孟加拉湾南部表层沉积物稀土元素组成及其物源指示意义

孙兴全, 刘升发, 李景瑞, 曹鹏, 张辉, 赵广涛, SomkiatKhokiattiwong, NarumolKornkanitnan, 石学法

孙兴全, 刘升发, 李景瑞, 曹鹏, 张辉, 赵广涛, SomkiatKhokiattiwong, NarumolKornkanitnan, 石学法. 孟加拉湾南部表层沉积物稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2020, 40(2): 80-89. DOI: 10.16562/j.cnki.0256-1492.2019102801
引用本文: 孙兴全, 刘升发, 李景瑞, 曹鹏, 张辉, 赵广涛, SomkiatKhokiattiwong, NarumolKornkanitnan, 石学法. 孟加拉湾南部表层沉积物稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2020, 40(2): 80-89. DOI: 10.16562/j.cnki.0256-1492.2019102801
SUN Xingquan, LIU Shengfa, LI Jingrui, CAO Peng, ZHANG Hui, ZHAO Guangtao, Somkiat Khokiattiwong, Narumol Kornkanitnan, SHI Xuefa. Rare earth element composition of the surface sediments from the south Bay of Bengal and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 80-89. DOI: 10.16562/j.cnki.0256-1492.2019102801
Citation: SUN Xingquan, LIU Shengfa, LI Jingrui, CAO Peng, ZHANG Hui, ZHAO Guangtao, Somkiat Khokiattiwong, Narumol Kornkanitnan, SHI Xuefa. Rare earth element composition of the surface sediments from the south Bay of Bengal and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 80-89. DOI: 10.16562/j.cnki.0256-1492.2019102801

孟加拉湾南部表层沉积物稀土元素组成及其物源指示意义

基金项目: “全球变化与海气相互作用”专项“东印度洋IND-CJ03区块海底底质和底栖生物调查”(GASI-02-IND-CJ03),“全球变化与海气相互作用”专项“亚洲大陆边缘“源-汇”过程与陆海相互作用”(GASI-GEOGE-03)
详细信息
    作者简介:

    孙兴全(1991—),男,博士生,主要从事海洋沉积学研究,E-mail:sunxingquan2010@163.com

    通讯作者:

    刘升发(1979—),男,副研究员,研究方向为海洋沉积学,E-mail:liushengfa@fio.org.cn

  • 中图分类号: P736.4

Rare earth element composition of the surface sediments from the south Bay of Bengal and its implications for provenance

  • 摘要: 基于孟加拉湾南部98个表层沉积物的稀土元素组成及其空间分布特征,判别了研究区表层沉积物主要来源,并结合水动力环境等探讨了孟加拉湾南部区域沉积物输运方式。结果表明,研究区表层沉积物稀土元素总含量范围为67.62~180.67 μg/g,其平均值为100.85 μg/g,且具有轻稀土富集、重稀土均一、明显的Eu负异常的特征。基于稀土元素主要参数,可将研究区分为两个区域,Ι区位于研究区西部,Ⅱ区位于研究区东部。根据球粒陨石标准化后的La/Yb-Sm/Nd物源判别图解可知,研究区表层沉积物的最主要来源为恒河-布拉马普特拉河搬运的喜马拉雅山侵蚀物质,其对整个研究区均有重要影响;次要来源为戈达瓦里河-克里希纳河输送的印度半岛物质,其主要影响范围为研究区西侧的Ι区。不同源区沉积物在研究区的输运过程主要受控于季节性表层环流,其驱动力为印度季风系统。
    Abstract: Rare earth element (REE) compositions and their spatial distribution pattern for 98 surface sediment samples collected from the southern part of the Bay of Bengal are carefully studied in this paper. The main sources of sediments are identified and the sediment transport modes discussed in combination with the hydrodynamic environment features. The results suggest that the total concentrations of rare earth elements in the surface sediments of the study area vary between 67.62 μg/g and 180.67 μg/g, with an average at 100.85 μg/g. The samples are rich in light REE and uniform in heavy REE with an obvious negative anomaly of Eu. Based on the major parameters of REE, the study area can be subdivided into two provinces, the province Ι located in the west part of the study area and the province Ⅱ located in the east. According to the chondrite-normalized La/Yb-Sm/Nd diagram for provenance identification, most of the surface sediments of the study area is provided by the erosion of the Himalayan Mountain and transported by the Ganges-Brahmaputra River. The subordinate source is the Indian Peninsula, of which the sediments were transported by the Godavari River-Krishna River in the province Ι located in the west part of the study area. The transportation of sediments in different source areas is mainly controlled by the seasonal surface circulation driven by the Indian monsoon system.
  • 天然气水合物是一种以甲烷为主的气体与水在低温高压下形成的固态冰状物质,主要分布在冻土带和水深大于500 m的海底沉积物中。最新估计全球水合物所蕴藏的天然气量约0.2×1015~120×1015 m3,是一种储量大,燃烧清洁,能量高的新能源[1-3]。天然气水合物在海底热力学条件发生改变时,将分解释放出大量强温室气体甲烷,影响全球气候和环境[4-5]。因此,天然气水合物的调查研究一直是最近几十年国际研究的热点之一,其中准确计算天然气水合物形成的温度和压力等热力学条件和稳定带分布特征是开展其资源和环境评估的前提之一。

