珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据

魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊

魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊. 珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据[J]. 海洋地质与第四纪地质, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601
引用本文: 魏浩天, 刘刚, 韩孝辉, 赵彦彦, 吴佳庆, 杨俊. 珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据[J]. 海洋地质与第四纪地质, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601
WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601
Citation: WEI Haotian, LIU Gang, HAN Xiaohui, ZHAO Yanyan, WU Jiaqing, YANG Jun. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95. DOI: 10.16562/j.cnki.0256-1492.2019121601

珊瑚礁对热液流体的地球化学记录—来自南海西沙永兴岛珊瑚礁稀土元素的证据

基金项目: 海南省自然科学基金“三沙市永兴岛东部海底滑坡类型分布和成因探讨”(418QN306);“海底透视”创新团队建设项目“南海全新世珊瑚礁高分辨率地球化学研究”(MGQNLM-TD201703);青岛海洋科学与技术国家实验室鳌山科技创新计划“基于‘蛟龙号’深潜的南海若干关键地质与生物过程研究”(2016ASK05);国家自然科学基金“华南新元古代盖帽白云岩沉积微相的镁硅同位素研究”(41873006)
详细信息
    作者简介:

    魏浩天(1994―),男,硕士研究生,地质工程专业,E-mail: 13203815640@163.com

    通讯作者:

    赵彦彦(1978—),女,教授,从事沉积岩石学及地球化学研究,E-mail: zhaoyanyan@ouc.edu.cn

  • 中图分类号: P736.4

Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea

  • 摘要: 碳酸盐岩中稀土元素的含量、配分模式及元素异常记录了周围沉积水体的特征,能够很好地指示古海洋及沉积环境。珊瑚具有的高分辨率和稀土元素的高稳定性的特点,能够忠实地记录周围海水的地球化学特征。本文以南海西沙宣德环礁永兴岛142~84 ka发育的珊瑚礁为研究对象,通过主微量元素含量,尤其是稀土元素含量及其配分图解,判断珊瑚礁形成时周围水体的特征。结果表明自142 ka以来,永兴岛大部分珊瑚礁具有正常海相碳酸盐岩的稀土配分特征,表现为LREE亏损,Ce负异常及高的Y/Ho比值,表明周围水体属于开阔的浅海,但是位于23 m处(年龄为114 ka)的滨珊瑚骨骼格架除了有正常海相碳酸盐岩的特征外,还具有明显的Eu正异常,这表明其形成时有热液流体的加入。经过模型计算,认为在滨珊瑚骨骼格架的生长阶段,至少有0.1%的热液加入周围的海水中。通过资料查询和年龄对比,认为这些热液可能与高尖石岛或海南岛火山活动有关。
    Abstract: The contents, distribution pattern and elemental anomalies of rare earth elements in carbonates are the records of surrounding water. Corals are characterized by high resolution and high stability of rare earth elements and may faithfully record the geochemical characteristics of the surrounding seawater. In this paper, we analyzed the coral reefs from 142 to 84 ka collected from the Yongxing Island of the Xuande Atoll of Xisha Islands, South China Sea. Trace element contents, especially the rare earth element contents and their distribution patterns are used in this paper to determine the characteristics of the sea water, in which the coral reefs grew. Results show that, since 142 ka, most of the coral reefs in the Yongxing Island has a normal rare earth element distribution pattern of marine carbonates, characterized by LREE depletion, negative Ce anomalies and high Y/Ho ratios, indicating an environment of open shallow sea. In contrast, the coral skeletons in depth of 23 m 114 ka have similar LREE depletion, negative Ce anomalies and high Y/Ho ratios, but positive Eu anomalies. This suggests that certain amount of hydrothermal fluid has been input during the growth of corals. Based on the model calculations, it is inferred that at least 0.1% of hydrothermal fluid has been added to the open seawater during that time. The hydrothermal fluids may be related to the volcanic activities observed at Gaojianshi island or Hainan island.
  • 高温状态的早期地球经历了岩浆海与地幔反转等特殊地质过程[1-3],随后太古宙发生了大规模的岩浆活动[4-10]。该时期水平地应力较弱,构造运动以垂向运动为主,这与现今的板块构造体制有较大差异[8, 11-15]。太古宙的岩浆活动及同时期的垂向构造运动不仅反映了该时期地球的热力学状态,还与诸多矿产资源的形成有着密切关联,如BIF型铁矿[16-22]、钻石矿[23-29]、硫化物矿床等[30]。前人认为太古宙地球主要通过热管(Heat-Pipe)释放热量,其表现形式为岩石圈内部分布有多个岩浆通道与软流圈地幔相互沟通[31-32]。因此,岩浆通道不但是物质垂向增生和热量释放的通道,也是太古宙壳-幔间相互作用的关键纽带,具有重要的研究意义。岩浆活动是太古宙时期的重要地质过程,当前研究缺乏对岩浆活动所引发岩石圈变形的关注,未能将其与地表资料充分联系。一般调查手段主要着力于浅部构造变形样式和形成过程的分析[33-36],而难以恢复岩浆的侵入过程以及岩石圈的深浅部耦合过程。为了解决这一问题,Fischer与Gerya[35]构建了以超级地幔柱为主导的单岩浆通道模型,并以此模拟了玄武质岩浆的地表扩散过程和中、下地壳熔融的湿盖子构造。Sizova等[37-38]则模拟了TTG岩浆的演化过程,但该研究简化了熔体的运动过程,并没有考虑热管作用。因此,在大规模岩浆活动背景下,多个岩浆通道所产生的动力学效应还尚未明确。

    为了充分研究太古宙岩浆活动,特别是在多岩浆通道背景下所引发的动力学过程,本文将基于二维有限差分方法,通过对太古宙多通道岩浆条件的设置,来模拟岩浆的侵入过程与岩石圈构造变形响应,并进一步结合前人研究成果,讨论岩浆作用与穹脊构造之间的密切联系。

    本研究基于I2VIS代码开展实验[39-48]。该代码基于有限差分方法,将模拟区域按照网格进行划分,通过“以直代曲的方法”化微分方程组为差分方程组并利用计算机求解,并在此基础上结合了标记点-网格方法(Marker-in-cell Method)。它将岩石信息存储在均匀随机分布的标记点中,随后通过插值的方式,实现与差分网格的信息交换,是一种欧拉点与拉格朗日点结合的方法。

    数值模型受连续性方程、N-S方程(纳维叶-斯托克斯方程)、热守恒方程共同约束。三种约束条件组成的方程组如下所示:

    $$\left\{ {\begin{array}{*{20}{l}} {\nabla v = 0}\\ {\eta \Delta {v_i} = \dfrac{{\partial P}}{{\partial {x_i}}} - \rho {g_i}}\\ {\rho {C_P}\dfrac{{DT}}{{Dt}} = \nabla q + {H_{\rm{r}}} + {H_{\rm{s}}} + {H_{\rm{L}}} + {H_{\rm{a}}}} \end{array}} \right.$$ (1)

    其中,$\nabla $为散度,v为速度矢量,η为有效黏度,Δ为拉普拉斯算子,vi为速度矢量的方向分量,P为压力,ρ为岩石密度,gi为重力加速度的方向分量,其在垂直方向上为9.8 m/s2,在其他方向为零,CP为热容,T为温度,t表示地质时间,q代表热通量,Hr+Hs+HL+Ha代表放射热、摩擦热、相变生热和绝热产热之和。二维模型中,i包括水平方向x和垂直方向z。连续性方程的右侧为零,代表模型为不可压缩模型。有效粘度的计算方法如下:

    $$ \eta =\frac{1}{\dfrac{1}{{\eta }_{\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}}}+\dfrac{1}{{\eta }_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{l}}}} $$ (2)

