珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据

魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊

魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊. 珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据[J]. 海洋地质与第四纪地质, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601
引用本文: 魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊. 珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据[J]. 海洋地质与第四纪地质, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601
WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601
Citation: WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601

珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据

基金项目: 海南省自然科学基金“三沙市永兴岛东部海底滑坡类型分布和成因探讨”(418QN306);“海底透视”创新团队建设项目“南海全新世珊瑚礁高分辨率地球化学研究”(MGQNLM-TD201703);青岛海洋科学与技术国家实验室鳌山科技创新计划“基于‘蛟龙号’深潜的南海若干关键地质与生物过程研究”(2016ASK05);国家自然科学基金“华南新元古代盖帽白云岩沉积微相的镁硅同位素研究”(41873006)
详细信息
    作者简介:

    魏浩天(1994―),男,硕士研究生,地质工程专业,E-mail: 13203815640@163.com

    通讯作者:

    赵彦彦(1978—),女,教授,从事沉积岩石学及地球化学研究,E-mail: zhaoyanyan@ouc.edu.cn

  • 中图分类号: P736.4

Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea

  • 摘要: 碳酸盐岩中稀土元素的含量、配分模式及元素异常记录了周围沉积水体的特征,能够很好地指示古海洋及沉积环境。珊瑚具有的高分辨率和稀土元素的高稳定性的特点,能够忠实地记录周围海水的地球化学特征。本文以南海西沙宣德环礁永兴岛142~84 ka发育的珊瑚礁为研究对象,通过主微量元素含量,尤其是稀土元素含量及其配分图解,判断珊瑚礁形成时周围水体的特征。结果表明自142 ka以来,永兴岛大部分珊瑚礁具有正常海相碳酸盐岩的稀土配分特征,表现为LREE亏损,Ce负异常及高的Y/Ho比值,表明周围水体属于开阔的浅海,但是位于23 m处(年龄为114 ka)的滨珊瑚骨骼格架除了有正常海相碳酸盐岩的特征外,还具有明显的Eu正异常,这表明其形成时有热液流体的加入。经过模型计算,认为在滨珊瑚骨骼格架的生长阶段,至少有0.1%的热液加入周围的海水中。通过资料查询和年龄对比,认为这些热液可能与高尖石岛或海南岛火山活动有关。
    Abstract: The contents, distribution pattern and elemental anomalies of rare earth elements in carbonates are the records of surrounding water. Corals are characterized by high resolution and high stability of rare earth elements and may faithfully record the geochemical characteristics of the surrounding seawater. In this paper, we analyzed the coral reefs from 142 to 84 ka collected from the Yongxing Island of the Xuande Atoll of Xisha Islands, South China Sea. Trace element contents, especially the rare earth element contents and their distribution patterns are used in this paper to determine the characteristics of the sea water, in which the coral reefs grew. Results show that, since 142 ka, most of the coral reefs in the Yongxing Island has a normal rare earth element distribution pattern of marine carbonates, characterized by LREE depletion, negative Ce anomalies and high Y/Ho ratios, indicating an environment of open shallow sea. In contrast, the coral skeletons in depth of 23 m 114 ka have similar LREE depletion, negative Ce anomalies and high Y/Ho ratios, but positive Eu anomalies. This suggests that certain amount of hydrothermal fluid has been input during the growth of corals. Based on the model calculations, it is inferred that at least 0.1% of hydrothermal fluid has been added to the open seawater during that time. The hydrothermal fluids may be related to the volcanic activities observed at Gaojianshi island or Hainan island.
  • 水体中悬浮体是入海河流向海洋输送污染物和营养物质的主要载体之一,其不仅反映了海洋沉积动力特征,同时也记录了源区、输运路径的地球化学元素和矿物等信息。悬浮体在水体中的浓度大小、分布特征及输运规律对海洋生态环境和资源的分布有重要影响。中国入海河流悬浮体向渤黄东海输运会影响中国海洋物质通量,对全球海洋物质循环的研究具有重要意义[1-3]。由于陆源物质供给和海洋水动力的季节变化,陆架浅海悬浮体浓度和分布也呈季节性变化[4-6]。受东亚季风影响,渤、黄海水动力整体呈现冬强、夏弱的特征,陆源河流携带的大量物质在夏季沉积后,在冬季又发生再悬浮继续输运[7]。悬浮体浓度分布能较好地反映物源供给、水动力及季风的周期性变化特征。山东半岛近岸泥质区呈“Ω”型或反C型的独特分布特征,其物质主要来源于沿岸流携带的黄河入海沉积物,平均沉积速率约3.7 mm/ka[8-13],泥沙沉积后受潮流、波浪以及水团的多重影响发生再悬浮和搬运过程。前人通过海洋观测、遥感反演和数值模拟等方法,对山东半岛附近海域的悬浮体输运和沉积过程开展了研究,并取得了一系列成果。Wang 等[14]通过高分辨率海洋-大气-波浪-沉积耦合COAWST模式系统的数值模拟,认为锋面和跃层对山东半岛近岸海域的悬浮体输运和沉积产生了明显影响,并且控制了泥质体沉积中心的发育。王勇智等[15]通过对山东半岛东部冬季潮流和悬浮体浓度观测,认为每年冬季约有(8.09~22.91)×104 t的悬浮体经山东半岛东部近岸海域向南输运。学者普遍认为山东半岛附近海域悬浮体主要来自于沉积物的再悬浮,但是对波浪和潮流在沉积物再悬浮过程中的作用存在争议。赵一阳等[16]认为冬季风浪是底层沉积物再悬浮的主要动力,而边昌伟[17]及Zeng等[18]则认为强风浪能显著增强海底沉积物的再悬浮,但波高<1 m的风浪,对底质沉积物的再悬浮作用较小,主要影响水体的垂向混合,潮流是沉积物再悬浮的主控因素。

    前人对山东半岛附近海域的悬浮体输运取得了丰硕的研究成果,但是研究多集中于大海域范围,缺少近岸大比例尺、高精度的实测资料。本文选择山东半岛近岸泥质区分布的典型区域——东北部近岸海域作为研究区(如图1图2所示),其位于北黄海与南黄海的交界区域,不仅是内外海之间重要的物质输运通道,而且是多源物质的汇聚区 [19-22]。通过开展大比例尺、高精度的不同季节水文泥沙调查,分析山东半岛近岸海域悬浮体的水平和垂向季节分布特征,探讨悬浮体浓度分布和季节变化的控制因素,研究成果对于完善山东半岛泥质区沉积物输运机制具有重要意义。

    图  1  黄海冬季环流及夏季冷水团分布图[23]
    B.S.: 渤海海峡,SLCC:辽南沿岸流,SBCC:渤南沿岸流,NSCC:鲁北沿岸流,SSCC山东半岛南部沿岸流,KCC:朝鲜半岛沿岸流,NJCC:苏北沿岸流,YSWC:黄海暖流,CDW:长江冲淡水,KC:黑潮,YSCW:黄海冷水团(10 ℃等温线包围的水体)。
    Figure  1.  Winter circulation and cold water mass in summer in Yellow Sea[23]
    B.S.: Bohai Strait, SLCC: South Liaoning coastal current, SBCC: South Bohai coastal current, NSCC: North Shandong Peninsula coastal current, SSCC: South Shandong Peninsula coastal current, KCC: Korean Peninsula coastal current, NJCC: North Jiangsu coastal current, YSWC: Yellow Sea warm current, CDW: Changjiang River diluted water, KC: Kuroshio Current, YSCW: Yellow Sea Cold Water (Water surrounded by isotherms at 10 ℃).
    图  2  研究区位置及取样站位图
    Figure  2.  Location of the study area and sampling sites