    全球大部分已经发现的天然气水合物分布在大陆边缘海底和高纬度永久冻土带中[3],这是由于大陆边缘海域生物量巨大,海底沉积物埋有大量有机质,这些有机质通过热解或微生物作用转化为甲烷,为天然气水合物的形成提供充足气源[6-8]。相反,大洋区域,缺乏高生产力环境,并且远离大陆,缺乏有机质的输入,海底沉积物没有丰富的有机质,无法生成充足的天然气,因此,大洋环境一直被认为不适合天然气水合物发育。

    但是,大洋洋壳主要由超基性岩和基性岩组成,与水相互作用发生蛇纹岩化,可产生甲烷等烃类气体,为天然气水合物形成提供气源[9-10]。蛇纹岩化使原岩中的橄榄石和辉石等转变为蛇纹石并产生水镁石、滑石、磁铁矿和氢气(公式1),并在还原条件下,蛇纹岩化形成的H2以磁铁矿为催化剂,可与环境中的碳发生费托反应(公式2)或萨巴蒂尔反应(公式3)生成无机成因甲烷和低分子量烷烃化合物[11-17]

    $$ \begin{array}{l} {\rm{M}}{{\rm{g}}_{{\rm{1}}{\rm{.8}}}}{\rm{F}}{{\rm{e}}_{{\rm{0}}{\rm{.2}}}}{\rm{Si}}{{\rm{O}}_{\rm{4}}}{\rm{ + 1}}{\rm{.37}}{{\rm{H}}_{\rm{2}}}{\rm{O}} \to {\rm{0}}{\rm{.5M}}{{\rm{g}}_{\rm{3}}}{\rm{S}}{{\rm{i}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}{\left( {{\rm{OH}}} \right)_{\rm{4}}}{\rm{ + }}\\ {\rm{0}}{\rm{.3Mg}}{\left( {{\rm{OH}}} \right)_{\rm{2}}}{\rm{ + 0}}{\rm{.067F}}{{\rm{e}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}{\rm{ + 0}}{\rm{.067}}{{\rm{H}}_{\rm{2}}}\\[-13pt] \end{array} $$ (1)
    $$ {\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}\left[ {{\rm{2 + }}\left( {{\rm{m/2n}}} \right)} \right]{{\rm{H}}_{\rm{2}}} \to \left( {{\rm{1/n}}} \right){{\rm{C}}_{\rm{n}}}{{\rm{H}}_{\rm{m}}}{\rm{ + 2}}{{\rm{H}}_{\rm{2}}}{\rm{O}} $$ (2)
    $$ {\rm{C}}{{\rm{O}}_{\rm{2}}}{\rm{ + 4}}{{\rm{H}}_{\rm{2}}} \to {\rm{C}}{{\rm{H}}_{\rm{4}}}{\rm{ + 2}}{{\rm{H}}_{\rm{2}}}{\rm{O}} $$ (3)

    蛇纹岩化过程产生的甲烷量是巨大的,1 km3方辉橄榄岩发生蛇纹岩化可以产生5×105 t氢气和2.5×105 t甲烷[18]。在大西洋中脊裂谷带岩石圈形成后的150 Ma中,全球蛇纹岩化能产生2.25×1013~4.5×1013 t的氢气和1×1013 t的甲烷,其产气量在数量级上大于世界上已知的所有油气资源[18-19]。蛇纹岩化无机成因甲烷可以为大洋海底甲烷水合物的发育提供充足的气源。这种蛇纹岩化形成的富含CH4的流体在海底附近合适的温度和压力条件下可能形成甲烷水合物。如在北大西洋进入北冰洋的Fram海峡,发现有与蛇纹岩化流体活动有关的似海底反射层,表明可能发育甲烷水合物[20-21]。此外,在马里亚纳弧前蛇纹岩泥火山顶发育有类似大陆边缘海底冷泉系统及伴生的甲烷缺氧氧化的微生物、贝、蛤、虾和螃蟹等冷泉生物群[22-25],表明这种蛇纹岩泥火山的海底环境存在丰富的甲烷源。此外,马里亚纳海沟发现了可能存在二氧化碳水合物[26],表明该区域存在水合物形成的条件。这些证据指示蛇纹岩化作用的区域可能存在天然气水合物发育,为海洋水合物的探寻提供了新思路。但相关的蛇纹岩化形成的无机成因甲烷水合物研究非常少,有必要对大洋区蛇纹岩发育区海底的甲烷水合物稳定带进行研究。

    大洋蛇纹岩化通常发生在俯冲带环境和扩张的洋中脊环境[18]。本文选取马里亚纳海沟俯冲带环境的弧前蛇纹岩泥火山、慢速扩张脊Lost City和超慢速扩张脊Fram海峡研究水合物的发育条件。根据3个区域海底已有的深潜和钻探资料为基础,研究蛇纹岩化无机成因甲烷水合物的生成条件、讨论其不同地质构造环境对甲烷水合物生成的热力学条件及评估蛇纹岩化无机成因甲烷水合物资源分布潜力。

    在海底之下一定温度和压力条件使水合物稳定存在的区域称为水合物稳定带,稳定带底界是水合物能稳定存在的最深位置,其主要受到温度、压力、气体组分和孔隙水盐度等影响。水合物稳定带控制着天然气水合物的生成和分布,其厚度决定了天然气水合物的资源潜力。计算海底稳定带底界的基本原理主要是通过对比海底地层温压条件和水合物相平衡的温压条件等确定天然气水合物稳定存在区域。首先要确定天然气水合物能稳定存在的温度和压力,即确定水合物相平衡时温度和压力函数关系。在一定的压力条件时,天然气水合物稳定存在的最高温度为三相平衡温度,此时体系是一个水合物-水-游离气的三相平衡体系,如果地温低于该三相平衡温度,水合物可以稳定存在,高于三相平衡温度,水合物不能稳定存在。因此,地温达到三相平衡温度所对应的压力(深度)即为水合物的稳定带底界压力,依相应的水深和沉积物静水压力可以换算成埋藏深度。