    式中,ηdiff为扩散蠕变的等效黏度,ηdisl为位错蠕变的等效黏度。

    当前应力σ若达到屈服应力σyield时,则有效粘度为:

    $$\eta = \frac{{{\sigma _{{\rm{yield}}}}}}{{2{{\dot \epsilon }_{II}}}}$$ (3)

    式中,${{{\dot \epsilon }_{II}}}$是应变率第二不变量,屈服应力σyield与压力线性相关。

    岩石在固相线之下时为固态,熔融比例M为0;在液相线之上时为液态,熔融比例M为100%。而在固液相线之间时,岩石的部分熔融程度用下列式表示:

    $$ M=\frac{T-{T}_{\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{s}}}{{T}_{\mathrm{l}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{s}}-{T}_{\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{s}}}\times 100{\text{%}}$$ (4)

    其中,M为熔融比例,T为岩石所处的温度,Tsolidus是实验测得的固相线,Tliquidus则为液相线。

    本研究的模拟区域为879 km×400 km。欧拉网格为不均匀网格,模型中部的横向网格分辨率可达0.4 km,模型顶部的垂向分辨率可达1 km。模拟材料的性质参考了前人的研究结果[49],主要包括固态和熔融状态下的参考密度、热容、固液相线和流变学性质等,具体所采用的流变学参数见表1表2。初始模型的圈层结构设置如下:顶部具有10 km厚的自由空气层,绿岩带及沉积盖层厚3 km,地壳厚35 km(上下地壳的厚度比例为3∶4),剩余部分为地幔(图1)。前人[4-10]相关研究揭示太古宙发育了大规模的岩浆活动,因此,本文在圈层结构的基础上,增设了数个岩浆通道作为岩浆侵入条件和热量释放条件。依据地幔柱的相关研究[50-52],岩石圈的岩浆活动乃至TTG的形成都可能与之相关,因此,岩浆通道的正下方设置有地幔柱。实验假定岩浆通道横向排列呈等间距分布。岩浆通道模型分为密集排布和稀疏排布两种,用于对比岩浆通道间距及岩浆活动规模对岩石圈变形的影响。前者岩浆通道的间距约50 km,后者的间距为前者的一倍。岩浆通道内充满花岗质岩浆,初始状态下熔融比例为100%,其材料性质等同于上地壳。

    表  1  材料参数设置(据Ranalli and Donald[49]
    Table  1.  Material properties setting
    物质状态ρ0/
    kg·m−3
    Cp/
    J·kg−1·K−1
    K a/
    W·m−1·K−1
    Tsolidusb/KTliquidusb/KHr/
    μ·W·m−3
    α/
    K−1
    β/
    MPa
    粘滞性流变
    参数c
    塑性性质
    sin(φeff
    空气110020000A*0
    1000333020000A*0
    沉积物固态
    熔融
    2700
    2500
    1000K1TS1TL123 × 10−51 × 10−5B*
    G*
    0.15
    0.06
    上陆壳固态
    熔融
    2700
    2500
    1000K1TS1TL123 × 10−51 × 10−5B*
    G*
    0.15
    0.06
    下陆壳固态
    熔融
    3000
    2500
    1000K2TS2TL20.53 × 10−51 × 10−5C*
    G*
    0.15
    0.06
    绿岩带固态
    熔融
    3300
    2900
    1000K2TS2TL20.253 × 10−51 × 10−5D*
    H*
    0.15
    0.06
    地幔固态
    熔融
    3300
    2700
    1000K30.0223×10−51×10−5E*0.6
    0.06
      a. K1 = [0.64+807/(TK + 77)]exp(0.00004P); K2 = [1.18+474/(TK + 77)]exp(0.00004P); K3 = [0.73+1293/(TK+77)]exp(0.00004P)
      b. P < 1200 MPa, TS1=889+17900/(P + 54)+20200/(P + 54)2; P >1200 MPa, TS1=831+0.06P, TL1=1262+0.09P
       P < 1600 MPa, TS2=973–70400/(P + 354)+778×105/(P + 354)2; P >1600 MPa, TS2=935+0.0035P+0.0000062P2, TL2=1423+0.105P
      c. 类型A-H的具体参数详见表2
    下载: 导出CSV 
    | 显示表格
    图  1  初始模型
    1. 空气,2. 水,3. 沉积物,4. 绿岩带,5. 上地壳,6. 下地壳,7. 岩石圈地幔,8. 软流圈地幔,9. 绿岩带熔体,10. 地壳熔体,11. 地幔柱,12. 岩石圈的热管。
    Figure  1.  The initial model
    1. Air,2. Water,3. Sediment,4. Greenstone,5. Upper Crust,6. Lower Crust,7. Lithospheric Mantle,8. Asthenosphere Mantle,9. Melt Greenstone,10. Melt Crust,11. Mantle Plume,12. Heat Pipe.
    表  2  流变学参数设置(据Ranalli and Donald[49]
    Table  2.  Rheological parameter setting
    类别流变性质E/KJ·mol−1V/J·MPa−1·mol−1nAD/MPa−n·s−1η0a/Pa·s
    A*空气/水001.01.0×10−121×1018
    B*湿石英15402.33.2×10−61.97×1019
    C*An7523803.23.3×10−64.80×1024
    D*An7523803.23.3×10−44.80×1022
    E*无水橄榄岩53283.52.5×1043.98×1016
    F*b湿橄榄岩47084.02.0×1035.01×1020
    G*b长英质熔体001.02.0×10−95.00×1014
    H铁镁质熔体001.01.0×10−71.00×1013
      a η0表示为有效粘滞系数, 计算公式为:η0 = (1/AD)×106n
      b 熔融的长英质熔体 ,F* 表示熔融的沉积物和地壳。
    下载: 导出CSV 
    | 显示表格

    前人相关研究[33]表明,太古宙岩石圈的平均温度要比现今状态高约200 °C,因此,本模型的岩石圈底部温度被设置为近1500 °C,初始莫霍面温度被设置为900 °C,地表温度恒为0 °C。此外,假设岩浆通道与地幔柱的温度比背景温度高200 °C,模型不与外界发生物质交换和动量交换。各边界均为自由滑移边界,以此来减少模型的边界效应。左右热边界维持热平衡,顶底部热边界温度恒定。

    在多个岩浆通道作用下的岩石圈变形结果如图2所示。初始时刻时,岩石圈尚未发生变形,地形线水平。上地壳下部温度为500 °C,莫霍面温度为900 °C。密集多岩浆通道的初始状态见图2a。由于温度较高,岩浆通道内的岩浆均发生了部分熔融,且表现出低密度和低黏度特征,因此具有明显的向上侵入的趋势。随后岩浆沿岩浆通道向上侵入,地壳受岩浆驱动而产生弯曲。岩浆通道上方的地壳减薄剧烈,岩浆通道之间的地壳发生水平挤压,从而形成坳陷,岩浆通道上方产生正地形,如图2b所示,岩浆受阻后聚集,形成近半球状岩浆房。岩浆的侵入导致局部地温梯度显著上升,这加剧了热传导效应。与此同时,少量的地幔柱物质可沿着岩浆通道快速向上侵入,并最终保留在岩石圈地壳之中。如果考虑岩石圈的拆沉过程和地幔柱对流过程,这一模拟结果很可能解释了太古宙钻石的形成机制。

    图  2  岩石圈演化结果
    初始莫霍面温度为900 °C。图a至d为密集多岩浆通道的演化结果,e至h为稀疏多岩浆通道的演化结果。子图显示了粘度的对数。
    Figure  2.  Lithosphere evolution results
    The initial temperature in Moho is 900 °C. (a) -(d)A series of time-dependent results of dense magmatic vents. (e)-(h)A series of time-dependent results of sparse magmatic vents. The sub figures show viscosity which has been processed by log10.

