南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测

吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明

吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701
引用本文: 吴淑玉, 刘俊, 陈建文, 梁杰, 张银国, 袁勇, 许明. 南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测[J]. 海洋地质与第四纪地质, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701
WU Shuyu, LIU Jun, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YUAN Yong, XU Ming. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701
Citation: WU Shuyu, LIU Jun, CHEN Jianwen, LIANG Jie, ZHANG Yinguo, YUAN Yong, XU Ming. Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 136-148. DOI: 10.16562/j.cnki.0256-1492.2020031701

南黄海崂山隆起石炭系—下二叠统孔隙型碳酸盐岩储层预测

基金项目: 青岛市市南区科技发展资金项目“南黄海中—古生界海相碳酸盐岩储层叠前反演研究”(2016-3-009-ZH);国家海洋局海底重点实验室基金“台西南盆地沉积基底特征和莫霍面构造形态综合地球物理研究”(KLSG1603);中国地质调查项目“崂山隆起构造沉积条件地质调查”(DD20190818),“南黄海油气资源调查”(DD20160152),“海岸带和大陆架地质演化调查与评价”(DD20160147)
详细信息
    作者简介:

    吴淑玉(1985—),女,在读博士,副研究员,主要从事地震资料解释和反演工作,E-mail:hnwushuyu@163.com

    通讯作者:

    刘俊(1978—),男,博士,高级工程师,从事海洋地球物理处理工作,E-mail:vnlj@163.com

  • 中图分类号: P736

Prediction of pore-dominated Carboniferous-Lower Permian carbonate reservoir at the Laoshan Uplift, South Yellow Sea Basin

  • 摘要: 海相碳酸盐岩储层是南黄海盆地崂山隆起中—古生界重要的油气储层,由于钻井少,储层非均质性强,地震储层预测研究是油气勘探的重点和难点。以南黄海石炭系—下二叠统碳酸盐岩为例,通过分析CSDP-2井生物碎屑灰岩储层的岩石物性及井-震响应特征,发现生物碎屑灰岩声波阻抗高于纯灰岩以及碎屑岩的声波阻抗,低λρ具有较好的岩石物性特征,针对这种特点,采用叠前同时反演方法对孔隙型碳酸盐岩储层的岩性和物性进行预测。预测结果表明南黄海崂山隆起石炭系—下二叠统生物碎屑灰岩储层比较发育,横向不连续且具有较强的非均质性,位于古高地储层物性发育较好,其成因是由于受印支构造运动,上覆地层抬升到地表遭到暴露,加上淡水淋滤溶蚀作用,在一定程度上提高了碳酸盐岩储层的次生孔隙,形成了钻井岩心所揭示的储层特征,因此,高孔隙度的孔隙型碳酸盐岩是南黄海石炭系—下二叠统油气勘探的首选目标。
    Abstract: Marine carbonate is a kind of important oil and gas reservoir in the Mesozoic- Palaeozoic on the Laoshan uplift of South Yellow Sea Basin. Due to lacking of drilling data and knowledge of heterogeneity of the carbonate reservoirs, seismic prediction is the only way for reservoir assessment in oil and gas exploration although it is a rather difficult. Taking the Carboniferous - Lower Permian limestone in the South Yellow Sea as an example, this paper analyzed the petrophysical characteristics and the logging - seismic response of the limestone. Petrophysical analysis reveals that the acoustic impedance of bioclastic limestone is higher than that of pure limestone and siliceous clastic rocks. The limestone with lower λρ has better petrophysical characteristics. Pre-stack simultaneous inversion technique is effective to predict the lithology and physical properties of the pore-dominated carbonate reservoir. The results further suggest that the Carboniferous - Lower Permian bioclastic limestone reservoirs are relatively developed on the Laoshan Uplift and strongly discontinuous and heterogenous. Reservoirs are mainly developed on ancient highlands, owing to the exposure to air of the limestone uplifted by the Indosinian tectonic movement, the filtration by freshwater and dissolution of limestone, which increased the secondary porosity of carbonate reservoir to some extent. Such reservoirs have been encountered in drilling cores. Therefore, the pore-dominated carbonate rocks with high porosity should be regarded as the first priority of petroleum exploration target for the Carboniferous - Lower Permian in the South Yellow Sea Basin.
  • 铁锰结壳是一种常生长于海底地势较高处(主要是海山)硬质基岩(或沉积物)上的“壳状”沉积矿产,富含铁、锰和稀土(Rare Earth Elements,简写REEs)等元素[1, 2]。铁锰结壳主要分布于碳酸盐补偿深度(Carbonate Compensation Depth,简写CCD)以上、最低含氧层(Oxygen Minimum Zone,简写OMZ)中或以下水深500~3500m的平顶海山、海台顶部和斜坡的裸露基岩上[3-5]。

    此前对铁锰结壳的研究主要集中在开阔大洋海山结壳上,并在结壳的矿物组成、结构构造、化学组成、物质来源及古海洋环境应用等方面取得了丰硕成果[6-15],近几年来开始重视对边缘海地质背景下形成的海山铁锰结壳研究[16, 17]。南海海山位于大陆和菲律宾岛弧之间,是南海扩张期停止后形成的[18]。关于南海海山结壳(结核)的研究主要集中在尖峰海山、蛟龙海山结核的矿物组成和元素特征上[19, 20]。与以前的南海海山结壳研究相比,本文选取了更靠近南海马尼拉海沟和中央断裂带的管事海山上两块铁锰结壳样品,对其进行X射线衍射分析(XRD)、扫描电镜分析(SEM)、电子探针微区分析(EMPA),获得管事海山铁锰结壳的矿物学和地球化学基本特征,同时利用相关性分析了南海管事海山结壳的物质来源及形成环境,为该区海山铁锰结壳的古海洋古环境研究提供了基础资料,还能为海底资源评价及开采提供科学依据。

    南海扩张已停止16Ma,海山是南海扩张停止后几百万年出现的[21],南海大部分海山位于中央海盆,其中管事平顶海山是南海众多的海山之一,其右侧靠近马尼拉海沟(图 1)。管事海山山顶坡度小于1°,山顶面积约145km2。海山基座水深约4250m,山顶水深460m,高差3540m(图 1)。海山走向为东北,长65km,宽约34km,面积约2119km2,坡度约为20° [22]。

    图  1  南海管事平顶海山的位置图与三维图(据文献[22-24]修改)
    Figure  1.  The three-dimensional map of Guanshi seamount from South China Sea

    2015年9月使用箱式采样器在南海东部管事平顶海山(采样点坐标为17°9′24″N、118°48′47″E,水深1478m)采集的2个铁锰结壳为研究材料,分别命名为DS66-01(简写为01)和DS66-02(简写为02),其中01呈褐黑色,长近6cm,厚度约2cm(图 2),而02亦呈褐黑色,长近4cm,厚度约1.3cm,表面还有管状蠕虫的遗迹(图 2)。

    图  2  DS66-01和DS66-02样品外貌及其对应横断面上探针点(1-19)和(1-10)
    Figure  2.  Petrology of Fe-Mn crusts 01 and 02, and Point 1-19, point 1-10 from the top to the bottom of Fe-Mn crusts 01 and 02, respectively

    将铁锰结壳01和02分别沿着生长方向切割出生长剖面,选取部分铁锰结壳用玛瑙碾钵磨细至200目,将磨好的样品进行XRD衍射分析。XRD衍射分析仪器为理学DMAX RapidⅡ型点光源面探测器X射线衍射仪,靶材-Mo (Mo Kα =0.71073),功率50kV-90mA,准直管(入射线束斑直径)0.1mm,样品管直径0.5mm,曝光时间9分钟。本实验在南京大学内生金属矿床国家重点实验室的XRD实验室完成。