    计算海底环境的天然气水合物相平衡温度和压力的函数关系已有多种方法,常用的有Sloan和Koh[2]根据水合物相平衡实验数据和热力学建立了天然气水合物相平衡计算方法,并编写相应的计算程序(CSMHYD)[2]。此外,Sun和Duan[27],Tishchenko等[28]也建立了水合物-水-游离气三相平衡温度和压力的函数关系。根据相关实验数据拟合较为简单的三相平衡温压关系式[29-30],可以快速计算海底的天然气水合物稳定带。其中Sloan和Koh[2]的方法应用最广。因此,本文选取作为水合物相平衡温度的求解方法。利用地温曲线与天然气水合物的相平衡温度计算获得大洋海底3个蛇纹岩化发育区甲烷水合物发育的稳定带底界深度(图1)。

    图  1  研究区分布(a)及马里亚纳弧前(b)、Fram海峡(c)、Lost City(d)地理位置图[31-33]
    Figure  1.  Research areas (a) and geographical location map of Mariana forearc (b)、Fram Strait (c)、Lost City (d)

    在13°~20°N的马里亚纳弧前海域海底,距海沟轴线约30~100 km处分布有14个大型及大量小型海底蛇纹岩泥火山(图1b[34-35],最大的泥火山直径达50 km,高度达2.5 km,显示具有非常厚的泥火山沉积物。钻探显示这些蛇纹岩泥火山沉积物主要是蛇纹岩泥及岩屑[31],通过大洋板块沿海沟向下俯冲脱水,进入上地幔楔,与地幔橄榄岩作用形成蛇纹岩泥和富甲烷流体,并沿着断裂通道向上运移,喷出海底,并在海底伴有冷泉生物群[25,34-38]。通过潜器和钻探等采集了蛇纹岩泥火山顶部正在渗漏的流体,分析结果显示流体具有富含甲烷、低温(约2 ℃)以及强碱性(pH达12.5)的特征[25,31,35-37]。这些富甲烷流体沿断裂向上渗漏过程中,在达到水合物的热力学稳定条件时,可能生成水合物。这些流体的断裂通道可能是生成天然气水合物的有利位置。

    国际大洋发现计划(IODP)366航次、大洋钻探(ODP)195、125航次等多个航次对马里亚纳弧前蛇纹岩泥火山进行了深海钻探调查。根据钻探结果,对马里亚纳弧前4个蛇纹岩泥火山Yinazao,Fantangisña,Asùt Tesoro,South Chamorro(图1b)进行了天然气水合物稳定带底界计算。泥火山进行钻探的站位水深为1 243~4 992 m、海底温度为1.55~3.99 ℃、实测地温梯度为10~26.5 °C/km[31]。应用CSMHYD程序计算甲烷在海水盐度条件下形成的三相平衡温度及压力[2],结合海底水深、海底温度和地温梯度确定水合物稳定带底界(图2)。4个蛇纹岩泥火山无机成因甲烷水合物的稳定带底界计算结果见表1,结果显示马里亚纳弧前蛇纹岩泥火山海底具有甲烷水合物形成的有利温压条件,稳定带底界埋藏深度为858~2 515 mbsf(图2),具有非常好的天然气水合物稳定发育的温压条件。

    表  1  马里亚纳弧前蛇纹岩泥火山的天然气水合物稳定带深度及参数
    Table  1.  The depth and parameters of gas hydrate stability zone at Mariana forearc serpentinite mud volcano area
    站位ODP1200IODP1491IODP1492IODP1493 ,1494 ,1495IODP1496IODP1497IODP1498
    水深/m2 9104 4923 6663 3581 2432 0183 396
    海底温度/°C1.671.551.561.733.992.293.905
    地温梯度/(°C/km)10201226.514.311.711.7
    底界/mbsf2 5151 2902 1608581 0851 8202 130
    下载: 导出CSV 
    | 显示表格
    图  2  马里亚纳弧前蛇纹岩泥火山温度(红线)和三相平衡温度(蓝线)
    (蓝线表示相平衡温度,红线表示地温梯度,相交点深度为甲烷水合物稳定带底界深度)
    Figure  2.  The local temperature (red line) and calculated temperature in three-phase equilibrium (blue line) at Mariana forearc serpentinite mud volcano area

    根据扩张速率大小,全球大洋中脊系统可划分为快速(80~180 mm/a)、中速(55~80 mm/a)、慢速(<55 mm/a)和超慢速扩张脊(<20 mm/a) 4种类型[39]。其中超慢速扩张脊占全球洋脊总长的三分之一以上,主要为北冰洋和西南印度洋洋脊[40]。Fram海峡为一条从北大西洋至北冰洋的一条海上通道,位于格陵兰岛(Greenland)东北部和斯瓦尔巴特群岛(Svalbard)西北部之间(图1c),地理位置为77°~81°N[41]。在Fram海峡的地震剖面上,发育有甲烷水合物的典型地球物理证据—似海底反射层(BSR),通过地震波速反演计算甲烷水合物饱和度高达26%[20-21]。地震剖面显示蛇纹岩化无机成因的甲烷气通过拆离断层向海底运移并在BSR之下聚集,为水合物生成提供充足甲烷气源[21]。根据ODP 151航次909C至912站位(图1c)实测水深(567~2 526 m)、海底温度(−0.537 1~3.3 ℃)和地温梯度(37~88 ℃/km)[32],用CSMHYD程序计算了无机成因甲烷水合物的稳定带底界(表2),底界埋藏深度为153~232 mbsf,平均为197.7 mbsf(图3a-d)。Westvig [42]利用地震波速推测的BSR位于200 mbsf,计算的稳定带底界平均值接近于地震剖面确定的BSR深度。