    图2c图2d显示了岩浆穿透地表并逐渐冷却结晶的过程。岩浆逐步向上侵入,最终穿透地表形成穹窿,穹窿与正地形一一对应。绿岩带与古老地壳产生显著变形,在穹窿之间形成坳陷。由于存在水平密度差,较轻的岩浆向四周延伸,随后逐渐冷却。较重的地壳则向下拆沉,这些拆沉物质伴随温度的升高,最终发生熔融。该过程导致绿岩带不断下沉,并在剖面图上呈现出马蹄状的特征。由此,岩浆穹窿与绿岩带共同组成穹脊构造。最后,岩浆结晶完毕,地表不断冷却并逐渐稳定。值得注意的是,在该段时期内,地幔柱沿岩石圈底部发生水平扩张,能够造成岩石圈地幔失稳,并最终导致其发生拆离。从地形演化上看,在穹窿形成之初地形起伏最为剧烈,绿岩带坳陷中心产生了明显的沟谷,随后沟谷的面积随着时间演化而不断缩小,最终收缩成线状,见图3d

    图  3  地形的连续时空演化
    水平范围为整个模拟区域,红色虚线代表实验数据连线。
    Figure  3.  Spatio-temporal evolution of topography
    The horizontal display range is the entire modeling area, red dotted lines indicate the data.

    图2右侧为稀疏的多岩浆通道的模拟结果,该模型共包含3个岩浆通道,岩浆通道的间距是左侧结果的两倍。模拟结果显示出,岩浆通道的间隔较大,岩石圈变形作用并不显著,岩浆在穿透地表时引发变形的范围较为局限。绿岩带的剪切变形不明显且不发生拆离。在岩浆冷却结晶过程中,虽然穹窿的出露面积变大并导致绿岩带水平缩短,但未能使绿岩带形成“钱袋子”构造。从地形上看,岩浆侵入区形成构造地形的高正值区。而在岩浆通道之间亦表现出构造地形的正值,但明显小于岩浆侵入区。这是由于远距离岩浆侵入过程中水平挤压作用只能导致地壳水平缩短抬升,并不能形成坳陷。与密集的多岩浆通道模型类似,该模型的岩石圈地幔在岩浆通道和地幔柱联合作用下,同样能够发生失稳并拆沉。

    从地形演化过程的对比结果来看(图3),两种模型的不同之处在于密集模型中岩浆通道周围地区的负地形持续存在约5百万年,而在稀疏模型中负地形持续时间较短,约3百万年。此外,稀疏模型的周围地形变化比密集模型地形变化平缓,影响范围更广。密集模型中负地形所占面积要明显大于稀疏模型。

    第二应变率不变量代表了剪切应变的强度,它主要取决于应力与有效粘度。该值在模型中的变化范围较大,因此对模拟结果取对数进行展示。地壳乃至岩石圈的第二应变率在岩浆侵入时显著升高,在岩浆结晶后逐渐降低。这意味着岩浆作用为构造变形提供直接驱动力,也意味着变形过程随岩浆侵入事件的结束而消失,地壳表层不发生失稳。

    在密集岩浆通道模型中,剪切变形最为剧烈的区域是岩浆通道及其四周,该区域在图4a图4c呈红色至橘红色,代表了在岩浆沿着岩浆通道快速侵入过程中所产生的高剪切应变环境。通道内岩浆的粘度显著低于围岩,岩浆的侵入还提升了地温梯度,两种因素共同造成了岩石圈的局部弱化,并明显降低岩石圈强度,增大了岩石圈的剪切。因此,该区域变形最为剧烈。在各岩浆通道之间的绿岩带的第二应变率相比其周缘来说明显偏低,代表其处于低剪切应变状态。对比图4b图4c可知,在侵入过程岩浆未穿透地表时,初期绿岩带变形更为剧烈。而在岩浆穿透地表阶段,穹脊构造已经产生,此时绿岩带相对稳定。

    图  4  第二应变率不变量结果
    为了更加直观,本文在显示时将其取以10为底的对数。
    Figure  4.  Results of the second strain rate invariant
    It has been processed by log10 in order to be more intuitive.

    对深部而言,软流圈地幔的第二应变率值维持较高水平,这一结果的产生原因是密度相对较低的地幔柱物质引发了垂向运动。在地幔柱活动减弱后,软流圈的剪切应变有所减小。随着岩石圈地幔受地幔柱扰动最终发生重力失稳,软流圈的第二应变率不变量再一次升高。这表明重力失稳重新加剧了软流圈的垂向运动,但对地壳的影响较小。

    稀疏模型的初期演化结果与密集模型结果相似。应变主要集中在岩浆通道处。在岩浆通道间,第二应变率不变量的过渡较为平缓,水平方向的空间变化相对于密集模型来说要小很多。在模型演化末期,绿岩带不再发生明显应变,图中呈大面积的深蓝色表明地壳整体处于稳定状态。

    对比两种模型可知,虽然模型材料设置与背景温度结构均相同,但应变程度却不相同。除初始时刻以外,稀疏模型的第二应变率不变量要显著低于密集模型。这充分地反映了稀疏模型不能有效地产生剪切应变,亦不能为穹脊构造的产生提供良好条件。

    岩浆通道的形成源于大规模的岩浆作用,前人研究表明太古宙时期的岩浆活动十分频繁[4-10]。前人认为岩浆的形成与超级地幔柱作用密切相关[50-52],也有人认为岩浆由含水玄武岩产生[7, 53-56]。而Moore等人[31-32]利用行星比较学与数值模拟的方法解释了频繁的岩浆活动并提出太古宙地球主要通过“热管”状的岩浆活动来释放热量。虽然岩浆的具体成因尚未明确,但岩浆通道实际存在并对岩石圈造成了实质性的影响。地幔柱无法直接作用于地壳,其主要作用是对岩石圈底部的活化与扰动。地幔柱的动力学过程打破了岩石圈平衡,最终导致地幔物质坠离。这一过程在岩浆过程结束之后出现,这表明地幔物质的坠离不是由岩浆直接驱动的。

    数值模拟结果显示出岩浆作用与岩石圈构造变形的产生存在着紧密的联系。岩浆提供了形成穹窿的物质条件。岩浆活动弱化了岩石圈强度,提供了地壳形变的驱动力。岩浆通道是岩浆向上运动的重要途径,岩浆的密度显著低于围岩,使岩石圈形成了较强的水平不均一性。多个岩浆通道导致地表及岩石圈处于高应变状态。这一响应过程揭示了多个岩浆通道对岩石圈构造变形起到了重要的驱动作用。多个岩浆通道的存在为绿岩带的对称弯曲提供了可能。