    研究区位于山东半岛东北部近岸海域、北黄海南部。该区属于温带季风性气候,冬季以强度大的北风和西北风最为盛行,平均风速较高,约为6~7 m/s,夏季以南风和东南风为优势风向,风速较小,平均约为5~6 m/s。研究区最大水深42 m,平均水深约25 m,以正规半日潮占主导,M2分潮为黄海潮波的主要分潮[23]。潮流流速约为20~60 cm/s,自成山头向西北方向M2分潮流速逐渐减小[24]。研究区受季节性环流影响明显,冬季鲁北沿岸流和黄海暖流作用较大[25-26];夏季北黄海冷水团主要影响水深50 m以上海域[27-28],与研究区距离也较近(如图1所示)。受到季风和地形影响,波浪表现出显著的季节性变化,冬季波高较大,平均波高为0.9~1.9 m;夏季波高较小,平均波高为0.5~1.0 m[23]。研究区沉积物类型以砂质粉砂和粉砂为主[10]

    中国海洋大学于2018年夏季(8月1—5日)和冬季(12月22—25日)在山东半岛东北部海域开展了7条断面、87个站位大面站水文泥沙现场调查,取样站位如图2所示。调查内容包括水体温度、盐度、悬浮体浓度和浊度。

    水体温度(℃)、盐度(PSU)、水深(m)采用美国TRDI公司CTD-NV型温盐深仪进行测量,采样频率5 Hz,温度和盐度测量精度为±0.005 ℃和±0.005PSU;水体浊度(FTU)采用英国Aquatec公司生产的Aqualogger 310TY型浊度仪进行现场测量,采样频率1 Hz,量程0~200FTU,测量精度为±0.01FTU。仪器从水面下海底匀速释放,释放速度约0.5 m/s。同时,各站位采集表层(距海面约1 m)、中层(0.5HH为水深)和底层(距海底约1 m)水样,体积约1000 mL,用于悬浮体质量浓度的测定。水体悬浮体浓度通过室内抽滤实验测定[29]。温度、盐度和浊度平面和垂向分布图采用surfer11.0软件绘制,运用克里金差值方法,平面分布图差值步长约330 m,垂向分布图差值步长约370 m。

    研究区每个站位只进行了表、中、底3层水体取样,无法详细呈现悬浮体浓度的垂向变化特征。由于浊度采用仪器测量,采样精度高,为更清晰地呈现悬浮体浓度垂向分布特征,本文采用水体浊度(单位:FTU)替代悬浮体浓度(单位:mg/L)进行分析[30-32]。通过冬季各站位表、中、底3层水体悬浮体浓度实验结果和相应的浊度测量结果相关性分析表明,研究区水体悬浮体浓度与浊度的相关性非常好(R2=0.92)(图3),说明水体浊度是悬浮体浓度(SSC)的良好替代性指标。

    图  3  悬浮体浓度与浊度相关性图
    Figure  3.  Correlation between suspended sediment content and water turbidity

    (1)水温和盐度分布特征

    夏季,研究区各层水温平面分布显示,表层水温普遍较高,温度为20.4~28.8 ℃,呈近岸低、远岸高的特征;中层(0.5H)水温为15.0~21.7 ℃;底层水温为14.2~21.0 ℃,呈近岸高、远岸低的特征(图4)。在近岸浅水区域不同层位水温变化较小,远岸深水区域分布不同层位水温差异较明显;随着水深增大,中、底层水温差异减小。水温垂向分布显示(图5),夏季水体层化现象显著,但近岸浅水区域水体层化呈上下波动的特征。底层冷水向岸呈楔形分布,且其楔入程度受水深地形影响,近岸海域水深越大,受冷水影响越大(图5 Trend 01,Trend 02),水深相近海域冷水楔进程度相近(图5 Trend 05, Trend 06)。

    图  4  夏季水温、盐度平面分布图
    Figure  4.  Plane distribution of water temperature and salinity in summer
    图  5  夏季典型断面水温、盐度垂向分布图
    Figure  5.  Vertical distribution of water temperature and salinity in summer

    夏季,研究区各层水体盐度平面分布显示,表、中、底三层水体盐度分别为31.71~32.28PSU、31.70~32.25PSU、31.85~32.31PSU(表1)。各层盐度平面分布总体趋势一致,均呈东南高、西北低的特征(图4)。水体盐度垂向上变化较小,从底到表有先增大后减小的变化特征(图5)。

    表  1  夏季温度、盐度
    Table  1.  Water temperature and salinity in summer
    层位表层中层底层
    温度/℃盐度/PSU温度/℃盐度/PSU温度/℃盐度/PSU
    最大值28.832.2821.732.2521.032.31
    最小值20.431.7115.031.7014.231.85
    平均值25.432.0018.631.9817.431.99
    下载: 导出CSV 
    | 显示表格

    (2)温跃层特征

    根据垂直梯度法,浅水海域(水深<200 m),温跃层的温度梯度最低标准值为0.2 ℃/m[33]。本文将垂直梯度值大于或等于上述最低指标值的水层划定为温度跃层,其上下端点所在深度作为跃层上界深度和下界深度。分析结果表明,研究区夏季水体存在明显的温跃层。温跃层的上界在0~1 m水深范围,下界深度在2.4~22.2 m水深范围,下界深度明显受水深地形影响,在研究区北部深水区,温跃层下界可达20 m水深处;在近岸浅水区域,温跃层仅在5 m以浅范围内。在水深相近的研究区中部海域,温跃层的下界深度也存在明显差异,研究区东部的温跃层下界深度(8~10 m)要明显浅于西部区域(约14 m)(图6)。

    图  6  夏季温跃层厚度分布图
    Figure  6.  Plane distribution of thermocline thickness in summer

    冬季,研究区水温和盐度平面分布显示,各层水温均为6.3~9.9 ℃,盐度均为31.1~32PSU(表2),水温和盐度均呈近岸低、远岸高的特征(图7)。

    表  2  冬季水温和盐度特征值
    Table  2.  Water temperature and salinity in winter
    层位表层中层底层
    温度/℃盐度/PSU温度/℃盐度/PSU温度/℃盐度/PSU
    最大值9.931.979.931.999.931.99
    最小值6.431.136.331.196.331.15
    平均值7.431.367.431.397.431.38
    下载: 导出CSV 
    | 显示表格
    图  7  冬季水温、盐度平面分布图
    Figure  7.  Plane distribution of water temperature and salinity in winter

    从冬季典型断面水温和盐度剖面显示,水体垂向混合剧烈,近岸和远岸水体之间存在明显的温、盐切变锋面(图8),在Trend 01断面上锋面在WH06和WH07之间,Trend 02断面上锋面在WH16和WH17之间。在锋面两侧的水体温度和盐度比较均匀。其他断面由于离岸较近,未观测到明显的水温和盐度锋面。