    表  2  Fram海峡天然气水合物稳定带深度及参数
    Table  2.  The depth and parameters of gas hydrate stability zone at Fram Strait
    站位ODP909CODP910ODP911ODP912
    水深/m2 5265679181 048
    海底温度/°C0.303.30−0.277−0.537 1
    地温梯度/(°C/km)883767.864.8
    底界/mbsf232153196210
    下载: 导出CSV 
    | 显示表格
    图  3  Fram海峡温度(红线)和三相平衡温度(蓝线)
    Figure  3.  The local temperature (red line) and calculated temperature in three-phase equilibrium (blue line) at Fram Strait

    Lost City热液区域位于大西洋中脊与亚特兰蒂斯地块转换断裂带的东部交汇处(约30°N),水深750~900 m,距离扩张轴轴线中心15 km,其扩张速率<20 mm/a,该处发育有由蛇纹岩化主导的热液系统[43],流体富含来自于海水与橄榄岩反应形成的甲烷和氢气,喷口处流体温度为40~90 ℃,pH呈碱性(约9~11),海底发育有高为30~60 m的碳酸盐烟囱自生沉积[22]。对海底沉积物年代学和热液区大量碳酸钙沉积研究表明,Lost City热液活动至少持续了3 Ma,最大年龄可能超过10 Ma[44-45]

    利用流体温度计算了该区域甲烷水合物形成的温度和压力条件(图4),显示Lost City 热液区的温压范围超出了甲烷水合物稳定带的范围,40~90 ℃流体温度在Lost City海底深度条件下难以形成甲烷水合物。

    图  4  甲烷水合物形成的温压相图[2]及Lost City渗漏流体温度和压力分布图(图中长方形为Lost City的温度和压力分布范围)
    Figure  4.  The temperature - pressure phase diagram of methane hydrate (modified from reference [2]) showing the temperature, pressure of vent fluid at Lost City (The rectangle shows the range of temperature and pressure at Lost City)

    本文研究的3个大洋区海底均是与俯冲带、慢速和超慢速扩张脊等发育蛇纹岩化的环境。马里亚纳海沟是太平洋板块向菲律宾板块俯冲形成,洋壳平均年龄超过120 Ma[46],是俯冲带最老的大洋岩石圈,密度大,俯冲角度大,俯冲带温度低[47-48]。俯冲板块向下几乎垂直延伸到地幔,海沟深度大。同时马里亚纳俯冲板块与上覆板块耦合性差,接触不紧密[49]。IODP 366航次实测的地温梯度较低(10~26.5 ℃/km),该区域具有甲烷水合物发育的有利温压条件。

    慢速扩张脊Lost City热液区(<55 mm/a),在海底慢速扩张过程中,其构造活动相对活跃,深部岩浆或海底热玄武岩冷却,释放热量不仅导致海底热液活动及其相关的生态群落,而且这些热量将传递到海底,使其温度升高[50],同时蛇纹岩化所释放的热量会促进热液循环,对海底温度也将产生影响[22,43,51]。尽管海水与地幔橄榄岩蛇纹岩化反应产生大量H2和CH4,但Lost City喷口处过高的流体温度(40~90 ℃)使海底地温升高,超过天然气水合物稳定存在的临界温度,难以形成水合物,甲烷只能以游离气或溶解态形式存在,喷出海底进入水体。因此,推测Lost City中水合物发育可能性比较低。

    热液喷口的流体活动强,受到流体活动影响喷口温度较高,并且大西洋洋中脊附近的热流高于200 mW/m2[52],显示温度较高。但海底环境变化非常大,尤其是海底温度,如洋中脊热液喷口温度可以高达300 ℃以上,离开小的距离就可恢复到正常的海底温度。因此,Lost City远离喷口区海底有可能具备甲烷水合物形成的温压条件。

    超慢速扩张脊Fram海峡扩张速度相对于Lost City慢(<20 mm/a),海底温度相对较低,ODP 151航次探测的地温梯度为37~88 ℃/km,且富甲烷流体向上运移过程中温度不断降低,在海底附近为水合物的生成提供合适的温压条件。

    综上所述,如图5是3个研究区甲烷水合物形成的温度和压力条件,显示俯冲带马里亚纳弧前蛇纹岩泥火山(IODP366航次)和超慢速扩张脊Fram海峡(ODP151航次)在水合物生成范围内,具有甲烷水合物的发育潜力,但慢速扩张脊Lost City热液区喷口处的海底温压条件在水合物形成的热力学范围之外,不具备生成甲烷水合物的热力学条件。

    图  5  马里亚纳弧前蛇纹岩泥火山、Fram海峡和Lost City 蛇纹岩化产生的甲烷形成水合物的热力学条件
    Figure  5.  Thermodynamics conditions for the stability of abiotic methane hydrate at Mariana forearc serpentinite mud volcano area, Fram Strait and Lost City