    岩浆在穿透地表后冷却结晶,经过散热与水平扩张后固结成TTG穹窿。岩浆过程对绿岩带变形的影响随岩浆通道的间距而变化。密集排布的岩浆通道能够引发绿岩带乃至上下地壳的拗沉,使绿岩带在岩浆侵入过程中逐渐收缩为线状并在剖面上呈现出“钱袋子”构造样式。地形变化则更加直观地证明了密集的岩浆通道能够产生一系列的高低起伏的穹窿及坳陷。稀疏模型则只能产生穹窿,无法产生绿岩带拗沉,也就无法产生穹脊构造。因此,密集排布的岩浆通道与分布于在加拿大Superior克拉通[50]、印度南部的Dharwar克拉通[57]、澳大利亚西部的Pilbala克拉通[58]和华北克拉通中东部内的花岗-绿岩带[48]内的穹脊构造相对应。

    由模拟结果可知,穹窿和坳陷的面积并非一成不变的。对于密集岩浆通道条件来说,侵入之初时的穹窿面积较小,坳陷的面积较大,坳陷的弯曲弧度较小。随着穹窿的横向扩张,坳陷变得更加弯曲,其面积也不断缩小,最终绿岩带只出露一小部分。由此可见,穹脊构造经过了从初期的不稳定状态到后期较为稳定直至固化的动力学演化。这一演化的本质是水平不均一物质在重力作用下的再平衡过程。

    岩浆通道底部的第二应变率不变量显著高于周围区域,这表示岩浆通道能够促使地幔物质向上运动。同样地,图2也显示出地幔物质能够通过岩浆通道穿过岩石圈地幔,最终能够到达浅部。本文认为这一过程与钻石矿以及贵金属矿产的形成密切相关。绿岩带的第二应变率不变量极低,这表明此时该处结构相对稳定。未设置岩浆通道的区域的绿岩带也未产生穹脊构造,这表明穹脊构造的产生并非是受绿岩带的重力作用驱动。稀疏模型的第二应变率不变量要显著低于密集模型,也无法产生穹脊构造。该结果指示出岩浆通道的密集程度对岩石圈变形具有重要指示意义。密集程度与岩浆活动规模相对应,这意味着大规模的岩浆活动是穹脊构造产生的必要条件之一,也揭示了太古宙构造体制与现今板块构造体制的实质性差别。

    (1)岩浆通道条件是太古宙岩石圈构造变形的重要控制条件,并且与穹脊构造的产生有着密不可分的联系。岩浆活动弱化了岩石圈,并为岩石圈演化提供了物质基础与驱动力。

    (2)密集的岩浆通道能够引发结构对称的绿岩带拗沉,从而形成“钱袋子”样式。穹脊构造的形成过程受岩浆侵入及穹窿水平扩张控制,并非由绿岩带下沉所主导。在穹脊构造形成过程中,穹窿在水平方向上扩张并导致绿岩带收窄。

    (3)岩浆通道能够使地幔物质到达岩石圈浅部,这为成矿作用提供了有利条件。岩浆活动的规模与岩石圈构造变形密切相关,大规模的岩浆活动是穹脊构造的出现前提。

  • 图  1   珊瑚样品采集地点[14]

    Figure  1.   Coral sample collection site[14]

    图  2   地层柱状图(A),滨珊瑚骨骼化石样品(B)及其X光照片(C)

    Figure  2.   Stratigraphic column (A), samples of Porites skeleton fossil (B) and its X-ray photos (C)

    图  3   研究区珊瑚礁宏观手标本和显微照片

    A. 珊瑚骨架灰岩宏观照片;B. 珊瑚骨架灰岩,单偏光;C. 红藻粘结灰岩宏观照片;D. 红藻粘结灰岩,单偏光;E. 生物碎屑灰岩宏观照片;F. 生物屑灰岩,单偏光;G. 含生物碎屑泥灰岩宏观照片;H. 泥晶生屑灰岩,单偏光。

    Figure  3.   Macroscopic hand specimens and micrographs of coral reefs in the study area

    A. Macro photo of coral skeleton limestone; B. Coral skeleton limestone, single polarized light; C. Macro photo of red algae bound limestone; D. Red algae bound limestone, single polarized light; E. Macro photo of bioclastic limestone; F. Bioclastic limestone, single polarized light; G. Macro photo of bioclastic marl; H. Micritic bioclastic limestone, single polarized light.

    图  4   珊瑚礁样品X射线衍射图谱

    Ar. 文石,C. 方解石;A. 18.40 m处生物碎屑灰岩,B. 22.80 m处珊瑚骨架,C. 23 m处滨珊瑚骨骼化石,D. 27.75 m处生物碎屑灰岩,E. 31.20 m处生物碎屑灰岩,F. 41.80 m处红藻黏结灰岩。

    Figure  4.   X-ray diffraction pattern of coral reef samples

    Ar. aragonite, C. calcite. A. Bioclastic limestone at 18.40 m; B. Coral skeleton at 22.80 m; C. Porites skeleton fossil at 23 m; D. Bioclastic limestone at 27.75 m; E. Bioclastic limestone at 31.20 m; F. Red algae bound limestone at 41.80 m.

    图  5   岩心柱样品与滨珊瑚骨骼化石样品稀土元素配分模式图

    A. 岩心柱样品,B. 滨珊瑚骨骼化石样品。

    Figure  5.   REE distribution pattern of core column samples and Porites skeleton fossil samples

    A. Core column samples, B. Porites skeleton fossil samples.

    图  6   滨珊瑚骨骼化石和岩心柱的NdN/YbN、U与ΣREE含量相关图

    Figure  6.   NdN/YbN, U and ΣREE contents in Porites skeleton fossil and core columns

    图  7   岩心柱样品与滨珊瑚骨骼化石样品中ΣREE、Y/Ho和Fe、Mn、Ni、Cu之间的相关图

    A-I. 滨珊瑚骨骼化石样品,J-Q. 岩心柱样品。

    Figure  7.   Correlation between ΣREE, Y/Ho and Fe, Mn, Ni, Cu in core columns and Porites skeleton fossil samples

    A-I. Porites skeleton fossil samples, J-Q. Core columns samples.

    图  8   岩心柱样品中ΣREE和P之间的相关图

    Figure  8.   Correlation between ΣREE and P in core samples

    图  9   滨珊瑚骨骼化石和岩心柱的Y/Ho与Sc、Pb含量相关图

    Figure  9.   Correlation diagram of Y/Ho and Sc, Pb contents in Porites skeleton fossil and core columns

    图  10   滨珊瑚骨骼化石和岩心柱的Ce/Ce*与Eu/Eu*相关图

    Figure  10.   Ce/Ce* and Eu/Eu* correlation diagram of Porites skeleton fossil and core columns

    图  11   滨珊瑚骨骼化石扫描电镜图片

    A. 23 m珊瑚骨架(134x),B. 23 m文石(500x),C. 22.80 m珊瑚骨架(989x),D. 22.80 m文石(3.00kx)。

    Figure  11.   Scanning electron microscope picture of Porites skeleton fossil

    A. coral skeleton at 23 m (134x), B. aragonite at 23 m (500X), C. coral skeleton at 22.80 m (989x), D. aragonite at 22.80 m (3.00kx).