    图  8  冬季典型断面水温和盐度垂向分布图
    Figure  8.  Vertical distribution of water temperature and salinity in winter

    夏季,研究区水体浊度平面分布特征显示,表层浊度普遍较低(0.2~2.3FTU)(表3),威海湾及刘公岛近岸区域水体浊度相对较高;中层(0.5H)浊度(0.2~8.9FTU)略高于表层,呈近岸高、远岸低,东南高、西北低的分布特征;底层浊度(2.9~37.8FTU)最高,呈东南高、西北低的分布特征(图9)。

    表  3  冬季和夏季水体浊度特征值
    Table  3.  Water turbidity in winter and summer
    FTU  
    夏季冬季
    表层中层底层表层中层底层
    最大值2.38.937.822.444.0100.1
    最小值0.20.22.91.52.33.9
    平均值0.62.59.39.213.023.4
    下载: 导出CSV 
    | 显示表格
    图  9  夏季水体浊度平面分布图
    Figure  9.  Plane distribution of water turbidity in summer

    研究区典型断面水体浊度垂向分布显示,悬浮体浊度明显呈底层高、表层低的梯度变化(图10)。在20 m以深区域,水体上部存在厚10 ~20 m且浊度较小(<1FTU)的均匀层,其厚度与水深大小大致呈正相关关系,水深大则均匀层厚,水深小则均匀层薄。

    图  10  夏季典型断面水体浊度垂向分布图
    Figure  10.  Vertical distribution of water turbidity in summer

    冬季,研究区水体浊度从表至底逐渐增大,表层水体浊度为1.5~22.4FTU,中层(0.5H)水体浊度为2.3~44.0FTU,底层水体浊度为3.9~100.1FTU。各层水体浊度平面分布特征基本一致,研究区中部存在高浊度区,自东向西呈舌状分布,自中部向海湾和外海两侧浊度逐渐降低(图11)。

    图  11  冬季水体浊度平面分布图
    Figure  11.  Plane distribution of water turbidity in winter

    研究区水体浊度垂向分布特征显示,底层浊度略高于表层,沿剖面方向底部浊度越高、表层浊度相应也较高(如图12所示)。受水体垂向混合作用,浊度分层现象不明显,例如Trend 02断面的WH16、WH17和WH18站位的水体浊度基本不随水深变化。

    图  12  冬季典型断面水体浊度垂向分布图
    Figure  12.  Vertical distribution of water turbidity in winter

    前人研究表明,山东半岛泥质区的沉积物主要来源于冬季发育的由西向东的鲁北沿岸流携带的黄河物质[8-13]。但是,从研究区浊度平面分布来看,冬、夏两季均呈现出东高西低的特征,这一特征与沿岸流的运动方向相反,说明悬浮体的来源有待商榷。同时,浊度垂向分布特征显示,底层的悬浮体浓度明显高于表层,尤其夏季浊度自底层往上阶梯式减小,说明底质沉积物再悬浮才是悬浮体的主要来源,与前人研究结论一致[14-15]。沉积物再悬浮之后,在潮流、波浪以及水体结构等综合因素的控制下发生输运和再次沉积。

    M2分潮是研究区的主要分潮[17],如图13可见,研究区以东为成山头强潮区海域,M2分潮流速可达50~70 cm/s;以西为威海北部弱潮区海域,M2分潮流速低至30 cm/s[34]。潮流平面不均匀性对泥沙输运的作用不容忽视。

    图  13  黄海M2分潮潮流椭圆及最大潮流分布图[25]
    Figure  13.  Distribution of M2 tidal current ellipse and maximum current in the Yellow Sea[25]

    夏季,整个黄海受东南季风的影响,波浪作用很小,水体垂向混合弱,潮流对悬浮体的分布、输运及沉积过程起到了主导作用[35-36]。由于海底底摩擦作用,潮流出现水体层间流速不等现象,平均运动的动能将转化成湍流而消耗,湍流应力将克服海水浮力而做功。水深越小,湍流越强[37]。远岸深水区域,地势平缓,水体湍动能较小,无法打破水体层化,使得上层海水悬浮体浓度非常低并且均匀分布;而在近岸浅水区,潮混合作用的效果体现的异常明显,上层水体的悬浮体浓度较深水区明显增大,说明在潮混合和波浪的共同作用下,近岸水体的层化被打破,水体垂向混合加强,底层的悬浮体被带到上层水体中。同时,潮混合作用使上层水体温度相对降低,下层水体温度相对升高。这一个过程使得深水和浅水区域之间温度梯度增大,阻碍了悬浮体在深水和浅水区域的交换,一定程度上影响了悬浮体的水平输运。

    冬季由于强风浪的影响,潮流作用在垂向上的体现相对变弱,主要是体现在悬浮体平面分布特征上。东部强潮区底层水体悬浮体浓度明显比西部弱潮区水体悬浮体浓度高,冬季潮流主要影响研究区悬浮体的平面分布。

    波浪也是黄海沉积物再悬浮的主要动力之一。研究区夏季盛行偏南风,风速弱;冬季盛行偏北风,风速强。受季风影响,研究区波浪也存在季节性变化。冬季研究区平均波高为0.9~1.9 m,夏季平均波高约为0.5~1 m[35-36]。Wei Zhong等[38]根据风况资料计算,夏季浪基面可达30 m以上(大于研究区平均水深25 m),冬季浪基面更深,波浪对悬浮体的影响不容忽视。

    研究区浊度分布特征显示,冬季底层水体浊度最大值达到100.1FTU,明显大于夏季(37.8FTU);冬季表层水体的浊度最大值为22.4FTU,明显高于夏季(2.3FTU)。温盐的垂向分布显示,冬季水体垂向上的温盐值基本一致,而夏季水体的温度随水深增大逐渐降低。综合温盐和浊度特征表明,波浪不仅促进了沉积物的再悬浮,而且加强了水体的垂向混合及悬浮体的垂向运动。

    温跃层附近常发育湍流边界层,水体变得极为稳定,抑制了底层悬浮体向上扩散,使得沉积物主要集中在温跃层以下输运[39-40]。从WH06、WH15和WH75三个典型站位水温和浊度的垂向分布可见,温度和浊度在垂向上的变化相反,温跃层以下水体浊度显著高于上部水体浊度(图14)。底部再悬浮的泥沙在湍流作用下随机向上运动,但是受到温跃层的阻隔,再悬浮的泥沙无法向上部运动,使得上部水体中的悬浮体浓度很低,浊度相应地减小,小于1FTU。因此,温跃层阻碍了悬浮体的垂向运动。

    图  14  典型站位水温和浊度垂向变化图
    Figure  14.  Vertical variation diagrams of water temperature and turbidity at some typical stations

    锋面是指物理性质不同的两种水团或水系的交界面,其常常表现为梯度变化的极大值。最明显的锋面发生在两种不同密度的水体之间。锋面不仅会影响水体的混合及营养元素、污染物等的富集[41-42],同时其稳定的水体结构和弱水动力条件,对沉积物输运及沉降过程起到了重要作用[43-44]