    甲烷水合物的形成除了低温高压条件外还需要充足的甲烷[6,53-54]。在水合物稳定带内,甲烷浓度高于水合物-水二相体系甲烷平衡溶解度时才能生成水合物[54-57]。其中Fram海峡ODP909站位钻探过程中,发现底部的烃类成分含量急剧增大,为了安全而停止了钻探,显示出该区域深度具有非常高的烃类供给,可以为该海域水合物生成提供充足气源[32]。此外该海域地震显示了BSR发育,也指示了该海域天然气水合物发育。

    根据马里亚纳弧前蛇纹岩泥火山ODP1200站位实测温压数据,应用水合物-水二相体系甲烷浓度模型[56-57],计算出该站位浅层发育甲烷水合物所需最低甲烷浓度约50 mM,而ODP1200站位显示在海底浅层60 mbsf的沉积物孔隙水的甲烷浓度为0~17 mM,远低于所需最低甲烷浓度,表明该站位浅层水合物发育可能性较小。但近海底沉积层常由于甲烷微生物缺氧氧化作用而被消耗,导致甲烷浓度低,甚至不含甲烷[6,58-59],如太平洋的Cascadia陆坡ODP 1251、IODP 1325和IODP 1327站位深层有水合物发育,在海底浅层200 m内实测甲烷浓度分别为0~13、0~17和0~14 mM[60-61],与ODP1200站位浅层200 mbsf测定的甲烷浓度相近。

    此外,ODP1200站位硫酸根在海底之下0.05 mbsf处为27.58 mM,深度为0.45 mbsf时降低到3.36 mM,计算了硫酸根向下扩散通量为0.4 mol/m2·a,指示该站位甲烷通量大于部分典型水合物发育区向海底供给甲烷通量,如ODP997站位、ODP1245站位和IODP1327站位的甲烷通量分别为0.007 5[62]、0.05和0.028 mol/m2·a[63]。而且,在IODP1492A站位实测的小于30 mbsf沉积物的甲烷顶空气浓度明显随深度有逐渐增大趋势(图6)。因此,马里亚纳弧前蛇纹岩泥火山ODP1200站位深部的甲烷量可能较大,显示甲烷供给充足,为水合物发育提供气源。

    图  6  IODP1492A浅层顶空气甲烷浓度[31]
    Figure  6.  The headspace CH4 concentration at site IODP 1492A

    马里亚纳弧前遍布发育有蛇纹岩泥火山,大型泥火山14座,最大的高2.5 km,直径50 km[34],如果这些泥火山全部由蛇纹岩构成,且深部地幔形成的蛇纹岩的量将是更为巨大,将产生大量的氢气和无机成因甲烷。如果1 km3方辉橄榄岩发生蛇纹岩化可产生2.5×105 t甲烷[18],一个高2.5 km,直径50 km蛇纹岩泥火山,可产约4×1011 kg甲烷,单位面积产甲烷量约200 kg/m2。对比大陆边缘甲烷水合物发育站位单位面积水合物甲烷的资源量,如ODP1245、ODP1247、ODP1327站位,水合物饱和度分别为3.8%、2%、7.9%[61,64],稳定带厚度分别为79、80、147 mbsf,计算单位面积产甲烷量分别为15、8、60 kg/m2。假设有1%的蛇纹岩泥火山产出的甲烷可转化为水合物,其甲烷量也满足陆坡区水合物发育所需要的甲烷量。因此,马里亚纳弧前具有充足的甲烷,深部发育甲烷水合物潜力较大。

    (1)马里亚纳弧前蛇纹岩泥火山和Fram海峡超慢速扩张脊满足天然气水合物生成热力学条件,且有充足的甲烷供给证据,发育甲烷水合物可能性较大。

    (2)马里亚纳弧前蛇纹岩泥火山稳定带约为858~2 515 mbsf,平均深度是1 694 mbsf,具有厚的水合物稳定带。北大西洋Fram海峡超慢速扩张脊计算的水合物稳定带底界平均深度是197.7 mbsf,深度相对浅。

    (3)大西洋Lost City热液区喷口处由于热流温度高,超出了甲烷水合物稳定带底界温度,喷口区不可能有甲烷水合物的发育。

  • 图  1   研究区地理位置和取样站位分布

    白色箭头为夏季表层环流,橙色箭头为冬季表层环流,虚线箭头为东印度沿岸流,红色虚线框为研究区;表层环流根据文献[5-6]改绘。

    Figure  1.   Location of the study area and sampling sites

    The white arrow indicates the summer circulation, the orange arrow the winter circulation, and the dotted arrow the East Indian Coastal Current. The red dotted frame indicates the study area. Circulation patterns are modified from [5-6].

    图  2   研究区表层沉积物平均粒径(左)和稀土元素总含量平面分布(右)图

    Figure  2.   Distributions of mean grain size (left) and total concentrations of rare earth elements (right) of the surface sediments of the study area

    图  3   研究区表层沉积物稀土元素总含量与平均粒径和TiO2相关图

    Figure  3.   Correlation between total concentrations of rare earth elements, mean grain size, and TiO2 in the surface sediments of the study area

    图  4   研究区表层沉积物稀土元素总含量配分模式图

    Figure  4.   Chondrite-normalized rare earth elements distribution pattern of the surface sediments in study area

    图  5   研究区表层沉积物稀土元素平均值与周边河流稀土元素配分模式

    上陆壳数据引自文献[28];伊洛瓦底江数据引自文献[29];默哈纳迪河和戈达瓦里-克里希纳河数据引自文献[30];恒河-布拉马普特拉河数据引自文献[31]。

    Figure  5.   Chondrite-normalized rare earth elements distribution pattern of the average REE composition in study area and adjacent rivers

    Upper continental crust data from [28]; Irrawaddy data from [29]; Mahanadi and Godavari-Krishna data from [30]; Ganga-Brahmaputra data from [31].