    图  12   滨珊瑚骨骼化石的Eu/Eu*与[Pr/Yb]PAAS及[Pr/Tb]PAAS相关图

    Figure  12.   Correlation between Eu/Eu* and [Pr/Yb]PAAS or [Pr/Tb]PAAS of Porites skeleton fossil

    图  13   计算了标准化水样和PAAS端元的REY模式

    (注:绿色三角为岩心柱数据,红色三角形为滨珊瑚骨骼化石数据,海水端元数据引自文献[49],热液端元数据引自文献[48])

    Figure  13.   Calculated the REY pattern of standardized water samples and PAAS end elements

    (Note: green triangle is core column data, red triangle is Porites skeleton fossil data, seawater end metadata is quoted from reference[49], hydrothermal end metadata is quoted from reference[48])

    表  1   珊瑚礁样品矿物物相组成

    Table  1   Mineral phase composition of coral reef samples

    样品号深度/m文石/%方解石/%
    18.4018.4076.423.6
    22.8022.80100
    232376.323.7
    27.7527.7543.656.4
    31.2031.20100
    41.8041.80100
      注:−表示未检出。
    下载: 导出CSV

    表  2   岩心柱中部分珊瑚(包括滨珊瑚骨骼化石)238U-232Th测年结果

    Table  2   238U-232Th dating results of some corals (including Porites skeleton fossil) in core column

    样品号238U(×10−9232Th(×10−12δ234U*(测量值)230Th/238Uδ234UInitial**(校正后)年龄/ka校正后年龄/kaBP
    YL-18351 670±1.124 128±52114±1.10.606 4±0.000 745144±1.484.18±0.20683.82±0.277
    YL-18902 766±1.81 417±44109±1.00.723 8±0.000 900150±1.3112.40±0.305112.38±0.305
    YL-21752 400±1.3741±37109±1.80.743 1±0.001 038151±2.5117.74±0.473117.73±0.473
    YL-23002 480±1.3398±41113±1.00.734 2±0.000 812156±1.4114.36±0.299114.35±0.30
    YL-24951 222±0.9942±46107±1.20.821 4±0.001 177160±1.8142.49±0.540142.47±0.540
    YL-30113 108±2.2111 312±143104±1.00.795 9±0.000 981152±1.4134.64±0.412133.73±0.615
    YL-36501 888±1.214 549±4585±1.11.063 0±0.001 193220±3.8337.10±3.71336.92±3.71
    YL-4285924±0.76 890±4789±1.21.007 3±0.001 333183±2.6255.73±1.837255.54±1.839
    YL-4605951±0.7594±4088±1.10.982 6±0.001 357171±2.2234.82±1.47234.80±1.47
    YL-4850963±0.7579±4882±1.00.986 6±0.001 279163±2.2243.85±1.53243.84±1.53
    YL-5015509±0.4184±4092±1.30.894 8±0.001 208152±2.2177.96±0.848177.95±0.848
    YL-55301 816±1.1158±4788±1.00.962 6±0.001 209163±1.9220.19±1.135220.19±1.135
      注:234U、238U和230Th的衰变常数${{\rm{\lambda }}_{{\rm{234}}}}{\rm{ = 2}}.{\rm{82206}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{{\rm{a}}^{{\rm{ - 1}}}}$、$ {\rm{\lambda }}_{\rm{238}}\rm{=1.551}\rm{}\rm{25} \times {\rm{10}}^{\rm{-10}}{\rm{a}}^{\rm{-1}} $和$ {\rm{\lambda }}_{\rm{234}}\rm{=9.170}\rm{}\rm{5} \times {\rm{10}}^{\rm{-16}}{\rm{a}}^{\rm{-1}} $;$ {\rm{\delta }}^{\rm{234}}\rm{U=}\left({\left[{}_{\rm{}}{}^{\rm{234}}\rm{U}/{}_{\rm{}}{}^{\rm{238}}\rm{U}\right]}_{\rm{activity}}\rm{-1}\right)\times{1}\rm{}\rm{000} $;校正的230Th年龄是假定初始的230Th/232Th原子比为(4.4±2.2)×10−6。年龄均相对于1 950 a。
    下载: 导出CSV

    表  3   主量元素测试结果(单位:%)

    Table  3   Major element test results(unit: %)

    样品名称Al2O3CaOK2OMgONa2OP2O5样品名称SiO2
    2-60.0348.620.020.150.53000-10.034
    2-160.0342.20.010.120.440.01000-20.016
    5-10.0143.880.010.170.59000-30.078
    5-80.0143.240.010.170.59000-40.031
    9-10.0143.60.010.250.59000-50.044
    9-80.0145.20.010.240.67000-60.020
    15-10.0143.620.010.240.6001-1
    15-80.0142.970.010.240.6001-20.011
    19-10.0152.10.020.330.81001-30.057
    19-110.0152.40.020.30.99010-1
    18.75-20.0154.050.660.210.08010-2
    20.00-10.0253.790.010.460.320.05010-3
    20.00-20.0253.830.010.150.510.01021-1
    20.25-10.0263.040.010.270.580.01021-20.033
    20.25-20.0155.060.010.450.320.03021-30.008
    21.05-10.0153.090.010.160.530.01034-10.004
    21.90-20.0357.590.010.330.430.04034-20.011
    22.75-20.0154.210.820.360.05034-30.020
    23.400.0154.160.250.270.05039-10.015
    24.00-10.0153.170.010.50.40.02039-20.018
    24.00-20.0153.050.820.170.04039-3
    25.25-10.0253.610.010.560.380.05054-10.028
    25.25-20.0254.850.640.160.04054-20.011
    26.55-10.0154.680.30.250.02
    26.55-20.0154.060.010.130.360.01
      注:−表示未检出,SiO2为电子探针测试数据。
    下载: 导出CSV

