Edition, 2008, 38(4): 627-630.
    [74] 陈春峰, 施剑, 徐东浩, 等. 南黄海崂山隆起形成演化及对油气成藏的影响[J]. 海洋地质与第四纪地质, 2018, 38(3):55-65. [CHEN Chunfeng, SHI Jian, XU Donghao, et al. Formation and tectonic evolution of Laoshan Uplift of South Yellow Sea Basin and its effect on hydrocarbon accumulation [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 55-65.
  • 期刊类型引用(3)

    1. 张璐,支玲. 基于双相介质理论流体识别技术研究与实践——以涠西南凹陷涠洲组油藏为例. 工程地球物理学报. 2024(03): 443-453 . 百度学术
    2. 孙莉,刘舒,雷蕾. 油藏地球物理技术在东海C区块开发中的应用. 海洋石油. 2023(04): 53-59 . 百度学术
    3. 涂齐催,娄敏,毛云新,王伟,黄鑫,李炳颖,王腊梅,陈易周. 基于构造-流体耦合约束的变速成图方法及其在东海A气田挖潜阶段的成功应用. 海洋地质前沿. 2022(12): 56-63 . 百度学术

    其他类型引用(0)

图(10)
计量
  • 文章访问数:  2567
  • HTML全文浏览量:  566
  • PDF下载量:  31
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-21
  • 网络出版日期:  2020-10-20
  • 刊出日期:  2020-09-30

目录

/

返回文章
返回