    冬季水体垂向混合均匀,其温盐锋面与夏季的形成机理完全不同,起因于环流作用。在强冬季风的影响下,低温、低盐的鲁北沿岸流和高温、高盐的黄海暖流发育明显,黄海暖流进入北黄海之后在123°E、37.7°N左右自东向西经过研究区北部[45]。由研究区表层水体T-S图可见,研究区可分为三种不同性质的水体,分别为高温高盐水、低温低盐水和过渡带水(图15左),这一特征恰好响应了研究区的环流特征。近岸低温低盐水体(温度:6.2~7.8 ℃,盐度:31.1~31.5PSU),影响研究区约离岸30 km以内的整个近岸海域;远岸高温高盐水体(温度:9.8~10 ℃,盐度:31.9~32.1PSU),影响研究区的北部海域。在两个性质迥异的水团之间,水温和盐度均呈现阶梯式变化,形成近东西向的水温和盐度的切变锋。在温盐锋面的影响下,东部高浓度悬浮体难以向北扩散,主要向西扩散,使得研究区北部的悬浮体浓度急剧下降,浊度在5FTU以内,研究区中部形成了条带状的高浊度带。从典型断面Trend03的浊度分布与温盐锋面图可知(图15右),锋面两侧的浊度相差巨大,说明温盐锋面阻碍了悬沙的水平输运。输运模式概念图详见图16

    图  15  冬季表层水体T-S图(左),Trend03温盐锋面位置与浊度分布图(右)
    Figure  15.  The T-S diagram of surface water in winter(left)and the temperature and salinity front position and turbidity distribution map in Trend03(right)
    图  16  冬夏季输运模式概念图
    Figure  16.  Conceptual transportation models in winter and summer

    (1)研究区悬浮体浓度存在明显的季节变化,夏季浊度为0.2~37.8FTU,冬季浊度为1.5~100.1FTU,均表现为底高表低、东高西低的特征。

    (2)夏季水温分层明显,表现为表高底低的特征,盐度整体变化较小;冬季温盐垂向上混合均匀,平面上表现为近岸低温低盐水体向远岸高温高盐水体的过渡。

    (3)研究区悬浮体浓度分布特征受控于潮流、波浪、温跃层和温盐锋面。夏季,悬浮体垂向上受到温跃层影响,底层悬浮体难以向表层输运;平面上近岸潮混合和波浪作用阻碍了悬浮体的水平输运。冬季,强风浪促使悬浮体垂向混合剧烈,表层悬浮体浓度明显较夏季变高;平面上鲁北沿岸流和黄海暖流形成的温、盐锋面阻碍了水团间悬浮体的输运。

  • 图  1   珊瑚样品采集地点[14]

    Figure  1.   Coral sample collection site[14]

    图  2   地层柱状图(A),滨珊瑚骨骼化石样品(B)及其X光照片(C)

    Figure  2.   Stratigraphic column (A), samples of Porites skeleton fossil (B) and its X-ray photos (C)

    图  3   研究区珊瑚礁宏观手标本和显微照片

    A. 珊瑚骨架灰岩宏观照片;B. 珊瑚骨架灰岩,单偏光;C. 红藻粘结灰岩宏观照片;D. 红藻粘结灰岩,单偏光;E. 生物碎屑灰岩宏观照片;F. 生物屑灰岩,单偏光;G. 含生物碎屑泥灰岩宏观照片;H. 泥晶生屑灰岩,单偏光。

    Figure  3.   Macroscopic hand specimens and micrographs of coral reefs in the study area

    A. Macro photo of coral skeleton limestone; B. Coral skeleton limestone, single polarized light; C. Macro photo of red algae bound limestone; D. Red algae bound limestone, single polarized light; E. Macro photo of bioclastic limestone; F. Bioclastic limestone, single polarized light; G. Macro photo of bioclastic marl; H. Micritic bioclastic limestone, single polarized light.

    图  4   珊瑚礁样品X射线衍射图谱

    Ar. 文石,C. 方解石;A. 18.40 m处生物碎屑灰岩,B. 22.80 m处珊瑚骨架,C. 23 m处滨珊瑚骨骼化石,D. 27.75 m处生物碎屑灰岩,E. 31.20 m处生物碎屑灰岩,F. 41.80 m处红藻黏结灰岩。

    Figure  4.   X-ray diffraction pattern of coral reef samples

    Ar. aragonite, C. calcite. A. Bioclastic limestone at 18.40 m; B. Coral skeleton at 22.80 m; C. Porites skeleton fossil at 23 m; D. Bioclastic limestone at 27.75 m; E. Bioclastic limestone at 31.20 m; F. Red algae bound limestone at 41.80 m.

    图  5   岩心柱样品与滨珊瑚骨骼化石样品稀土元素配分模式图

    A. 岩心柱样品,B. 滨珊瑚骨骼化石样品。

    Figure  5.   REE distribution pattern of core column samples and Porites skeleton fossil samples

    A. Core column samples, B. Porites skeleton fossil samples.

    图  6   滨珊瑚骨骼化石和岩心柱的NdN/YbN、U与ΣREE含量相关图

    Figure  6.   NdN/YbN, U and ΣREE contents in Porites skeleton fossil and core columns

    图  7   岩心柱样品与滨珊瑚骨骼化石样品中ΣREE、Y/Ho和Fe、Mn、Ni、Cu之间的相关图

    A-I. 滨珊瑚骨骼化石样品,J-Q. 岩心柱样品。

    Figure  7.   Correlation between ΣREE, Y/Ho and Fe, Mn, Ni, Cu in core columns and Porites skeleton fossil samples

    A-I. Porites skeleton fossil samples, J-Q. Core columns samples.

    图  8   岩心柱样品中ΣREE和P之间的相关图

    Figure  8.   Correlation between ΣREE and P in core samples

    图  9   滨珊瑚骨骼化石和岩心柱的Y/Ho与Sc、Pb含量相关图

    Figure  9.   Correlation diagram of Y/Ho and Sc, Pb contents in Porites skeleton fossil and core columns

    图  10   滨珊瑚骨骼化石和岩心柱的Ce/Ce*与Eu/Eu*相关图

    Figure  10.   Ce/Ce* and Eu/Eu* correlation diagram of Porites skeleton fossil and core columns

    图  11   滨珊瑚骨骼化石扫描电镜图片

    A. 23 m珊瑚骨架(134x),B. 23 m文石(500x),C. 22.80 m珊瑚骨架(989x),D. 22.80 m文石(3.00kx)。

    Figure  11.   Scanning electron microscope picture of Porites skeleton fossil

    A. coral skeleton at 23 m (134x), B. aragonite at 23 m (500X), C. coral skeleton at 22.80 m (989x), D. aragonite at 22.80 m (3.00kx).