    表  4   稀土元素含量(×10-6)及其相关指标

    Table  4   Rare earth element content (×10-6) and related indicators

    样品名称YLaCePrNdSmEuGdTbDyHoErTmYbLuΣREYΣREEΣLREE/ΣHREEY/HoLa/La*Ce/Ce*Eu/Eu*
    BLANK-10.0000.0010.0010.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0020.00213.30151.7762.4960.9141.549
    BLANK-20.0000.0000.0010.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0020.00113.654259.5381.7430.9901.161
    GSR-121.3110.9092.7760.2570.9090.1870.0390.2000.0290.1680.0340.0920.0120.0700.0107.0035.6928.24438.6900.6911.3180.952
    JDO-112.4127.2721.8900.9173.5030.6110.1380.7790.1060.6500.1480.4200.0500.2730.03829.20616.7945.81583.6821.8170.1610.920
    2-10.0960.0110.0130.0020.0090.0020.0010.0040.0010.0040.0010.0040.0010.0040.0010.1530.0572.06586.4741.4350.6501.928
    2-100.1010.0110.0120.0020.0080.0020.0010.0040.0010.0050.0010.0040.0010.0040.0010.1570.0551.91689.4821.5740.6071.875
    5-80.0480.0050.0100.0010.0050.0010.0000.0010.0000.0020.0000.0020.0000.0020.0000.0780.0312.69997.1391.6940.9721.529
    9-10.0640.0070.0140.0010.0060.0020.0010.0030.0000.0030.0010.0030.0000.0030.0010.1090.0442.32181.1141.4151.0171.336
    12-10.0570.0060.0110.0010.0050.0020.0010.0020.0000.0030.0010.0020.0000.0020.0000.0920.0352.37396.2351.1680.9662.581
    12-70.0570.0050.0110.0010.0050.0010.0010.0020.0000.0020.0010.0020.0000.0020.0000.0910.0342.538104.1351.2441.0102.940
    22-10.0590.0080.0160.0020.0070.0020.0010.0030.0000.0020.0010.0020.0000.0020.0000.1060.0473.22296.6311.1890.9372.347
    22-120.0610.0060.0140.0010.0060.0020.0010.0020.0000.0020.0010.0020.0000.0020.0000.1010.0402.972105.6481.1631.0712.688
    18.60-11.3060.2450.1590.0470.2090.0580.0150.0810.0130.0920.0210.0650.0090.0550.0092.3831.0762.13561.9701.6280.3401.021
    18.75-21.6750.2760.1890.0580.2500.0710.0190.1030.0160.1080.0270.0820.0110.0740.0122.9691.2951.99262.7171.4110.3460.988
    18.95-22.1250.3270.1930.0670.3050.0860.0230.1250.0210.1500.0350.1070.0150.0900.0143.6821.5571.79860.1461.5710.3001.001
    19.25-20.2400.0380.0360.0080.0340.0090.0030.0120.0020.0130.0030.0100.0010.0090.0010.4190.1792.48878.4581.3140.4751.348
    19.70-11.2350.3300.2770.0670.2810.0700.0180.0900.0140.0900.0200.0610.0080.0500.0082.6181.3833.06461.9761.3780.4291.033
    19.70-21.2680.3660.4690.0750.3090.0760.0200.0960.0160.1000.0220.0660.0090.0570.0092.9571.6903.50356.9631.2780.6511.105
    20.00-11.1590.3640.4420.0740.3010.0750.0220.1000.0150.0930.0210.0630.0090.0510.0082.7981.6393.55955.8971.2830.6211.191
    20.25-10.3000.0720.0530.0140.0630.0170.0050.0210.0030.0200.0040.0130.0020.0100.0020.5980.2982.95870.1211.7360.3871.235
    20.25-20.9030.2040.1460.0400.1790.0490.0130.0640.0100.0680.0150.0440.0060.0350.0061.7820.8792.53959.7511.6090.3721.092
    21.05-10.1270.0290.0250.0040.0200.0050.0020.0080.0010.0080.0030.0060.0010.0050.0010.2460.1182.64946.1762.1570.4941.300
    21.05-20.8850.1960.1400.0380.1660.0450.0120.0610.0100.0660.0150.0430.0060.0350.0051.7220.8372.48460.9071.5450.3721.058
    21.90-10.1920.0550.0670.0090.0360.0080.0030.0110.0020.0110.0020.0070.0010.0060.0010.4120.2194.32678.4901.3570.6731.342
    21.90-21.2020.5710.3480.0930.4130.1010.0250.1260.0170.1110.0250.0710.0100.0580.0093.1791.9773.64448.8111.8960.3431.029
    22.75-21.5890.3820.2520.0750.3300.0880.0230.1190.0180.1220.0270.0780.0100.0640.0103.1881.5992.56558.4861.5690.3431.017
    23.400.6810.1600.1140.0330.1490.0400.0110.0520.0080.0500.0120.0340.0050.0260.0041.3790.6992.67258.1941.5570.3621.068
    23.500.4660.1310.0930.0270.1260.0320.0090.0410.0060.0380.0090.0250.0030.0190.0031.0280.5622.91254.0561.6570.3601.137
    24.00-10.7600.1550.1170.0300.1370.0370.0100.0490.0080.0530.0120.0370.0050.0310.0051.4460.6862.42461.5101.6250.3941.067
    24.00-21.2260.2900.2080.0550.2500.0680.0170.0900.0140.0950.0210.0630.0090.0520.0082.4671.2412.52757.1821.6770.3781.009
    25.25-11.3220.3030.2120.0590.2630.0690.0180.0920.0150.0990.0230.0680.0090.0550.0082.6141.2922.50658.1851.5600.3631.036
    25.25-21.1600.3210.2270.0640.2780.0710.0180.0920.0140.0940.0210.0620.0080.0490.0082.4871.3272.81054.6681.4860.3651.017
    25.76-10.5480.1350.0930.0290.1370.0380.0100.0520.0080.0490.0100.0290.0040.0210.0031.1650.6172.50852.4691.6000.3411.012
    25.76-21.7780.3390.2430.0690.3050.0820.0210.1100.0180.1220.0290.0850.0120.0700.0113.2941.5162.31362.0531.5020.3661.031
    26.55-10.3760.1150.0930.0240.1110.0290.0090.0350.0050.0330.0070.0200.0030.0160.0020.8800.5043.11151.1141.5580.4051.350
    26.55-20.0850.0130.0160.0020.0100.0030.0010.0050.0010.0050.0010.0030.0010.0030.0000.1490.0632.56073.2922.0900.7171.354
    27.55-12.2710.7180.3810.1070.4850.1300.0330.1740.0290.1910.0430.1280.0180.1010.0164.8222.5512.65352.8352.1610.3091.008
    27.55-21.5490.2860.1910.0560.2580.0680.0180.0920.0150.1050.0250.0770.0110.0620.0102.8221.2732.20962.0101.6640.3451.032
    下载: 导出CSV

    表  5   微量元素含量(单位:×10−6

    Table  5   Trace element content (unit: ×10−6

    样品名称TmYbLuScMnFeNiCuZrPbU
    BLANK-10.0000.0000.0000.0000.0010.1790.0170.0290.0060.0050.002
    BLANK-20.0000.0000.000<LOD0.0020.2940.0100.0130.005<LOD0.001
    GSR-120.0120.0700.0100.06462.169619.12674.5637.9580.0961.2890.074
    JDO-10.0500.2730.0380.18051.29476.9142.3400.4430.1180.3190.549
    2-10.0010.0040.0010.0302.49373.73351.16882.9840.0290.1341.747
    2-100.0010.0040.0010.0340.72833.91964.1133.3050.0220.0581.969
    5-80.0000.0020.0000.0260.7071.6391.0410.0150.2661.804
    9-10.0000.0030.0010.0341.7651.5532.7620.0150.2622.203
    12-10.0000.0020.0000.0381.2921.9801.1492.6660.0170.0841.658
    12-70.0000.0020.0000.0390.9881.7111.1001.5840.0170.1191.861
    22-10.0000.0020.0000.0331.1182.3671.0491.6060.0220.1141.783
    22-120.0000.0020.0000.0321.2663.0131.5332.0400.0240.1121.918
    18.60-10.0090.0550.0090.07535.6546.4449.8381.0590.0990.3311.725
    18.75-20.0110.0740.0120.08423.3303.1544.9370.0800.5112.285
    18.95-20.0150.0900.0140.09930.5059.4232.1820.6040.1390.3721.015
    19.25-20.0010.0090.0010.0513.0232.4560.7961.3250.0380.0652.054
    19.70-10.0080.0500.0080.08912.9916.2453.8621.7970.1740.2611.383
    19.70-20.0090.0570.0090.12612.20115.6667.1912.5550.6510.2931.783
    20.00-10.0090.0510.0080.11213.0659.6560.9170.5820.3632.161
    20.25-10.0020.0100.0020.0455.4533.2633.2618.4370.0390.1552.224
    20.25-20.0060.0350.0060.07524.2408.0481.4435.2930.0980.2582.112
    21.05-10.0010.0050.0010.0332.5485.81213.8490.0190.1602.780
    21.05-20.0060.0350.0050.07813.2124.4272.59713.1350.0570.2301.641
    21.90-10.0010.0060.0010.0461.0204.0891.1741.8390.0200.0421.784
    21.90-20.0100.0580.0090.06110.9130.6881.5200.1500.7882.708
    22.75-20.0100.0640.0100.10717.4805.7260.7254.3690.1010.3961.723
    23.400.0050.0260.0040.0453.5292.2090.9050.4780.0700.2001.974
    23.500.0030.0190.0030.0402.5361.9340.4590.6300.0640.1811.964
    24.00-10.0050.0310.0050.0545.5034.1970.5953.8180.0650.2071.639
    24.00-20.0090.0520.0080.0729.9515.9480.7203.3020.0900.3431.173
    25.25-10.0090.0550.0080.0747.1014.2572.77615.7090.1080.3191.627
    25.25-20.0080.0490.0080.0678.8834.1571.35916.5780.1020.3421.151
    25.76-10.0040.0210.0030.0504.6962.3980.5360.4880.0420.1462.683
    25.76-20.0120.0700.0110.0858.6545.1560.7120.7680.1340.4081.966
    26.55-10.0030.0160.0020.0483.1304.8500.6660.9470.0480.1161.594
    26.55-20.0010.0030.0000.0281.1651.1810.5390.0390.1102.590
    27.55-10.0180.1010.0160.10914.9085.5490.7260.6950.1480.5141.299
    27.55-20.0110.0620.0100.09110.2754.3260.6460.8830.1080.4272.101
      注:−表示未检测。
    下载: 导出CSV
  • [1]