    将结壳01和02样品选取部分破碎成小块,选取01和02样品中小颗粒(长约1~2mm)进行扫描电镜分析,使用JSM-6490型扫描电镜观察矿物的表面形貌,加速电压20kV;成分分析由OxfordINCAX射线能谱仪测定,WD为10mm。SEM分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成。

    将铁锰结壳01和02沿着生长方向切割出生长剖面,制成电子探针光片,整个过程中要进行固结,得到合适的样品,然后进行抛光、清洗、烘干(< 50℃),最后喷碳干燥后进行电子探针分析(图 2)。用电子探针仪器分析结壳01和02剖面表层到底部探针点的Mn, Fe, Si, A1, P, Ca, Co, Ni, Cu, K, Na和Mg等12种元素含量。所用仪器为JEOL JXA-8100电子探针分析仪。测试条件如下:仪器加速电压为15kV,束流为20nA,束斑直径为3μm。从表层向底部每隔100μm左右打一个点,从光片样品外部向里面沿着生长轨迹打点(图 2)。电子探针分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成。

    南海海山铁锰结壳01和02矿物组成均以水羟锰矿(δ-MnO2)为主,还含少量石英、长石和针铁矿(图 3)。两个结壳中水羟锰矿的峰型均呈弥散峰,且峰型大部分重合,显示两个结壳的锰相矿物结晶程度不高,其水羟锰矿含量差距较小(其中01结壳约87.2%,02结壳约90.1%)。由于结壳中铁相矿物结晶程度低,运用X射线衍射方法很难完整反映出其铁相矿物组成特征,能够辨识的铁相晶质矿物主要是针铁矿(其中01结壳约2.2%,02结壳约3.3%)。结壳01碎屑矿物石英和长石含量分别为3.7%和6.9%,02石英和长石含量分别为4.6%和2%,可能原因是结壳吸附的碎屑矿物等元素差异引起。

    图  3  海山铁锰结壳DS66-01和DS66-02的XRD衍射图谱
    Figure  3.  XRD patterns of Fe-Mn crusts 01 and 02 from Guanshi seamount

    两块铁锰结壳扫描电镜图像及其能谱图如图 4所示,铁锰结壳显微结构呈现条带状分布,铁锰结壳中有10~15μm长的空隙和0.5μm直径大小的孔洞,可能为生物遗迹;能谱图显示两个结壳均以Mn, Fe和Si等元素为主。

    图  4  海山结壳DS66-01和DS66-02的扫描电镜图像及其能谱图
    Figure  4.  SEM images showing the structure of the Fe-Mn crusts 01 and 02 from Guanshi seamount

    由于铁锰结壳疏松多孔且含水,因此电子探针分析的氧化物总量通常只有40%~70%。为了保证所分析测点的准确性,本文根据前人的探针分析结果和方法删去了少数Si>10%、Al>4%和元素总量 < 40%的测点结果[25],前一种测点的Fe和Mn含量低,而Al和Si含量较高,元素总量大于40%,可能代表了黏土或生物碎屑等;后一种测点不仅Fe和Mn含量都低,Si和Al含量也表现为低值,元素总量小于40%,极有可能是打在结壳微孔隙中造成的。

    铁锰结壳01和02的Fe、Mn、Ca、P、Al、Si、Cu、Co、Ni等主要元素含量的分布趋势如图 5所示。结壳01中Mn,Fe,Cu,Co和Ni元素含量平均值分别为32.9%、17.5%、0.05%、0.08%和0.11%,Ca,P,Al,Si和Mg元素含量平均值分别为3.4%、0.8%、1.3%、4.1%、1.4%。结壳02中Mn,Fe,Cu,Co和Ni元素含量平均值分别为30.7%、16.1%、0.09%、0.09%和0.08%,Ca,P,Al,Si和Mg元素含量平均值分别为3.3%、0.6%、1.5%、4.8%、1.6%。

    图  5  结壳01和02的电子探针微区点的元素含量
    (结壳01元素含量除去Cu外以黑点表示,Cu以黑五角星标识,结壳02元素含量除去Cu外以白正方形表示,Cu以白五角星表示),部分元素Cu,Co和Ni含量在检测限以下
    Figure  5.  EPMA(Electron microprobe analysis)results of Fe-Mn crusts (wt%) from Guanshi seamount in the SCS
    (01=Balck point: point 1-19 from the top to the bottom; 02=White square: point 1-10 from the top to the bottom). A portion of Cu, Co and Ni are below the detection limit. Cu are Balck star and White star in crusts 01 and 02, respectively

    南海东部管事海山和大洋、边缘海海山铁锰结壳的Mn、Fe、Co、Cu和Ni含量如表 1所示。管事海山铁锰结壳的Mn和Fe含量平均值分别为31.8%和16.8%(表 1)。研究区Mn含量都大于大洋和边缘海的结壳中Mn含量,而与中太平洋YJC海山新结壳Mn含量相近(表 1),这可能与管事海山附近的火山活动和断裂构造有关。管事海山位于马尼拉海沟和中央断裂带附近,马尼拉海沟是活动大陆边缘(图 1),地震和火山活动频繁,上地幔Mn元素喷出,导致管事海山附近最低含氧带下水体中溶解Mn元素含量高,最终结壳吸附的Mn含量值高。邱传珠也认为Mn物质来源主要来自上地幔物质,其沿断裂带大量富集[28]。Zhong等也发现南海中央海盆结核结壳中Mn高含量带与中央构造线方向相一致,显示Mn与断裂构造活动有关系[20]。研究区海山结壳中Fe含量与太平洋结壳相差不多,但比加利福尼亚边缘海、印度洋和大西洋结壳含量低7%、5.5%和4.1%(表 1)。造成结壳中Fe含量差别可能的一个原因是来自大陆物质受到太平洋西部岛弧-海沟的阻挡,陆源Fe较少输运到太平洋西部海山,而印度洋、大西洋和加利福尼亚边缘海周边没有岛弧-海沟阻挡,陆源Fe能直达海山结壳区。

    表  1  全球大洋和海域结壳的Mn, Fe, Cu, Co和Ni百分含量
    Table  1.  Compiled chemical composition of crusts from selected areas of the global ocean
    %
    元素含量MnFeCoNiCu来源
    南海管事海山31.816.80.090.100.07本文
    西太平洋麦哲伦海山20.116.30.680.340.15[26]
    西太平洋马尔库斯-威克海山1916.50.640.390.09[26]
    中太平洋YJC海山新结壳28.915.40.910.670.07[27]
    北太平洋最好的结壳带22.816.90.670.420.1[2]
    南太平洋结壳区21.718.10.620.460.11[2]
    加利福尼亚边缘海海山区19.523.80.310.230.04[17]
    大西洋14.520.90.360.260.09[2]
    印度洋1722.30.330.260.11[2]
    下载: 导出CSV 
    | 显示表格

    结壳01和02中Mn,Fe和Si元素相差稍大,结壳01中Mn和Fe含量比结壳02分别高1.8%、1.4%,可能与结壳01表面积较大吸附更多铁锰元素有关。结壳02中Si含量比01要高0.7%,可能与表面管状蠕虫导致生物成因Si更高有关。两个结壳其余元素含量则相差不大,在0.2%范围内。

    管事海山铁锰结壳的Co,Ni和Cu含量平均值分别为0.09%、0.1%和0.07%(表 1),与大洋结壳相比,研究区Co、Ni和Cu含量较低。太平洋结壳的Co含量是研究区结壳的7~10倍,Ni含量是研究区的4~7倍,而加利福尼亚边缘海、大西洋和印度洋的Co含量是研究区的3倍多,Ni含量是研究区的2.5倍左右。研究区Cu含量很多数据点低于检测限,测出Cu含量平均值大于加利福尼亚边缘海海山上结壳0.04%,低于开阔大洋结壳Cu含量。