    图  12   滨珊瑚骨骼化石的Eu/Eu*与[Pr/Yb]PAAS及[Pr/Tb]PAAS相关图

    Figure  12.   Correlation between Eu/Eu* and [Pr/Yb]PAAS or [Pr/Tb]PAAS of Porites skeleton fossil

    图  13   计算了标准化水样和PAAS端元的REY模式

    (注:绿色三角为岩心柱数据,红色三角形为滨珊瑚骨骼化石数据,海水端元数据引自文献[49],热液端元数据引自文献[48])

    Figure  13.   Calculated the REY pattern of standardized water samples and PAAS end elements

    (Note: green triangle is core column data, red triangle is Porites skeleton fossil data, seawater end metadata is quoted from reference[49], hydrothermal end metadata is quoted from reference[48])

    表  1   珊瑚礁样品矿物物相组成

    Table  1   Mineral phase composition of coral reef samples

    样品号深度/m文石/%方解石/%
    18.4018.4076.423.6
    22.8022.80100
    232376.323.7
    27.7527.7543.656.4
    31.2031.20100
    41.8041.80100
      注:−表示未检出。
    下载: 导出CSV

    表  2   岩心柱中部分珊瑚(包括滨珊瑚骨骼化石)238U-232Th测年结果

    Table  2   238U-232Th dating results of some corals (including Porites skeleton fossil) in core column

    样品号238U(×10−9232Th(×10−12δ234U*(测量值)230Th/238Uδ234UInitial**(校正后)年龄/ka校正后年龄/kaBP
    YL-18351 670±1.124 128±52114±1.10.606 4±0.000 745144±1.484.18±0.20683.82±0.277
    YL-18902 766±1.81 417±44109±1.00.723 8±0.000 900150±1.3112.40±0.305112.38±0.305
    YL-21752 400±1.3741±37109±1.80.743 1±0.001 038151±2.5117.74±0.473117.73±0.473
    YL-23002 480±1.3398±41113±1.00.734 2±0.000 812156±1.4114.36±0.299114.35±0.30
    YL-24951 222±0.9942±46107±1.20.821 4±0.001 177160±1.8142.49±0.540142.47±0.540
    YL-30113 108±2.2111 312±143104±1.00.795 9±0.000 981152±1.4134.64±0.412133.73±0.615
    YL-36501 888±1.214 549±4585±1.11.063 0±0.001 193220±3.8337.10±3.71336.92±3.71
    YL-4285924±0.76 890±4789±1.21.007 3±0.001 333183±2.6255.73±1.837255.54±1.839
    YL-4605951±0.7594±4088±1.10.982 6±0.001 357171±2.2234.82±1.47234.80±1.47
    YL-4850963±0.7579±4882±1.00.986 6±0.001 279163±2.2243.85±1.53243.84±1.53
    YL-5015509±0.4184±4092±1.30.894 8±0.001 208152±2.2177.96±0.848177.95±0.848
    YL-55301 816±1.1158±4788±1.00.962 6±0.001 209163±1.9220.19±1.135220.19±1.135
      注:234U、238U和230Th的衰变常数${{\rm{\lambda }}_{{\rm{234}}}}{\rm{ = 2}}.{\rm{82206}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{{\rm{a}}^{{\rm{ - 1}}}}$、$ {\rm{\lambda }}_{\rm{238}}\rm{=1.551}\rm{}\rm{25} \times {\rm{10}}^{\rm{-10}}{\rm{a}}^{\rm{-1}} $和$ {\rm{\lambda }}_{\rm{234}}\rm{=9.170}\rm{}\rm{5} \times {\rm{10}}^{\rm{-16}}{\rm{a}}^{\rm{-1}} $;$ {\rm{\delta }}^{\rm{234}}\rm{U=}\left({\left[{}_{\rm{}}{}^{\rm{234}}\rm{U}/{}_{\rm{}}{}^{\rm{238}}\rm{U}\right]}_{\rm{activity}}\rm{-1}\right)\times{1}\rm{}\rm{000} $;校正的230Th年龄是假定初始的230Th/232Th原子比为(4.4±2.2)×10−6。年龄均相对于1 950 a。
    下载: 导出CSV

    表  3   主量元素测试结果(单位:%)

    Table  3   Major element test results(unit: %)

    样品名称Al2O3CaOK2OMgONa2OP2O5样品名称SiO2
    2-60.0348.620.020.150.53000-10.034
    2-160.0342.20.010.120.440.01000-20.016
    5-10.0143.880.010.170.59000-30.078
    5-80.0143.240.010.170.59000-40.031
    9-10.0143.60.010.250.59000-50.044
    9-80.0145.20.010.240.67000-60.020
    15-10.0143.620.010.240.6001-1
    15-80.0142.970.010.240.6001-20.011
    19-10.0152.10.020.330.81001-30.057
    19-110.0152.40.020.30.99010-1
    18.75-20.0154.050.660.210.08010-2
    20.00-10.0253.790.010.460.320.05010-3
    20.00-20.0253.830.010.150.510.01021-1
    20.25-10.0263.040.010.270.580.01021-20.033
    20.25-20.0155.060.010.450.320.03021-30.008
    21.05-10.0153.090.010.160.530.01034-10.004
    21.90-20.0357.590.010.330.430.04034-20.011
    22.75-20.0154.210.820.360.05034-30.020
    23.400.0154.160.250.270.05039-10.015
    24.00-10.0153.170.010.50.40.02039-20.018
    24.00-20.0153.050.820.170.04039-3
    25.25-10.0253.610.010.560.380.05054-10.028
    25.25-20.0254.850.640.160.04054-20.011
    26.55-10.0154.680.30.250.02
    26.55-20.0154.060.010.130.360.01
      注:−表示未检出,SiO2为电子探针测试数据。
    下载: 导出CSV