    Kamber B S, Webb G E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history [J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525. doi: 10.1016/S0016-7037(01)00613-5

    [2]

    Bolhar R, Van Kranendonk M J, Kamber B S. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton-Formation from hydrothermal fluids and shallow seawater [J]. Precambrian Research, 2005, 137(1-2): 93-114. doi: 10.1016/j.precamres.2005.02.001

    [3]

    Bolhar R, Van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates [J]. Precambrian Research, 2007, 155(3-4): 229-250. doi: 10.1016/j.precamres.2007.02.002

    [4]

    Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China [J]. Chemical Geology, 2007, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010

    [5]

    Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. doi: 10.1016/S0016-7037(03)00422-8

    [6]

    Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea [J]. Marine Geology, 2019, 411: 88-97. doi: 10.1016/j.margeo.2019.02.006

    [7] 赵美霞, 余克服, 张乔民. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 2006, 26(1):186-194. [ZHAO Meixia, YU Kefu, ZHANG Qiaomin. Review on coral reefs biodiversity and ecological function [J]. Acta Ecologica Sinica, 2006, 26(1): 186-194. doi: 10.3321/j.issn:1000-0933.2006.01.025
    [8]

    Fallon S J, White J C, McCulloch M T. <italic>Porites</italic> corals as recorders of mining and environmental impacts: misima Island, Papua New Guinea [J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 45-62. doi: 10.1016/S0016-7037(01)00715-3

    [9]

    Webster J M, Braga J C, Humblet M, et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30, 000 years [J]. Nature Geoscience, 2018, 11(6): 426-432. doi: 10.1038/s41561-018-0127-3

    [10] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 55(8):1217-1229. [YU Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes [J]. Science China Earth Sciences, 2012, 55(8): 1217-1229. doi: 10.1007/s11430-012-4449-5
    [11]

    Kasper-Zubillaga J J, Armstrong-Altrin J S, Rosales-Hoz L. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico [J]. Estuarine, Coastal and Shelf Science, 2014, 151: 78-87. doi: 10.1016/j.ecss.2014.09.023

    [12]

    Sholkovitz E, Shen G T. The incorporation of rare earth elements in modern coral [J]. Geochimica et Cosmochimica Acta, 1995, 59(13): 2749-2756. doi: 10.1016/0016-7037(95)00170-5

    [13]

    Webb G E, Nothdurft L D, Kamber B S, et al. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite [J]. Sedimentology, 2009, 56(5): 1433-1463. doi: 10.1111/j.1365-3091.2008.01041.x

    [14] 陈万利, 吴时国, 黄晓霞, 等. 西沙群岛晚第四纪碳酸盐岩淡水成岩作用——来自永兴岛SSZK1钻孔的地球化学响应证据[J]. 沉积学报, http://doi.org/10.14027/j.issn.1000-0550.2020.006.

    CHEN WanLi, WU ShiGuo, HUANG XiaoXia, et al. Geochemical signatures in the Late Quaternary meteoric diagenetic carbonate succession, Xisha Islands, South China Sea [J]. Acta Sedimentologica Sinica, http://doi.org/10.14027/j.issn.1000-0550.2020.006.

    [15]

    Zhang R X, Yang S Y. A mathematical model for determining carbon coating thickness and its application in electron probe microanalysis [J]. Microscopy and Microanalysis, 2016, 22(6): 1374-1380. doi: 10.1017/S143192761601182X

    [16]

    Zhang X, Yang S Y, Zhao H, et al. Effect of beam current and diameter on electron probe microanalysis of carbonate minerals [J]. Journal of Earth Science, 2019, 30(4): 834-842. doi: 10.1007/s12583-017-0939-x

    [17] 廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样-样品交叉测试法测定石笋样品的<sup>230</sup>Th/U年龄[J]. 质谱学报, 2018, 39(3):295-309. [LIAO Zebo, SHAO Qingfeng, LI Chunhua, et al. Measurement of U/Th Isotopic Compositions in stalagmites for <sup>230</sup>Th/U geochronology using MC-ICP-MS by standard-sample bracketing method [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295-309. doi: 10.7538/zpxb.2017.0072
    [18] 李晓, 刘娜, 吴仕玖, 等. 南海西沙群岛西科1井上新统-全新统碳酸盐岩微相分析[J]. 科技导报, 2016, 34(7):103-110. [LI Xiao, LIU Na, WU Shijiu, et al. Analysis of carbonate microfacies in Pliocene-Holocene, in Well XK-1, the Xisha Islang, South China Sea [J]. Science & Technology Review, 2016, 34(7): 103-110. doi: 10.3981/j.issn.1000-7857.2016.07.009
    [19] 解习农, 谢玉洪, 李绪深, 等. 南海西科1井碳酸盐岩生物礁储层沉积学: 层序地层与沉积演化[M]. 武汉: 中国地质大学出版社, 2016.

    XIE Xinong, XIE Yuhong, LI Xushen, et al. Sedimentology of carbonate reef reservoirs in Well Xike-1, South China Sea: Sequence Stratigraphy and Sedimentary Evolution[M]. Wuhan: China University of Geosciences, 2016

    [20]

    Van Kranendonk M J, Webb G E, Kamber B S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean [J]. Geobiology, 2003, 1(2): 91-108. doi: 10.1046/j.1472-4669.2003.00014.x

    [21]

    Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator [J]. Chemical Geology, 2009, 258(3-4): 338-353. doi: 10.1016/j.chemgeo.2008.10.033

    [22]

    Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways [J]. Aquatic Geochemistry, 2006, 12(1): 39-72. doi: 10.1007/s10498-005-4471-8

    [23]

    Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China [J]. Chemical Geology, 2009, 265(3-4): 345-362. doi: 10.1016/j.chemgeo.2009.04.015

    [24]

    Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 477-492. doi: 10.1016/j.jpgl.2004.05.033

    [25]

    Byrne R H, Liu X W, Schijf J. The influence of phosphate coprecipitation on rare earth distributions in natural waters [J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3341-3346. doi: 10.1016/0016-7037(96)00197-4

    [26]

    Zhao M Y, Zheng Y F. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates [J]. Earth and Planetary Science Letters, 2017, 460: 213-221. doi: 10.1016/j.jpgl.2016.11.033

    [27]

    Zhao M Y, Zheng Y F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones [J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531. doi: 10.1016/j.gca.2014.07.001

    [28]

    Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279. doi: 10.1016/j.gca.2003.09.012

    [29]

    Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 443-452. doi: 10.1016/j.jpgl.2011.10.008

    [30]

    Kidder D L, Krishnaswamy R, Mapes R H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis [J]. Chemical Geology, 2003, 198(3-4): 335-353. doi: 10.1016/S0009-2541(03)00036-6

    [31]

    Kamber B S, Webb G E, Gallagher M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity [J]. Journal of the Geological Society, 2014, 171(6): 745-763. doi: 10.1144/jgs2013-110

    [32]

    Barnard L A, Macintyre I G, Pierce J W. Possible environmental index in tropical reef corals [J]. Nature, 1974, 252(5480): 219-220. doi: 10.1038/252219a0

    [33]

    Porta G D, Webb G E, McDonald I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco) [J]. Chemical Geology, 2015, 400: 65-86. doi: 10.1016/j.chemgeo.2015.02.010

    [34]

    Mc Lennan S M, Bock B, Hemming S R, et al. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks[M]//Lentz D R. Geological Association of Canada Short Course Notes. Toronto: Geological Association of Canada, 2003.