    有3个可能原因导致结壳中Co,Ni和Cu等微量元素含量降低。一是结壳生长速率太快引起。在铁锰结壳生长过程中,海水中Co元素进入铁锰结壳中的速率是均一的,因此铁锰结壳的生长速率越大,Co含量越低;反之含量越高[29]。但是利用Lyle等[30]经典公式R=16.0 [EMn/(EFe)2] + 0.448来计算南海海山结壳01和02的生长平均速率分别为2.17和2.34mm/Ma,都在水成型结壳(沉积速率为1~15mm/Ma)范围内[25],因此排除海山结壳生长太快的原因。二是与南海边缘海内沉积速率过快有关,利用管事海山旁沉积柱算出3.7万年以来南海东部沉积速率约为0.1mm/a[31],远高于太平洋沉积速率0.32mm/ka[32],沉积速率过快导致结壳可吸附海水中微量元素数量受到影响。三是南海生物量和有机质含量远高于开阔大洋,鲍根德和李全兴研究得出南海铁锰结壳中Mn来源丰富的地方,Ni相对于Cu更富集,这可能与水体中Cu2+比Ni2+ 更易被生物利用所致[33]。而且有机质含量高易于形成有机络合物,更多吸附水体中微量元素,导致结壳可吸附水体中微量元素含量减少[34]。南海海山铁锰结壳中Cu、Co和Ni的低含量是边缘海型结壳的重要特征。

    通常大洋铁锰矿床Mn/Fe比值小于2.5,被认为是水成成因的,Mn/Fe比值大于2.5,被认为是其受沉积物早期成岩作用影响强度的指示,Mn/Fe比值愈大,受成岩作用的影响愈强[6]。研究区海山两个铁锰结壳的探针点Mn/Fe如图 6所示,从南海海山结壳表层到底部,Mn/Fe一直为1.5~2.5,只是01底部4个点大于2.5,说明结壳大部分是水成成因的,可能01结壳底部受到成岩作用的影响。结壳的主要矿物是水羟锰矿,这代表高氧化条件下沉淀的水成氧化物,在富氧环境下,结壳的主要矿物水羟锰矿和非晶质针铁矿因具有较大的表面积,有较强的胶体吸附能力,使结壳缓慢生长。

    图  6  南海管事海山铁锰结壳01和02的Mn/Fe, Ca/P, Al/Si元素比值
    Figure  6.  Mn/Fe, Ca/P, Al/Si ratios of Fe-Mn crusts 01 and 02, respectively from Guanshi seamount

    一般来说碳氟磷灰石(CFA)Ca/P比值多小于2 [26]。研究区海山两个铁锰结壳的探针点Ca/P如图 6所示,结壳的Ca/P值远大于CFA的Ca/P值,都大于2,说明海山结壳没有发生明显磷酸盐化的影响。Koschinsky等指出磷酸盐化型结壳的P含量可能达到1.0%~1.5%[35],非磷酸盐化型结壳中P含量较低。本文两块结壳的P含量均小于1.0%(图 5),也说明海山结壳未发生磷酸盐化。

    研究区海山铁锰结壳的探针点Al/Si如图 6所示,Al/Si值大部分为0.2~0.4,只有底部4个点大于0.4。Alvarez等通过太平洋的结壳分析得出,当Al/Si值接近1/3时,Si来自于典型的火成铝硅酸盐;Al/Si值接近1/4时,表明结壳中还存在生物成因Si和少量石英[36]。Hein等研究也发现在印度洋Ninetyeast Ridge铁锰结壳Si/Al值从北到南呈现从高到低变化,即从5.2到3.3,换算成Al/Si值为1/5~1/3,受到恒河输入物质的影响减弱,南部最低为2.9,可能受到当地火山岩的风化作用影响[37]。南海管事海山结壳Al/Si值为0.2~0.4,也就是1/5~2/5,说明Si既有来自火成铝硅酸盐,还有生物成因Si和少量石英。

    为了揭示结壳中元素的物质来源,本文对结壳中主要元素的相关性进行了分析,如表 2所示。

    表  2  结壳中元素间相关性
    Table  2.  Correlation of chemical elements of Fe-Mn crusts from Guanshi seamount
    KNaMnCaMgFeAlPSiCuNiCo
    K1
    Na0.2621
    Mn0.3840.1631
    Ca-0.0970.3920.518*1
    Mg-0.0380.2360.3070.3011
    Fe-0.1670.321-0.579**-0.0650.2811
    Al0.3440.1240.273-0.0210.365-0.0591
    P0.314-0.1770.569*0.1820.178-0.2510.2441
    Si-0.2250.294-0.549*-0.0920.4180.940**0.048-0.3111
    Cu0.1200.0010.3270.2180.156-0.261-0.198-0.014-0.2901
    Ni0.2040.1720.529*0.0650.326-0.3100.492*0.339-0.237-0.1171
    Co0.501*0.1440.043-0.289-0.0580.032-0.0190.1470.084-0.3120.0031
    注:*在0.05水平(双侧)上显著相关, **在0.01水平(双侧)上显著相关, N=19。
    下载: 导出CSV 
    | 显示表格

    南海结壳Mn与Fe呈负相关关系,这一特征与深海大洋大多数结壳极为相似[26, 38]。由于Mn、Fe均属于海山铁锰结壳的主要组成元素,因此Mn和Fe负相关关系是由于结壳中两种元素互为消长的闭合效应引起的。管事海山结壳中Mn主要来源于最低含氧层中游离态Mn2+,而Fe来源于火山碎屑Fe和生物成因的Fe;在富氧水的作用下,形成大量混合胶体,选择性吸附水体中元素而共同沉淀于海山表面上。

    但研究区Mn、Fe与部分微量元素的相关性与大洋结壳中元素间相关性不一致[26, 38]。Cu含量很少,只有5个站点的有效数据,因此Mn与Cu相关性未明。Mn与Ni、Ca和P都呈正相关性,说明Ni主要赋存在Mn相矿物中(表 2)。而Ca与P之间只呈较弱的相关性,相关系数为0.182,崔迎春等研究得出磷酸盐化型结壳中的Ca与P相关性为0.993,而未磷酸盐化型结壳中的Ca与P相关性为0.064[39],再次证明南海管事海山铁锰结壳是未磷酸盐化型结壳。

    结壳Mn和Ca的正相关,说明Ca在本区结壳中除赋存于阳离子交换和碳酸盐相外,主要存在Mn相矿物中。管事平顶海山基座水深约4250m,南海东部生物硅含量高值区在水深3500m以下,而钙质生物高值区主要分布在水深小于3000~3500m海区[40]。Wang等得出南海深海底流(水深约3000m)呈逆时针流动,并在管事海山区存在强劲上升流[41]。管事平顶海山顶部水深为460m,采样点在1478m处,位于海山斜坡,受到上升流的影响,结壳中Mn离子容易吸附水体中溶解Ca元素,因此结壳中Ca含量较高。强劲上升流的存在造成富氧环境,导致结壳的生长速率较低。