    图  6   MnO与TFe2O3和稀土元素总含量之间的相关性

    Figure  6.   Correlation between MnO, TFe2O3, and total concentrations of rare earth elements

    图  7   稀土元素聚类分区图

    Figure  7.   Cluster partition map of rare earth elements

    图  8   (La/Yb)N-(Sm/Nd)N物源识别图

    Figure  8.   (La/Yb)N-(Sm/Nd)N provenance identification diagram

    表  1   孟加拉湾周边河流概况[1-2]

    Table  1   An overview of the rivers around the Bay of Bengal

    名称长度/km流域面积/103km2流量/(km3/a)悬浮沉积物通量/(Mt/a)溶解质通量/(Mt/a)
    恒河2 20098049052091
    布拉马普特拉河2 60067063054063
    默哈纳迪河90014054618.1
    戈达瓦里河1 40031012017020
    克里希纳河1 300260626422
    伊洛瓦底江2 30043043036098
    下载: 导出CSV

    表  2   研究区及周边河流稀土元素含量及分异参数

    Table  2   Rare earth elements composition and differentiation parameters of sediments of the study area and adjacent rivers

    LaCePrNdSmEuGdTbDyHoErTmYbLu总稀土总轻稀土/
    总重稀土
    δEuδCeLa/YbSm/Nd
    平均值19.9841.884.6618.083.620.973.400.543.170.601.720.271.690.27100.857.590.851.047.900.62
    最大值35.6780.248.1830.925.941.525.480.884.900.912.630.422.590.41180.678.920.971.149.300.66
    最小值13.9025.473.2212.752.590.782.570.402.370.461.330.221.330.2167.626.490.750.926.840.59
    标准偏差3.609.150.833.000.550.110.460.070.390.070.190.030.180.0318.530.590.040.060.620.14
    上陆壳30.0064.007.1026.004.500.883.800.643.500.802.300.332.200.32146.379.540.651.069.190.53
    伊洛瓦底江33.0067.297.2925.714.710.913.910.613.490.672.040.332.040.33152.3410.390.691.0310.980.58
    默哈纳迪河46.2194.878.6735.596.691.415.740.894.200.882.710.452.360.34211.0310.990.701.1413.200.58
    戈达瓦里-克里希纳河38.8591.388.2033.706.791.705.531.035.471.103.090.462.500.37200.1610.490.851.2210.490.62
    恒河-布拉马普特拉河49.07100.1311.2741.608.141.376.871.066.111.173.310.493.370.52234.489.060.601.029.630.60
      注:稀土元素含量单位为μg/g;δEu、δCe、La/Yb和Sm/Nd均为经球粒陨石标准化后的值。上陆壳数据引自文献[28];伊洛瓦底江数据引自文献[29];默哈纳迪河和戈达瓦里-克里希纳河数据引自文献[30];恒河-布拉马普特拉河数据引自文献[31];球粒陨石数据引自文献[32]。
    下载: 导出CSV
  • [1]

    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean[M]. New York: Cambridge University Press, 2011.

    [2] 李景瑞, 刘升发, 冯秀丽, 等. 孟加拉湾中部表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):41-50. [LI Jingrui, LIU Shengfa, FENG Xiuli, et al. Rare earth element geochemistry of surface sediments in mid-Bengal Bay and implications for provenance [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 41-50.
    [3]

    Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes [J]. Marine & Petroleum Geology, 2002, 19(10): 1191-1223.

    [4]

    Curray J R, Moore D G. Growth of the Bengal deep-sea fan and denudation in the Himalayas [J]. Geological Society of America Bulletin, 1971, 82(3): 563-572. doi: 10.1130/0016-7606(1971)82[563:GOTBDF]2.0.CO;2

    [5]

    Kolla V, Moore D G, Curray J R. Recent bottom-current activity in the deep western Bay of Bengal [J]. Marine Geology, 1976, 21(4): 255-270. doi: 10.1016/0025-3227(76)90010-4

    [6]

    Schott F A, McCreary J P Jr. The monsoon circulation of the Indian Ocean [J]. Progress in Oceanography, 2001, 51(1): 1-123. doi: 10.1016/S0079-6611(01)00083-0

    [7]

    Joussain R, Colin C, Liu Z F, et al. Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial-interglacial cycle [J]. Quaternary Science Reviews, 2016, 148: 1-16. doi: 10.1016/j.quascirev.2016.06.016

    [8]

    Xue P F, Chang L, Wang S S, et al. Magnetic mineral tracing of sediment provenance in the central Bengal Fan [J]. Marine Geology, 2019, 415: 105955. doi: 10.1016/j.margeo.2019.05.014

    [9]

    Tripathy G R, Singh S K, Ramaswamy V. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 397: 20-30. doi: 10.1016/j.palaeo.2013.04.012

    [10]

    Venkatarathnam K, Biscaye P E. Clay mineralogy and sedimentation in the eastern Indian Ocean [J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(8): 727-738. doi: 10.1016/0011-7471(73)90088-0

    [11]

    Iyer S D, Gupta S M, Charan S N, et al. Volcanogenic-hydrothermal iron-rich materials from the southern part of the Central Indian Ocean Basin [J]. Marine Geology, 1999, 158(1-4): 15-25. doi: 10.1016/S0025-3227(98)00167-4