    表  4   稀土元素含量(×10-6)及其相关指标

    Table  4   Rare earth element content (×10-6) and related indicators

    样品名称YLaCePrNdSmEuGdTbDyHoErTmYbLuΣREYΣREEΣLREE/ΣHREEY/HoLa/La*Ce/Ce*Eu/Eu*
    BLANK-10.0000.0010.0010.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0020.00213.30151.7762.4960.9141.549
    BLANK-20.0000.0000.0010.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0020.00113.654259.5381.7430.9901.161
    GSR-121.3110.9092.7760.2570.9090.1870.0390.2000.0290.1680.0340.0920.0120.0700.0107.0035.6928.24438.6900.6911.3180.952
    JDO-112.4127.2721.8900.9173.5030.6110.1380.7790.1060.6500.1480.4200.0500.2730.03829.20616.7945.81583.6821.8170.1610.920
    2-10.0960.0110.0130.0020.0090.0020.0010.0040.0010.0040.0010.0040.0010.0040.0010.1530.0572.06586.4741.4350.6501.928
    2-100.1010.0110.0120.0020.0080.0020.0010.0040.0010.0050.0010.0040.0010.0040.0010.1570.0551.91689.4821.5740.6071.875
    5-80.0480.0050.0100.0010.0050.0010.0000.0010.0000.0020.0000.0020.0000.0020.0000.0780.0312.69997.1391.6940.9721.529
    9-10.0640.0070.0140.0010.0060.0020.0010.0030.0000.0030.0010.0030.0000.0030.0010.1090.0442.32181.1141.4151.0171.336
    12-10.0570.0060.0110.0010.0050.0020.0010.0020.0000.0030.0010.0020.0000.0020.0000.0920.0352.37396.2351.1680.9662.581
    12-70.0570.0050.0110.0010.0050.0010.0010.0020.0000.0020.0010.0020.0000.0020.0000.0910.0342.538104.1351.2441.0102.940
    22-10.0590.0080.0160.0020.0070.0020.0010.0030.0000.0020.0010.0020.0000.0020.0000.1060.0473.22296.6311.1890.9372.347
    22-120.0610.0060.0140.0010.0060.0020.0010.0020.0000.0020.0010.0020.0000.0020.0000.1010.0402.972105.6481.1631.0712.688
    18.60-11.3060.2450.1590.0470.2090.0580.0150.0810.0130.0920.0210.0650.0090.0550.0092.3831.0762.13561.9701.6280.3401.021
    18.75-21.6750.2760.1890.0580.2500.0710.0190.1030.0160.1080.0270.0820.0110.0740.0122.9691.2951.99262.7171.4110.3460.988
    18.95-22.1250.3270.1930.0670.3050.0860.0230.1250.0210.1500.0350.1070.0150.0900.0143.6821.5571.79860.1461.5710.3001.001
    19.25-20.2400.0380.0360.0080.0340.0090.0030.0120.0020.0130.0030.0100.0010.0090.0010.4190.1792.48878.4581.3140.4751.348
    19.70-11.2350.3300.2770.0670.2810.0700.0180.0900.0140.0900.0200.0610.0080.0500.0082.6181.3833.06461.9761.3780.4291.033
    19.70-21.2680.3660.4690.0750.3090.0760.0200.0960.0160.1000.0220.0660.0090.0570.0092.9571.6903.50356.9631.2780.6511.105
    20.00-11.1590.3640.4420.0740.3010.0750.0220.1000.0150.0930.0210.0630.0090.0510.0082.7981.6393.55955.8971.2830.6211.191
    20.25-10.3000.0720.0530.0140.0630.0170.0050.0210.0030.0200.0040.0130.0020.0100.0020.5980.2982.95870.1211.7360.3871.235
    20.25-20.9030.2040.1460.0400.1790.0490.0130.0640.0100.0680.0150.0440.0060.0350.0061.7820.8792.53959.7511.6090.3721.092
    21.05-10.1270.0290.0250.0040.0200.0050.0020.0080.0010.0080.0030.0060.0010.0050.0010.2460.1182.64946.1762.1570.4941.300
    21.05-20.8850.1960.1400.0380.1660.0450.0120.0610.0100.0660.0150.0430.0060.0350.0051.7220.8372.48460.9071.5450.3721.058
    21.90-10.1920.0550.0670.0090.0360.0080.0030.0110.0020.0110.0020.0070.0010.0060.0010.4120.2194.32678.4901.3570.6731.342
    21.90-21.2020.5710.3480.0930.4130.1010.0250.1260.0170.1110.0250.0710.0100.0580.0093.1791.9773.64448.8111.8960.3431.029
    22.75-21.5890.3820.2520.0750.3300.0880.0230.1190.0180.1220.0270.0780.0100.0640.0103.1881.5992.56558.4861.5690.3431.017
    23.400.6810.1600.1140.0330.1490.0400.0110.0520.0080.0500.0120.0340.0050.0260.0041.3790.6992.67258.1941.5570.3621.068
    23.500.4660.1310.0930.0270.1260.0320.0090.0410.0060.0380.0090.0250.0030.0190.0031.0280.5622.91254.0561.6570.3601.137
    24.00-10.7600.1550.1170.0300.1370.0370.0100.0490.0080.0530.0120.0370.0050.0310.0051.4460.6862.42461.5101.6250.3941.067
    24.00-21.2260.2900.2080.0550.2500.0680.0170.0900.0140.0950.0210.0630.0090.0520.0082.4671.2412.52757.1821.6770.3781.009
    25.25-11.3220.3030.2120.0590.2630.0690.0180.0920.0150.0990.0230.0680.0090.0550.0082.6141.2922.50658.1851.5600.3631.036
    25.25-21.1600.3210.2270.0640.2780.0710.0180.0920.0140.0940.0210.0620.0080.0490.0082.4871.3272.81054.6681.4860.3651.017
    25.76-10.5480.1350.0930.0290.1370.0380.0100.0520.0080.0490.0100.0290.0040.0210.0031.1650.6172.50852.4691.6000.3411.012
    25.76-21.7780.3390.2430.0690.3050.0820.0210.1100.0180.1220.0290.0850.0120.0700.0113.2941.5162.31362.0531.5020.3661.031
    26.55-10.3760.1150.0930.0240.1110.0290.0090.0350.0050.0330.0070.0200.0030.0160.0020.8800.5043.11151.1141.5580.4051.350
    26.55-20.0850.0130.0160.0020.0100.0030.0010.0050.0010.0050.0010.0030.0010.0030.0000.1490.0632.56073.2922.0900.7171.354
    27.55-12.2710.7180.3810.1070.4850.1300.0330.1740.0290.1910.0430.1280.0180.1010.0164.8222.5512.65352.8352.1610.3091.008
    27.55-21.5490.2860.1910.0560.2580.0680.0180.0920.0150.1050.0250.0770.0110.0620.0102.8221.2732.20962.0101.6640.3451.032
    下载: 导出CSV

    表  5   微量元素含量(单位:×10−6

    Table  5   Trace element content (unit: ×10−6

    样品名称TmYbLuScMnFeNiCuZrPbU
    BLANK-10.0000.0000.0000.0000.0010.1790.0170.0290.0060.0050.002
    BLANK-20.0000.0000.000<LOD0.0020.2940.0100.0130.005<LOD0.001
    GSR-120.0120.0700.0100.06462.169619.12674.5637.9580.0961.2890.074
    JDO-10.0500.2730.0380.18051.29476.9142.3400.4430.1180.3190.549
    2-10.0010.0040.0010.0302.49373.73351.16882.9840.0290.1341.747
    2-100.0010.0040.0010.0340.72833.91964.1133.3050.0220.0581.969
    5-80.0000.0020.0000.0260.7071.6391.0410.0150.2661.804
    9-10.0000.0030.0010.0341.7651.5532.7620.0150.2622.203
    12-10.0000.0020.0000.0381.2921.9801.1492.6660.0170.0841.658
    12-70.0000.0020.0000.0390.9881.7111.1001.5840.0170.1191.861
    22-10.0000.0020.0000.0331.1182.3671.0491.6060.0220.1141.783
    22-120.0000.0020.0000.0321.2663.0131.5332.0400.0240.1121.918
    18.60-10.0090.0550.0090.07535.6546.4449.8381.0590.0990.3311.725
    18.75-20.0110.0740.0120.08423.3303.1544.9370.0800.5112.285
    18.95-20.0150.0900.0140.09930.5059.4232.1820.6040.1390.3721.015
    19.25-20.0010.0090.0010.0513.0232.4560.7961.3250.0380.0652.054
    19.70-10.0080.0500.0080.08912.9916.2453.8621.7970.1740.2611.383
    19.70-20.0090.0570.0090.12612.20115.6667.1912.5550.6510.2931.783
    20.00-10.0090.0510.0080.11213.0659.6560.9170.5820.3632.161
    20.25-10.0020.0100.0020.0455.4533.2633.2618.4370.0390.1552.224
    20.25-20.0060.0350.0060.07524.2408.0481.4435.2930.0980.2582.112
    21.05-10.0010.0050.0010.0332.5485.81213.8490.0190.1602.780
    21.05-20.0060.0350.0050.07813.2124.4272.59713.1350.0570.2301.641
    21.90-10.0010.0060.0010.0461.0204.0891.1741.8390.0200.0421.784
    21.90-20.0100.0580.0090.06110.9130.6881.5200.1500.7882.708
    22.75-20.0100.0640.0100.10717.4805.7260.7254.3690.1010.3961.723
    23.400.0050.0260.0040.0453.5292.2090.9050.4780.0700.2001.974
    23.500.0030.0190.0030.0402.5361.9340.4590.6300.0640.1811.964
    24.00-10.0050.0310.0050.0545.5034.1970.5953.8180.0650.2071.639
    24.00-20.0090.0520.0080.0729.9515.9480.7203.3020.0900.3431.173
    25.25-10.0090.0550.0080.0747.1014.2572.77615.7090.1080.3191.627
    25.25-20.0080.0490.0080.0678.8834.1571.35916.5780.1020.3421.151
    25.76-10.0040.0210.0030.0504.6962.3980.5360.4880.0420.1462.683
    25.76-20.0120.0700.0110.0858.6545.1560.7120.7680.1340.4081.966
    26.55-10.0030.0160.0020.0483.1304.8500.6660.9470.0480.1161.594
    26.55-20.0010.0030.0000.0281.1651.1810.5390.0390.1102.590
    27.55-10.0180.1010.0160.10914.9085.5490.7260.6950.1480.5141.299
    27.55-20.0110.0620.0100.09110.2754.3260.6460.8830.1080.4272.101
      注:−表示未检测。
    下载: 导出CSV
  • [1]