    结壳Al/Si比值说明Si主要来自火成铝硅酸盐等碎屑,还有生物成因硅和少量石英。Conrad等研究认为太平洋北部水体溶解Si可能来源于热液喷发、表层水柱中硅藻等生物硅酸盐再矿化、深水环流系统的底层水体硅、沉积物溶解等[17]。结壳中Fe与Si呈显著正相关,说明Fe与Si为同一来源,因此Fe元素主要来自火山碎屑组的Fe,还有来自生物成因的Fe和陆源输入Fe。而火山碎屑组的Fe可能主要来自马尼拉海沟附近的火山喷发物质和海山玄武岩的风化淋漓,生物成因的Fe主要来自有机质氧化,陆源Fe主要来自风尘输入或河流溶解Fe输入。研究表明南海扩张期后(<16 Ma)的中央海盆中海山以玄武岩为主[18]。玄武岩主要成分Si和Fe元素含量都较高[42]。在南海海山铁锰结壳02上面还发现管状蠕虫遗迹,彭晓彤等研究表明,管状蠕虫管壁对成矿元素的富集具有选择性,主要从周围环境中富集Fe和Si等元素,Fe与Si等元素具有共变关系[43]。

    结壳01和02沿着生长方向其元素含量呈现细微的差别,结壳01中Mn从底部到表层呈先减少后稳定的趋势(图 5);Fe和Si呈先增加后稳定的趋势:结壳02中Mn从底部到表层趋势变化并不明显,而Fe和Si也呈现稳定的趋势(图 5),即9Ma(点19)至5.5Ma(点12)南海水体中Mn含量呈下降趋势,Fe和Si相对增加说明管事海山周围火山活动减弱,5.5Ma来结壳吸附南海的水体中Mn,Fe和Si元素相对稳定,说明火山活动趋于稳定。

    综上所述,南海管事海山铁锰结壳是在海洋环境下较长地质时期(最长15Ma)形成的缓慢沉积物质。由于海山结壳矿物主要是水羟锰矿,因此结壳形成于富氧环境中。结壳物质主要来源于马尼拉海沟周围火山活动、海山玄武岩的风化淋漓,还有生源物质和少量陆源物质。受上升流影响,南海管事海山结壳是在富氧环境中选择性吸附水体中溶解化学元素缓慢沉积在海山表面形成的物质。

    (1) 南海管事海山两块铁锰结壳矿物均以水羟锰矿为主,含有少量的针铁矿,碎屑矿物以石英和长石为主。铁锰结壳表层含有管状蠕虫遗迹,显微结构均呈现条带状分布,有10~15μm长的空隙和0.5μm直径大小的孔洞,可能为生物遗迹。

    (2) 南海海山结壳与大洋结壳相比,Mn含量较高,可能与马尼拉海沟附近的火山喷发物质有关。但Cu、Co和Ni等含量更低,可能与边缘海沉积速率高或有机络合物造成水体中微量元素减少有关。

    (3) 结壳矿物组成及元素比值表明结壳主要是水成的,但未发生明显磷酸盐化作用。元素相关性表明Mn主要来自于南海扩张停止后火山喷发形成溶解Mn;而Fe与Si元素来自火山碎屑物质、生源物质和少量陆源物质,还可能受到管状蠕虫吸附的影响。南海管事海山结壳是在富氧环境中上升流作用下选择性吸附水体中溶解化学元素缓慢沉积而成,结壳中元素含量随时间变化趋势反映了南海的古环境变化。

  • 图  1   南黄海盆地构造单元[53]

    F1:郯庐断裂带,F2:五莲-青岛-蓉城断裂,F3:连云港-千里岩断裂,F4:嘉山-响水断裂,F5:苏州-昆山断裂,F6:朝鲜西部断裂,F7:Honam断裂,F8:济州岛南缘断裂,F9:江绍断裂。

    Figure  1.   The tectonic map of the South Yellow Sea Basin (modified from reference[53])

    图  2   沉积相、岩性和地震解释剖面综合分析

    a. 南黄海晚石炭世船山期沉积相,红色框为本文研究区;b. 石炭世—二叠世岩性简化柱状图;c. 地震解释剖面(黑色箭头分别表示剖面的位置和石炭系—下二叠统对应的岩性)。

    Figure  2.   Integrated profiles of sedimentary facies,lithology and seismic interpretation

    a. The sedimentary facies map of the Late Carboniferous Chuanshan period in the South Yellow Sea, the red border is the research area of this paper;b. Simplified lithologic column charts from Carboniferous to Permian; c. seismic interpretation profile (Black arrows indicate the location of the profile and the corresponding lithology of the Carboniferous- Lower Permian).

    图  3   CSDP-2井上石炭统船山组生物碎屑灰岩柱状图和岩心照片

    a. 船山组岩心柱状图,箭头表示岩样分析位置;b. 1 730.4 m生物碎屑泥晶灰岩;c. 1 757.03 m生物碎屑亮晶灰岩充填孔;d. 1 777.83 m生屑泥晶灰岩;e. 1 819.5 m灰岩晶间孔。

    Figure  3.   The lithologic column and core photographs of upper Carboniferous Chuanshan Formation of Well CSDP-2

    a. Lithologic Column of the Chuanshan Formation, arrows indicate the location of the samples analyzed; b. Bioclastic micritic limestone at depth of 1 730.4 m; c. Bioclastic sparry limestone filled pore in the depth of 1 757.03 m; d. Bioclastic micrite limestone in the depth of 1 777.83 m;e. Limestone intergranular pore in the depth of 1 819.5 m.

    图  4   CZ12-1-1井测井曲线和地震响应特征

    Figure  4.   Logging and seismic characteristic of Well CZ12-1-1

    图  5   CSDP-2井岩性敏感参数交汇分析

    Figure  5.   Lithology- sensitive parameters from Well CSDP-2

    图  6   CSDP-2井物性敏感参数交汇分析

    Figure  6.   Property sensitive parameters from Well CSDP-2

    图  7   CSDP-2井石炭系—下二叠统生物碎屑灰岩段的λρ与孔隙度拟合

    Figure  7.   Fitting relationship between λρ and porosity of bioclastic limestone from Carboniferous to Lower Permian of Well CSDP-2

    图  8   南黄海叠前同时反演储层预测技术流程

    Figure  8.   Flow chart of pre-stack simultaneous inversion for reservoir prediction

    图  9   CSDP-2井合成地震记录及提取子波(a. 全叠加数据合成地震记录,b. 远、中、近叠加道集合成地震记录, c. 不同叠加道集提取的近、中、远角度子波,d. 不同角度提取子波的能量谱 )

    Figure  9.   The synthetic seismogram and extract wavelets of the Well CSDP-2(a. synthetic seismogram from full stack seismic, b. synthetic seismogram from far-mid-near stack seismic, c. wavelets extracted from far-mid-near synthetic seismogram, d. energy spectrum of wavelets extracted from different angles)

    图  10   叠前同时反演结果

    a. 纵波阻抗剖面代表岩性分布,b. λρ剖面代表物性优劣,c. 下石炭船山组物性切片,d. 孔隙度剖面。

    Figure  10.   Pre-stack simultaneous inversion results

    a. Longitudinal impedance profile-representing lithologic distribution; b. λρ profile-representing physical properties; c. Physical properties section of lower Carboniferous Chuanshan Formation; d. porosity profile.