    [12]

    Weber M E, Wiedicke-Hombach M, Kudrass H R, et al. Bengal Fan sediment transport activity and response to climate forcing inferred from sediment physical properties [J]. Sedimentary Geology, 2003, 155(3-4): 361-381. doi: 10.1016/S0037-0738(02)00187-2

    [13]

    Emmel F J, Curray J R. The Bengal Submarine Fan, Northeastern Indian ocean [J]. Geo-Marine Letters, 1983, 3(2-4): 119-124. doi: 10.1007/BF02462456

    [14]

    Galy V, François L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2008, 27(13-14): 1396-1409. doi: 10.1016/j.quascirev.2008.04.005

    [15]

    Babu C P, Pattan J N, Dutta K, et al. Shift in detrital sedimentation in the eastern Bay of Bengal during the late Quaternary [J]. Journal of Earth System Science, 2010, 119(3): 285-295. doi: 10.1007/s12040-010-0022-9

    [16]

    Kessarkar P M, Rao V P, Ahmad S M, et al. Changing sedimentary environment during the Late Quaternary: Sedimentological and isotopic evidence from the distal Bengal Fan [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52(9): 1591-1615. doi: 10.1016/j.dsr.2005.01.009

    [17]

    Tripathy G R, Singh S K, Bhushan R, et al. Sr-Nd isotope composition of the Bay of Bengal sediments: Impact of climate on erosion in the Himalaya [J]. Geochemical Journal, 2011, 45(3): 175-186. doi: 10.2343/geochemj.1.0112

    [18] 毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4):337-348. [MAO Guangzhou, LIU Chiyang. Application of geochemistry in provenance and depositional setting analysis [J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348. doi: 10.3969/j.issn.1672-6561.2011.04.002
    [19]

    McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [20]

    Cullers R L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA [J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4955-4972. doi: 10.1016/0016-7037(94)90224-0

    [21]

    Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance [J]. Marine Geology, 2014, 357: 12-24. doi: 10.1016/j.margeo.2014.07.002

    [22]

    Um I K, Choi M S, Bahk J J, et al. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea [J]. Marine Geology, 2013, 346: 208-219. doi: 10.1016/j.margeo.2013.09.007

    [23] 窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2):147-157. [DOU Yanguang, LI Jun, LI Yan. Rare earth element compositions and provenance implication of surface sediments in the eastern Beibu Gulf [J]. Geochimica, 2012, 41(2): 147-157. doi: 10.3969/j.issn.0379-1726.2012.02.006
    [24]

    Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern South China Sea [J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005

    [25]

    Sun X Q, Liu S F, Li J R, et al. Major and trace element compositions of surface sediments from the lower Bengal Fan: implications for provenance discrimination and sedimentary environment [J]. Journal of Asian Earth Sciences, 2019, 184: 104000. doi: 10.1016/j.jseaes.2019.104000

    [26]

    McManus J, Berelson W M, Klinkhammer G P, et al. Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy [J]. Geochimica et Cosmochimica Acta, 1998, 62(21-22): 3453-3473. doi: 10.1016/S0016-7037(98)00248-8

    [27] 沈华悌. 深海沉积物中的稀土元素[J]. 地球化学, 1990(4):340-348. [SHEN Huati. Rare earth elements in deep-sea sediments [J]. Geochimica, 1990(4): 340-348. doi: 10.3321/j.issn:0379-1726.1990.04.009
    [28]

    Taylor S R, McLennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    [29]

    Garzanti E, Wang J G, Vezzoli G, et al. Tracing provenance and sediment fluxes in the Irrawaddy River basin (Myanmar) [J]. Chemical Geology, 2016, 440: 73-90. doi: 10.1016/j.chemgeo.2016.06.010

    [30]

    Mazumdar A, Kocherla M, Carvalho M A, et al. Geochemical characterization of the Krishna-Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: A comparative study of provenance [J]. Marine & Petroleum Geology, 2015, 60: 18-33.

    [31]

    Garzanti E, Andó S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh) [J]. Earth and Planetary Science Letters, 2011, 302(1-2): 107-120. doi: 10.1016/j.jpgl.2010.11.043

    [32]

    Evensen N M, Hamilton P J, O'Nions R K. Rare-earth abundances in chondritic meteorites [J]. Geochimica Et Cosmochimica Acta, 1978, 42(8): 1199-1212. doi: 10.1016/0016-7037(78)90114-X

    [33] 刘娜, 孟宪伟. 冲绳海槽中段表层沉积物中稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2004, 24(4):37-43. [LIU Na, MENG Xianwei. Characteristics of rare earth elements in surface sediments from the middle Okinawa trough: implications for provenance of mixed sediments [J]. Marine Geology & Quaternary Geology, 2004, 24(4): 37-43.
    [34]

    Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A. [J]. Chemical Geology, 1987, 63(3-4): 275-297. doi: 10.1016/0009-2541(87)90167-7

    [35]

    Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments [J]. Earth and Planetary Science Letters, 2002, 201(2): 407-419. doi: 10.1016/S0012-821X(02)00715-X

    [36]

    Condie K C, Dengate J, Culler R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA [J]. Geochimica et Cosmochimica Acta, 1995, 59(2): 279-294. doi: 10.1016/0016-7037(94)00280-Y

    [37]

    Sharma A, Rajamani V. Major element, REE, and other trace element behavior in amphibolite weathering under semiarid conditions in Southern India [J]. Journal of Geology, 2000, 108(4): 487-496. doi: 10.1086/314409

    [38]

    Cullen J L. Microfossil evidence for changing salinity patterns in the Bay of Bengal over the last 20000 years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 315-356. doi: 10.1016/0031-0182(81)90101-2

    [39] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167. [YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source [J]. Advances in Earth Science, 1999, 14(2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010
    [40] 刘升发, 石学法, 王昆山, 等. 全球变化与海气相互作用专项(GASI-IND-CJ03)研究报告[R]. 自然资源部第一海洋研究所, 2019.