    Kamber B S, Webb G E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history [J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525. doi: 10.1016/S0016-7037(01)00613-5

    [2]

    Bolhar R, Van Kranendonk M J, Kamber B S. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton-Formation from hydrothermal fluids and shallow seawater [J]. Precambrian Research, 2005, 137(1-2): 93-114. doi: 10.1016/j.precamres.2005.02.001

    [3]

    Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates [J]. Precambrian Research, 2007, 155(3-4): 229-250. doi: 10.1016/j.precamres.2007.02.002

    [4]

    Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China [J]. Chemical Geology, 2007, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010

    [5]

    Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. doi: 10.1016/S0016-7037(03)00422-8

    [6]

    Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea [J]. Marine Geology, 2019, 411: 88-97. doi: 10.1016/j.margeo.2019.02.006

    [7] 赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1):186-194. [ZHAO Meixia, YU Kefu, ZHANG Qiaomin. Review on coral reefs biodiversity and ecological function [J]. Acta Ecologica Sinica, 2006, 26(1): 186-194. doi: 10.3321/j.issn:1000-0933.2006.01.025
    [8]

    Fallon S J, White J C, McCulloch M T. <italic>Porites</italic> corals as recorders of mining and environmental impacts: misima Island, Papua New Guinea [J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 45-62. doi: 10.1016/S0016-7037(01)00715-3

    [9]

    Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30, 000 years [J]. Nature Geoscience, 2018, 11(6): 426-432. doi: 10.1038/s41561-018-0127-3

    [10] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 55(8):1217-1229. [YU Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes [J]. Science China Earth Sciences, 2012, 55(8): 1217-1229. doi: 10.1007/s11430-012-4449-5
    [11]

    Kasper-Zubillaga J J, Armstrong-Altrin J S, Rosales-Hoz L. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico [J]. Estuarine, Coastal and Shelf Science, 2014, 151: 78-87. doi: 10.1016/j.ecss.2014.09.023

    [12]

    Sholkovitz E, Shen G T. The incorporation of rare earth elements in modern coral [J]. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749-2756. doi: 10.1016/0016-7037(95)00170-5

    [13]

    Webb G E, Nothdurft L D, Kamber B S, et al. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite [J]. Sedimentology, 2009, 56(5): 1433-1463. doi: 10.1111/j.1365-3091.2008.01041.x

    [14] 陈万利, 吴时国, 黄晓霞, 等. 西沙群岛晚第四纪碳酸盐岩淡水成岩作用——来自永兴岛SSZK1钻孔的地球化学响应证据[J]. 沉积学报, http://doi.org/10.14027/j.issn.1000-0550.2020.006.

    CHEN WanLi, WU ShiGuo, HUANG XiaoXia, et al. Geochemical signatures in the Late Quaternary meteoric diagenetic carbonate succession, Xisha Islands, South China Sea [J]. Acta Sedimentologica Sinica, http://doi.org/10.14027/j.issn.1000-0550.2020.006.

    [15]

    Zhang R X, Yang S Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis [J]. Microscopy and Microanalysis, 2016, 22(6): 1374-1380. doi: 10.1017/S143192761601182X

    [16]

    Zhang X, Yang S Y, Zhao H, et al. Effect of beam current and diameter on electron probe microanalysis of carbonate minerals [J]. Journal of Earth Science, 2019, 30(4): 834-842. doi: 10.1007/s12583-017-0939-x

    [17] 廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样-样品交叉测试法测定石笋样品的<sup>230</sup>Th/U年龄[J]. 质谱学报, 2018, 39(3):295-309. [LIAO Zebo, SHAO Qingfeng, LI Chunhua, et al. Measurement of U/Th Isotopic Compositions in stalagmites for <sup>230</sup>Th/U geochronology using MC-ICP-MS by standard-sample bracketing method [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295-309. doi: 10.7538/zpxb.2017.0072
    [18] 李晓, 刘娜, 吴仕玖, 等. 南海西沙群岛西科1井上新统-全新统碳酸盐岩微相分析[J]. 科技导报, 2016, 34(7):103-110. [LI Xiao, LIU Na, WU Shijiu, et al. Analysis of carbonate microfacies in Pliocene-Holocene, in Well XK-1, the Xisha Islang, South China Sea [J]. Science & Technology Review, 2016, 34(7): 103-110. doi: 10.3981/j.issn.1000-7857.2016.07.009
    [19] 解习农, 谢玉洪, 李绪深, 等. 南海西科1井碳酸盐岩生物礁储层沉积学: 层序地层与沉积演化[M]. 武汉: 中国地质大学出版社, 2016.

    XIE Xinong, XIE Yuhong, LI Xushen, et al. Sedimentology of carbonate reef reservoirs in Well Xike-1, South China Sea: Sequence Stratigraphy and Sedimentary Evolution[M]. Wuhan: China University of Geosciences, 2016

    [20]

    Van Kranendonk M J, Webb G E, Kamber B S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean [J]. Geobiology, 2003, 1(2): 91-108. doi: 10.1046/j.1472-4669.2003.00014.x

    [21]

    Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator [J]. Chemical Geology, 2009, 258(3-4): 338-353. doi: 10.1016/j.chemgeo.2008.10.033

    [22]

    Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways [J]. Aquatic Geochemistry, 2006, 12(1): 39-72. doi: 10.1007/s10498-005-4471-8

    [23]

    Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China [J]. Chemical Geology, 2009, 265(3-4): 345-362. doi: 10.1016/j.chemgeo.2009.04.015

    [24]

    Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 477-492. doi: 10.1016/j.jpgl.2004.05.033

    [25]

    Byrne R H, Liu X W, Schijf J. The influence of phosphate coprecipitation on rare earth distributions in natural waters [J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3341-3346. doi: 10.1016/0016-7037(96)00197-4

    [26]

    Zhao M Y, Zheng Y F. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates [J]. Earth and Planetary Science Letters, 2017, 460: 213-221. doi: 10.1016/j.jpgl.2016.11.033

    [27]

    Zhao M Y, Zheng Y F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones [J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531. doi: 10.1016/j.gca.2014.07.001

    [28]

    Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012

    [29]

    Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 443-452. doi: 10.1016/j.jpgl.2011.10.008

    [30]

    Kidder D L, Krishnaswamy R, Mapes R H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis [J]. Chemical Geology, 2003, 198(3-4): 335-353. doi: 10.1016/S0009-2541(03)00036-6

    [31]

    Kamber B S, Webb G E, Gallagher M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity [J]. Journal of the Geological Society, 2014, 171(6): 745-763. doi: 10.1144/jgs2013-110

    [32]

    Barnard L A, Macintyre I G, Pierce J W. Possible environmental index in tropical reef corals [J]. Nature, 1974, 252(5480): 219-220. doi: 10.1038/252219a0

    [33]

    Porta G D, Webb G E, McDonald I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco) [J]. Chemical Geology, 2015, 400: 65-86. doi: 10.1016/j.chemgeo.2015.02.010

    [34]

    Mc Lennan S M, Bock B, Hemming S R, et al. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks[M]//Lentz D R. Geological Association of Canada Short Course Notes. Toronto: Geological Association of Canada, 2003.