  • [1] 罗平, 张静, 刘伟, 等. 中国海相碳酸盐岩油气储层基本特征[J]. 地学前缘, 2008, 15(1):36-50. [LUO Ping, ZHANG Jing, LIU Wei, et al. Characteristics of marine carbonate hydrocarbon reservoirs in China [J]. Earth Science Frontiers, 2008, 15(1): 36-50. doi: 10.3321/j.issn:1005-2321.2008.01.004
    [2] 胡必规. 下扬子区中、古生界油气前景[J]. 上海地质, 1988(2):21-27. [HU Bigui. Oil and gas future of Mesozoic and Palaeozoic at the Low Yangtze area [J]. Shanghai Geology, 1988(2): 21-27.
    [3] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705. [CAI Laixing, GUO Xingwei, XU Zhaohui, et al. Depositional environment of Upper Paleozoic in the central uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.
    [4] 袁勇, 陈建文, 梁杰, 等. 海陆对比看南黄海海相中—古生界的生储盖组合特征[J]. 石油实验地质, 2017, 39(2):195-202. [YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Source-reservoir-seal assemblage of marine Mesozoic-Paleozoic in South Yellow Sea Basin by land-ocean comparison [J]. Petroleum Geology & Experiment, 2017, 39(2): 195-202. doi: 10.11781/sysydz201702195
    [5] 冯志强, 陈春峰, 姚永坚, 等. 南黄海北部前陆盆地的构造演化与油气突破[J]. 地学前缘, 2008, 15(6):219-231. [FENG Zhiqiang, CHEN Chunfeng, YAO Yongjian, et al. Tectonic evolution and exploration target of the northern Foreland Basin of the South Yellow Sea [J]. Earth Science Frontiers, 2008, 15(6): 219-231. doi: 10.3321/j.issn:1005-2321.2008.06.029
    [6] 谢天峰. 南黄海重磁资料处理与断裂系统研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2008.

    XIE Tianfeng. Processing on gravity and magnetic data of South Yellow Sea and research on fracture system[D]. Master Dissertation of Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2008.

    [7] 陈建文, 施剑, 刘俊, 等. 南黄海海相中—古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8. [CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic geological conditions of the marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.
    [8] 蔡乾忠. 横贯黄海的中朝造山带与北、南黄海成盆成烃关系[J]. 石油与天然气地质, 2005, 26(2):185-192, 196. [CAI Qianzhong. Relationship between Sino-Korean orogenic belt traversing Yellow Sea and basin evolution and hydrocarbon generation in North and South Yellow Sea Basins [J]. Oil & Gas Geology, 2005, 26(2): 185-192, 196. doi: 10.3321/j.issn:0253-9985.2005.02.010
    [9] 冯志强, 姚永坚, 曾祥辉, 等. 对黄海中、古生界地质构造及油气远景的新认识[J]. 中国海上油气(地质), 2002, 16(6):367-373. [FENG Zhiqiang, YAO Yongjian, ZENG Xianghui, et al. New understanding of Mesozoic-Paleozoic tectonics and hydrocarbon potential in Yellow Sea [J]. China Offshore Oil and Gas (Geology), 2002, 16(6): 367-373.
    [10]

    Chen J W, Xu M, Lei B H, et al. Prospective prediction and exploration situation of marine Mesozoic-Paleozoic oil and gas in the South Yellow Sea [J]. China Geology, 2019(1): 67-84.

    [11] 陈建文, 梁杰, 张银国, 等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质, 2019, 39(6):1-29. [CHEN Jianwen, LIANG Jie, ZHANG Yinguo, et al. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China sea [J]. Marine Geology & Quaternary Geology, 2019, 39(6): 1-29.
    [12] 张训华, 杨金玉, 李刚, 等. 南黄海盆地基底及海相中、古生界地层分布特征[J]. 地球物理学报, 2014, 57(12):4041-4051. [ZHANG Xunhua, YANG Jinyu, LI Gang, et al. Basement structure and distribution of Mesozoic- Paleozoic marine strata in the South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2014, 57(12): 4041-4051. doi: 10.6038/cjg20141216
    [13] 吴淑玉, 陈建文, 梁杰, 等. 南黄海海相中—古生界碳酸盐岩储层特征及成藏模式:对比四川盆地和苏北盆地[J]. 海洋地质前沿, 2016, 32(1):13-21. [WU Shuyu, CHEN Jianwen, LIANG Jie, et al. Characteristics of Mesozoic-Palaeozoic Marine carbonate reservoir in the South Yellow Sea Basin and hydrocarbon accumulation: comparison between the Sichuan Basin and the Subei Basin [J]. Marine Geology Frontiers, 2016, 32(1): 13-21.
    [14] 王明健, 张训华, 王安国, 等. 南黄海盆地南部坳陷二叠系龙潭组—大隆组沉积相[J]. 海洋地质前沿, 2014, 30(7):46-50, 65. [WANG Mingjian, ZHANG Xunhua, WANG Anguo, et al. Depositional facies of Longtan and Dalong formations in the southern Depression of South Yellow Sea Basin [J]. Marine Geology Frontiers, 2014, 30(7): 46-50, 65.
    [15] 刘金庆, 许红, 孙晶, 等. 下扬子海区南黄海盆地油气勘探的几点认识[J]. 海洋地质前沿, 2012, 28(4):30-37. [LIU Jinqing, XU Hong, SUN Jing, et al. A discussion on oil and gas potential in the South Yellow Sea Basin of Lower Yangtze Sea area [J]. Marine Geology Frontiers, 2012, 28(4): 30-37.
    [16] 陈建文, 张异彪, 刘俊, 等. 南黄海“高富强”地震勘查技术及其应用[J]. 海洋地质前沿, 2016, 32(10):9-17. [CHEN Jianwen, ZHANG Yibiao, LIU Jun, et al. The "HRS" seismic exploration technology and its application in the South Yellow Sea Basin [J]. Marine geology Frontiers, 2016, 32(10): 9-17.
    [17] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23. [CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23.
    [18]

    Yuan Y, Chen J W, LIANG J, et al. Hydrocarbon Geological Conditions and Exploration Potential of Mesozoic-Paleozoic Marine Strata in the South Yellow Sea Basin [J]. Journal of Ocean University of China, 2019, 18(6): 1329-1343. doi: 10.1007/s11802-019-3853-2