    LIU Shengfa, SHI Xuefa, WANG Kunshan, et al. The Research Report of National Survey Project of China (GASI-IND-CJ03)[R]. First Institute of Oceanography, Ministry of Natural Resources, China, 2019.

    [41]

    Holser W T. Evaluation of the application of rare-earth elements to paleoceanography [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4): 309-323. doi: 10.1016/S0031-0182(97)00069-2

    [42]

    Li J R, Liu S F, Feng X L, et al. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance [J]. Acta Oceanologica Sinica, 2017, 36(3): 82-90. doi: 10.1007/s13131-017-1041-z

    [43]

    Li J R, Liu S F, Shi X F, et al. Clay minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments: Implications for sediment provenance and climate control since 40 ka [J]. Quaternary International, 2018, 493: 50-58. doi: 10.1016/j.quaint.2018.06.044

    [44]

    Li J R, Liu S F, Shi X F, et al. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: source and transport pattern [J]. Continental Shelf Research, 2017, 145: 59-67. doi: 10.1016/j.csr.2017.06.017

    [45]

    Hein C J, Galy V, Galy A, et al. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration [J]. Earth and Planetary Science Letters, 2017, 478: 89-101. doi: 10.1016/j.jpgl.2017.08.013

    [46]

    Kuehl S A, Hariu T M, Moore W S. Shelf sedimentation off the Ganges-Brahmaputra river system: evidence for sediment bypassing to the Bengal fan [J]. Geology, 1989, 17(12): 1132-1135. doi: 10.1130/0091-7613(1989)017<1132:SSOTGB>2.3.CO;2

    [47]

    Weber M E, Wiedicke M H, Kudrass H R, et al. Active growth of the Bengal Fan during sea-level rise and highstand [J]. Geology, 1997, 25(4): 315-318. doi: 10.1130/0091-7613(1997)025<0315:AGOTBF>2.3.CO;2

    [48]

    Li J R, Liu S F, Shi X F, et al. Sedimentary responses to the sea level and Indian summer monsoon changes in the central Bay of Bengal since 40 ka [J]. Marine Geology, 2019, 415: 105947. doi: 10.1016/j.margeo.2019.05.006

    [49]

    Weber M E, Lantzsch H, Dekens P, et al. 200, 000 years of monsoonal history recorded on the lower Bengal Fan - strong response to insolation forcing [J]. Global and Planetary Change, 2018, 166: 107-119. doi: 10.1016/j.gloplacha.2018.04.003

    [50] 方念乔, 陈萍, 吴琳, 等. 孟加拉湾深海记录中的等深流活动特征及其环境意义初探[J]. 地球科学-中国地质大学学报, 2002, 27(5):570-575. [FANG Nianqiao, CHEN Ping, WU Lin, et al. Contour currents in deep-water records from Bay of Bengal and its environmental implication [J]. Earth Science-Journal of China University of Geosciences, 2002, 27(5): 570-575. doi: 10.3321/j.issn:1000-2383.2002.05.016
    [51]

    Zhu L P, Lü X M, Wang J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM [J]. Scientific Reports, 2015, 5(1): 13318. doi: 10.1038/srep13318

    [52]

    Fontugne M R, Duplessy J C. Variations of the monsoon regime during the upper quaternary: Evidence from carbon isotopic record of organic matter in North Indian Ocean sediment cores [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1986, 56(1-2): 69-88. doi: 10.1016/0031-0182(86)90108-2

    [53]

    Goodbred S L. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade [J]. Sedimentary Geology, 2003, 162(1-2): 83-104. doi: 10.1016/S0037-0738(03)00217-3

    [54]

    Mergulhao L P, Guptha M V S, Unger D, et al. Seasonality and variability of coccolithophore fluxes in response to diverse oceanographic regimes in the Bay of Bengal: Sediment trap results [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 371: 119-135. doi: 10.1016/j.palaeo.2012.12.024

    [55]

    Singh M, Singh I B, Müller G. Sediment characteristics and transportation dynamics of the Ganga River [J]. Geomorphology, 2007, 86(1-2): 144-175. doi: 10.1016/j.geomorph.2006.08.011

    [56]

    Akhil V P, Lengaigne M, Vialard J, et al. A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability [J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8471-8495. doi: 10.1002/2016JC011662

    [57]

    Jana S, Gangopadhyay A, Lermusiaux P F J, et al. Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions [J]. Journal of Marine Systems, 2018, 187: 206-222. doi: 10.1016/j.jmarsys.2018.08.001

    [58]

    Shetye S R, Gouveia A D, Shankar D, et al. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon [J]. Journal of Geophysical Research: Oceans, 1996, 101(C6): 14011-14025. doi: 10.1029/95JC03307

图(8)  /  表(2)
计量
  • 文章访问数:  2369
  • HTML全文浏览量:  590
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-27
  • 修回日期:  2019-12-17
  • 网络出版日期:  2020-04-14
  • 刊出日期:  2020-03-31

目录

/

返回文章
返回