    [35]

    Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments [J]. Geochimica Et Cosmochimica Acta, 1989, 53(11): 2847-2856. doi: 10.1016/0016-7037(89)90162-2

    [36]

    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy [J]. Geochimica Et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7

    [37]

    Banner J L, Hanson G N, Meyers W J. Rare earth element and nd isotopic variations in regionally extensive dolomites from the burlington-keokuk formation (Mississippian): implications for REE mobility during carbonate diagenesis [J]. Journal of Sedimentary Research, 1988, 58(3): 415-432.

    [38]

    Kim J H, Torres M E, Haley B A, et al. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin [J]. Chemical Geology, 2012, 291: 152-165. doi: 10.1016/j.chemgeo.2011.10.010

    [39]

    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4

    [40]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [41]

    Shields G A, Webb G E. Has the REE composition of seawater changed over geological time? [J]. Chemical Geology, 2004, 204(1-2): 103-107. doi: 10.1016/j.chemgeo.2003.09.010

    [42]

    Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect [J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333. doi: 10.1007/s004100050159

    [43]

    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9

    [44]

    Tanaka K, Tani Y, Takahashi Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by <italic>Acremonium</italic> sp. strain KR21-2 [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5463-5477. doi: 10.1016/j.gca.2010.07.010

    [45]

    German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules [J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823

    [46]

    Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater [J]. Precambrian Research, 2013, 225: 110-127. doi: 10.1016/j.precamres.2011.10.011

    [47]

    Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones [J]. Geochemical Journal, 1991, 25(1): 31-44. doi: 10.2343/geochemj.25.31

    [48]

    Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater [J]. Chemical Geology, 1999, 155(1-2): 77-90. doi: 10.1016/S0009-2541(98)00142-9

    [49]

    Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8

    [50]

    Luong L D, Ryuichi S, Nguyen H, et al. Spatial variations in dissolved rare earth element concentrations in the East China Sea water column [J]. Marine Chemistry, 2018, 205: 1-15. doi: 10.1016/j.marchem.2018.07.004

    [51]

    Michard A, Albarède F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N) [J]. Nature, 1983, 303(5920): 795-797. doi: 10.1038/303795a0

    [52]

    German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean [J]. Nature, 1990, 345(6275): 516-518. doi: 10.1038/345516a0

    [53]

    Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert [J]. Sedimentary Geology, 2006, 183(3-4): 203-216. doi: 10.1016/j.sedgeo.2005.09.020

    [54]

    Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia [J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1041-1058. doi: 10.1016/j.gca.2004.08.020

    [55]

    Wang Q X, Lin Z J, Chen D F. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China [J]. Sedimentary Geology, 2014, 304: 59-70. doi: 10.1016/j.sedgeo.2014.02.006

    [56]

    Michard A, Albarède F. The REE content of some hydrothermal fluids [J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0

    [57]

    Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa [J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394. doi: 10.1016/j.gca.2007.10.028

    [58]

    Robbins L J, Lalonde S V, Planavsky N J, et al. Trace elements at the intersection of marine biological and geochemical evolution [J]. Earth-Science Reviews, 2016, 163: 323-348. doi: 10.1016/j.earscirev.2016.10.013

    [59]

    Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the <italic>Mytilidae</italic> family as tracers for hidden and fossil high-temperature hydrothermal systems [J]. Earth and Planetary Science Letters, 2010, 299(3-4): 310-316. doi: 10.1016/j.jpgl.2010.09.011

    [60]

    Johannessen K C, Roost J V, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields [J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016

    [61]

    Ho K S, Chen J C, Juang W S. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, Southern China [J]. Journal of Asian Earth Sciences, 2000, 18(3): 307-324. doi: 10.1016/S1367-9120(99)00059-0

    [62] 孙嘉诗. 南海北部及广东沿海新生代火山活动[J]. 海洋地质与第四纪地质, 1991, 11(3):45-66. [SUN Jiashi. Cenozoic volcanic activity in the Northern South China Sea and Guangdong coastal area [J]. Marine Geology & Quaternary Geology, 1991, 11(3): 45-66.
    [63] 樊祺诚, 孙谦, 李霓, 等. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报, 2004, 20(3):533-544. [FAN Qicheng, SUN Qian, LI Ni, et al. Periods of volcanic activity and magma evolution of Holocene in North Hainan Island [J]. Acta Petrologica Sinica, 2004, 20(3): 533-544. doi: 10.3969/j.issn.1000-0569.2004.03.017
    [64] 冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3):73-79. [FENG Yingci, ZHAN Wenhuan, SUN Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene [J]. Journal of Tropical Oceanography, 2017, 36(3): 73-79.
    [65] 邹和平. 试谈南海海盆地壳属性问题—由南海海盆及其邻区玄武岩的比较研究进行讨论[J]. 大地构造与成矿学, 1993, 17(4):293-303. [ZOU Heping. On the problem about the crust’s attribution of South China Sea basin-discussion from comparative study on basalts of seamounts in South China Sea basin and the neighboring areas [J]. Geotectonica et Metallogenia, 1993, 17(4): 293-303.
    [66] 吕炳全, 王国忠, 全松青, 等. 试论西沙群岛石岛的形成[J]. 地质科学, 1986(1):82-89. [LV Bingquan, WANG Guozhong, QUAN Songqing, et al. A preliminary study of the formation of Shidao Island, Xisha Islands [J]. Chinese Journal of Geology, 1986(1): 82-89.
  • 期刊类型引用(2)

    1. 甘双庆,朱龙海,张立奎,宋彦,胡日军,白杏,林超然,谢波. 蓬莱近岸海域夏季悬浮泥沙输运及控制因素. 海洋地质前沿. 2023(12): 12-25 . 百度学术
    2. 刘东艳,吕婷,林磊,韦钦胜. 我国近海陆架锋面与生态效应研究回顾. 海洋科学进展. 2022(04): 725-741 . 百度学术

    其他类型引用(0)

图(13)  /  表(5)
计量
  • 文章访问数:  2328
  • HTML全文浏览量:  483
  • PDF下载量:  50
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-12-15
  • 修回日期:  2020-02-11
  • 网络出版日期:  2020-08-20
  • 刊出日期:  2020-07-31

目录

/

返回文章
返回