    [19] 罗开平, 黄泽光, 蒋小琼, 等. 川东北地区优质碳酸盐岩储层改造机制探讨[J]. 石油实验地质, 2011, 33(6):559-563. [LUO Kaiping, HUANG Zeguang, JIANG Xiaoqiong, et al. Reformation mechanism of high-quality carbonate reservoirs in northeastern Sichuan Basin [J]. Petroleum Geology & Experiment, 2011, 33(6): 559-563. doi: 10.3969/j.issn.1001-6112.2011.06.001
    [20] 吴熙纯, 王权锋, 陈斯忠, 等. 从世界第三纪生物礁的油气储集潜能看中国南海生物礁储层发育和分布的控制因素[J]. 中国海上油气, 2011, 23(4):218-224. [WU Xichun, WANG Quanfeng, CHEN Sizhong, et al. Considering controls on development and distribution of reef reservoirs in South China Sea from the hydrocarbon accumulation potential of tertiary reefs in the world [J]. China Offshore Oil and Gas, 2011, 23(4): 218-224. doi: 10.3969/j.issn.1673-1506.2011.04.002
    [21] 杨雪飞, 王兴志, 杨跃明, 等. 川中地区下寒武统龙王庙组白云岩储层成岩作用[J]. 地质科技情报, 2015, 34(1):35-41. [YANG Xuefei, WANG Xingzhi, YANG Yueming, et al. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in Central Sichuan Basin [J]. Geological Science and Technology Information, 2015, 34(1): 35-41.
    [22] 杜金虎, 邹才能, 徐春春, 等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3):268-277. [DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of Central Sichuan Paleo-uplift, Sichuan Basin [J]. Petroleum Exploration and Development, 2014, 41(3): 268-277. doi: 10.11698/PED.2014.03.02
    [23] 高刚, 贺振华, 黄德济, 等. 川东北地区碳酸盐岩储层孔隙度预测方法研究[J]. 科学技术与工程, 2013, 13(10):2635-2641. [GAO Gang, HE Zhenhua, HUANG Deji, et al. Research on predicting the porosity of carbonate reservoir in the Northeast Area of Sichuan [J]. Science Technology and Engineering, 2013, 13(10): 2635-2641. doi: 10.3969/j.issn.1671-1815.2013.10.004
    [24] 高刚. 基于碳酸盐岩孔隙结构预测孔隙度方法研究[J]. 地球物理学进展, 2013, 28(2):920-927. [GAO Gang. Method for predicting the porosity based on the pore structure of carbonate [J]. Progress in Geophysics, 2013, 28(2): 920-927. doi: 10.6038/pg20130245
    [25] 雷芬丽, 贺振华, 文晓涛, 等. ZH区碳酸盐岩储层孔隙度预测方法研究[J]. 石油天然气学报(江汉石油学院学报), 2010, 32(3):236-239. [LEI Fenli, HE Zhenhua, WEN Xiaotao, et al. Study on prediction method of porosity of carbonate reservoir in ZH area [J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2010, 32(3): 236-239.
    [26] 代双河, 田兵, 韩宇春. 基质孔隙型碳酸盐岩储层预测技术及应用[J]. 石油地球物理勘探, 2006, 41(6):681-686. [DAI Shuanghe, TIAN Bing, HAN Yuchun. Prediction of matrix porous carbonate reservoir and application [J]. Oil Geophysical Prospecting, 2006, 41(6): 681-686. doi: 10.3321/j.issn:1000-7210.2006.06.014
    [27] 刘欣欣, 印兴耀, 张峰. 一种碳酸盐岩储层横波速度估算方法[J]. 中国石油大学学报(自然科学版), 2013, 37(1):42-49. [LIU Xinxin, YIN Xingyao, ZHANG Feng. S-wave velocity estimation method in carbonate reservoir [J]. Journal of China University of Petroleum, 2013, 37(1): 42-49.
    [28] 包世海, 张秀平, 杨玉凤, 等. 川东北部飞仙关组鲕滩储层含气性识别方法[J]. 天然气工业, 2003, 23(S1):35-37. [BAO Shihai, ZHANG Xiuping, YANG Yufeng, et al. Gas potential identification of the oolitic beach reservoirs in Feixianguan Formation in the North part of East Sichuan [J]. Natural Gas Industry, 2003, 23(S1): 35-37.
    [29] 谢芳, 李志荣, 肖富森, 等. 四川盆地东北部飞仙关组鲕滩储层地震预测技术[J]. 天然气工业, 2004, 24(1):34-36. [XIE Fang, LI Zhirong, XIAO Fuseng, et al. Prediction technique for the oolitic beach reservoir of Feixianguan formation in the Northeast of Sichuan Basin by using seismic data [J]. Natural Gas Industry, 2004, 24(1): 34-36. doi: 10.3321/j.issn:1000-0976.2004.01.011
    [30] 马灵伟, 顾汉明, 赵迎月, 等. 应用随机介质正演模拟刻画深水区台缘礁碳酸盐岩储层[J]. 石油地球物理勘探, 2013, 48(4):583-590. [MA Lingwei, GU Hanming, ZHAO Yingyue, et al. Sculpturing platform-edge reef carbonate reservoirs in deep-water with random media forward modeling [J]. Oil Geophysical Prospecting, 2013, 48(4): 583-590.
    [31] 汪晴川, 李瑞, 蒲平文, 等. 川东长兴组生物礁分布地震识别技术研究[J]. 物探化探计算技术, 2008, 30(4):282-287. [WANG Qingchuan, LI Rui, PU Pingwen, et al. Research of the Changxing organic reef distributed and seismic recognition techniques, East Sichuan Basin [J]. Computing Techniques for Geophysical and Geochemical Exploration, 2008, 30(4): 282-287. doi: 10.3969/j.issn.1001-1749.2008.04.005
    [32] 蒋晓迪, 朱仕军, 张光荣, 等. 四川盆地蜀南地区茅口组储层预测研究[J]. 天然气勘探与开发, 2014, 37(1):37-40, 44. [JIANG Xiaodi, ZHU Shijun, ZHANG Guangrong, et al. Reservoir prediction of Maokou Formation, southern Sichuan Basin [J]. Natural Gas Exploration & Development, 2014, 37(1): 37-40, 44. doi: 10.3969/j.issn.1673-3177.2014.01.009
    [33] 刘国萍, 游瑜春, 冯琼, 等. 元坝长兴组生物礁储层精细雕刻技术[J]. 石油地球物理勘探, 2017, 52(3):583-590. [LIU Guoping, YOU Yuchun, FENG Qiong, et al. Fine depict of reef reservoirs in Changxing Formation, Yuanba area [J]. Oil Geophysical Prospecting, 2017, 52(3): 583-590.
    [34] 马永生, 郭旭升, 凡睿. 川东北普光气田飞仙关组鲕滩储集层预测[J]. 石油勘探与开发, 2005, 32(4):60-64. [MA Yongsheng, GUO Xusheng, FAN Rui. Reservoir prediction of Feixianguan Formation in Puguang gas field, Northeast Sichuan province [J]. Petroleum Exploration and Development, 2005, 32(4): 60-64. doi: 10.3321/j.issn:1000-0747.2005.04.010
    [35] 王伟, 胡明毅, 胡忠贵, 等. 建南地区长兴组碳酸盐岩礁滩储层波阻抗反演预测[J]. 科学技术与工程, 2013, 13(34):10272-10278, 10288. [WANG Wei, HU Mingyi, HU Zhonggui, et al. The prediction of wave impedance inversion in carbonate reef flat reservoir of Changxing Formation in Jiannan area [J]. Science Technology and Engineering, 2013, 13(34): 10272-10278, 10288. doi: 10.3969/j.issn.1671-1815.2013.34.032
    [36] 杜浩坤, 蔡其新, 肖斌, 等. 普光地区中三叠统雷口坡组顶部储层分布预测[J]. 石油地球物理勘探, 2017, 52(6):1269-1279. [DU Haokun, CAI Qixin, XIAO Bin, et al. Reservoir distribution prediction on the top of Middle Triassic Leikoupo Formation in Puguang area [J]. Oil Geophysical Prospecting, 2017, 52(6): 1269-1279.
    [37] 靳秀菊, 侯加根, 刘红磊, 等. 普光气田礁滩相复杂孔隙类型储集层渗透率地震预测方法[J]. 古地理学报, 2016, 18(2):275-284. [JIN Xiuju, HOU Jiagen, LIU Honglei, et al. Seismic prediction method of permeability of reef bank reservoir with complex pore types in Puguang gasfield [J]. Journal of Palaeogeography, 2016, 18(2): 275-284. doi: 10.7605/gdlxb.2016.02.021
    [38] 吕其彪, 吴清杰, 毕有益. 高分辨率地震解释预测礁滩相储集层[J]. 新疆石油地质, 2012, 33(5):557-559. [LV Qibiao, WU Qingjie, BI Youyi. Prediction of reep-flat reservoir using high resolution seismic interpretation [J]. Xinjiang Petroleum Geology, 2012, 33(5): 557-559.
    [39] 张光荣, 张旋, 喻颐, 等. 四川盆地深层海相碳酸盐岩缝洞型储层预测关键技术——以SN地区茅口组为例[J]. 天然气地球科学, 2017, 28(8):1235-1242. [ZHANG Guangrong, ZHANG Xuan, YU Yi, et al. Key techniques for prediction of fractured carbonate reservoirs in deep marine carbonate rocks in Sichuan Basin: a case study of the Maokou Formation in SN area [J]. Natural Gas Geoscience, 2017, 28(8): 1235-1242.
    [40] 王浩, 马如辉, 陈志强, 等. 川东北元坝气田长兴组生物礁精细刻画及储层预测[J]. 长江大学学报: 自然科学版, 2019, 16(2):21-26. [WANG Hao, MA Ruhui, CHEN Zhiqiang, et al. Fine characterization of reefs and reservoir prediction of Changxing Formation in Yuanba gas field of northeastern Sichuan Basin [J]. Journal of Yangtze University: Natural Science Edition, 2019, 16(2): 21-26.
    [41] 冯凯, 陈祖庆, 查朝阳. 基于叠前地震资料预测碳酸盐岩复合岩性油气藏——以川东飞仙关组气藏储层为例[J]. 大庆石油地质与开发, 2006, 25(5):96-99. [FENG Kai, CHEN Zuqing, ZHA Chaoyang. Carbonate complex lithologicl hydrocarbon reservoir forecast based on pre-stack seismic data- with gas reservoir in Feixianguan formation in East Sichuan as an example [J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(5): 96-99. doi: 10.3969/j.issn.1000-3754.2006.05.027
    [42] 陈祖庆, 屈大鹏, 缪志伟. 元坝地区长兴组超深层礁滩储层地震预测[J]. 中国西部科技, 2015, 14(7):20-26. [CHEN Zuqing, QU Dapeng, MIAO Zhiwei. Seismic prediction of deep reef-bank reservoirs in the Changxing Formation in the YB area [J]. Science and Technology of West China, 2015, 14(7): 20-26. doi: 10.3969/j.issn.1671-6396.2015.07.007
    [43] 李金磊, 陈祖庆, 王良军, 等. 相控技术在低勘探区生屑滩相储层预测中的应用[J]. 岩性油气藏, 2017, 29(3):110-117. [LI Jinlei, CHEN Zuqing, WANG Liangjun, et al. Application of facies-controlled technique to bioclastic shoal reservoir prediction in less well zones [J]. Lithologic Reservoirs, 2017, 29(3): 110-117. doi: 10.3969/j.issn.1673-8926.2017.03.013
    [44] 纪学武, 张延庆, 臧殿光, 等. 四川龙岗西区碳酸盐岩礁、滩体识别技术[J]. 石油地球物理勘探, 2012, 47(2):309-314. [JI Xuewu, ZHANG Yanqing, ZANG Dianguang, et al. Carbonate reef- shoal reservoir identification in western Longgang, Sichuan Basin [J]. Oil Geophysical Prospecting, 2012, 47(2): 309-314.
    [45] 盛秋红, 张金明. 基于反褶积短时傅里叶变换的薄储层流体识别——以元坝为例[J]. 科学技术与工程, 2016, 16(15):41-46. [SHENG Qiuhong, ZHANG Jinming. Identification of fluid based on deconvolution short-time Fourier transform- taking Yuanba area as an example [J]. Science Technology and Engineering, 2016, 16(15): 41-46. doi: 10.3969/j.issn.1671-1815.2016.15.007
    [46] 黄花香, 邓瑛, 吴战培, 等. 吸收系数反演在川东碳酸盐岩储层预测中的应用[J]. 石油物探, 2003, 42(1):86-88. [HUANG Huaxiang, DENG Ying, WU Zhanpei, et al. Application of absorption coefficient inversion in prediction of Carbonate reservoir in the East of Sichuan [J]. Geophysical Prospecting for Petroleum, 2003, 42(1): 86-88. doi: 10.3969/j.issn.1000-1441.2003.01.019
    [47] 陈勇, 陈洪德, 关达, 等. 地震技术在碳酸盐岩生物礁油气储层流体识别中的应用[J]. 科学技术与工程, 2013, 13(21):6208-6215. [CHEN Yong, CHEN Hongde, GUAN Da, et al. The application of seismic technology in fluid discrimination of Carbonation reef oil and gas reservoir [J]. Science Technology and Engineering, 2013, 13(21): 6208-6215. doi: 10.3969/j.issn.1671-1815.2013.21.029
    [48] 杨子川, 高利君, 李海英. 匹配追踪时频分析技术在塔河油田缝洞型储层预测中的应用[J]. 地质科技情报, 2017, 36(3):293-298. [YANG Zichuan, GAO Lijun, LI Haiying. Match pursuit time-frequency analysis technology in the prediction of fractured reservoirs in Tahe oilfield [J]. Geological Science and Technology Information, 2017, 36(3): 293-298.
    [49] 吴淑玉, 陈建文, 刘俊, 等. 南黄海横波测井曲线预测在叠前反演中的应用[J]. 海洋地质前沿, 2016, 32(10):51-59. [WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of S-wave well longing predicted for prestack inversion in the South Yellow Sea Basin [J]. Marine geology Frontiers, 2016, 32(10): 51-59.
    [50] 吴淑玉, 刘俊, 肖国林, 等. 地震多属性预测技术在南黄海二叠系至三叠系沉积分析中的应用[J]. 海洋地质与第四纪地质, 2011, 31(5):109-116. [WU Shuyu, LIU Jun, XIAO Guolin, et al. Application of seismic attribute analysis to The Permian-Triassic Deposits in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(5): 109-116.
    [51] 袁勇, 陈建文, 梁杰, 等. 应用多属性聚类分析方法研究南黄海盆地二叠系沉积特征[J]. 海洋地质前沿, 2016, 32(10):44-50. [YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Application of multiple attributes cluster analysis to Permian Deposits in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 44-50.
    [52] 吴淑玉, 陈建文, 刘俊, 等. 叠前同时反演技术在南黄海崂山隆起储层预测中的应用[J]. 海洋地质与第四纪地质, 2018, 38(3):162-174. [WU Shuyu, CHEN Jianwen, LIU Jun, et al. Application of pre-stack simultaneous inversion in the reservoir prediction in South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 162-174.
    [53] 刘俊, 陈建文, 吴淑玉, 等. 南黄海崂山隆起石炭系-下二叠统海相碳酸盐岩叠前三参数反演储层预测[J]. 海洋地质与第四纪地质, 2018, 38(3):186-198. [LIU Jun, CHEN Jianwen, WU Shuyu, et al. Prestack three-term seismic inversion for prediction of Carboniferous-Lower Permian carbonate reservoir on the Central Uplift of South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 186-198.
    [54]