    [35]

    Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards Bay sediments [J]. Geochimica Et Cosmochimica Acta, 1989, 53(11): 2847-2856. doi: 10.1016/0016-7037(89)90162-2

    [36]

    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy [J]. Geochimica Et Cosmochimica Acta, 2000, 64(9): 1557-1565. doi: 10.1016/S0016-7037(99)00400-7

    [37]

    Banner J L, Hanson G N, Meyers W J. Rare earth element and nd isotopic variations in regionally extensive dolomites from the burlington-keokuk formation (Mississippian): implications for REE mobility during carbonate diagenesis [J]. Journal of Sedimentary Research, 1988, 58(3): 415-432.

    [38]

    Kim J H, Torres M E, Haley B A, et al. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin [J]. Chemical Geology, 2012, 291: 152-165. doi: 10.1016/j.chemgeo.2011.10.010

    [39]

    Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4

    [40]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [41]

    Shields G A, Webb G E. Has the REE composition of seawater changed over geological time? [J]. Chemical Geology, 2004, 204(1-2): 103-107. doi: 10.1016/j.chemgeo.2003.09.010

    [42]

    Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect [J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333. doi: 10.1007/s004100050159

    [43]

    Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9

    [44]

    Tanaka K, Tani Y, Takahashi Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by <italic>Acremonium</italic> sp. strain KR21-2 [J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5463-5477. doi: 10.1016/j.gca.2010.07.010

    [45]

    German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: the ground rules [J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823

    [46]

    Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater [J]. Precambrian Research, 2013, 225: 110-127. doi: 10.1016/j.precamres.2011.10.011

    [47]

    Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones [J]. Geochemical Journal, 1991, 25(1): 31-44. doi: 10.2343/geochemj.25.31

    [48]

    Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater [J]. Chemical Geology, 1999, 155(1-2): 77-90. doi: 10.1016/S0009-2541(98)00142-9

    [49]

    Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8

    [50]

    Luong L D, Ryuichi S, Nguyen H, et al. Spatial variations in dissolved rare earth element concentrations in the East China Sea water column [J]. Marine Chemistry, 2018, 205: 1-15. doi: 10.1016/j.marchem.2018.07.004

    [51]

    Michard A, Albarède F, Michard G, et al. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N) [J]. Nature, 1983, 303(5920): 795-797. doi: 10.1038/303795a0

    [52]

    German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean [J]. Nature, 1990, 345(6275): 516-518. doi: 10.1038/345516a0

    [53]

    Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): constraints from rare earth element geochemistry of chert [J]. Sedimentary Geology, 2006, 183(3-4): 203-216. doi: 10.1016/j.sedgeo.2005.09.020

    [54]

    Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia [J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1041-1058. doi: 10.1016/j.gca.2004.08.020

    [55]

    Wang Q X, Lin Z J, Chen D F. Geochemical constraints on the origin of Doushantuo cap carbonates in the Yangtze Gorges area, South China [J]. Sedimentary Geology, 2014, 304: 59-70. doi: 10.1016/j.sedgeo.2014.02.006

    [56]

    Michard A, Albarède F. The REE content of some hydrothermal fluids [J]. Chemical Geology, 1986, 55(1-2): 51-60. doi: 10.1016/0009-2541(86)90127-0

    [57]

    Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa [J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 378-394. doi: 10.1016/j.gca.2007.10.028

    [58]

    Robbins L J, Lalonde S V, Planavsky N J, et al. Trace elements at the intersection of marine biological and geochemical evolution [J]. Earth-Science Reviews, 2016, 163: 323-348. doi: 10.1016/j.earscirev.2016.10.013

    [59]

    Bau M, Balan S, Schmidt K, et al. Rare earth elements in mussel shells of the <italic>Mytilidae</italic> family as tracers for hidden and fossil high-temperature hydrothermal systems [J]. Earth and Planetary Science Letters, 2010, 299(3-4): 310-316. doi: 10.1016/j.jpgl.2010.09.011

    [60]

    Johannessen K C, Roost J V, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields [J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016

    [61]

    Ho K S, Chen J C, Juang W S. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, Southern China [J]. Journal of Asian Earth Sciences, 2000, 18(3): 307-324. doi: 10.1016/S1367-9120(99)00059-0

    [62] 孙嘉诗. 南海北部及广东沿海新生代火山活动[J]. 海洋地质与第四纪地质, 1991, 11(3):45-66. [SUN Jiashi. Cenozoic volcanic activity in the Northern South China Sea and Guangdong coastal area [J]. Marine Geology & Quaternary Geology, 1991, 11(3): 45-66.
    [63] 樊祺诚, 孙谦, 李霓, 等. 琼北火山活动分期与全新世岩浆演化[J]. 岩石学报, 2004, 20(3):533-544. [FAN Qicheng, SUN Qian, LI Ni, et al. Periods of volcanic activity and magma evolution of Holocene in North Hainan Island [J]. Acta Petrologica Sinica, 2004, 20(3): 533-544. doi: 10.3969/j.issn.1000-0569.2004.03.017
    [64] 冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3):73-79. [FENG Yingci, ZHAN Wenhuan, SUN Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene [J]. Journal of Tropical Oceanography, 2017, 36(3): 73-79.
    [65] 邹和平. 试谈南海海盆地壳属性问题—由南海海盆及其邻区玄武岩的比较研究进行讨论[J]. 大地构造与成矿学, 1993, 17(4):293-303. [ZOU Heping. On the problem about the crust’s attribution of South China Sea basin-discussion from comparative study on basalts of seamounts in South China Sea basin and the neighboring areas [J]. Geotectonica et Metallogenia, 1993, 17(4): 293-303.
    [66] 吕炳全, 王国忠, 全松青, 等. 试论西沙群岛石岛的形成[J]. 地质科学, 1986(1):82-89. [LV Bingquan, WANG Guozhong, QUAN Songqing, et al. A preliminary study of the formation of Shidao Island, Xisha Islands [J]. Chinese Journal of Geology, 1986(1): 82-89.
  • 期刊类型引用(1)

    1. 李小梅,凌小东,王芳,米占宽,占鑫杰. 探讨低围压条件下如何准确测试土体强度. 岩土工程学报. 2023(S1): 148-152 . 百度学术

    其他类型引用(2)

图(13)  /  表(5)
计量
  • 文章访问数:  2323
  • HTML全文浏览量:  483
  • PDF下载量:  45
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-12-15
  • 修回日期:  2020-02-11
  • 网络出版日期:  2020-08-20
  • 刊出日期:  2020-07-31

目录

/

返回文章
返回