    Wu S Y, Liu J, Chen J W, et al. Pre-stack simultaneous inversion in the marine carbonate reservoir prediction of the South Yellow Sea Basin, China [J]. Acta Geologica Sinica, 2019, 93(S2): 420-421.

    [55] 张晓华, 张训华, 吴志强, 等. 谱分解在南黄海中部隆起中-古生界储层预测中的应用[J]. 海洋学报, 2017, 39(7):102-109. [ZHANG Xiaohua, ZHANG Xunhua, WU Zhiqiang, et al. Application of spectral decomposition to detect Mesozoic- Paleozoic reservoir on the Central uplift of the South Yellow Sea Basin [J]. Acta Oceanologica Sinica, 2017, 39(7): 102-109.
    [56] 王建强, 陈建文, 梁杰, 等. 频谱分解技术在南黄海崂山隆起的应用[J]. 海洋地质前沿, 2016, 32(10):38-43. [WANG Jianqiang, CHEN Jianwen, LIANG Jie, et al. Application of spectrum decomposition to the Laoshan uplift, South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(10): 38-43.
    [57] 张训华, 郭兴伟, 吴志强, 等. 南黄海盆地中部隆起CSDP-2井初步成果及其地质意义[J]. 地球物理学报, 2019, 62(1):197-218. [ZHANG Xunhua, GUO Xingwei, WU Zhiqiang, et al. Preliminary results and geological significance of well CSDP-2 in the Central Uplift of South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2019, 62(1): 197-218. doi: 10.6038/cjg2019L0233
    [58] 郭兴伟, 张训华, 吴志强, 等. 大陆架科学钻探CSDP-2井科学目标及初步成果[J]. 吉林大学学报: 地球科学版, 2019, 49(1):1-12. [GUO Xingwei, ZHANG Xunhua, WU Zhiqiang, et al. Scientific objectives and preliminary progresses of CSDP-2 well in continental shelf drilling program [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 1-12.
    [59] 陈建文, 张银国, 欧光习, 等. 南黄海古生界油气多期成藏的包体证据[J]. 海洋地质前沿, 2018, 34(2):69-70. [CHEN Jianwen, ZHANG Yinguo, OU Guangxi, et al. The inclusion evidence of multi-phase hydrocarbon accumulation in the South Yellow sea [J]. Marine Geology Frontiers, 2018, 34(2): 69-70.
    [60] 陈建文. 南黄海崂山隆起海相中—古生界发现多个大型圈闭构造[J]. 海洋地质前沿, 2016, 32(4):69-70. [CHEN Jianwen. Many large traps are found in the Mesozoic-Paleozoic marine facies of Laoshan Uplift in the South Yellow Sea [J]. Marine Geology Frontiers, 2016, 32(4): 69-70.
    [61]

    Liang J, Chen J W, Zhang Y G, et al. New evidence of Silurian hydrocarbon accumulation is discovered by fluid inclusion analysis in the South Yellow Sea Basin [J]. China Geology, 2019, 2(1): 110-111. doi: 10.31035/cg2018077

    [62] 李双应, 金福全. 下扬子盆地石炭纪的古地理[J]. 合肥工业大学学报: 自然科学版, 1994, 17(3):167-174. [LI Shuangying, JIN Fuquan. Carboniferous paleography in the Lower Yangzi Basin [J]. Journal of Hefei University of Technology, 1994, 17(3): 167-174.
    [63] 冯增昭, 何幼斌, 吴胜和. 中下扬子地区二叠纪岩相古地理[J]. 沉积学报, 1993, 11(3):13-24. [FENG Zengzhao, HE Youbin, WU Shenghe. Listhofacies paleogeography of Permian Middle and Lower Yangtze region [J]. Acta Sedimentologica Sinica, 1993, 11(3): 13-24.
    [64] 王成善, 李祥辉, 陈洪德, 等. 中国南方二叠纪海平面变化及升降事件[J]. 沉积学报, 1999, 17(4):536-541. [WANG Chengshan, LI Xianghui, CHEN Hongde, et al. Permian sea- level changes and rising- falling events in South China [J]. Acta Sedimentologica Sinica, 1999, 17(4): 536-541.
    [65] 陈华成, 王云慧, 严幼因. 江苏及安徽南部早石炭世地层[J]. 地层学杂志, 1979, 3(4):242-250. [CHEN Huacheng, WANG Yunhui, YAN Youyin. Early Carboniferous strata in the South of Jiangsu and Anhui [J]. Acta Stratigraphica Sinica, 1979, 3(4): 242-250.
    [66] 胡芬. 南黄海盆地海相中、古生界油气资源潜力研究[J]. 海洋石油, 2010, 30(3):1-8, 77. [HU Fen. Hydrocarbon resources potential study in Mesozoic-Palaeozoic marine strata in the South Yellow Sea Basin [J]. Offshore Oil, 2010, 30(3): 1-8, 77. doi: 10.3969/j.issn.1008-2336.2010.03.001
    [67] 张雨琦, 郭萌萌, 张志鹏, 等. 川东地区石炭系碳酸盐岩储层成因机理及主控因素研究[J]. 地球科学前沿, 2014, 4(4):189-197. [ZHANG Yuqi, GUO Mengmeng, ZHANG Zhipeng, et al. Genetic mechanism and main control factors of Carboniferous carbonate reservoirs in eastern Sichuan Basin [J]. Advances in Geosciences, 2014, 4(4): 189-197. doi: 10.12677/AG.2014.44023
    [68] 高小惠, 张训华, 蔡来星, 等. 南黄海盆地中部隆起CSDP-2井志留系——石炭系岩石学特征及其沉积相[J]. 吉林大学学报: 地球科学版, 2019, 49(1):53-64. [GAO Xiaohui, ZHANG Xunhua, CAI Laixing, et al. Silurian-Carboniferous petrographic features and depositional facies in the well CSDP-2 in the Central Uplift of the South Yellow Sea Basin [J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1): 53-64.
    [69] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中-古生界沉积相及烃源岩特征——以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046. [CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in central uplift of South Yellow Sea: a case study of CSDP-2 coring well [J]. Journal of Jilin University: Earth Science Edition, 2017, 47(4): 1030-1046.
    [70] 王正和, 郭彤楼, 谭钦银, 等. 四川盆地东北部长兴组-飞仙关组各沉积相带储层特征[J]. 石油与天然气地质, 2011, 32(1):56-63. [WANG Zhenghe, GUO Tonglou, TAN Qinyin, et al. Reservoir characteristics of different sedimentary facies in the Changxing and Feixianguan Formations, Northeast of the Sichuan Basin [J]. Oil & Gas Geology, 2011, 32(1): 56-63. doi: 10.11743/ogg20110107
    [71] 李昌峰, 侯明才, 张小青, 等. 川东北元坝地区上二叠统长兴组优质储层形成机制[J]. 地质力学学报, 2015, 21(2):278-289. [LI Changfeng, HOU Mingcai, ZHANG Xiaoqing, et al. Formation mechanism of high-quality reservoirs in the Upper Permian Changxing Formation in Yuanba gas field, northeastern Sichuan Basin [J]. Journal of Geomechanics, 2015, 21(2): 278-289. doi: 10.3969/j.issn.1006-6616.2015.02.018
    [72] 万晓明, 梁劲, 梁金强, 等. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3):438-444. [WAN Xiaoming, LIANG Jing, LIANG Jinqiang, et al. The application of post-stack impedance inversion without well to the prediction of gas hydrate distribution in T study area [J]. Geophysical and Geochemical Exploration, 2016, 40(3): 438-444. doi: 10.11720/wtyht.2016.3.2
    [73] 张江华, 林承焰, 惠俊刚, 等. 影响约束地震反演品质的因素分析[J]. 西北大学学报: 自然科学版, 2008, 38(4):627-630. [ZHANG Jianghua, LIN Chengyan, HUI Jungang, et al. Analysis on factors affecting quality of logging constraint inversion [J]. Journal of Northwest University: Natural Science Edition, 2008, 38(4): 627-630.
    [74] 陈春峰, 施剑, 徐东浩, 等. 南黄海崂山隆起形成演化及对油气成藏的影响[J]. 海洋地质与第四纪地质, 2018, 38(3):55-65. [CHEN Chunfeng, SHI Jian, XU Donghao, et al. Formation and tectonic evolution of Laoshan Uplift of South Yellow Sea Basin and its effect on hydrocarbon accumulation [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 55-65.
  • 期刊类型引用(2)

    1. 周娇,蔡鹏捷,杨楚鹏,李学杰,高红芳,蔡观强,周建厚,杨天邦. 南海东部次海盆海山链多金属结核(壳)地球化学特征及成因. 地球科学. 2022(07): 2586-2601 . 百度学术
    2. 石学法,符亚洲,李兵,黄牧,任向文,刘季花,于淼,李传顺. 我国深海矿产研究:进展与发现(2011—2020). 矿物岩石地球化学通报. 2021(02): 305-318+517 . 百度学术

    其他类型引用(0)

图(10)
计量
  • 文章访问数:  2567
  • HTML全文浏览量:  566
  • PDF下载量:  30
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-21
  • 网络出版日期:  2020-10-20
  • 刊出日期:  2020-09-30

目录

/

返回文章
返回